Organic Field-Effect Transistors and Electronics - EECS

50
1 Professor Jerzy Kanicki, Patrick B. Shea, and Hojin Lee Organic & Molecular Electronics Solid-State Electronics Laboratory University of Michigan - Ann Arbor http://www.eecs.umich.edu/omelab Organic Field-Effect Transistors and Electronics 2 Organic & Molecular Electronics Contributions from: H. Sirringhaus M. Kane Ch. Pannemann, U. Hilleringmann G. Malliaras A. Heeger, P. Petroff, L. Kinder, and J. Swensen I. McCulloch J. Veres H. Meng J.C. Ho J. Jang S. Aramaki Z. Bao T3-2/1

Transcript of Organic Field-Effect Transistors and Electronics - EECS

Page 1: Organic Field-Effect Transistors and Electronics - EECS

1

Professor Jerzy Kanicki, Patrick B. Shea, andHojin Lee

Organic & Molecular ElectronicsSolid-State Electronics LaboratoryUniversity of Michigan - Ann Arbor

http://www.eecs.umich.edu/omelab

Organic Field-Effect Transistorsand Electronics

2

Organic & Molecular Electronics

Contributions from:

H. Sirringhaus

M. Kane

Ch. Pannemann, U. Hilleringmann

G. Malliaras

A. Heeger, P. Petroff, L. Kinder, and J. Swensen

I. McCullochJ. Veres

H. Meng

J.C. Ho

J. JangS. Aramaki

Z. Bao

T3-2/1

Page 2: Organic Field-Effect Transistors and Electronics - EECS

2

3

Organic & Molecular Electronics

ContentIntroductionDevice Structures and Materials

– Substrates– Source, Drain, and Gate Electrodes– Gate Insulator Dielectrics– Organic Semiconductors– Gate Insulator Dielectric Surface Treatment– Selective Organic Seminconductor Growth

OFET Fabrication– Semiconductor deposition methods– Device fabrication steps

OFET PhysicsDevice Electrical Characterization Methods

– Characteristic measurements– Electrical parameter extraction– Conduction channel and S/D contact characterization– Interface and morphology control

Electrical performance of polymers and small moleculesStability

– Environmental– Electrical– Photo

Ambipolar and Light-Emitting Organic TransistorsOFET-Based DisplaysOFET-Based CircuitsConclusions

4

Organic & Molecular Electronics

Introduction: Small Molecule Organic Semiconductors

TBP

• Polycrystalline films, crystals on micrometer scale.• Charge densities confined to either a single molecule, or a group ofmolecules.• Charge transport characterized by phonon-assisted hopping/tunneling.• Examples:

Tetracene

PentaceneTIPS Pentacene

Metallotetrabenzoporphyrin (MTBP)

T3-2/2

Page 3: Organic Field-Effect Transistors and Electronics - EECS

3

5

Organic & Molecular Electronics

Introduction: Polymer Organic Semiconductors

F8T2

• Amorphous films, or polycrystalline on a submicrometer scale.• Charge densities confined to either a single polymer, or a group ofpolymers chains.• Charge transport characterized by phonon-assisted hopping/tunneling.• Examples:

PQT-12 (poly(3,3”-dialkylquarterthiophene)

P3HT (poly(3-hexylthiophene)

F8T2 – (dioctylfluorene co-bithiophene)

6

Organic & Molecular Electronics

Introduction: Why Conjugated Molecules Can BeSemiconductors

ethene

… …H H H H H H

H H H H H H

polyacetyleneπ σ

EV ECE

g(E)

• Atomic orbitals (s, px and py) hybridize to form hybrid orbitals (sp2) and pz.• Overlap of atomic pz orbitals form a π−electron system…delocalized along molecule.

• Molecular orbitals interact via weak van der Waal forces to form narrow transport bands at theHighest Occupied and Lowest Unoccupied Molecular Orbital energy levels as well as a HOMO-LUMOenergy gap.

Pi bond Sigma bond

Pi bond

porbitals

sp2 orbitals

sp2 carbon sp2 carbon C-C double bond/π-bond+

CH

CH

HH

T3-2/3

Page 4: Organic Field-Effect Transistors and Electronics - EECS

4

7

Organic & Molecular Electronics

Introduction: Charge Transport In Organic Molecules

Polarons

• Carrier lowers energy by distorting lattice• Strong charge-lattice interaction leads to self-localization• Polarons, which appear as midgap states, decrease mobility

• Levels have been demonstrated by UV-vis spectroscopy

p-type polaron in polythiophene

Energy band

8

Organic & Molecular Electronics

Introduction: Charge Transport In Organic Molecules

Phonon-Assisted Tunneling/Hopping Transport

•Charge transport occurs through a hopping mechanism

–Phonons help e-’s hop, therefore increasing mobility

–µ ↓ as T ↑ for low temp crystals

–µ ↑ as T ↑ for RT crystals and disordered systems

–Boundary between 0.1 and 1cm2/V-s

T3-2/4

Page 5: Organic Field-Effect Transistors and Electronics - EECS

5

9

Organic & Molecular Electronics

Introduction: Organic Semiconductor Band Picture

• π electrons are:

– Delocalized and most easily excited

• π - π* transitions equivalent to energy bandgap

• π-bond interactions (pz orbital overlap) between molecules are critical inorganic solid-state electronic devices.

6-12eV1-3eV

antibonding

bonding (fully occupied)

10

Organic & Molecular Electronics

Introduction: Example Organic Energy Band Diagram

• Flat bandstructure• Gaussian-shaped bands with

narrow bandwidth• Narrow absorption spectra

• TBP: Tetrabenzoporphyrin

TBP

1.23 eV

TBP

1.23 eV

TBP

T3-2/5

Page 6: Organic Field-Effect Transistors and Electronics - EECS

6

11

Organic & Molecular Electronics

Thin-Film Transistor StructuresTFT = FET with a thin film as theactive layer (as opposed to devicebuilt from bulk).Fabrication advantages:

– deposited active layer– wide range of substrates

Various TFT structures

vs.

12

Organic & Molecular Electronics

Example Device Structure•Patterned gate electrode (Cr) on Si/SiO2 carrier substrate.•Benzocyclobutene (BCB, organic) gate planarization/insulatorlayer.•Amorphous, hydrogenated silicon nitride (a-SiNx:H) gateinsulator.•Indium tin oxide (ITO) source and drain electrodes.•F8T2 active layer (solution deposited, unpatterned).•Typically, 56µm < W < 116µm and 6µm < L <56µm.

* S. Martin, J. Y. Nahm and J. Kanicki, “Gate-planarized organic polymer thin-film transistors,” Journal of Electronic Materials, vol. 31, pp. 512-519, 2002.

