On the hypergeometric nature of certain Legendre-type ... fileOn the hypergeometric nature of...

74
Outline Legendre polynomials Motivations Legendre-type polynomials Hypergeometric series Open problems On the hypergeometric nature of certain Legendre-type polynomials Raffaele Marcovecchio SLC71 & XIX-IICA, September 15th-18th, 2013 Raffaele Marcovecchio Hypergeometric nature of Legendre-type polynomials

Transcript of On the hypergeometric nature of certain Legendre-type ... fileOn the hypergeometric nature of...

Page 1: On the hypergeometric nature of certain Legendre-type ... fileOn the hypergeometric nature of certain Legendre-type ...

OutlineLegendre polynomials

MotivationsLegendre-type polynomials

Hypergeometric seriesOpen problems

On the hypergeometric nature of certainLegendre-type polynomials

Raffaele Marcovecchio

SLC71 & XIX-IICA, September 15th-18th, 2013

Raffaele Marcovecchio Hypergeometric nature of Legendre-type polynomials

Page 2: On the hypergeometric nature of certain Legendre-type ... fileOn the hypergeometric nature of certain Legendre-type ...

OutlineLegendre polynomials

MotivationsLegendre-type polynomials

Hypergeometric seriesOpen problems

Legendre polynomials

Motivations

Legendre-type polynomials

Hypergeometric series

Open problems

Raffaele Marcovecchio Hypergeometric nature of Legendre-type polynomials

Page 3: On the hypergeometric nature of certain Legendre-type ... fileOn the hypergeometric nature of certain Legendre-type ...

OutlineLegendre polynomials

MotivationsLegendre-type polynomials

Hypergeometric seriesOpen problems

Definition and examples

I Definition: Ln(t) = 12nn!

ddtn (t2 − 1)n, n = 0, 1, 2, . . .

I Normalization: Pn(x) = Ln(1− 2x) = Dn

(xn(1− x)n

), where

Dn = 1n!

ddxn .

I Examples: P1(x) = 1− 2x , P2(x) = 6x2 − 6x + 1,

P3(x) = −20x3 + 30x2 − 12x + 1,P4(x) = 70x4 − 140x3 + 90x2 − 20x + 1,P5(x) = −252x5 + 630x4 − 560x3 + 210x2 − 30x + 1,P6(x) = 924x6−2772x5+3150x4−1680x3+420x2−42x +1,

Raffaele Marcovecchio Hypergeometric nature of Legendre-type polynomials

Page 4: On the hypergeometric nature of certain Legendre-type ... fileOn the hypergeometric nature of certain Legendre-type ...

OutlineLegendre polynomials

MotivationsLegendre-type polynomials

Hypergeometric seriesOpen problems

Definition and examples

I Definition: Ln(t) = 12nn!

ddtn (t2 − 1)n, n = 0, 1, 2, . . .

I Normalization: Pn(x) = Ln(1− 2x) = Dn

(xn(1− x)n

), where

Dn = 1n!

ddxn .

I Examples: P1(x) = 1− 2x , P2(x) = 6x2 − 6x + 1,

P3(x) = −20x3 + 30x2 − 12x + 1,P4(x) = 70x4 − 140x3 + 90x2 − 20x + 1,P5(x) = −252x5 + 630x4 − 560x3 + 210x2 − 30x + 1,P6(x) = 924x6−2772x5+3150x4−1680x3+420x2−42x +1,

Raffaele Marcovecchio Hypergeometric nature of Legendre-type polynomials

Page 5: On the hypergeometric nature of certain Legendre-type ... fileOn the hypergeometric nature of certain Legendre-type ...

OutlineLegendre polynomials

MotivationsLegendre-type polynomials

Hypergeometric seriesOpen problems

Definition and examples

I Definition: Ln(t) = 12nn!

ddtn (t2 − 1)n, n = 0, 1, 2, . . .

I Normalization: Pn(x) = Ln(1− 2x) = Dn

(xn(1− x)n

), where

Dn = 1n!

ddxn .

I Examples: P1(x) = 1− 2x , P2(x) = 6x2 − 6x + 1,

P3(x) = −20x3 + 30x2 − 12x + 1,P4(x) = 70x4 − 140x3 + 90x2 − 20x + 1,P5(x) = −252x5 + 630x4 − 560x3 + 210x2 − 30x + 1,P6(x) = 924x6−2772x5+3150x4−1680x3+420x2−42x +1,

Raffaele Marcovecchio Hypergeometric nature of Legendre-type polynomials

Page 6: On the hypergeometric nature of certain Legendre-type ... fileOn the hypergeometric nature of certain Legendre-type ...

OutlineLegendre polynomials

MotivationsLegendre-type polynomials

Hypergeometric seriesOpen problems

Definition and examples

I Definition: Ln(t) = 12nn!

ddtn (t2 − 1)n, n = 0, 1, 2, . . .

I Normalization: Pn(x) = Ln(1− 2x) = Dn

(xn(1− x)n

), where

Dn = 1n!

ddxn .

I Examples: P1(x) = 1− 2x , P2(x) = 6x2 − 6x + 1,

P3(x) = −20x3 + 30x2 − 12x + 1,

P4(x) = 70x4 − 140x3 + 90x2 − 20x + 1,P5(x) = −252x5 + 630x4 − 560x3 + 210x2 − 30x + 1,P6(x) = 924x6−2772x5+3150x4−1680x3+420x2−42x +1,

Raffaele Marcovecchio Hypergeometric nature of Legendre-type polynomials

Page 7: On the hypergeometric nature of certain Legendre-type ... fileOn the hypergeometric nature of certain Legendre-type ...

