Oo ~ )À *Ó ²Þ)O~Þ) Þcds.cern.ch/record/2710585/files/Poster-2020-1030.pdf · CPV in...

1
Measurement of CP violation in B 0 D ∗± D decays [1] Philipp Ibis on behalf of the LHCb collaboration Introduction: CP violation in B 0 mixing Oscillation between B 0 and B 0 states. W u,c,t ¯ u, ¯ c, ¯ t W d B 0 ¯ b b B 0 ¯ d Decay of a neutral B meson into the final state f or ¯ f : directly or after oscillation four time-dependent decay rates. dΓ(t ) dt = e -t/τ d 8τ d (1 + r A D * D )× h 1 - d (S D * D + r ΔS D * D ) sin(Δmt )+ d (C D * D + r ΔC D * D ) cos(Δmt ) i d = 1, B 0 -1, B 0 r = 1, f -1, ¯ f B 0 B 0 f = D * + D f = D * D + CP violation in B 0 D D First measurement of CP violation in B 0 D D at LHCb Former measurements by Belle and BaBar [2,3] D* +- D -+ S HFLAV Summer 2016 -1 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 BaBar PRD 79, 032002 (2009) -0.68 ± 0.15 ± 0.04 Belle PRD 85 (2012) 091106 -0.78 ± 0.15 ± 0.05 Average HFLAV -0.73 ± 0.11 HFLAV HFLAV Summer 2016 D* +- D -+ C HFLAV Summer 2016 -0.2 -0.1 0 0.1 0.2 BaBar PRD 79, 032002 (2009) 0.04 ± 0.12 ± 0.03 Belle PRD 85 (2012) 091106 -0.01 ± 0.11 ± 0.04 Average HFLAV 0.01 ± 0.09 HFLAV HFLAV Summer 2016 D* +- D -+ A HFLAV Summer 2016 -0.1 -0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 BaBar PRD 79, 032002 (2009) 0.01 ± 0.05 ± 0.01 Belle PRD 85 (2012) 091106 0.06 ± 0.05 ± 0.02 Average HFLAV 0.03 ± 0.04 HFLAV HFLAV Summer 2016 [4] b c cs decays are sensitive to weak phase 2β Measured by several experiments in different chan- nels [4] Same phase appears in b c cd transitions For B 0 D D decays higher-order diagrams con- tribute to CP violation. Instrumental asymmetries Overall asymmetry is corrected for instrumental asymmetries from reconstruction, detection and par- ticle identification B 0 D D decay is charge-balanced, asymme- tries only due to different momentum spectra of pos- itive and negative pions and kaons 6 million prompt D ± K π ± π ± decays reweighted to signal D *- or D - distributions Split into four subsamples: One sample per D 0 decay mode and one for D *- and D - , respectively Asymmetries A D *- det and A D - det calculated with D + and D - yields from fits to the mass distributions Final state A D *- det A D - det A D *- D + det [%] K - π + 0.0169 0.0158 0.11 ± 0.40 ± 0.30 K - π - π + π + 0.0146 0.0138 0.09 ± 0.26 ± 0.51 Signal extraction Reconstruction D *+ D 0 π + D 0 K - π + D 0 K - π - π + π + D - K + π - π - Full LHCb dataset 1 fb -1 at 7 TeV 2 fb -1 at 8 TeV 6 fb -1 at 13 TeV Multivariate Selection Further reduction of combinatorial background Boosted Decision Tree (BDT) Signal proxy: signal MC Background proxy: upper mass sideband from data Kinematic, topological