T3-2/6

Page 7: Organic Field-Effect Transistors and Electronics - EECS

7

13

Organic & Molecular Electronics

Examples of Rigid and Flexible Substrates

Crystalline Silicon

Glass • AppearTM by Ferrania Imaging Technologies

• Teonex® by Dupont Teijin film

• OPS by Tosoh Corp

AppearTM substrate appears to be suitable fororganic electronics.

14

Organic & Molecular Electronics

Source, Drain, and Gate Electrodes

Metals:– Au, Al, Ag, Cr, and heavily doped Si

Metal Conductive Oxides:– Indium Tin Oxide (ITO), Aluminum-doped Zinc Oxide

(AZO)

Conductive Organic Molecules:– Polyaniline (PANI), Polyaniline/Nanotube (PANI/NT),

poly(3,4-ethylenedioxythiophene)-poly(stryenesulfonate) (PEDOT-PSS)

To be considered:– Work function matching with organic semiconductor– Resistance to oxidation– Processing compatibility and adhesion– S/D modification by self-assembled monolayer (SAM)– High conductivity

Source Drain

Gate Substrate

gate dielectric

Source Drain

organic semiconductor SAM

T3-2/7

Page 8: Organic Field-Effect Transistors and Electronics - EECS

8

15

Organic & Molecular Electronics

Gate Insulator Dielectrics

Inorganic– SiO2

ε=3.9– Al2O3 11.5– SiNx 7– TaO5 11.6– TiO2 41– Ba0.7Sr0.3TiO3 16 C. Dimitrakopoulos et al., Adv. Mater., 11, 1372, 1999.

Organic– Polyimides (PI) ε=3.4 Kato, et al., Appl. Phys. Lett. 2004, 84, 3789– Poly(4-vinyl phenyl) (PVP) 4.5 Veres et al, Chem. Mat.2004, 16, 4543– Poly(vinyl alcohol) (PVA) 7– Polymethyl Methacrylate (PMMA) 3.5 Veres, et al, Chem. Mat.2004, 16, 4543– Polypropylene 1.5 Veres, et al., Chem. Mat.2004, 16, 4543– Silsesquioxane polymers Z. Bao et al., Adv. Func. Mat. 2002, 12, 526– Ferroelectric Polymers Schroeder et al., Adv. Mater. 2004, 16, 633.– Benzocyclobutene (BCB) Unni et al., Appl. Phys. Lett. 2004, 85, 1823.– Merck TCI-01

Organic/Inorganic Composites

To be considered:– Processing compatibility and adhesion– Different devices must be compared with normalized gate capacitance.– Low cost processing– Electrical properties

Gate insulator

16

Organic & Molecular Electronics

Organic Semiconductors

Tetracene: µ= 0.1 cm2/Vs; ON/OFF: 106; Vt= -3V to -5VGundlach et al Appl. Phys. Lett. 2002, 80, 2925.

Pentacene: µ= 1.2 cm2/Vs; ON/OFF: >108; Vt=~-5VGundlach et al IEEE Elec. Dev. Lett. 1997 18, 87

TIPS Pentacene: µ= 0.4 cm2/Vs; on/off: 106

Sheraw et al, Adv. Mat. 2003 15, 2009

Metallotetrabenzoporphyrin: µ> 0.1 cm2/Vs; on/off: 105 ; VT~0 VAramaki et al., Appl. Phys. Lett., 2004 84, 2085.

C8H17C8H17

S Sn

F8T2: µ= 4x10-3 cm2/Vs; on/off: 105

S. Martin, et al., J. of SID, 11, 543 (2003).

Sexithiophene: µ= 0.05 cm2/V-sGarnier et al J. Am. Chem. Soc. 1993, 115, 8716

P3HT: µ= 0.1 cm2/Vs; on/off: 105

Z. Bao, et al, Appl. Phys. Lett. 69, 4108 (1996).

Organic semiconductor

F8T2: poly(9,9-dioctylfluorene-co-bithiophene)P3HT: poly(3-hexylthiophene)

T3-2/8

Page 9: Organic Field-Effect Transistors and Electronics - EECS

9

Organic & Molecular Electronics

17Future Organic Semiconductors

-High field-effect mobility-Low threshold voltage and subthreshold slope-High ON/OFF ratio and low OFF-current-Free of charge traps and other defects-Environmental, electrical and thermal stability-Low cost processing

Crystalline organicsemiconductors with well-defined structure,morphology, and chemicalcomposition are desired!

Control of Chemical Structure and Impurities

18

Organic & Molecular Electronics

Gate Insulator Surface Treatment: SiO2 and Organics

• Self assembling monolayers widely used- Promote adhesion- Improve uniformity of films- Improve device performance, e.g, mobility.- Increase grain size

• Examples- Hexamethyldisilazane (HMDS)- Octadecyltrichloro-silane (OTS) Gundlach et al, SPIE, 2001, 4466, 54- 7-octenyltrichlorosilane (VTS) Salleo et al, Appl. Phys. Lett., 2002, 81, 4383- Benzyltrichlorosilane (BTS) Salleo et al, Appl. Phys. Lett., 2002, 81, 4383- Alkanephosphonic acid Kelley et al, J. Phys. Chem. B, 2003, 107, 5877- Cinnamic acid Swiggers et al, Appl. Phys. Lett., 2001, 79, 1300

O

SiO

O

SiO

O

SiO OTS

SiO2

Pentacene

3 µm3 µmNo treatment on insulator Treatment on insulator

SubstrateGate Insulator

SurfaceTreatment

Pentacene

T3-2/9

Page 10: Organic Field-Effect Transistors and Electronics - EECS

10

19

Organic & Molecular Electronics

Gate Insulator Surface Treatment: Ta2O5

Gate-source voltage (V)( Drain-source voltage :-15V )

| Drain current | ( A )

1/2

1/2

Drain current (A)

-20-10010-1e-10

-1e-9

-1e-8

-1e-7

-1e-6

-1e-5

-1e-4

-1e-3

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

Vgs=-15V

Vgs=-10V

Vgs=-5V

Drain-source voltage (V)

Drain current (A)

-16-12-8-40

-1e-5

-8e-6

-6e-6

-4e-6

-2e-6

0

2e-6

OTFT with HMDS treatment OTFT without HMDS treatment

Gate-source voltage (V)( Drain-source voltage :-15V )

Drain current (A)

| Drain current | ( A )

1/2

1/2

-20-10010

-1e-9

-1e-8

-1e-7

-1e-6

-1e-5

-1e-4

-1e-3

-1e-10 0

0.002

0.004

0.006

0.008

0.010

0.012

0.014

Drain-source voltage (V)