OutlineLegendre polynomials

MotivationsLegendre-type polynomials

Hypergeometric seriesOpen problems

Definition and examples

I Definition: Ln(t) = 12nn!

ddtn (t2 − 1)n, n = 0, 1, 2, . . .

I Normalization: Pn(x) = Ln(1− 2x) = Dn

(xn(1− x)n

), where

Dn = 1n!

ddxn .

I Examples: P1(x) = 1− 2x , P2(x) = 6x2 − 6x + 1,

P3(x) = −20x3 + 30x2 − 12x + 1,P4(x) = 70x4 − 140x3 + 90x2 − 20x + 1,

P5(x) = −252x5 + 630x4 − 560x3 + 210x2 − 30x + 1,P6(x) = 924x6−2772x5+3150x4−1680x3+420x2−42x +1,

Raffaele Marcovecchio Hypergeometric nature of Legendre-type polynomials

Page 8: On the hypergeometric nature of certain Legendre-type ... fileOn the hypergeometric nature of certain Legendre-type ...

OutlineLegendre polynomials

MotivationsLegendre-type polynomials

Hypergeometric seriesOpen problems

Definition and examples

I Definition: Ln(t) = 12nn!

ddtn (t2 − 1)n, n = 0, 1, 2, . . .

I Normalization: Pn(x) = Ln(1− 2x) = Dn

(xn(1− x)n

), where

Dn = 1n!

ddxn .

I Examples: P1(x) = 1− 2x , P2(x) = 6x2 − 6x + 1,

P3(x) = −20x3 + 30x2 − 12x + 1,P4(x) = 70x4 − 140x3 + 90x2 − 20x + 1,P5(x) = −252x5 + 630x4 − 560x3 + 210x2 − 30x + 1,

P6(x) = 924x6−2772x5+3150x4−1680x3+420x2−42x +1,

Raffaele Marcovecchio Hypergeometric nature of Legendre-type polynomials

Page 9: On the hypergeometric nature of certain Legendre-type ... fileOn the hypergeometric nature of certain Legendre-type ...

OutlineLegendre polynomials

MotivationsLegendre-type polynomials

Hypergeometric seriesOpen problems

Definition and examples

I Definition: Ln(t) = 12nn!

ddtn (t2 − 1)n, n = 0, 1, 2, . . .

I Normalization: Pn(x) = Ln(1− 2x) = Dn

(xn(1− x)n

), where

Dn = 1n!

ddxn .

I Examples: P1(x) = 1− 2x , P2(x) = 6x2 − 6x + 1,

P3(x) = −20x3 + 30x2 − 12x + 1,P4(x) = 70x4 − 140x3 + 90x2 − 20x + 1,P5(x) = −252x5 + 630x4 − 560x3 + 210x2 − 30x + 1,P6(x) = 924x6−2772x5+3150x4−1680x3+420x2−42x +1,

Raffaele Marcovecchio Hypergeometric nature of Legendre-type polynomials

Page 10: On the hypergeometric nature of certain Legendre-type ... fileOn the hypergeometric nature of certain Legendre-type ...

OutlineLegendre polynomials

MotivationsLegendre-type polynomials

Hypergeometric seriesOpen problems

y = Pn(x), x ∈ [0, 1], n = 1, 2, 3, 4, 5, 6, 7, 8

1

-1

0 1

1

-1

0 1

1

-1

0 1

1

-1

0 1

1

-1

0 1

1

-1

0 1

1

-1

0 1

1

-1

0 1

Raffaele Marcovecchio Hypergeometric nature of Legendre-type polynomials

Page 11: On the hypergeometric nature of certain Legendre-type ... fileOn the hypergeometric nature of certain Legendre-type ...

OutlineLegendre polynomials

MotivationsLegendre-type polynomials

Hypergeometric seriesOpen problems

Intriguing connection

I Generating function:

F (x , y) :=∞∑n=0

Pn(x)yn = 1√1−2y(1−2x)+y2

.

I Double power series:

G (w , z) :∑

m,n≥0

(n+mm

)2wmzn = 1√

(1−w−z)2−4wz,

I Then (1− x)F (x , y) = G ( xx−1 ,

y1−x ).

I Since H(w , z) :=∑

m,n≥0

(n+mm

)wmzn, then

G (w2, z2) = H(w2, z2) ∗ H(w2, z2) by definition, where ∗denotes the Hadamard product; and by the formula(G (w2, z2)

)2= H(w , z)H(w ,−z)H(−w , z)H(−w ,−z).

Raffaele Marcovecchio Hypergeometric nature of Legendre-type polynomials

Page 12: On the hypergeometric nature of certain Legendre-type ... fileOn the hypergeometric nature of certain Legendre-type ...

OutlineLegendre polynomials

MotivationsLegendre-type polynomials

Hypergeometric seriesOpen problems

Intriguing connection

I Generating function:

F (x , y) :=∞∑n=0

Pn(x)yn = 1√1−2y(1−2x)+y2

.

I Double power series:

G (w , z) :∑

m,n≥0

(n+mm

)2wmzn = 1√

(1−w−z)2−4wz,

I Then (1− x)F (x , y) = G ( xx−1 ,

y1−x ).