and particle identification variables used BDT cut point minimises uncertainties of CP parameters Mass Fit Disentangle signal from remaining background Shapes of the signal and background components based on sim- ulated data Signal Candidates K - π + K - π - π + π + Run 1 856 ± 32 469 ± 28 Run 2 3265 ± 61 1570 ± 48 Candidates / (6 MeV /c 2 ) 200 400 600 800 1000 1200 m D D [MeV /c 2 ] 5000 5200 5400 5600 -5 0 5 Pull LHCb Run 2 Total B 0 D D B 0 s D D B 0 D + s D *- B 0 D *+ D *- B 0 s D *+ D *- Comb. bkg. Candidates / (6 MeV /c 2 ) 100 200 300 400 500 600 m D D [MeV /c 2 ] 5000 5200 5400 5600 -5 0 5 Pull LHCb Run 2 Total B 0 D D B 0 s D D B 0 D + s D *- B 0 D *+ D *- B 0 s D *+ D *- Comb. bkg. Flavour Tagging Knowledge of b quark flavour at produc- tion is essential for measurements of time- dependent CP asymmetries. PV SV b c b Xl - SV c s same side opposite side b b D D d d u d u u π + p x l - K - B 0 h b SS pion SS proton OS muon OS electron OS kaon OS vertex charge OS charm Tagging Algorithms OSμ, e , K , vtx Charge SSp and SSπ Calibration Channels B 0 D + s D - B 0 D *- D + s Tagging Power m D + s D - ( MeV /c 2 ) 5300 5400 5500 Candidates / (2.8 MeV /c 2 ) 0 500 1000 1500 2000 2500 LHCb Total B 0 D + s D - B 0 s D - s D + Comb. bkg. [5] Sample ε tag [%] ε tag D 2 [%] Run1 K - π + 80.2 ± 1.4 5.61 ± 0.36 K - π - π + π + 88.8 ± 1.9 6.25 ± 0.55 Run2 K - π + 93.5 ± 0.5 6.61 ± 0.19 K - π - π + π + 92.7 ± 0.8 7.05 ± 0.29 Decay-time fit CP observables are extracted via fit to decay time. 1 10 2 10 Signal Yield / ( 0.125 ps ) LHCb 2 4 6 8 10 Decay time [ps] 5 - 0 5 Pull Decay-time acceptance: cubic splines Decay-time resolution: triple Gaussian, σ t 60 fs References [1] LHCb collaboration, R. Aaij et al., submitted to JHEP [arXiv:1912.03723] [2] Belle collaboration, M. Röhrken et al., Phys. Rev. Lett. 108 (2012) [arXiv:1201.4643] [3] BaBar collaboration, B. Aubert et al., Phys. Rev. D79 (2009) [arXiv:0808.1866] [4] Heavy Flavor Averaging Group, Y. Amhis et al. [arXiv:1612.07233] [5] LHCb collaboration, R. Aaij et al., Phys. Rev. Lett. 117 (2016) [arXiv:1608.06620] Results Dominant systematic uncertainties: S D * D , ΔS D * D , C D * D and ΔC D * D : FT calibration and signal mass model A D * D : prompt D ± meson mass shape S D * D = -0.861 ± 0.077 (stat) ± 0.019 (syst) ΔS D * D = 0.019 ± 0.075 (stat) ± 0.012 (syst) C D * D = -0.059 ± 0.092 (stat) ± 0.020 (syst) ΔC D * D = -0.031 ± 0.092 (stat) ± 0.016 (syst) A D * D = 0.008 ± 0.014 (stat) ± 0.006 (syst) Most precise measurement in B 0 D D decays Precision of C D * D and ΔC D * D comparable with pre- vious measurements Precision of world average for S D * D , ΔS D * D and A D * D significantly improved

