On the mathematical modelling of a batch fermentation process using interval data · PDF...

39
September, 21–26, 2014, W¨ urzburg SCAN 2014 On the mathematical modelling of a batch fermentation process using interval data and verification methods Svetoslav Markov September 21, 2014 Co-authors: R. Alt, V. Beschkov, S. Dimitrov and M. Kamburova [email protected] 1

Transcript of On the mathematical modelling of a batch fermentation process using interval data · PDF...

Page 1: On the mathematical modelling of a batch fermentation process using interval data · PDF file · 2014-10-14On the mathematical modelling of a batch fermentation process using interval

September, 21–26, 2014, Wurzburg SCAN 2014

On the mathematical modelling of a batch

fermentation process using interval data

and verification methods

Svetoslav Markov

September 21, 2014

Co-authors: R. Alt, V. Beschkov, S. Dimitrov and M. Kamburova

[email protected] 1

Page 2: On the mathematical modelling of a batch fermentation process using interval data · PDF file · 2014-10-14On the mathematical modelling of a batch fermentation process using interval

September, 21–26, 2014, Wurzburg SCAN 2014

Contents

1. Classical cell growth models

2. Two-phase cell growth models based on reaction schemes

3. Numerical experiments on real interval data: model verification

4. Open problems and conclusion remarks

[email protected] 2

Page 3: On the mathematical modelling of a batch fermentation process using interval data · PDF file · 2014-10-14On the mathematical modelling of a batch fermentation process using interval

September, 21–26, 2014, Wurzburg SCAN 2014

Microbial growth (cell growth)

Microorganisms — procariotic, eucariotic

Procariotic — bacterial cells

Cells transform nutrient substrates (via their enzymes) into products

Products = intermediate metabolic subtances + final excrements

In addition, (some) cells divide and the cell population grows

[email protected] 3

Page 4: On the mathematical modelling of a batch fermentation process using interval data · PDF file · 2014-10-14On the mathematical modelling of a batch fermentation process using interval

September, 21–26, 2014, Wurzburg SCAN 2014

Microbial growth—Malthusian growth model

Malthusian growth model, Malthus 1810–1825:

dx/dt = kx, x(0) = x0 x(t) = x0ekt

Xk−→ X +X reproduction

More realistic assumption: S +Xk−→ X +X leading to

dx/dt = ksx

exponential unlimited growth

[email protected] 4

Page 5: On the mathematical modelling of a batch fermentation process using interval data · PDF file · 2014-10-14On the mathematical modelling of a batch fermentation process using interval

September, 21–26, 2014, Wurzburg SCAN 2014

Microbial growth—Verhulst-Pearl model

Verhulst-Pearl model (1838):

dx/dt = kx− (k/a)x2 = (k/a)x(a− x), x(0) = x0

x(t) =a

1 + be−kt, b = (a− x0)/x0

S +Xk−→←−k−1

X +X reproduction !

dx/dt = ksx− k−1x2, x(0) = x0

if s = const then same as above

[email protected] 5

Page 6: On the mathematical modelling of a batch fermentation process using interval data · PDF file · 2014-10-14On the mathematical modelling of a batch fermentation process using interval

September, 21–26, 2014, Wurzburg SCAN 2014

Microbial growth - phases

[email protected] 6

Page 7: On the mathematical modelling of a batch fermentation process using interval data · PDF file · 2014-10-14On the mathematical modelling of a batch fermentation process using interval

September, 21–26, 2014, Wurzburg SCAN 2014

Microbial growth - phases

(A) lag phase: During lag phase, bacteria adapt themselves togrowth conditions. It is the period where the individual bacteria arematuring and not yet able to divide. During the lag phase of thebacterial growth cycle, synthesis of RNA, enzymes and othermolecules occurs.

(B) log phase: Exponential or log phase is a period characterized bycell doubling. The number of new bacteria appearing per unit time isproportional to the present population. If growth is not limited,doubling will continue at a constant growth rate so both the numberof cells and the rate of population increase doubles with eachconsecutive time period.

[email protected] 7

Page 8: On the mathematical modelling of a batch fermentation process using interval data · PDF file · 2014-10-14On the mathematical modelling of a batch fermentation process using interval

September, 21–26, 2014, Wurzburg SCAN 2014

Microbial growth - phases

(C) stationary phase: During stationary phase, the growth rateslows as a result of nutrient depletion and accumulation of toxicproducts. This phase is reached as the bacteria begin to exhaust theresources that are available to them. This phase is a constant valueas the rate of bacterial growth is equal to the rate of bacterial death.