I Since H(w , z) :=∑

m,n≥0

(n+mm

)wmzn, then

G (w2, z2) = H(w2, z2) ∗ H(w2, z2) by definition, where ∗denotes the Hadamard product; and by the formula(G (w2, z2)

)2= H(w , z)H(w ,−z)H(−w , z)H(−w ,−z).

Raffaele Marcovecchio Hypergeometric nature of Legendre-type polynomials

Page 13: On the hypergeometric nature of certain Legendre-type ... fileOn the hypergeometric nature of certain Legendre-type ...

OutlineLegendre polynomials

MotivationsLegendre-type polynomials

Hypergeometric seriesOpen problems

Intriguing connection

I Generating function:

F (x , y) :=∞∑n=0

Pn(x)yn = 1√1−2y(1−2x)+y2

.

I Double power series:

G (w , z) :∑

m,n≥0

(n+mm

)2wmzn = 1√

(1−w−z)2−4wz,

I Then (1− x)F (x , y) = G ( xx−1 ,

y1−x ).

I Since H(w , z) :=∑

m,n≥0

(n+mm

)wmzn, then

G (w2, z2) = H(w2, z2) ∗ H(w2, z2) by definition, where ∗denotes the Hadamard product; and by the formula(G (w2, z2)

)2= H(w , z)H(w ,−z)H(−w , z)H(−w ,−z).

Raffaele Marcovecchio Hypergeometric nature of Legendre-type polynomials

Page 14: On the hypergeometric nature of certain Legendre-type ... fileOn the hypergeometric nature of certain Legendre-type ...

OutlineLegendre polynomials

MotivationsLegendre-type polynomials

Hypergeometric seriesOpen problems

Intriguing connection

I Generating function:

F (x , y) :=∞∑n=0

Pn(x)yn = 1√1−2y(1−2x)+y2

.

I Double power series:

G (w , z) :∑

m,n≥0

(n+mm

)2wmzn = 1√

(1−w−z)2−4wz,

I Then (1− x)F (x , y) = G ( xx−1 ,

y1−x ).

I Since H(w , z) :=∑

m,n≥0

(n+mm

)wmzn, then

G (w2, z2) = H(w2, z2) ∗ H(w2, z2) by definition, where ∗denotes the Hadamard product; and by the formula(G (w2, z2)

)2= H(w , z)H(w ,−z)H(−w , z)H(−w ,−z).

Raffaele Marcovecchio Hypergeometric nature of Legendre-type polynomials

Page 15: On the hypergeometric nature of certain Legendre-type ... fileOn the hypergeometric nature of certain Legendre-type ...

OutlineLegendre polynomials

MotivationsLegendre-type polynomials

Hypergeometric seriesOpen problems

Motivations from number theory

Proof of irrationality of ζ(3)

Irrationality measures of ζ(2), ζ(3)

Irrationality measures of log 2

Irrationality of Li2(1s ), s > 0 integer

Irrationality of log(1− 1s ) log(1 + 1

s )

. . .

Raffaele Marcovecchio Hypergeometric nature of Legendre-type polynomials

Page 16: On the hypergeometric nature of certain Legendre-type ... fileOn the hypergeometric nature of certain Legendre-type ...

OutlineLegendre polynomials

MotivationsLegendre-type polynomials

Hypergeometric seriesOpen problems

Motivations from number theory

Proof of irrationality of ζ(3)

Irrationality measures of ζ(2), ζ(3)

Irrationality measures of log 2

Irrationality of Li2(1s ), s > 0 integer

Irrationality of log(1− 1s ) log(1 + 1

s )

. . .

Raffaele Marcovecchio Hypergeometric nature of Legendre-type polynomials

Page 17: On the hypergeometric nature of certain Legendre-type ... fileOn the hypergeometric nature of certain Legendre-type ...

OutlineLegendre polynomials

MotivationsLegendre-type polynomials

Hypergeometric seriesOpen problems

Motivations from number theory

Proof of irrationality of ζ(3)

Irrationality measures of ζ(2), ζ(3)

Irrationality measures of log 2

Irrationality of Li2(1s ), s > 0 integer

Irrationality of log(1− 1s ) log(1 + 1

s )

. . .

Raffaele Marcovecchio Hypergeometric nature of Legendre-type polynomials

Page 18: On the hypergeometric nature of certain Legendre-type ... fileOn the hypergeometric nature of certain Legendre-type ...

OutlineLegendre polynomials

MotivationsLegendre-type polynomials

Hypergeometric seriesOpen problems

Motivations from number theory

Proof of irrationality of ζ(3)

Irrationality measures of ζ(2), ζ(3)

Irrationality measures of log 2

Irrationality of Li2(1s ), s > 0 integer

Irrationality of log(1− 1s ) log(1 + 1

s )

. . .

Raffaele Marcovecchio Hypergeometric nature of Legendre-type polynomials

Page 19: On the hypergeometric nature of certain Legendre-type ... fileOn the hypergeometric nature of certain Legendre-type ...

OutlineLegendre polynomials

MotivationsLegendre-type polynomials

Hypergeometric seriesOpen problems

Motivations from number theory

Proof of irrationality of ζ(3)

Irrationality measures of ζ(2), ζ(3)

Irrationality measures of log 2

Irrationality of Li2(1s ), s > 0 integer

Irrationality of log(1− 1s ) log(1 + 1

s )

. . .

Raffaele Marcovecchio Hypergeometric nature of Legendre-type polynomials

Page 20: On the hypergeometric nature of certain Legendre-type ... fileOn the hypergeometric nature of certain Legendre-type ...