Drain current (A)

Vgs=-15V

Vgs=-10V

Vgs=-5V

Vgs=0V

-16-12-8-40

-4e-5

-3e-5

-2e-5

-1e-5

0

1e-5

20

Organic & Molecular Electronics

Without surfacetreatment

OTS treated surfaceOTS treated surface OO22 plasma treated plasma treatedPVPPVP

OO22 plasma+OTS plasma+OTStreated PVPtreated PVP

Control of PVP surface allows selective growth of pentacene layer

OTSOTStreatmenttreatment

Hydrophobic surfaceHydrophobic surface

OO22 plasma plasma Hydrophilic surfaceHydrophilic surface

A

B C

AB C

Gate Insulator Surface Treatment: PVP

Poly(4-vinyl phenyl) (PVP)

T3-2/10

Page 11: Organic Field-Effect Transistors and Electronics - EECS

11

21

Organic & Molecular Electronics

Semiconductor Deposition Methods - Vacuum Evaporation

• - Vacuum evaporation from a solid• Solid, usually powder, form is heated

under vacuum to evaporate or sublimate,and then condenses onto a targetsubstrate.

• Advantages• Highly crystalline films• Precise control on film thickness• Allows for In Situ study of film growth

• Drawbacks• Relatively expensive for large-area films,

and requires a vacuum chamber.• Slow growth rate typically required to

produce large crystals.

• Important Issues• Chemical stability• Impurities• Island definition• High resistivity

22

Organic & Molecular Electronics

PlasticPlastic

PVP

Pentacene Deposition

Semiconductor Deposition Method - Selective Growth

J. Jang et al., Adv. Mat., 2004.

T3-2/11

Page 12: Organic Field-Effect Transistors and Electronics - EECS

12

23

Organic & Molecular Electronics

Semiconductor Deposition Methods - Precursor Solutions

- Functionalized precursorforms of a molecule can beused to allow solution-processing.

- Application of heat in an inertatmosphere removesunstable part of molecule,and leaves polycrystallinethin-film.

- Spin-, Dip-, and Drop-castingpossible.

- Printing allows for precisecontrol of active material.

S. Aramaki et al., Proc. SPIE, 5522, 27-35.

A.R. Brown et al., Appl. Phys. Lett., 79, 2136-2138.

24

Organic & Molecular Electronics

Plastic

AlNdPVP

AlNd

Plastic AlNd

Plastic

PVP

Gate Metal (AlNd 1000 Å)

- Sputtering & Patterning

Organic Gate Dieletric (Cross-linked PVP 4500 Å)

- Spin Coating & Curing

Plastic

AlNdPVP

O2 plasma treatment(Photoresist barrier)

Active Deposition of pentacene

- Organic Vapor Phase Deposition

Plastic

AlNdPVP

S/D Metal (Au/Cr)

- Sputtering & Patterning

Plastic

AlNdPVP

Plastic

AlNdPVP

Gate Contact Hole (Dry Etch)

Self-Assembly Monolayer : OTS

O2 plasma

PRpentacene

Device Fabrication: Evaporated Pentacene OFET

T3-2/12

Page 13: Organic Field-Effect Transistors and Electronics - EECS

13

25

Organic & Molecular Electronics

Device Fabrication: Solution-Processable OFET-based Display

S. Aramaki et al., SID 2006, L-3, 2006.

26

Organic & Molecular Electronics

Screen printing

First all-printed plastic circuit

Soft lithography (Z. Bao et al, APL 1998, Adv. Mater. 2000, J. Mater. Chem. 1999)

Smart pixels

Microcontact printed Au electrodes

Plastic smart pixel by molding and casting

2 µm

Z. Bao et al. Chem. Mater. 9, 1299 (1997)R. Service, Science, 278, 383 (1997)

Device Fabrication: High Resolution PatterningMethods

T3-2/13

Page 14: Organic Field-Effect Transistors and Electronics - EECS

14

27

Organic & Molecular Electronics

Introduction: Example OFET Bands Diagram

Fermi energy level determined by measuring the thermalactivation energy of ID at varying VGS.

Gate-Source Drain-Source

P. B. Shea, A. R. Johnson, N. Ono, and J. Kanicki, "Electrical Properties of StaggeredElectrode, Solution-Processed, Polycrystalline Tetrabenzoporphyrin Field-EffectTransistors," IEEE Trans. Electron Devices, vol. 52, pp. 1497-1503, 2005.

28

Organic & Molecular Electronics

OFET Physics - Equations

M. C. Hamilton et al, Chem. Mater. 16, 4699 (2004).

Gradual channel approximation … MOSFET square-law theory:

Linear regime (VGS > VT, VDS < VGS) for low VDS:

Saturation regime (VGS > VT, VDS = VGS - VT):

Where γ is an exponent added to account for nonlinear curves.

!

ID

= "µFECins

W

L(V

GS"V

T)V

DS

!

ID

= "µFECins

W

2L(V

GS"V

T)2

!

ID

= "µ0linCins

W

LVGS"V

T lin( )#

VDS

µFE lin

= µ0lin

VGS"V

T lin( )# "1

!

ID

= "µ0satCins

W

# +1( )L(V

GS"V

T sat)# +1

µFE sat

= µ0sat

VGS"V

T sat( )# "1

T3-2/14

Page 15: Organic Field-Effect Transistors and Electronics - EECS

15

29

Organic & Molecular Electronics

OFET Electrical Characterization Methods

Selected procedures: - direction: depletion accumulation depletion- sweep (gradually increase/decrease |VG|)

OR: - pulse sweep (increase/decrease |VG| in pulsesthat return to zero with low duty cycle (<50%))

Selected procedure: - direction: OFF (low |VDS|) ON (high |VDS|)- sweep (gradually increase |VDS|)

Transfer characteristics (ID-VGS):

Output characteristics (ID-VDS):

Critical issues in FET electrical characterization:• Ensure device reaches (quasi?) steady state (esp. at low |VGS|)• Limit aging (stress) during measurement (esp. at high |VGS|)• Limit noise (low drain currents, high gate leakage currents)• Reproducibility

IEEE Standard 1620

30

Organic & Molecular Electronics

Example OFET Output Characteristics

• TBP OFETs demonstrate distinct linear and saturation regimes.• Low gate leakage current as demonstrated by no offset in ID at low VDS.• Conductance (dID/dVDS) indicates small amount of current crowding.

P. B. Shea et al., IEEE Trans. Electron Devices, vol. 52, pp. 1497-1503, 2005.

T3-2/15

Page 16: Organic Field-Effect Transistors and Electronics - EECS

16

31

Organic & Molecular Electronics

!