From: http://en.wikipedia.org/wiki/Bacterial growth

[email protected] 8

Page 9: On the mathematical modelling of a batch fermentation process using interval data · PDF file · 2014-10-14On the mathematical modelling of a batch fermentation process using interval

September, 21–26, 2014, Wurzburg SCAN 2014

Bio-reactors: three types

−→ � −→[S +X −→ P +X] batch

S −→ [S +X −→ P +X] fed-batch

S −→ [S +X −→ P +X] −→ P,X continuous

Dynamics of S needed

[email protected] 9

Page 10: On the mathematical modelling of a batch fermentation process using interval data · PDF file · 2014-10-14On the mathematical modelling of a batch fermentation process using interval

September, 21–26, 2014, Wurzburg SCAN 2014

Bio-reactors: Monod model—functiom µ

ds/dt = −αµ(s)x [+F (sin − s)]dx/dt = µ(s)x− kdx [−Fx]

x = x(t) — the biomass

s = s(t) — substrate concentration

kd — decay constant (death rate)

[email protected] 10

Page 11: On the mathematical modelling of a batch fermentation process using interval data · PDF file · 2014-10-14On the mathematical modelling of a batch fermentation process using interval

September, 21–26, 2014, Wurzburg SCAN 2014

Monod model—functiom µ

µ(s) = µmaxs

Ks + s

µ(s) = µmaxs

Ks + s+ s2/Ki

over 30 expressions for µ collected in :

M. Gerber, R. Span: An Analysis of Available Mathematical Modelsfor Anaerobic Digestion of Organic Substances for Production ofBiogas, proc. IGRC, Paris 2008.

[email protected] 11

Page 12: On the mathematical modelling of a batch fermentation process using interval data · PDF file · 2014-10-14On the mathematical modelling of a batch fermentation process using interval

September, 21–26, 2014, Wurzburg SCAN 2014

Classical cell growth models

A batch mode chemostat/bioreactor

ds/dt = −αµ(s)x, (1)

dx/dt = µ(s)x− kdx, (2)

with s(0) = s0 > 0, x(0) = x0 > 0

Monod function:

µ(s) = µmaxs

Ks + s, Ks ≥ 0 (3)

[email protected] 12

Page 13: On the mathematical modelling of a batch fermentation process using interval data · PDF file · 2014-10-14On the mathematical modelling of a batch fermentation process using interval

September, 21–26, 2014, Wurzburg SCAN 2014

Classical cell growth models

[email protected] 13

Page 14: On the mathematical modelling of a batch fermentation process using interval data · PDF file · 2014-10-14On the mathematical modelling of a batch fermentation process using interval

September, 21–26, 2014, Wurzburg SCAN 2014

Classical unstructured models with product

A classical model for batch cultivation of bacteria cells involving thedynamics of s, x and p

ds/dt = − δµxdx/dt = µx (−γx)dp/dt = (α µ+ β)x

(4)

s(0) = s0, x(0) = x0, p(0) = p0 = 0

α, β, δ are specific rate constants

[email protected] 14

Page 15: On the mathematical modelling of a batch fermentation process using interval data · PDF file · 2014-10-14On the mathematical modelling of a batch fermentation process using interval

September, 21–26, 2014, Wurzburg SCAN 2014

Classical unstructured models

The parameter µ is the “specific growth rate” which is (usually) afunction of s. Typical choices for µ are the Monod function

µ(s) = µmax s/(Ks + s) (5)

and the Haldane/Andrews function

µ(s) = µmax s/(Ks + s+Kis2) (6)

[email protected] 15

Page 16: On the mathematical modelling of a batch fermentation process using interval data · PDF file · 2014-10-14On the mathematical modelling of a batch fermentation process using interval

September, 21–26, 2014, Wurzburg SCAN 2014

Experimental data provided

Experimental data provided:

a) for the CGTase production by bacteria Bacteria circulansATCC21783 (data provided by prof. V. Beschkov from the Instituteof Chemical Engineering, BAS);

b) for EPS production from thermophylic bacteria (data provided byprof. M. Kamburova from the Institute of Microbiology, BAS)