OutlineLegendre polynomials

MotivationsLegendre-type polynomials

Hypergeometric seriesOpen problems

Irrationality measure

Let α ∈ R.

µ(α) := sup{λ ∈ R : 0 < |α− pq | <

1qλ

has infinitely

many solutions (p, q) ∈ Z× N+}.If α ∈ Q, then µ(α) = 1.

If α /∈ Q, then µ(α) ≥ 2 is the irrationality measureof α.

Raffaele Marcovecchio Hypergeometric nature of Legendre-type polynomials

Page 21: On the hypergeometric nature of certain Legendre-type ... fileOn the hypergeometric nature of certain Legendre-type ...

OutlineLegendre polynomials

MotivationsLegendre-type polynomials

Hypergeometric seriesOpen problems

Irrationality measure

Let α ∈ R.

µ(α) := sup{λ ∈ R : 0 < |α− pq | <

1qλ

has infinitely

many solutions (p, q) ∈ Z× N+}.

If α ∈ Q, then µ(α) = 1.

If α /∈ Q, then µ(α) ≥ 2 is the irrationality measureof α.

Raffaele Marcovecchio Hypergeometric nature of Legendre-type polynomials

Page 22: On the hypergeometric nature of certain Legendre-type ... fileOn the hypergeometric nature of certain Legendre-type ...

OutlineLegendre polynomials

MotivationsLegendre-type polynomials

Hypergeometric seriesOpen problems

Irrationality measure

Let α ∈ R.

µ(α) := sup{λ ∈ R : 0 < |α− pq | <

1qλ

has infinitely

many solutions (p, q) ∈ Z× N+}.If α ∈ Q, then µ(α) = 1.

If α /∈ Q, then µ(α) ≥ 2 is the irrationality measureof α.

Raffaele Marcovecchio Hypergeometric nature of Legendre-type polynomials

Page 23: On the hypergeometric nature of certain Legendre-type ... fileOn the hypergeometric nature of certain Legendre-type ...

OutlineLegendre polynomials

MotivationsLegendre-type polynomials

Hypergeometric seriesOpen problems

Irrationality measure

Let α ∈ R.

µ(α) := sup{λ ∈ R : 0 < |α− pq | <

1qλ

has infinitely

many solutions (p, q) ∈ Z× N+}.If α ∈ Q, then µ(α) = 1.

If α /∈ Q, then µ(α) ≥ 2 is the irrationality measureof α.

Raffaele Marcovecchio Hypergeometric nature of Legendre-type polynomials

Page 24: On the hypergeometric nature of certain Legendre-type ... fileOn the hypergeometric nature of certain Legendre-type ...

OutlineLegendre polynomials

MotivationsLegendre-type polynomials

Hypergeometric seriesOpen problems

Recent results for some classical constants

I µ( π√3

) < 4.6015... (Hata, 1993);

I µ(ζ(2)) < 5.441... (Rhin and Viola, 1996); (Zudilin, 2004);(M., 201?)

I µ(log(1 + 1√2909

) log(1− 1√2909

)) < 349077.6...,

I µ(log(1 + 1q ) log(1− 1

q )) < 4 + ε for q > q0(ε) (Hata, 1996)I µ(ζ(3)) < 5.551... (Rhin and Viola, 2001); (Zudilin, 2004);

(M., 201?)I µ(log 3) < 5.515... (Salikhov, 2007)I µ(π) < 7.606... (Salikhov, 2008)I µ(log 2) < 3.574... (M., 2009); (Nesterenko, 2010)I µ( π√

3) < 4.60105 (Androcesko, Bashmakova and Salikhov,

2010)

Raffaele Marcovecchio Hypergeometric nature of Legendre-type polynomials

Page 25: On the hypergeometric nature of certain Legendre-type ... fileOn the hypergeometric nature of certain Legendre-type ...

OutlineLegendre polynomials

MotivationsLegendre-type polynomials

Hypergeometric seriesOpen problems

Recent results for some classical constants

I µ( π√3

) < 4.6015... (Hata, 1993);

I µ(ζ(2)) < 5.441... (Rhin and Viola, 1996); (Zudilin, 2004);(M., 201?)

I µ(log(1 + 1√2909

) log(1− 1√2909

)) < 349077.6...,

I µ(log(1 + 1q ) log(1− 1

q )) < 4 + ε for q > q0(ε) (Hata, 1996)I µ(ζ(3)) < 5.551... (Rhin and Viola, 2001); (Zudilin, 2004);

(M., 201?)I µ(log 3) < 5.515... (Salikhov, 2007)I µ(π) < 7.606... (Salikhov, 2008)I µ(log 2) < 3.574... (M., 2009); (Nesterenko, 2010)I µ( π√

3) < 4.60105 (Androcesko, Bashmakova and Salikhov,

2010)

Raffaele Marcovecchio Hypergeometric nature of Legendre-type polynomials

Page 26: On the hypergeometric nature of certain Legendre-type ... fileOn the hypergeometric nature of certain Legendre-type ...

OutlineLegendre polynomials

MotivationsLegendre-type polynomials

Hypergeometric seriesOpen problems

Recent results for some classical constants

I µ( π√3

) < 4.6015... (Hata, 1993);

I µ(ζ(2)) < 5.441... (Rhin and Viola, 1996); (Zudilin, 2004);(M., 201?)