ID"Linear = "

W

LµFECi(V

GS"V

T)V

DS

# µFE

Lin = constant

# µFE"calc

Lin =dI

D

dVGS

$L

WCiVDS

ID"Linear = "

W

LµFE0

LinCi(V

GS"V

T)%VDS

# µFE

Lin = µFE 0

Lin(V

GS"V

T)% "1

Example OFET Transfer Characteristics - Linear Regime

• Dispersive charge transport induces a VGS-dependent field-effect mobility; resultingnonlinear ID-VGS accounted for by introducingexponent to the current-voltage equations.

• TBP OFETs display a small nonlinearitycompared to polymer OFETs:– γ=1.2, μFE0=0.002 cmγ/V-s, VT=-17.0 V.

• ION/IOFF > 105

P. B. Shea et al., J. Appl. Phys., vol. 98, 014503, 2005.

32

Organic & Molecular Electronics

!

ID"Saturation =

W

2LµFECi(V

GS"V

T)2

# constant

#d | I

D|

dVGS

$

% & &

'

( ) )

2

*2L

WCi

ID"Saturation = "

W

(+ +1)LµFE 0

SatCi(V

GS"V

T)+ +1

# µFE

Sat = µFE 0

Sat(V

GS"V

T)+ "1

Example TBP OFET Transfer Characteristics - Saturation

• Dispersive charge transport induces aVGS-dependent field-effect mobility;resulting nonlinear ID-VGS accounted forby introducing exponent to the current-voltage equations.

• TBP OFETs display a small nonlinearitycompared to polymer OFETs:– γ=1.7, μFE0=0.0011 cmγ/V-s, VT=-10.8 V.

P. B. Shea et al., J. Appl. Phys., vol. 98, 014503, 2005.

T3-2/16

Page 17: Organic Field-Effect Transistors and Electronics - EECS

17

33

Organic & Molecular Electronics

Example Subthreshold Behavior and Trap Densities

• Best S=1.2 V/decade in the linearregime.

• VT between -20 V and 0 V dependingon sweep direction.

• Measured εs=3.76 (by ellipsometry)• Nss-max=2.9x1012 cm-2eV-1, Nbs-

max=4.10x1018 cm-3eV-1.• For VT=-17 V, σt=2.6x1012 cm-2. For a

120-nm thick film, Nt=2.2x1017 cm-3.• Assuming mid-gap trap states, Nss-

maxxET/2≈ σt.• Trap densities moderate compared to

other organic semiconductors, andconstant with energy.

!

S =kT

qlog(e)1+ Ci( "sNbs + qNss[ ]

# t =CiVT

Lin

q

P. B. Shea et al., J. Appl. Phys., vol. 98, 014503, 2005.

34

Organic & Molecular Electronics

OFET Source Drain Contact Issues

• Measured (apparent) device field-effect mobility µFE app:– Conduction channel (intrinsic) field-effect mobility µFE int– Source / drain series resistances (contacts)

• Conduction channel resistance (Rchannel) ∝ channel length (L)

• S/D series resistances channel length independent

• Series of OFETs with same characteristics but different L (TransverseLine Method) is measured.

Ideal OFET(Rchannel)

G

DSRDRS

T3-2/17

Page 18: Organic Field-Effect Transistors and Electronics - EECS

18

35

Organic & Molecular Electronics

OFET Source Drain Contact - PotentiometryL = 20 µm

W = 1cm

Potential profiles in goodagreement with those predicted bystandard inorganic MOS theory.

36

Organic & Molecular Electronics

OFET Source Drain Contacts

Transverse Line Method (TLM)

0

1

2

3

4

5

0 20 40 60 80 100

L (µm)

RO

N (1

011 Ω

)

y-intercept

slope

VG-VT int (V)

RS

/D (1

010 Ω

.µm

)

0

2

4

6

-20 -15 -10 -5 0

8

F8T2 #1

F8T2 #2

RS/D~109Ω for |VGT|~10V(a-Si:H RS/D~106Ω for |VGT|~10V)

F8T2 #2

S. Martin et al, Mat. Res. Soc. Sym. Proc. 771, 163, (2003).

T3-2/18

Page 19: Organic Field-Effect Transistors and Electronics - EECS

19

Organic & Molecular Electronics

37

µFE int

(cm2/Vs)VT int

(V)

F8T2 #1 5.6×10-3 -24

F8T2 #2 3.8×10-3 -23

0

2

4

6

-40 -35 -30VGS (V)

1/sl

ope

(101

0 Ω-1

)slope

0

1

2

3

4

5

0 20 40 60 80 100

L (µm)

µF

E (1

0-3c

m2 /

Vs)

• For many polymers, the OFET electricalperformance is limited by the channelconductivity, NOT the series resistances: nochannel length dependence of µFE.• Effect of RSD is expected to becomenoticeable for high-performance OFETs, i.e.devices with high µFE or short L.

F8T2 #1F8T2 #2

6

F8T2 #1F8T2 #2

OFET Intrinsic Properties

38

Organic & Molecular Electronics

Effect of Gate Insulator DielectricsOrganic Semiconductor-Insulator interface

– Key interface for performance (µFE, VT, etc. ) and stability (hysteresis)– Improve semiconductor morphology at interface– Reduce dipole disorder at inferface– Methods:

• Chemical treatment (SAMs of HMDS, OTS, etc.)• Mechanical treatment (rubbing, patterning)• Low-k (organic) insulators (PI, PMMA, PVP, PVA, etc.)

L. Kinder, et al, Proc. SPIE 5217, 35 (2003).J. Veres, et al, Chem. Mater. 16, 4543 (2004).

PI before and after rubbing

Interfacial dipoles

SAMs

T3-2/19

Page 20: Organic Field-Effect Transistors and Electronics - EECS

20

39

Organic & Molecular Electronics

Effect of Gate Insulator on F8T2 OFET Performance

J. Swensen et al., Proc. SPIE, 5217, 159-166 (2003).

40

Organic & Molecular Electronics

Influence of Interface Roughness

++

+ +++

+Dielectric

SC

+

A

B

• Clear correlation between mobility androughness on a 100nm length scale (>> hoppinglength scale)

• Possible explanation: Lateral variations incharge density when roughness comparable tothickness of accumulation layer

T3-2/20

Page 21: Organic Field-Effect Transistors and Electronics - EECS

21

41

Organic & Molecular Electronics

Ultrathin Organic Gate Insulator DielectricLeakage current < 10-6 A/cm2 at field of 3MV/cmGood bias stress stability at elevated temperatures (120°C) – Highpurity / thermal stability of BCB interface

BCB :

42

Organic & Molecular Electronics

Example Electrical Performance of Pentacene

M. Halik et al., Nature, 431, 963-966 (2004).

W/L= 170/130µ= 1 cm2/V-sVT= -1.3 VON/OFF = 106

T3-2/21

Page 22: Organic Field-Effect Transistors and Electronics - EECS

22

Organic & Molecular Electronics

43

Also in sexithiophene: F. Dinelli et al., Phys. Rev. Lett. 92, 116802 (2004).Theory: G. Horowitz, J. Mat. Res. July 2004

!!