Transcript of Oo ~ )À *Ó ²Þ)O~Þ) Þcds.cern.ch/record/2710585/files/Poster-2020-1030.pdf · CPV in...

Page 1: Oo ~ )À *Ó ²Þ)O~Þ) Þcds.cern.ch/record/2710585/files/Poster-2020-1030.pdf · CPV in interference of decay and decay after B0 B0 mixing ! time dependent CP asymmetries : ! b

Measurement of CP violation in B0→ D∗±D∓ decays [1]

Philipp Ibis on behalf of the LHCb collaboration

Introduction: CP violation in B0 mixingOscillation between B0 and B0 states.

CT&S Meeting | Status of Simulation Group | MC liaisons: Alex Birnkraut, Margarete Schellenberg 1

u, c, t

W W

u, c, t

d

B0

b

b

B0

d

W

u, c, t u, c , t

W

d

B0

b

b

B0

d

ޠ

u, c, t

W W

u, c, t

d

B0

b

b

B0

d

W

u, c, t u, c , t

W

d

B0

b

b

B0

d

ޠ

Decay of a neutral B meson into the final state f or f : directly or after oscillation→ four time-dependent decay rates.

dΓ(t)

dt=e−t/τd

8τd(1 + rAD∗D)×[

1− d(SD∗D + r∆SD∗D) sin(∆mt) + d(CD∗D + r∆CD∗D) cos(∆mt)]

d =

{1, B0

−1, B0

r =

{1, f−1, f

B2OC TD Meeting | Status of B0→D*D | Margarete Schellenberg

Motivation‣ aim: first measurement of CPV in B0→D*±D∓ decays at LHCb

‣ former measurements by BaBar/Belle

‣ CPV in interference of decay and decay after B0B0 mixing

‣ time dependent CP asymmetries:

‣ b → ccd decay: • higher order contributions are not suppressed

• CPV in B0→D*±D∓ is sensitive to sin(2βeff), βeff (≈β)

‣ measurement of decay-time-dependent decay rate can be performed

2

B0

B0f = D*+D–

f = D*–D+

ACP,f (t) =�(B0(t)� f )� �(B0(t)� f )

�(B0(t)� f ) + �(B0(t)� f )

= Sf sin(�mt)� Cf cos(�mt)

ACP,f (t) =�(B0(t)� f )� �(B0(t)� f )

�(B0(t)� f ) + �(B0(t)� f )

= Sf sin(�mt)� Cf cos(�mt)

d�(t, d, q,�)dt � e�t/� [1 + d(1� 2�) ((S + q�S) sin(�mt)� (C + q�C) cos(�mt))]