I µ(log(1 + 1√2909

) log(1− 1√2909

)) < 349077.6...,

I µ(log(1 + 1q ) log(1− 1

q )) < 4 + ε for q > q0(ε) (Hata, 1996)I µ(ζ(3)) < 5.551... (Rhin and Viola, 2001); (Zudilin, 2004);

(M., 201?)I µ(log 3) < 5.515... (Salikhov, 2007)I µ(π) < 7.606... (Salikhov, 2008)I µ(log 2) < 3.574... (M., 2009); (Nesterenko, 2010)I µ( π√

3) < 4.60105 (Androcesko, Bashmakova and Salikhov,

2010)

Raffaele Marcovecchio Hypergeometric nature of Legendre-type polynomials

Page 27: On the hypergeometric nature of certain Legendre-type ... fileOn the hypergeometric nature of certain Legendre-type ...

OutlineLegendre polynomials

MotivationsLegendre-type polynomials

Hypergeometric seriesOpen problems

Recent results for some classical constants

I µ( π√3

) < 4.6015... (Hata, 1993);

I µ(ζ(2)) < 5.441... (Rhin and Viola, 1996); (Zudilin, 2004);(M., 201?)

I µ(log(1 + 1√2909

) log(1− 1√2909

)) < 349077.6...,

I µ(log(1 + 1q ) log(1− 1

q )) < 4 + ε for q > q0(ε) (Hata, 1996)

I µ(ζ(3)) < 5.551... (Rhin and Viola, 2001); (Zudilin, 2004);(M., 201?)

I µ(log 3) < 5.515... (Salikhov, 2007)I µ(π) < 7.606... (Salikhov, 2008)I µ(log 2) < 3.574... (M., 2009); (Nesterenko, 2010)I µ( π√

3) < 4.60105 (Androcesko, Bashmakova and Salikhov,

2010)

Raffaele Marcovecchio Hypergeometric nature of Legendre-type polynomials

Page 28: On the hypergeometric nature of certain Legendre-type ... fileOn the hypergeometric nature of certain Legendre-type ...

OutlineLegendre polynomials

MotivationsLegendre-type polynomials

Hypergeometric seriesOpen problems

Recent results for some classical constants

I µ( π√3

) < 4.6015... (Hata, 1993);

I µ(ζ(2)) < 5.441... (Rhin and Viola, 1996); (Zudilin, 2004);(M., 201?)

I µ(log(1 + 1√2909

) log(1− 1√2909

)) < 349077.6...,

I µ(log(1 + 1q ) log(1− 1

q )) < 4 + ε for q > q0(ε) (Hata, 1996)I µ(ζ(3)) < 5.551... (Rhin and Viola, 2001); (Zudilin, 2004);

(M., 201?)

I µ(log 3) < 5.515... (Salikhov, 2007)I µ(π) < 7.606... (Salikhov, 2008)I µ(log 2) < 3.574... (M., 2009); (Nesterenko, 2010)I µ( π√

3) < 4.60105 (Androcesko, Bashmakova and Salikhov,

2010)

Raffaele Marcovecchio Hypergeometric nature of Legendre-type polynomials

Page 29: On the hypergeometric nature of certain Legendre-type ... fileOn the hypergeometric nature of certain Legendre-type ...

OutlineLegendre polynomials

MotivationsLegendre-type polynomials

Hypergeometric seriesOpen problems

Recent results for some classical constants

I µ( π√3

) < 4.6015... (Hata, 1993);

I µ(ζ(2)) < 5.441... (Rhin and Viola, 1996); (Zudilin, 2004);(M., 201?)

I µ(log(1 + 1√2909

) log(1− 1√2909

)) < 349077.6...,

I µ(log(1 + 1q ) log(1− 1

q )) < 4 + ε for q > q0(ε) (Hata, 1996)I µ(ζ(3)) < 5.551... (Rhin and Viola, 2001); (Zudilin, 2004);

(M., 201?)I µ(log 3) < 5.515... (Salikhov, 2007)

I µ(π) < 7.606... (Salikhov, 2008)I µ(log 2) < 3.574... (M., 2009); (Nesterenko, 2010)I µ( π√

3) < 4.60105 (Androcesko, Bashmakova and Salikhov,

2010)

Raffaele Marcovecchio Hypergeometric nature of Legendre-type polynomials

Page 30: On the hypergeometric nature of certain Legendre-type ... fileOn the hypergeometric nature of certain Legendre-type ...

OutlineLegendre polynomials

MotivationsLegendre-type polynomials

Hypergeometric seriesOpen problems

Recent results for some classical constants

I µ( π√3

) < 4.6015... (Hata, 1993);

I µ(ζ(2)) < 5.441... (Rhin and Viola, 1996); (Zudilin, 2004);(M., 201?)

I µ(log(1 + 1√2909

) log(1− 1√2909

)) < 349077.6...,

I µ(log(1 + 1q ) log(1− 1

q )) < 4 + ε for q > q0(ε) (Hata, 1996)I µ(ζ(3)) < 5.551... (Rhin and Viola, 2001); (Zudilin, 2004);

(M., 201?)I µ(log 3) < 5.515... (Salikhov, 2007)I µ(π) < 7.606... (Salikhov, 2008)

I µ(log 2) < 3.574... (M., 2009); (Nesterenko, 2010)I µ( π√

3) < 4.60105 (Androcesko, Bashmakova and Salikhov,

2010)

Raffaele Marcovecchio Hypergeometric nature of Legendre-type polynomials

Page 31: On the hypergeometric nature of certain Legendre-type ... fileOn the hypergeometric nature of certain Legendre-type ...