"

#

$$

%

&

''

(

)

**

+

,

!!"

#$$%

&--=

.

/

/µµ

0

1 ExpsatFE

5-6 ML0.01

0.1

1

µF

E (

cm2

/V·s

ec)

3020100

Film Thickness (ML)

Thickness Dependence of Field-Effect Mobility

44

Organic & Molecular Electronics

Example Electrical Performance of Selectively Grown Pentacene

W / L = 200 µm / 6 µm

µFE = 1.8 cm2/Vs

Vth = - 7.5 V

S = 0.9 V/dec

Ion / Ioff > 108

T3-2/22

Page 23: Organic Field-Effect Transistors and Electronics - EECS

23

Organic & Molecular Electronics

45Nanoscale Pentacene OFETs

-40x10-9

-30

-20

-10

0

Dra

in C

urr

ent

(A)

-2.0-1.5-1.0-0.50.0

Drain Voltage (V)

Pt probes

L=30 nm, W =100 nm

25 nm pentacene

Gate Voltage: 0 to -4V

Only low field-effect mobility was achieved.Y. Zhang et. al., Adv. Mater. 15, 1632 (2003).

µ=0.01 cm2/V·sec

46

Organic & Molecular Electronics

Threshold voltages around 0 V.IOFF ~ 10 nA.Large NiTBP crystals form in TCI-01

and PVP.Tmax= 165 °C.µFE=0.6 cm2/V-s, VT=0 V, S=7 V/dec,

ION/IOFF=102.

c-Si/TCI-01/NiTBP/Au

Example NiTBP OFET on TCI-01

T3-2/23

Page 24: Organic Field-Effect Transistors and Electronics - EECS

24

Organic & Molecular Electronics

47Alignment of Pentacene Molecules Within Channel

gate

P+-Si-Wafer

SiO2

Photoalignment Polyimide (PAPI)Pentacene

gate insulator

S Dsemiconductor layer

wL

Photoalignmentlayer

pentacenemolecule

SiO2 SiO2

Organic & Molecular Electronics

48

5 10 15 20 25 30

(005)

(b)

(004)

(003)

(002)

(001)

(a)

2! (degree)

Lo

g(i

nte

nsi

ty)

(arb

. u

nit

s)

Alignment of Pentacene Molecules Within Channel

(b) w/o photoalignment PI4 µm

Drain

Source

(a) with PAPI alignment

T3-2/24

Page 25: Organic Field-Effect Transistors and Electronics - EECS

25

Organic & Molecular Electronics

49Allignment of Pentacene Molecules Within Channel

0 -20 -40 -60 -80 -1000

-50

-100

-150

-200

-250

VG= -100 V

Dra

in C

urr

en

t (µ

A)

Drain-Source Voltage (V)

Non-aligned Perpendicular to current flow Parallel to current flow

• Anisotropic field effect mobility µ// / µ⊥ ~ 2.7 - 8.3: dichroic effect

(Carriers transport parallel and perpendicular to the alignment direction )

S Dµ//

S Dµ⊥

-100 -80 -60 -40 -20 0 20 400

3

6

9

12

15

VDS

=-100 V

µ = 0.33 cm2/V s

VT = -1.85 V

(Dra

in C

urre

nt (µA

))1/2

Gate Voltage (V)

1E-7

1E-6

1E-5

1E-4Subthreshold Slope=19 V/decadeV

DS=-100 V

Dra

in C

urre

nt (

A)

50

Organic & Molecular Electronics

Structural Alignment of F8T2 Films

• Polyimide gate dielectric rubbed preceding F8T2 spin-casting.• F8T2 films heated above melting temperature, then cooled.• XRD shows polymer chains align preferentially in direction of rubbing.

L. Kinder et al., Synth. Met., vol. 146, pp. 181-185, 2004.

T3-2/25

Page 26: Organic Field-Effect Transistors and Electronics - EECS

26

51

Organic & Molecular Electronics

Structural Alignment of F8T2 Films

• Optical absorption measurements indicate polarization anisotropy.• OFET measurements also indicate field-effect mobility anisotropy.

L. Kinder et al., Synth. Met., vol. 146, pp. 181-185, 2004.

52

Organic & Molecular Electronics

Example Electrical Performance of Polymers

P3HT (poly-3-hexylthiophene)/SiO2

Z. Bao, et al, Appl. Phys. Lett. 69, 4108 (1996).H. Sirringhaus, et al, Synth. Met. 102, 857 (1999).

µ=0.1 cm2/V-sVT= ~-5 VON/OFF > 106

T3-2/26

Page 27: Organic Field-Effect Transistors and Electronics - EECS

27

53

Organic & Molecular Electronics

Example Electrical Performance of Polymers

PQT-12 (poly-3,3-dialkyl-quaterthiophene)

Crystalline - liquid crystalline and liquidcrystalline - isotropic phase changeshave been observed (~120° and 140°Crespectively).

B. S. Ong, et al, J. Am. Chem. Soc. 126, 3378 (2004).

µ= 0.1 cm2/VsVT= -5 VON/OFF =106

54

Organic & Molecular Electronics

Example Liquid Crystal Polymers

Thienothiophene Terthiophene

T3-2/27

Page 28: Organic Field-Effect Transistors and Electronics - EECS

28

Organic & Molecular Electronics

55

Charge trapping by electron accepting surface groups, such as silanol groups inthe case of commonly used SiO2 gate dielectric :

Interfaces are key, but our understanding of their electronic properties is stillrudimentary!

ν(SiOH)ν+δ(SiOH)

H-

bond

edne

arly

-is

olat

ed

-1.0

0.0

1.0

2.0 0.0

5.0

10.0

2500350045005500

Difference spectra (10

-3)

Absorbance (10

-3)

Wavenumber (cm-1)

(b) as ref

(c)

(d)

(e)

4500

5320

4340

5150

(a)

(f)

Why has electron transport been so elusive previously ?