Both models provide data for the biomass x and the product p

[email protected] 16

Page 17: On the mathematical modelling of a batch fermentation process using interval data · PDF file · 2014-10-14On the mathematical modelling of a batch fermentation process using interval

September, 21–26, 2014, Wurzburg SCAN 2014

Classical Monod model

The Monod model has been applied to fit real experimental data forEPS production

using first the Monod function and then the Haldane function

s0 = 0.1, x0 = 0.05, µmax = 5., α = 0.1, β = 0, γ = 0.005,Ks = 0.25, Ki = 30, δ = 13

[email protected] 17

Page 18: On the mathematical modelling of a batch fermentation process using interval data · PDF file · 2014-10-14On the mathematical modelling of a batch fermentation process using interval

September, 21–26, 2014, Wurzburg SCAN 2014

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 5 10 15 20 25 30

Biom

ass

and

EPS

Time in hrs

Monod function, gamma=0, Fermentor1; 1 l; 600 rpm,Air 0.8:1

Interval experim. biomassinterval experim.EPS

Theor. biomassTheor. substrate

Theor. product EPS

[email protected] 18

Page 19: On the mathematical modelling of a batch fermentation process using interval data · PDF file · 2014-10-14On the mathematical modelling of a batch fermentation process using interval

September, 21–26, 2014, Wurzburg SCAN 2014

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 5 10 15 20 25 30

Biom

ass

and

EPS

Time in hrs

Haldane function,ki=30, gamma=0, Fermentor1; 1 l; 600 rpm,Air 0.8:1

Interval experim. biomassinterval experim.EPS

Theor. biomassTheor. substrate

Theor. product EPS

[email protected] 19

Page 20: On the mathematical modelling of a batch fermentation process using interval data · PDF file · 2014-10-14On the mathematical modelling of a batch fermentation process using interval

September, 21–26, 2014, Wurzburg SCAN 2014

Modelling process: graphics via Mathematica

Parameter identification is performed conveniently usingMathematica tools

Slide keys (“sliders”)

http://reference.wolfram.com/language/ref/Slider.html

If no solution sets passing through all intervals are found,

then we abandon the model and look for another model structure

— usually a modified one

[email protected] 20

Page 21: On the mathematical modelling of a batch fermentation process using interval data · PDF file · 2014-10-14On the mathematical modelling of a batch fermentation process using interval

September, 21–26, 2014, Wurzburg SCAN 2014

Out[20]=

T 70

e0 0.06

s0 2.6

k0 0.1

k1 2.62

k2 1.25

XMIN 0

YMIN 0

XMAX 70

YMAX 3.9

0 10 20 30 40 50 60 70

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

[email protected] 21

Page 22: On the mathematical modelling of a batch fermentation process using interval data · PDF file · 2014-10-14On the mathematical modelling of a batch fermentation process using interval

September, 21–26, 2014, Wurzburg SCAN 2014

A two-phase model

Model (4) is a two-phase model proposed in CAMWA [1]

ds/dt = −k1xs− (α+ β)ys,dx/dt = −k1xs+ k2y + αys− kxx,dy/dt = k1xs− k2y + βys− kyydp/dt = γ ∗ s ∗ (x+ y)

(7)

with the initial conditions

s(0) = s0, x(0) = x0, y(0) = y0, p(0) = p0.

s is the substrate, p is the product

x, y are two phases of the biomass

[email protected] 22

Page 23: On the mathematical modelling of a batch fermentation process using interval data · PDF file · 2014-10-14On the mathematical modelling of a batch fermentation process using interval

September, 21–26, 2014, Wurzburg SCAN 2014

A two-phase model

A good approximation of the experimental data using this modelhave been found with the following coefficients:

k1 = 0.5; k2 = 0.5; kx = 0.01; ky = 0.1; α = 3; β = 0.2

and with initial conditions:

s0 = 2; x0 = 5.10−5, y0 = 0, p0 = 0

The above approximation is visualized on the next Figure

[email protected] 23

Page 24: On the mathematical modelling of a batch fermentation process using interval data · PDF file · 2014-10-14On the mathematical modelling of a batch fermentation process using interval