OutlineLegendre polynomials

MotivationsLegendre-type polynomials

Hypergeometric seriesOpen problems

Recent results for some classical constants

I µ( π√3

) < 4.6015... (Hata, 1993);

I µ(ζ(2)) < 5.441... (Rhin and Viola, 1996); (Zudilin, 2004);(M., 201?)

I µ(log(1 + 1√2909

) log(1− 1√2909

)) < 349077.6...,

I µ(log(1 + 1q ) log(1− 1

q )) < 4 + ε for q > q0(ε) (Hata, 1996)I µ(ζ(3)) < 5.551... (Rhin and Viola, 2001); (Zudilin, 2004);

(M., 201?)I µ(log 3) < 5.515... (Salikhov, 2007)I µ(π) < 7.606... (Salikhov, 2008)I µ(log 2) < 3.574... (M., 2009); (Nesterenko, 2010)

I µ( π√3

) < 4.60105 (Androcesko, Bashmakova and Salikhov,

2010)

Raffaele Marcovecchio Hypergeometric nature of Legendre-type polynomials

Page 32: On the hypergeometric nature of certain Legendre-type ... fileOn the hypergeometric nature of certain Legendre-type ...

OutlineLegendre polynomials

MotivationsLegendre-type polynomials

Hypergeometric seriesOpen problems

Recent results for some classical constants

I µ( π√3

) < 4.6015... (Hata, 1993);

I µ(ζ(2)) < 5.441... (Rhin and Viola, 1996); (Zudilin, 2004);(M., 201?)

I µ(log(1 + 1√2909

) log(1− 1√2909

)) < 349077.6...,

I µ(log(1 + 1q ) log(1− 1

q )) < 4 + ε for q > q0(ε) (Hata, 1996)I µ(ζ(3)) < 5.551... (Rhin and Viola, 2001); (Zudilin, 2004);

(M., 201?)I µ(log 3) < 5.515... (Salikhov, 2007)I µ(π) < 7.606... (Salikhov, 2008)I µ(log 2) < 3.574... (M., 2009); (Nesterenko, 2010)I µ( π√

3) < 4.60105 (Androcesko, Bashmakova and Salikhov,

2010)

Raffaele Marcovecchio Hypergeometric nature of Legendre-type polynomials

Page 33: On the hypergeometric nature of certain Legendre-type ... fileOn the hypergeometric nature of certain Legendre-type ...

OutlineLegendre polynomials

MotivationsLegendre-type polynomials

Hypergeometric seriesOpen problems

Main steps

I Family of simple, double or triple integrals producingapproximations anα− bn, where an, bn ∈ Q

I Rough estimation of the denominators of an, bn

I Refined estimation of the denominators, using (at least) oneof the following tools:

I p–adic valuation of products of binomial coefficients;I p–adic valuation of quotients of factorials.

I Analytic estimation of an and anα− bn:

I linear recurrence relation.

Raffaele Marcovecchio Hypergeometric nature of Legendre-type polynomials

Page 34: On the hypergeometric nature of certain Legendre-type ... fileOn the hypergeometric nature of certain Legendre-type ...

OutlineLegendre polynomials

MotivationsLegendre-type polynomials

Hypergeometric seriesOpen problems

Main steps

I Family of simple, double or triple integrals producingapproximations anα− bn, where an, bn ∈ Q

I Rough estimation of the denominators of an, bn

I Refined estimation of the denominators, using (at least) oneof the following tools:

I p–adic valuation of products of binomial coefficients;I p–adic valuation of quotients of factorials.

I Analytic estimation of an and anα− bn:

I linear recurrence relation.

Raffaele Marcovecchio Hypergeometric nature of Legendre-type polynomials

Page 35: On the hypergeometric nature of certain Legendre-type ... fileOn the hypergeometric nature of certain Legendre-type ...

OutlineLegendre polynomials

MotivationsLegendre-type polynomials

Hypergeometric seriesOpen problems

Main steps

I Family of simple, double or triple integrals producingapproximations anα− bn, where an, bn ∈ Q

I Rough estimation of the denominators of an, bn

I Refined estimation of the denominators, using (at least) oneof the following tools:

I p–adic valuation of products of binomial coefficients;I p–adic valuation of quotients of factorials.

I Analytic estimation of an and anα− bn:

I linear recurrence relation.

Raffaele Marcovecchio Hypergeometric nature of Legendre-type polynomials

Page 36: On the hypergeometric nature of certain Legendre-type ... fileOn the hypergeometric nature of certain Legendre-type ...

OutlineLegendre polynomials

MotivationsLegendre-type polynomials

Hypergeometric seriesOpen problems

Main steps

I Family of simple, double or triple integrals producingapproximations anα− bn, where an, bn ∈ Q

I Rough estimation of the denominators of an, bn

I Refined estimation of the denominators, using (at least) oneof the following tools:

I p–adic valuation of products of binomial coefficients;

I p–adic valuation of quotients of factorials.

I Analytic estimation of an and anα− bn:

I linear recurrence relation.

Raffaele Marcovecchio Hypergeometric nature of Legendre-type polynomials

Page 37: On the hypergeometric nature of certain Legendre-type ... fileOn the hypergeometric nature of certain Legendre-type ...