10-10

10-9

10-8

10-7

10-6

10-5

0 10 20 30 40 50 60 70

Id (A)

Vgs (V)

polyethylene

OTS-SiO2

DTS-SiO2

HMDS-SiO2

pristineSiO2

e–

+ ½H2

Si

OH

Si

OH

OSi

OH

O OSi

OH

Si

O

OSi

OH

O O

-SiOH + 1e- → SiO- + ½ H2

SiO2

Polymer

56

Organic & Molecular Electronics

Example n-Type Polymers

OC1C10−PPV n-FETF8BT n-FET

µFE= 5·10-3cm2/Vs µFE=2·10-3cm2/Vs

T3-2/28

Page 29: Organic Field-Effect Transistors and Electronics - EECS

29

57

Organic & Molecular Electronics

Example TBP OFET Storage Stability

• Storage in ambient atmosphere leads to significant changes:– Increase in overall conductivity– Lower ON/OFF ratio– Larger subthreshold swing

• Thermal annealing in N2 or vacuum regains most of original performance.

58

Organic & Molecular Electronics

Example Pentacene OFET Environmental Stability

Water-damp is incorporated in an electrical field drivenreaction:

• At the dielectric interface• At the numerous grain boundariesProduces trapping states and polarized pentacene

molecules.

J.E. Northrup, M.L. Chabinyc, Phys. Rev. B, 68, 041202 (2003).

µ

Vth

Ids-max

2.0x10-3cm2/Vs

1.2x10-5cm2/Vs

4.8V

-8V

-60.9µA

-187nA

T3-2/29

Page 30: Organic Field-Effect Transistors and Electronics - EECS

30

59

Organic & Molecular Electronics

Example Pentacene OFET Environmental Stability

Oxygen is incorporated to produce:• Acceptor-states for electrons• Scattering centers for charge carriers• Disturbance of the conjugation of the double-

bonds.O.D. Jurchescu et al, Appl. Phys. Lett., 84, pp. 3061-3063 (2004).

on/off ratio

Vth

Ids-max

~1000

~500

-0.7V

2.2V

-9.3µA

-4.1µA

60

Organic & Molecular Electronics

Reduction/Oxidation Stability in Organic Molecules

T3-2/30

Page 31: Organic Field-Effect Transistors and Electronics - EECS

31

61

Organic & Molecular Electronics

Example Pentacene OFET Electrical Stability

•Continuous operation (stressing) of small-molecule devicesproduces noticeable changes in device performance.• Stressing pentacene devices with a gate bias for 0, 10, 30,and 90 minutes reveals significant shift in OFET thresholdvoltage.

D. Knipp et al., J. Appl. Phys., 93, 347-355.

Stress VGS= 10 V

62

Organic & Molecular Electronics

Example F8T2 OFET Electrical StabilityElectrical Stability (Instability)

– Significant threshold voltage shift observed after bias stress (both positiveand negative).• Charge carrier trapping in states near organic semiconductor-gate insulator

interface.– Must be accounted for in display driving circuitry

• Design circuits with inherent robustness against threshold voltage shifts.• Active-matrix pixel driving schemes set-up to allow recovery of device during

down time (when not being addressed).

S. Martin et al, Proc. of SPIE 5217, 7 (2003).

T3-2/31

Page 32: Organic Field-Effect Transistors and Electronics - EECS

32

63

Organic & Molecular Electronics

F8T2 OFET Hysteresis

Effect of monochromatic illumination ⇒ increases carrier density &hysteresis.

Effect of temperature ⇒ increase of carrier mobility (ID ON) , but not hysteresis.

64

Organic & Molecular Electronics

F8T2 OFET HysteresisReduction of hysteresis can be achieved by using an organic insulator.Device structures used here (fabricated at the same time, same F8T2):

– Unpatterned, heavily-doped Si wafer as gate electrode.– SiO2 (without) and SiO2 + thermally cross-linkable organic insulator (with).– F8T2 (spin-deposited from solution and cured as usual).– Au (evaporated through shadow mask).

“Significant” gate-leakage current for both, but effect of organic insulator isobvious.– When normalized for charge (i.e. with capacitance), mobility is same but threshold charge is

much smaller, subthreshold slope is much sharper and hysteresis is removed completely.– Evidence for improved interface (i.e. reduced interface states).

T3-2/32

Page 33: Organic Field-Effect Transistors and Electronics - EECS

33

65

Organic & Molecular Electronics

Monochromatic illumination at different wavelengths– constant optical flux ~ 1.3×1014 photons/cm2s.– different irradiances at λ = 460nm.

Minimal response to sub-optical gap illumination (λ > 520nm).

Maximum response to strongly absorbed illumination (peak at ~460nm).Major effect (again) decrease of VT, no significant changes in µFE or S.Can we describe how ID depends on irradiance?

Effects of Illumination: Monochromatic

* M. C. Hamilton, S. Martin, and J. Kanicki, “Organic Polymer Thin-film Transistor Photosensors,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 10, pp. 840-848, 2004.

66

Organic & Molecular Electronics

Effects of Illumination: Physical Mechanisms

Photoconductive device ⇒ photo-carrier generation due toabsorption of photons in polymer channel of device.Proposed physical mechanism:

photon absorption …exciton formation … diffusion … dissociation intofree carriers … trapping of e’s … transport and collection of h’s

Explains: VT reduction, ID increase, no change in µFE or S withilluminationNext step ⇒ monochromatic illumination to get more detailed results.

T3-2/33

Page 34: Organic Field-Effect Transistors and Electronics - EECS

34

67

Organic & Molecular Electronics

OFET Operating Temperature Range?Evidence that there may be a (relatively low) operating temperature at which the

device performance is optimal.Possible relation to change in morphology and/or conformation of polymer

chains with temperature (i.e. as temperature is increased, distance betweenchains increases, resulting in a decrease in inter-chain carrier mobility).

No apparent gate-bias dependence and no evidence from XRD or DSC.Observations are consistent with (unexplained) experimental results published by

other groups…reduction of mobility at elevated temperatures (near 340K).Implications for applications based on organic devices.

68

Organic & Molecular Electronics

Ambipolar Organic Transistors

Ambipolar OFETs have been prepared using blends of organicsemiconductors, or multiple layers of alternating polarity.

C. Rost et al.,J. Appl. Phys., 95, 5782-5787 (2004).E. Meijer et al., Nature Mat., 2, 678-682 (2003).

T3-2/34

Page 35: Organic Field-Effect Transistors and Electronics - EECS

35

69

Organic & Molecular Electronics

Light-Emitting Organic Transistors

C. Rost et al., Syn. Met., 146, 237-241.

K. Kudo et al., Thin Solid Films, 438-439, 330-333.

A. Hepp et al., Phys. Rev. Lett., 91, 157406.

- Devices exhibit drain and gate-bias-dependent behavior.- Gated OLEDs?