<latexit sha1_base64="UvC3sKVu9GxAZjv4n3rAtz4fPlo=">AAAEwHicdVNLb9NAEHZKgFJeLVyQuFhUSImaZ9UKOICqpqI99FBUQit1Q7S2x84q+3B3x5Cy8p/i3/BLuLJxo1I7sKfx982M5/FNkHJmsNf7VVu5U7977/7qg7WHjx4/ebq+8eyLUZkOYRgqrvR5QA1wJmGIDDmcpxqoCDicBdPBnD/7BtowJT/jVQojQRPJYhZSdNB4/SeJNQ0tQZihjXKfHFIhaANbftTyL1s+UQIS2sxvPDAnqVYpKiIoTrSwkH+1bewSpFlOOMR40d+KGv329iK0wBqN061LcgAcqX9KNEsm2CSGSb+xAIWPzXZjcOM0aJJQmRLdvI4bjdc3e51e8fxlo78wNr3FOxlvrPwmkQozARJDTo256PdSHFmqkYUc8rU1khlIaTilCVzQnZSmoFuC6oTJ930mW5zKyIQOHdkEXFeorypBGcZvR5bJNEOQYX6bs7NiSy7g9W2UCjMfYNl1jqBS3JRh52uuRLAExkqiKVdiszTRANOyr2GZZDir1lBs0MQuRQk2bkYTiCpoIKrAMqL4UhSLIiaTSpFIg4xTPStXGSg1dUyl+ZlxVmVJtug8hcqkQxEUEnGoARSUybmf/ci0Ux2Vxj/+yxr3/W+2lJLFOAHpQiR8d/VxoNKNuPhLutCPuU74X9bGlBvXACnkYbtD4+6xO5cX1YDQPXDnFKhZF3a7x9Rd2XgfmEkZcOjySRi056t3kmhHEHcc7Qq0pJDUhU6Cke11dgvBt5aMPHen0q8exrIx3O686/Q+7Wzu7S9uZtV76b3yGl7fe+PteUfeiTf0wtqL2ofaYe2oPqizuqpfXruu1BYxz73Sq//4A4CFm3w=</latexit><latexit sha1_base64="UvC3sKVu9GxAZjv4n3rAtz4fPlo=">AAAEwHicdVNLb9NAEHZKgFJeLVyQuFhUSImaZ9UKOICqpqI99FBUQit1Q7S2x84q+3B3x5Cy8p/i3/BLuLJxo1I7sKfx982M5/FNkHJmsNf7VVu5U7977/7qg7WHjx4/ebq+8eyLUZkOYRgqrvR5QA1wJmGIDDmcpxqoCDicBdPBnD/7BtowJT/jVQojQRPJYhZSdNB4/SeJNQ0tQZihjXKfHFIhaANbftTyL1s+UQIS2sxvPDAnqVYpKiIoTrSwkH+1bewSpFlOOMR40d+KGv329iK0wBqN061LcgAcqX9KNEsm2CSGSb+xAIWPzXZjcOM0aJJQmRLdvI4bjdc3e51e8fxlo78wNr3FOxlvrPwmkQozARJDTo256PdSHFmqkYUc8rU1khlIaTilCVzQnZSmoFuC6oTJ930mW5zKyIQOHdkEXFeorypBGcZvR5bJNEOQYX6bs7NiSy7g9W2UCjMfYNl1jqBS3JRh52uuRLAExkqiKVdiszTRANOyr2GZZDir1lBs0MQuRQk2bkYTiCpoIKrAMqL4UhSLIiaTSpFIg4xTPStXGSg1dUyl+ZlxVmVJtug8hcqkQxEUEnGoARSUybmf/ci0Ux2Vxj/+yxr3/W+2lJLFOAHpQiR8d/VxoNKNuPhLutCPuU74X9bGlBvXACnkYbtD4+6xO5cX1YDQPXDnFKhZF3a7x9Rd2XgfmEkZcOjySRi056t3kmhHEHcc7Qq0pJDUhU6Cke11dgvBt5aMPHen0q8exrIx3O686/Q+7Wzu7S9uZtV76b3yGl7fe+PteUfeiTf0wtqL2ofaYe2oPqizuqpfXruu1BYxz73Sq//4A4CFm3w=</latexit><latexit sha1_base64="UvC3sKVu9GxAZjv4n3rAtz4fPlo=">AAAEwHicdVNLb9NAEHZKgFJeLVyQuFhUSImaZ9UKOICqpqI99FBUQit1Q7S2x84q+3B3x5Cy8p/i3/BLuLJxo1I7sKfx982M5/FNkHJmsNf7VVu5U7977/7qg7WHjx4/ebq+8eyLUZkOYRgqrvR5QA1wJmGIDDmcpxqoCDicBdPBnD/7BtowJT/jVQojQRPJYhZSdNB4/SeJNQ0tQZihjXKfHFIhaANbftTyL1s+UQIS2sxvPDAnqVYpKiIoTrSwkH+1bewSpFlOOMR40d+KGv329iK0wBqN061LcgAcqX9KNEsm2CSGSb+xAIWPzXZjcOM0aJJQmRLdvI4bjdc3e51e8fxlo78wNr3FOxlvrPwmkQozARJDTo256PdSHFmqkYUc8rU1khlIaTilCVzQnZSmoFuC6oTJ930mW5zKyIQOHdkEXFeorypBGcZvR5bJNEOQYX6bs7NiSy7g9W2UCjMfYNl1jqBS3JRh52uuRLAExkqiKVdiszTRANOyr2GZZDir1lBs0MQuRQk2bkYTiCpoIKrAMqL4UhSLIiaTSpFIg4xTPStXGSg1dUyl+ZlxVmVJtug8hcqkQxEUEnGoARSUybmf/ci0Ux2Vxj/+yxr3/W+2lJLFOAHpQiR8d/VxoNKNuPhLutCPuU74X9bGlBvXACnkYbtD4+6xO5cX1YDQPXDnFKhZF3a7x9Rd2XgfmEkZcOjySRi056t3kmhHEHcc7Qq0pJDUhU6Cke11dgvBt5aMPHen0q8exrIx3O686/Q+7Wzu7S9uZtV76b3yGl7fe+PteUfeiTf0wtqL2ofaYe2oPqizuqpfXruu1BYxz73Sq//4A4CFm3w=</latexit>

S =1

2(Sf + Sf )