September, 21–26, 2014, Wurzburg SCAN 2014

0

0.5

1

1.5

2

0 5 10 15 20 25

Biom

ass

and

EPS

Time in hrs

Smarkov model 2, Fermentor1; 1litre; 600 rpm,Air 0.8:1, data error=10%

Interval experim. Biomassinterval experim.EPS

Theor. substrateTheor. lag biomass

Theor. active biomassTheor. product EPSTheor. total biomass

[email protected] 24

Page 25: On the mathematical modelling of a batch fermentation process using interval data · PDF file · 2014-10-14On the mathematical modelling of a batch fermentation process using interval

September, 21–26, 2014, Wurzburg SCAN 2014

The basic two-phase model

Reproduction—simple reaction scheme

Y -cells are engaged in formation of products P , which are importantcomponents of newborn cells. Reproduction as part of the productionprocess: a) cell growth is due to reproduction—hence to dividingY -cells; b) Y -cells utilize product P to reproduce

P + Yk3−→ 2Y

[email protected] 25

Page 26: On the mathematical modelling of a batch fermentation process using interval data · PDF file · 2014-10-14On the mathematical modelling of a batch fermentation process using interval

September, 21–26, 2014, Wurzburg SCAN 2014

The basic two-phase model

The dividing mother Y -cells transform into daughter cells plus anewborn cell built by means of product P

S +Xk1−→←−k−1

Yk2−→ P +X,

P + Yk3−→ 2Y,

Many other variants (like replacing Y by X) were checked and waived

[email protected] 26

Page 27: On the mathematical modelling of a batch fermentation process using interval data · PDF file · 2014-10-14On the mathematical modelling of a batch fermentation process using interval

September, 21–26, 2014, Wurzburg SCAN 2014

The basic two-phase model

Applying the mass action law, we obtain the model:

ds/dt = −k1xs+ k−1ydx/dt = −k1xs+ k−1 y + k2ydy/dt = k1xs− k−1 y − k2y + k3pydp/dt = k2y − k3py

(8)

with initial conditions (corresponding to a batch cultivationprocess): s(0) = s0, x(0) = x0, y(0) = y0, p(0) = 0.

[email protected] 27

Page 28: On the mathematical modelling of a batch fermentation process using interval data · PDF file · 2014-10-14On the mathematical modelling of a batch fermentation process using interval

September, 21–26, 2014, Wurzburg SCAN 2014

The basic two-phase model

Respectively, assuming k−1 = 0 we obtain the simpler model:

ds/dt = −k1xsdx/dt = −k1xs+ k2ydy/dt = k1xs− k2y + k3pydp/dt = k2y − k3py

(9)

induced by the reaction scheme:

S +Xk1−→ Y

k2−→ P +X,

P + Yk3−→ 2Y.

[email protected] 28

Page 29: On the mathematical modelling of a batch fermentation process using interval data · PDF file · 2014-10-14On the mathematical modelling of a batch fermentation process using interval

September, 21–26, 2014, Wurzburg SCAN 2014

0

0.5

1

1.5

2

0 5 10 15 20

Bio

mass

and E

PS

mg/m

l

Time in hrs

Fermentor 1litre, 500 rpm, Air 0.8:1

Interval experim. Biomassinterval experim.EPS

X cells Y cells

Product EPS Total biomass

[email protected] 29

Page 30: On the mathematical modelling of a batch fermentation process using interval data · PDF file · 2014-10-14On the mathematical modelling of a batch fermentation process using interval

September, 21–26, 2014, Wurzburg SCAN 2014

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 5 10 15 20

Bio

mass

and E

PS

mg/m

l

Time in hrs

Fermentor, 1litre; 100 rpm, Air 0.8:1

Interval experim. Biomassinterval experim.EPS

X cellsY cells

Product EPS Total biomass

[email protected] 30

Page 31: On the mathematical modelling of a batch fermentation process using interval data · PDF file · 2014-10-14On the mathematical modelling of a batch fermentation process using interval

September, 21–26, 2014, Wurzburg SCAN 2014

0

0.5

1

1.5

2

0 5 10 15 20

Bio

mass

and p

roduct

mg/m

l

Time in hrs

Aeribacillus pallidus 418, Fermentor 1 litre

X -cells Y - cells

Product EPSTotal biomass x+y

[email protected] 31

Page 32: On the mathematical modelling of a batch fermentation process using interval data · PDF file · 2014-10-14On the mathematical modelling of a batch fermentation process using interval

September, 21–26, 2014, Wurzburg SCAN 2014

Comparison between Monod model and our basic model

Proposition. Monod model is a special case of our basic Model underthe assumption that favourable conditions are present (the biomass xand the product p are nearly constant)