70

Organic & Molecular Electronics

Possible OFET Applications

OFET DrivenOLED(Pioneer)

OFET PaperSubstrate (Infineon)

OFET Driven AM-EPD(Phillips)

RFID (3M)

OFET AM-LCD(Penn State Univ.)

OFET Backplane(DuPont)

OFET Backplane(Lucent/e-ink)

OFET Backplane(PlasticLogic)

T3-2/35

Page 36: Organic Field-Effect Transistors and Electronics - EECS

36

71

Organic & Molecular Electronics

Example of OFET-based Active-MatrixDisplays

• 2000 Lucent/E-Ink 16×16 E-Paper display• 2001 Sarnoff/Penn State/Kent State 16×16 TFT LCD• 2002 Philips 64×64 TFT LCD• 2003 Plastic Logic 80×60 TFT LCD• 2003 PARC 128×128 ink-jetted TFT LCD• 2006 Samsung SDI 4” 120×192 OTFT based AMOLED• 2006 Plastic Logic/E-Ink 800×600 SVGA ink-jetted OTFT E-paper display

72

Organic & Molecular Electronics

Examples of OFET Active-Matrix Addressing

AM-LCD typical pixelelectrode driving circuit

– One TFTAM-OLED typical pixelelectrode driving circuit

–2 TFTs minimum

Gate line

Data line

OFET

CLC

Vpixel

VCE

Gateline

Data line

OFET1

OLED IOLED

VDD

OFET2

• More complex pixel electrode circuits are required to accomdate for OFETs electricalstability.

T3-2/36

Page 37: Organic Field-Effect Transistors and Electronics - EECS

37

73

Organic & Molecular Electronics

Requirements for Active-Matrix Addressing

F. Libsch, TFTs in Active-Matrix Liquid Crystal Displays.S. Martin et al., J. SID, 11/3, 2003.M.L. Chabinyc and A. Salleo, Chem. Mater., 2004.

AM-LCD

AM-PDLC AM-OLED

IOFF (A) < 2x10-13

< 2x10-13 < 10-12

ION (A) > 2x10-7 > 2x10-7 > 10-6

ION/IOFF > 106 > 106 > 106

VT (V) < 2 < 5 V < 2 V

S (V/dec) < 0.5 < 1.5 < 1.0

τ(switching

)

> 3 ms > 200 ns

74

Organic & Molecular Electronics

Deposit and pattern gate Gate Electrode

Plastic Substrate

Deposit and pattern gatedielectric

Gate Electrode

Gate Dielectric

Plastic Substrate

Deposit and patternITO pixel electrode

Gate Electrode

Gate Dielectric

Plastic Substrate

ITO Pixel Electrode

Example of OFET Active-Matrix Process (1)

Deposit and patternsource/drain contacts Gate Electrode

Gate Dielectric

Plastic Substrate

Source

ITO Pixel Electrode

Drain

T3-2/37

Page 38: Organic Field-Effect Transistors and Electronics - EECS

38

75

Organic & Molecular Electronics

Define patterninglayer Gate Electrode

Gate Dielectric

Plastic Substrate

Source DrainSemiconductor

ITO Pixel Electrode

Patterning Layer

Etchsemiconductor Gate Electrode

Gate Dielectric

Plastic Substrate

Source DrainSemiconductor

ITO Pixel Electrode

Patterning Layer

Example of OFET Active-Matrix Process (2)- Minimize leakage current between transistors.- Deposit patterning layer. e.g.: Parylene polyninyl alcohol (PVA), Si3N4

Depositsemiconductor Gate Electrode

Gate Dielectric

Plastic Substrate

Source DrainSemiconductor

ITO Pixel Electrode

Encapsulation or passivation layers are needed.

76

Organic & Molecular Electronics

Example of Reflective AM-PDLCD Backplane

Substrate

Gate : gold

Gate Dielectric : alumina Pentacene

Source/Drain : gold

Encapsulant : aluminaPDLC

TFT

ITO

T3-2/38

Page 39: Organic Field-Effect Transistors and Electronics - EECS

39

77

Organic & Molecular Electronics

Example of Reflective AM-PDLCD on Plastic

Sarnoff-Penn State-Kent State Rensselaer OFET AMLCD

Reflective 16x16 Pixel ArrayDriven with 1/4 VGA VideoDisplay Waveforms (60 Hz refresh rate, 69 µsec line time)

M. Kane et al., SID 2001.

78

Organic & Molecular Electronics

Example of Refective AM-PDLC Display

Monochromatic image of AM-PDLCD

T3-2/39

Page 40: Organic Field-Effect Transistors and Electronics - EECS

40

79

Organic & Molecular Electronics

Example of AM-FLC Display

Film LCD : Ferroelectric LC (FLC) stabilized by polymer walls and networks

Data scan frequency : 360Hz×16

Gate voletage : 14Vpp

Data voltage : 13VppY. Fujisaki et al., SID 2006, pp. 119-122, 2006.

80

Organic & Molecular Electronics

OFET Active-Matrix Addressing of E Ink Display

For all rows:

1. Select row n: Vrow n = 25V Vrow n = -25V

2. Apply Vdata (-15V ... 15V) to columns

3. Deselect row n: Vrow n = -25V Vrow n = 25V

Pentacene OTFTs with Au S/D contacts are used. L/W = 5/140 Pixel size: 300 µm x 300 µm

T3-2/40

Page 41: Organic Field-Effect Transistors and Electronics - EECS

41

81

Organic & Molecular Electronics

Roll-up OFETs Active-Matrix E Ink Display

Main properties:• 4.7” diagonal, 7.5mm roll radius

• 240 rows x 320 columns / 300 µm square pixel (85 dpi)

• 50 Hz refresh rate, 4 gray levels

• Contrast > 10

• Display type: electrophoretic (E Ink)

• Working organic shift resisters

: Up to 233 stages & 11 kHz

Key benefits of roll-up e-paper:• Very flexible: rollable

• Unbreakable

• Light weight & Low power

• Integrated drivers – standard driverconnection technologies cannot beused easily.