<latexit sha1_base64="g9OpXdPnFJuiAaXTXzUdzyCF/I0=">AAAELnicdVNNbxMxEHUbPkr4auHIJSJCKiJNNlUr4FCpKghx6KEohFZKomjszG6seG3L9kIqa6/8Gi4c4K8gDogr/4ArzjYS3Q3MafzezHhm/Ey14NZF0fe19dqVq9eub9yo37x1+87dza1776zKDMM+U0KZMwoWBZfYd9wJPNMGIaUCT+nsxYI/fY/GciXfunONoxQSyWPOwAVovNnoNQ4aw9gA893c7+bbvXH8pDf2QwrGx3n+eLzZjNpRYY1Vp7t0mmRpJ+Ot9d/DiWJZitIxAdYOupF2Iw/GcSYwr9eHmUUNbAYJDmBPg0bTSsEkXB50uWwJkBPLAjryCaoUnTmvJGUufjbyXOrMoWT5Zc7Pi52EhEeXUUhtCm5aDl0gTilhy3CItecpXQFjJZ0td+IznRjEWTnW8kxyN6/2sLjO2DiUKME27GiKkwpK0yqwiiixksUnEy6TSpMOaCbAzMtdUqVmgakMP7fBqzySLybXWNk0S6nhydQF1KJLgctFnH/FDTR6IG3j+C9rw/nfbKkkj90UZUiR+CH0JxBkWHFxi17qx14U/C/rYxA2DDAs5OE7fRvU31nICww67Lw0SlM17+B+5xgczsdHyK3mKLAjpozuLJ4+SGJngnE70KFBPywkNTAJHfmovV8IvrXi5Hn4Kt3qx1h1+rvt5+3ozV7z8Gj5ZzbIA/KQbJMueUoOyWtyQvqEkY/kE/lCvtY+177VftR+XoSury1z7pOS1X79Af6ta1o=</latexit><latexit sha1_base64="g9OpXdPnFJuiAaXTXzUdzyCF/I0=">AAAELnicdVNNbxMxEHUbPkr4auHIJSJCKiJNNlUr4FCpKghx6KEohFZKomjszG6seG3L9kIqa6/8Gi4c4K8gDogr/4ArzjYS3Q3MafzezHhm/Ey14NZF0fe19dqVq9eub9yo37x1+87dza1776zKDMM+U0KZMwoWBZfYd9wJPNMGIaUCT+nsxYI/fY/GciXfunONoxQSyWPOwAVovNnoNQ4aw9gA893c7+bbvXH8pDf2QwrGx3n+eLzZjNpRYY1Vp7t0mmRpJ+Ot9d/DiWJZitIxAdYOupF2Iw/GcSYwr9eHmUUNbAYJDmBPg0bTSsEkXB50uWwJkBPLAjryCaoUnTmvJGUufjbyXOrMoWT5Zc7Pi52EhEeXUUhtCm5aDl0gTilhy3CItecpXQFjJZ0td+IznRjEWTnW8kxyN6/2sLjO2DiUKME27GiKkwpK0yqwiiixksUnEy6TSpMOaCbAzMtdUqVmgakMP7fBqzySLybXWNk0S6nhydQF1KJLgctFnH/FDTR6IG3j+C9rw/nfbKkkj90UZUiR+CH0JxBkWHFxi17qx14U/C/rYxA2DDAs5OE7fRvU31nICww67Lw0SlM17+B+5xgczsdHyK3mKLAjpozuLJ4+SGJngnE70KFBPywkNTAJHfmovV8IvrXi5Hn4Kt3qx1h1+rvt5+3ozV7z8Gj5ZzbIA/KQbJMueUoOyWtyQvqEkY/kE/lCvtY+177VftR+XoSury1z7pOS1X79Af6ta1o=</latexit>

�S =1

2(Sf � Sf )