OutlineLegendre polynomials

MotivationsLegendre-type polynomials

Hypergeometric seriesOpen problems

Main steps

I Family of simple, double or triple integrals producingapproximations anα− bn, where an, bn ∈ Q

I Rough estimation of the denominators of an, bn

I Refined estimation of the denominators, using (at least) oneof the following tools:

I p–adic valuation of products of binomial coefficients;I p–adic valuation of quotients of factorials.

I Analytic estimation of an and anα− bn:

I linear recurrence relation.

Raffaele Marcovecchio Hypergeometric nature of Legendre-type polynomials

Page 38: On the hypergeometric nature of certain Legendre-type ... fileOn the hypergeometric nature of certain Legendre-type ...

OutlineLegendre polynomials

MotivationsLegendre-type polynomials

Hypergeometric seriesOpen problems

Main steps

I Family of simple, double or triple integrals producingapproximations anα− bn, where an, bn ∈ Q

I Rough estimation of the denominators of an, bn

I Refined estimation of the denominators, using (at least) oneof the following tools:

I p–adic valuation of products of binomial coefficients;I p–adic valuation of quotients of factorials.

I Analytic estimation of an and anα− bn:

I linear recurrence relation.

Raffaele Marcovecchio Hypergeometric nature of Legendre-type polynomials

Page 39: On the hypergeometric nature of certain Legendre-type ... fileOn the hypergeometric nature of certain Legendre-type ...

OutlineLegendre polynomials

MotivationsLegendre-type polynomials

Hypergeometric seriesOpen problems

Main steps

I Family of simple, double or triple integrals producingapproximations anα− bn, where an, bn ∈ Q

I Rough estimation of the denominators of an, bn

I Refined estimation of the denominators, using (at least) oneof the following tools:

I p–adic valuation of products of binomial coefficients;I p–adic valuation of quotients of factorials.

I Analytic estimation of an and anα− bn:I linear recurrence relation.

Raffaele Marcovecchio Hypergeometric nature of Legendre-type polynomials

Page 40: On the hypergeometric nature of certain Legendre-type ... fileOn the hypergeometric nature of certain Legendre-type ...

OutlineLegendre polynomials

MotivationsLegendre-type polynomials

Hypergeometric seriesOpen problems

Example (Rukhadze, 1987); (Hata, 1990)

I Pn(x) = D6n

(x7n(1− x)7n

)∈ Z[x ].

I Then1∫0

Pn(x)1+x dx =

1∫0

Qn(x) dx + Pn(−1) log 2 = an log 2− bn,

I where Qn(x) = Pn(x)−Pn(−1)x+1 ∈ Z[x ],

I an ∈ Z and d8nbn ∈ Z, dm = lcm{1, 2, . . . ,m}.

I Note that Pn(x) =(7nn

)xn

2F1

(−7n 7n

n + 1; x

).

I Pn(x) = (7n)!2

(6n)!(8n)!(−x)nD7n

(x6n(1− x)8n

).

Raffaele Marcovecchio Hypergeometric nature of Legendre-type polynomials

Page 41: On the hypergeometric nature of certain Legendre-type ... fileOn the hypergeometric nature of certain Legendre-type ...

OutlineLegendre polynomials

MotivationsLegendre-type polynomials

Hypergeometric seriesOpen problems

Example (Rukhadze, 1987); (Hata, 1990)

I Pn(x) = D6n

(x7n(1− x)7n

)∈ Z[x ].

I Then1∫0

Pn(x)1+x dx =

1∫0

Qn(x) dx + Pn(−1) log 2 = an log 2− bn,

I where Qn(x) = Pn(x)−Pn(−1)x+1 ∈ Z[x ],

I an ∈ Z and d8nbn ∈ Z, dm = lcm{1, 2, . . . ,m}.

I Note that Pn(x) =(7nn

)xn

2F1

(−7n 7n

n + 1; x

).

I Pn(x) = (7n)!2

(6n)!(8n)!(−x)nD7n

(x6n(1− x)8n

).

Raffaele Marcovecchio Hypergeometric nature of Legendre-type polynomials

Page 42: On the hypergeometric nature of certain Legendre-type ... fileOn the hypergeometric nature of certain Legendre-type ...

OutlineLegendre polynomials

MotivationsLegendre-type polynomials

Hypergeometric seriesOpen problems

Example (Rukhadze, 1987); (Hata, 1990)

I Pn(x) = D6n

(x7n(1− x)7n

)∈ Z[x ].

I Then1∫0

Pn(x)1+x dx =

1∫0

Qn(x) dx + Pn(−1) log 2 = an log 2− bn,

I where Qn(x) = Pn(x)−Pn(−1)x+1 ∈ Z[x ],

I an ∈ Z and d8nbn ∈ Z, dm = lcm{1, 2, . . . ,m}.

I Note that Pn(x) =(7nn

)xn

2F1

(−7n 7n

n + 1; x

).

I Pn(x) = (7n)!2

(6n)!(8n)!(−x)nD7n

(x6n(1− x)8n

).

Raffaele Marcovecchio Hypergeometric nature of Legendre-type polynomials

Page 43: On the hypergeometric nature of certain Legendre-type ... fileOn the hypergeometric nature of certain Legendre-type ...

OutlineLegendre polynomials

MotivationsLegendre-type polynomials

Hypergeometric seriesOpen problems

Example (Rukhadze, 1987); (Hata, 1990)

I Pn(x) = D6n

(x7n(1− x)7n

)∈ Z[x ].