82

Organic & Molecular Electronics

Example of OFET Active-Matrix Flexible E Ink Display

• Resolution: SVGA (800×600) 100ppi• Display size: 10”• Backplane: PET substrate (Dupont)• Pixel electrode: PEDOT/PSS

S. E. Burns et al., SID 2006, pp. 74-76, 2006.

T3-2/41

Page 42: Organic Field-Effect Transistors and Electronics - EECS

42

83

Organic & Molecular Electronics

Example of Flexible OFET Active Matrix Processing

(b) ITO deposition and patterning as a gate electrode

(d) Source and drain electrodes patterning (ITO)

(e) Pentacene thermal deposition as an active layer

(a) Fix the plastic on the carrier

(c) Coating organic insulator

84

Organic & Molecular Electronics

Example of Flexible OFET Active Matrix TN LCD Processing

(a) Polymer passivation layer coating

(b) PI layer coating for TNLC alignment

(c) TNLC injection and sealing

Back Light(e) The panel assembled with the back light

(d) Release plastic from carrier

T3-2/42

Page 43: Organic Field-Effect Transistors and Electronics - EECS

43

85

Organic & Molecular Electronics

Example of Flexible OFET AM-TN LCDs

Monochrome OTFT-LCD on Plastic

Display: 3” OTFT-TNLCDResolution: 64 x128 pixelsPitch: 500 µm x 500 µmDevice: 1T1C PMOS

Color OTFT-LCD on Glass

Display: 3” OTFT-TNLCD Resolution: 64 x 43 x 3 pixelsPitch: 500 µm x 1500 µmDevice: 1T1C PMOS

86

Organic & Molecular Electronics

Active-Matrix OLED: Pixel Configuration

Circuitry

VssVcapVscan

Vdata

Vk

OLED

Dr-TFTSw-TFT

StorageCapacitor

Schematic pixel circuit

O L ED

StorageCapacitor

Dr-TFTSw-TFT

pixel number 8 x 8

pixel pitch 1mm

aperture ratio 27%

TFT channel length 10µm

TFT channel widthDr-TFT:680µm

Sw-TFT:400µm

10-9 Aoff-current

105on/off ratio

-3 Vthresholdvoltage

0.2 cm2V-1S-1mobility

* With HMDS treatment of gate dielectric.(Ta2O5)

T3-2/43

Page 44: Organic Field-Effect Transistors and Electronics - EECS

44

87

Organic & Molecular Electronics

Active Matrix OLED: Cross-Section of OFET and OLED

glass

IZO

CuPc

α-NPD

CBP:Ir(ppy)3

BAlq

Alq3

Li2O

Al

:Transparent Anode:Hole injection layer:Hole transport layer

:Light emitting layer

:Hole blocking layer

:Electron transport layer

:Electron injection layer:Cathode

Light

Drain(Cr/Au)

Pentacene

Source(Cr/Au)

Gate Dielectric(Ta2O5)

Gate(Ta)

Gate dielectric

Si

O

CH3

CH3CH3

Si

O

CH3

CH3CH3

Si

O

CH3

CH3CH3

HMDS:Hexamethyldisilazane

Pentacene

88

Organic & Molecular Electronics

Example of OFET Active-Matrix - OLED

(a) Whole lighting

(b) 16 gray scales Analog 16 gray scaleGray scale method

1/60Scan duty

60 HzFrame frequency

22 μAIEL per 1 pixel at Lmax

400 cd/m2Maximum lumanance

27%Aperture ratio

GreenEmission color

1 mmPixel pitch

8 x 8Pixel number

Specification of AM OLED panel

T3-2/44

Page 45: Organic Field-Effect Transistors and Electronics - EECS

45

89

Organic & Molecular Electronics

Example of OFET Active-Matrix - OLED

(a) Pixel Layout

(b) Display after optimization

M.-C. Suh et al., SID 2006, pp. 116-118, 2006.

90

Organic & Molecular Electronics

Example of OFET Active-Matrix - OLED

(a) Pixel Layout (b) Emission of Pixel Array

300μm × 100μm

Pixel pitch

5 x 15Pixel number

Specification of AM OLED panel

(c) Tetrabenzpporphyrin Molecule

S. Aramaki et al., SID 2006, L-3, 2006.

T3-2/45

Page 46: Organic Field-Effect Transistors and Electronics - EECS

46

91

Organic & Molecular Electronics

OFET-based Circuits - Inverters

VinVout

0V

2nd generation PAA with low k dielectric

Both forward and reverse scans are shown

92

Organic & Molecular Electronics

OFET-based Circuits - Inverters (2)Inverter circuits can be environmentally stable after prolonged exposure andoperaiton.

Initial Waveform After 28 days

•100 Hz signal 0 to -30V signal applied to the gate•Source current is monitored with a current feedback amplifier•Turn-on time is comparable to accumulation time for a 130 µm channel

Vg=0 V

Vg=-30V

Source currentOut

In

T3-2/46

Page 47: Organic Field-Effect Transistors and Electronics - EECS

47

93

Organic & Molecular Electronics

OFET-based Circuits - Frequency Divider

Input

• 48 transistors• Operation at 1.1 kHz• 65% functional yield

ComplementaryOutputs

M. Kane et al., IEEE EDL, 21, 534-536 (2000).

94

Organic & Molecular Electronics

OFET-based Circuits - Differential Amplifier

Kane et al., IEEE EDL, 21, 534-536 (2000).

• Voltage gain = -5 to -10• Offset voltage = -1V to +1V

T3-2/47

Page 48: Organic Field-Effect Transistors and Electronics - EECS

48

95

Organic & Molecular Electronics

OFET-based Circuits - Ring Oscillators

H. Klauk et al., IEEE T-ED, 52, 618-622 (2005).

Requires both P- and N-type OFETs.

96

Organic & Molecular Electronics

OFET-based Circuits - RF-ID Tags

• Circuits oscillating at radio frequency (13.67 MHz) have beendemonstrated.

R. Rotzroll et al., Appl. Phys. Lett., 88, 123502 (2006).

T3-2/48

Page 49: Organic Field-Effect Transistors and Electronics - EECS

49

97

Organic & Molecular Electronics

Organic Electronics

Topics relevant, but not covered, in this presentation:• OLEDs / PLEDs• Solar cells• Chemical sensors• Image sensors• Lasers• Memory and storage• X-ray and gamma ray sensors• Advanced pixel electrode circuits for AM-OLEDs• Driving electronics

98

Organic & Molecular Electronics

Conclusions

• Organic thin-film field-effect transistors (OFETs) can befabricated using:

– Many different device structures– By solid- or solution-processing– With a wide variety of materials suitable for various applications.

• Many aspects of OFET physics are not well understood, but areclose to being solved.• In other respects, OFETs behave much like c-Si MOSFETs.• OFETs have been shown to be suitable for:

– Large-area, full-color displays– RF-ID circuits– Logic circuits– Chemical sensors– Light-emitters and detectors

T3-2/49

Page 50: Organic Field-Effect Transistors and Electronics - EECS

50

99

Organic & Molecular Electronics

Conclusions (2)

• Problems to be addressed:– Electrical stability– Processing stability– Low-cost fabrication– Packaging– Etching– Impurities– Etc.

• It may take several years for practical products to be brought tomarket.• Potential payoff could be very large…billions?

T3-2/50