<latexit sha1_base64="ICxSWLD04oqkzdo92W/Q4D5rcB0=">AAAENXicdVNLbxMxEHYbHqU82sKRS0SFKFIem6oVcKhUlQpx6KGohFbqRtHYmd1Y8dqW7YVU1v4Efg0XDvBDuHBCXDlyxdlGorsBn8bfNzOeGX9DteDWRdG3peXGtes3bq7cWr195+69tfWN+++syg3DPlNCmTMKFgWX2HfcCTzTBiGjAk/p5OWMP32PxnIl37oLjYMMUskTzsAFaLj+JD5E4aB50txrxokB5nuF3y62ToZJ+2ToYwrGJ0XxdLi+GXWi8jQXjd7c2CTzczzcWP4djxTLM5SOCbD2vBdpN/BgHGcCi9XVOLeogU0gxXPY0aDRtDIwKZd7PS5bAuTIsoAOfIoqQ2cuakG5S54PPJc6dyhZcZXz03I0IeDxVRQym4EbV11niFNK2CocfO1FRhfARElnq5X4XKcGcVL1tTyX3E3rNcyeMzYJKSqwDTMa46iG0qwOLCJKLETx0YjLtFakA5oLMNNqlVSpSWBqzU9tsGqf5MvONdYmzTJqeDp2AbXoMuBy5udfcRNUBdI2j/6yNtz/zVZS8sSNUYYQiR9CfQJBhhGXr+i5fuxlwv+yPgFhQwNxKQ/f7duwBN2ZvMCgw+6hUZqqaRd3u0fgcDo8QG41R4FdMWa0Pfv6IIn2CJNOoEOBPi4ldW5SOvBRZ7cUfGvBKIqwKr36Yiwa/e3Oi070Zmdz/2C+MyvkIXlEtkiPPCP75DU5Jn3CyEfyiXwhXxufG98bPxo/L12Xl+YxD0jlNH79ATZjbgg=</latexit><latexit sha1_base64="ICxSWLD04oqkzdo92W/Q4D5rcB0=">AAAENXicdVNLbxMxEHYbHqU82sKRS0SFKFIem6oVcKhUlQpx6KGohFbqRtHYmd1Y8dqW7YVU1v4Efg0XDvBDuHBCXDlyxdlGorsBn8bfNzOeGX9DteDWRdG3peXGtes3bq7cWr195+69tfWN+++syg3DPlNCmTMKFgWX2HfcCTzTBiGjAk/p5OWMP32PxnIl37oLjYMMUskTzsAFaLj+JD5E4aB50txrxokB5nuF3y62ToZJ+2ToYwrGJ0XxdLi+GXWi8jQXjd7c2CTzczzcWP4djxTLM5SOCbD2vBdpN/BgHGcCi9XVOLeogU0gxXPY0aDRtDIwKZd7PS5bAuTIsoAOfIoqQ2cuakG5S54PPJc6dyhZcZXz03I0IeDxVRQym4EbV11niFNK2CocfO1FRhfARElnq5X4XKcGcVL1tTyX3E3rNcyeMzYJKSqwDTMa46iG0qwOLCJKLETx0YjLtFakA5oLMNNqlVSpSWBqzU9tsGqf5MvONdYmzTJqeDp2AbXoMuBy5udfcRNUBdI2j/6yNtz/zVZS8sSNUYYQiR9CfQJBhhGXr+i5fuxlwv+yPgFhQwNxKQ/f7duwBN2ZvMCgw+6hUZqqaRd3u0fgcDo8QG41R4FdMWa0Pfv6IIn2CJNOoEOBPi4ldW5SOvBRZ7cUfGvBKIqwKr36Yiwa/e3Oi070Zmdz/2C+MyvkIXlEtkiPPCP75DU5Jn3CyEfyiXwhXxufG98bPxo/L12Xl+YxD0jlNH79ATZjbgg=</latexit><latexit sha1_base64="ICxSWLD04oqkzdo92W/Q4D5rcB0=">AAAENXicdVNLbxMxEHYbHqU82sKRS0SFKFIem6oVcKhUlQpx6KGohFbqRtHYmd1Y8dqW7YVU1v4Efg0XDvBDuHBCXDlyxdlGorsBn8bfNzOeGX9DteDWRdG3peXGtes3bq7cWr195+69tfWN+++syg3DPlNCmTMKFgWX2HfcCTzTBiGjAk/p5OWMP32PxnIl37oLjYMMUskTzsAFaLj+JD5E4aB50txrxokB5nuF3y62ToZJ+2ToYwrGJ0XxdLi+GXWi8jQXjd7c2CTzczzcWP4djxTLM5SOCbD2vBdpN/BgHGcCi9XVOLeogU0gxXPY0aDRtDIwKZd7PS5bAuTIsoAOfIoqQ2cuakG5S54PPJc6dyhZcZXz03I0IeDxVRQym4EbV11niFNK2CocfO1FRhfARElnq5X4XKcGcVL1tTyX3E3rNcyeMzYJKSqwDTMa46iG0qwOLCJKLETx0YjLtFakA5oLMNNqlVSpSWBqzU9tsGqf5MvONdYmzTJqeDp2AbXoMuBy5udfcRNUBdI2j/6yNtz/zVZS8sSNUYYQiR9CfQJBhhGXr+i5fuxlwv+yPgFhQwNxKQ/f7duwBN2ZvMCgw+6hUZqqaRd3u0fgcDo8QG41R4FdMWa0Pfv6IIn2CJNOoEOBPi4ldW5SOvBRZ7cUfGvBKIqwKr36Yiwa/e3Oi070Zmdz/2C+MyvkIXlEtkiPPCP75DU5Jn3CyEfyiXwhXxufG98bPxo/L12Xl+YxD0jlNH79ATZjbgg=</latexit>