Proof — in BIOMATH 2/2 paper

[email protected] 32

Page 33: On the mathematical modelling of a batch fermentation process using interval data · PDF file · 2014-10-14On the mathematical modelling of a batch fermentation process using interval

September, 21–26, 2014, Wurzburg SCAN 2014

Our basic model and Henri reaction scheme

Our model makes use of Victor Henri reaction scheme in enzymekinetic, when identifying free enzymes with X-cells and boundedenzymes with Y -cells, following the familiar stoichiometric-likescheme for the kinetics of enzymes with just one active site:

S +Xk1−→←−k−1

Yk2−→ P +X,

wherein k1, k−1, k2 are rate constants.

[email protected] 33

Page 34: On the mathematical modelling of a batch fermentation process using interval data · PDF file · 2014-10-14On the mathematical modelling of a batch fermentation process using interval

September, 21–26, 2014, Wurzburg SCAN 2014

Open math problems induced by cell growth kinetics

P1. To approximate in Hausdorff metric the interval step function bymeans of the X-solution (or the X + Y -solution) of the basiccell-growth system

P2. To approximate in Hausdorff metric the interval Dirac functionby means of the y-solution of the basic cell-growth system

[email protected] 34

Page 35: On the mathematical modelling of a batch fermentation process using interval data · PDF file · 2014-10-14On the mathematical modelling of a batch fermentation process using interval

September, 21–26, 2014, Wurzburg SCAN 2014

Conclusion remarks

Basic biological processes—such as cell growth—still need adequatemodels

For the model construction and parameter identification the followingtools prove to be useful:

Interval approach—very useful both in model construction andparameter identification

Contemporary computational tools—CAS Mathematica

Reaction schemes—very helpful when establishing the modelstructure of the biological process

[email protected] 35

Page 36: On the mathematical modelling of a batch fermentation process using interval data · PDF file · 2014-10-14On the mathematical modelling of a batch fermentation process using interval

September, 21–26, 2014, Wurzburg SCAN 2014

Conclusion: achievement

It has been demonstrated that classical Monod type models fail tomodel adequately cell growth in the transision periods (lag-log,log-stationary)

Proposed two-phase models provide more flexibility and can be verywell fitted to real data

Our proposed two-phase models are built on simple principles relatedto enzyme kinetic, implied by reaction schemes. This contributes tomore clarity in the biological meaning

All parameters in the proposed two-phase models are numeric andhave clear biological meanings as specific rate constants (notdepending on the concentrations involved)

[email protected] 36

Page 37: On the mathematical modelling of a batch fermentation process using interval data · PDF file · 2014-10-14On the mathematical modelling of a batch fermentation process using interval

September, 21–26, 2014, Wurzburg SCAN 2014

Bastin-Dochain theory

Bastin-Dochain “reaction scheme”

S +Xν(s)−→P +X

“Applying MAL” we get:

ds/dt = −ν(s)sx

putting ν(s) = 1/(Ks + s) one obtains Monod model

[email protected] 37

Page 38: On the mathematical modelling of a batch fermentation process using interval data · PDF file · 2014-10-14On the mathematical modelling of a batch fermentation process using interval

September, 21–26, 2014, Wurzburg SCAN 2014

References

[1] Alt, R., S. Markov, Theoretical and computational studies ofsome bioreactor models, Computers and Mathematics withApplications 64 (2012), 350–360.

[2] Markov, S., Biomathematics and interval analysis: a prosperousmarriage. In: M. D. Todorov, Ch. I. Christov, Eds., AIP Conf.Proc. 1301, Amitans2010, AIP, 2010, 26–36.

[3] Markov, S., Cell Growth Models Using Reaction Schemes: BatchCultivation, Biomath 2/2 (2013), 1312301.

[4] Radchenkova, N., M. Kambourova, S. Vassilev, R. Alt, S.Markov, On the mathematical modelling of EPS production by athermophilic bacterium, BIOMATH 3/1 (2014), 1407121

[email protected] 38

Page 39: On the mathematical modelling of a batch fermentation process using interval data · PDF file · 2014-10-14On the mathematical modelling of a batch fermentation process using interval

September, 21–26, 2014, Wurzburg SCAN 2014

Figure 1: Rue Monod in Lion SCAN 2010

[email protected] 39