CP violation in B0→ D∗±D∓• First measurement of CP violation in B0→ D∗±D∓at LHCb

• Former measurements by Belle and BaBar [2,3]

D*+- D-+ S

HFL

AV

Sum

mer

201

6

-1 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4

BaBarPRD 79, 032002 (2009)

-0.68 ± 0.15 ± 0.04

BellePRD 85 (2012) 091106

-0.78 ± 0.15 ± 0.05

AverageHFLAV

-0.73 ± 0.11

HFLAVHFLAVSummer 2016

D*+- D-+ C

HFL

AV

Sum

mer

201

6

-0.2 -0.1 0 0.1 0.2

BaBarPRD 79, 032002 (2009)

0.04 ± 0.12 ± 0.03

BellePRD 85 (2012) 091106

-0.01 ± 0.11 ± 0.04

AverageHFLAV

0.01 ± 0.09

HFLAVHFLAVSummer 2016

D*+- D-+ A

HFL

AV

Sum

mer

201

6

-0.1 -0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

BaBarPRD 79, 032002 (2009)

0.01 ± 0.05 ± 0.01

BellePRD 85 (2012) 091106

0.06 ± 0.05 ± 0.02

AverageHFLAV

0.03 ± 0.04

HFLAVHFLAVSummer 2016

[4]

• b→ ccs decays are sensitive to weak phase 2β

• Measured by several experiments in different chan-nels [4]

• Same phase appears in b→ ccd transitions

• ForB0→ D∗±D∓ decays higher-order diagrams con-tribute to CP violation.

Instrumental asymmetries• Overall asymmetry is corrected for instrumentalasymmetries from reconstruction, detection and par-ticle identification

• B0→ D∗±D∓ decay is charge-balanced, asymme-tries only due to different momentum spectra of pos-itive and negative pions and kaons

• 6 million prompt D±→ K∓π±π± decays reweightedto signal D∗− or D− distributions

• Split into four subsamples: One sample perD0 decaymode and one for D∗− and D−, respectively

• Asymmetries AD∗−det and AD−

det calculated with D+ andD− yields from fits to the mass distributions

Final state AD∗−det AD−det AD∗−D+det [%]

K−π+ 0.0169 0.0158 0.11± 0.40± 0.30K−π−π+π+ 0.0146 0.0138 0.09± 0.26± 0.51

Signal extractionReconstruction• D∗+→ D0π+

D0→ K−π+D0→ K−π−π+π+

• D−→ K+π−π−

Full LHCb dataset• 1 fb−1 at 7TeV• 2 fb−1 at 8TeV• 6 fb−1 at 13TeV

Multivariate Selection• Further reduction of combinatorial background

• Boosted Decision Tree (BDT)

• Signal proxy: signal MC

• Background proxy: upper mass sideband from data

• Kinematic, topological and particle identification variables used

• BDT cut point minimises uncertainties of CP parameters

Mass Fit• Disentangle signal from remaining background

• Shapes of the signal and background components based on sim-ulated data

Signal CandidatesK−π+ K−π−π+π+

Run 1 856± 32 469± 28Run 2 3265± 61 1570± 48

Can

didates/(6

MeV/c

2)

200

400

600

800

1000

1200

mD∗±D∓ [MeV/c2]

5000 5200 5400 5600−5

0

5

Pull

LHCbRun 2

Total

B0→ D∗±D∓

B0s→ D∗±D∓

B0→ D+s D

∗−

B0→ D∗+D∗−

B0s→ D∗+D∗−

Comb. bkg.

Can

didates/(6

MeV/c

2)

100

200

300

400

500

600

mD∗±D∓ [MeV/c2]

5000 5200 5400 5600−5

0

5

Pull

LHCbRun 2

Total

B0→ D∗±D∓

B0s→ D∗±D∓

B0→ D+s D

∗−

B0→ D∗+D∗−

B0s→ D∗+D∗−

Comb. bkg.

Flavour TaggingKnowledge of b quark flavour at produc-tion is essential for measurements of time-dependent CP asymmetries.

PV

SV

b→ cb→ X l−

SVc→ s

same side

opposite side

b

b

D∗±

D∓

d

du

duu

π+

p

x

l−

K−

B0

hb

SS pion

SS proton

OS muonOS electron

OS kaon

OS vertex chargeOS charm

Tagging Algorithms• OSµ, e , K, vtx Charge• SSp and SSπ

Calibration Channels• B0→ D+s D−• B0→ D∗−D+s

Tagging PowermD+

s D−(MeV/c2)5300 5400 5500C

andidates/(2.8

MeV/c

2)

0

500

1000

1500

2000

2500 LHCb TotalB0→ D+

s D−

B0s → D−

s D+

Comb. bkg.

[5]

Sample εtag [%] εtagD2 [%]

Run1 K−π+ 80.2± 1.4 5.61± 0.36K−π−π+π+ 88.8± 1.9 6.25± 0.55

Run2 K−π+ 93.5± 0.5 6.61± 0.19K−π−π+π+ 92.7± 0.8 7.05± 0.29

Decay-time fitCP observables are extracted via fit to decay time.

1

10

210

Sign

al Y

ield

/ (

0.12

5 ps

)

LHCb

2 4 6 8 10Decay time [ps]

5−

0

5

Pull

• Decay-time acceptance: cubic splines• Decay-time resolution: triple Gaussian, σt ≈ 60 fs

References[1] LHCb collaboration, R. Aaij et al., submitted to JHEP

[arXiv:1912.03723][2] Belle collaboration, M. Röhrken et al., Phys. Rev. Lett. 108 (2012)

[arXiv:1201.4643][3] BaBar collaboration, B. Aubert et al., Phys. Rev. D79 (2009)

[arXiv:0808.1866][4] Heavy Flavor Averaging Group, Y. Amhis et al. [arXiv:1612.07233][5] LHCb collaboration, R. Aaij et al., Phys. Rev. Lett. 117 (2016)

[arXiv:1608.06620]

ResultsDominant systematic uncertainties:• SD∗D , ∆SD∗D , CD∗D and ∆CD∗D : FT calibration andsignal mass model

• AD∗D : prompt D± meson mass shape

SD∗D = −0.861± 0.077 (stat)± 0.019 (syst)∆SD∗D = 0.019± 0.075 (stat)± 0.012 (syst)CD∗D = −0.059± 0.092 (stat)± 0.020 (syst)∆CD∗D = −0.031± 0.092 (stat)± 0.016 (syst)AD∗D = 0.008± 0.014 (stat)± 0.006 (syst)

• Most precise measurement in B0→ D∗±D∓ decays

• Precision of CD∗D and ∆CD∗D comparable with pre-vious measurements

• Precision of world average forSD∗D ,∆SD∗D andAD∗Dsignificantly improved

1