I Then1∫0

Pn(x)1+x dx =

1∫0

Qn(x) dx + Pn(−1) log 2 = an log 2− bn,

I where Qn(x) = Pn(x)−Pn(−1)x+1 ∈ Z[x ],

I an ∈ Z and d8nbn ∈ Z, dm = lcm{1, 2, . . . ,m}.

I Note that Pn(x) =(7nn

)xn

2F1

(−7n 7n

n + 1; x

).

I Pn(x) = (7n)!2

(6n)!(8n)!(−x)nD7n

(x6n(1− x)8n

).

Raffaele Marcovecchio Hypergeometric nature of Legendre-type polynomials

Page 44: On the hypergeometric nature of certain Legendre-type ... fileOn the hypergeometric nature of certain Legendre-type ...

OutlineLegendre polynomials

MotivationsLegendre-type polynomials

Hypergeometric seriesOpen problems

Example (Rukhadze, 1987); (Hata, 1990)

I Pn(x) = D6n

(x7n(1− x)7n

)∈ Z[x ].

I Then1∫0

Pn(x)1+x dx =

1∫0

Qn(x) dx + Pn(−1) log 2 = an log 2− bn,

I where Qn(x) = Pn(x)−Pn(−1)x+1 ∈ Z[x ],

I an ∈ Z and d8nbn ∈ Z, dm = lcm{1, 2, . . . ,m}.

I Note that Pn(x) =(7nn

)xn

2F1

(−7n 7n

n + 1; x

).

I Pn(x) = (7n)!2

(6n)!(8n)!(−x)nD7n

(x6n(1− x)8n

).

Raffaele Marcovecchio Hypergeometric nature of Legendre-type polynomials

Page 45: On the hypergeometric nature of certain Legendre-type ... fileOn the hypergeometric nature of certain Legendre-type ...

OutlineLegendre polynomials

MotivationsLegendre-type polynomials

Hypergeometric seriesOpen problems

Example (Rukhadze, 1987); (Hata, 1990)

I Pn(x) = D6n

(x7n(1− x)7n

)∈ Z[x ].

I Then1∫0

Pn(x)1+x dx =

1∫0

Qn(x) dx + Pn(−1) log 2 = an log 2− bn,

I where Qn(x) = Pn(x)−Pn(−1)x+1 ∈ Z[x ],

I an ∈ Z and d8nbn ∈ Z, dm = lcm{1, 2, . . . ,m}.

I Note that Pn(x) =(7nn

)xn

2F1

(−7n 7n

n + 1; x

).

I Pn(x) = (7n)!2

(6n)!(8n)!(−x)nD7n

(x6n(1− x)8n

).

Raffaele Marcovecchio Hypergeometric nature of Legendre-type polynomials

Page 46: On the hypergeometric nature of certain Legendre-type ... fileOn the hypergeometric nature of certain Legendre-type ...

OutlineLegendre polynomials

MotivationsLegendre-type polynomials

Hypergeometric seriesOpen problems

Refiniment

I Let Πn =∏{p ≥

√8n prime : 2[7n/p]) > [6n/p] + [8n/p]}.

I Then Pn(x) = D6n

(x7n(1− x)7n

)∈ ΠnZ[x ]

I and1∫0

Pn(x)1+x dx =

1∫0

Qn(x) dx + Pn(−1) log 2 = an log 2− bn,

I where Qn(x) = Pn(x)−Pn(−1)x+1 ∈ ΠnZ[x ],

I Π−1n an ∈ Z} and Π−1n d8nbn ∈ Z.

I µ(log 2) < 3.891 . . . (best known µ(log 2) < 3.574 . . . )

I µ(log 2) < 4.662 . . . with Pn(x) = Dn

(xn(1− x)n

).

Raffaele Marcovecchio Hypergeometric nature of Legendre-type polynomials

Page 47: On the hypergeometric nature of certain Legendre-type ... fileOn the hypergeometric nature of certain Legendre-type ...

OutlineLegendre polynomials

MotivationsLegendre-type polynomials

Hypergeometric seriesOpen problems

Refiniment

I Let Πn =∏{p ≥

√8n prime : 2[7n/p]) > [6n/p] + [8n/p]}.

I Then Pn(x) = D6n

(x7n(1− x)7n

)∈ ΠnZ[x ]

I and1∫0

Pn(x)1+x dx =

1∫0

Qn(x) dx + Pn(−1) log 2 = an log 2− bn,

I where Qn(x) = Pn(x)−Pn(−1)x+1 ∈ ΠnZ[x ],

I Π−1n an ∈ Z} and Π−1n d8nbn ∈ Z.

I µ(log 2) < 3.891 . . . (best known µ(log 2) < 3.574 . . . )

I µ(log 2) < 4.662 . . . with Pn(x) = Dn

(xn(1− x)n

).

Raffaele Marcovecchio Hypergeometric nature of Legendre-type polynomials

Page 48: On the hypergeometric nature of certain Legendre-type ... fileOn the hypergeometric nature of certain Legendre-type ...

OutlineLegendre polynomials

MotivationsLegendre-type polynomials

Hypergeometric seriesOpen problems

Refiniment

I Let Πn =∏{p ≥

√8n prime : 2[7n/p]) > [6n/p] + [8n/p]}.

I Then Pn(x) = D6n

(x7n(1− x)7n

)∈ ΠnZ[x ]

I and1∫0

Pn(x)1+x dx =

1∫0

Qn(x) dx + Pn(−1) log 2 = an log 2− bn,

I where Qn(x) = Pn(x)−Pn(−1)x+1 ∈ ΠnZ[x ],

I Π−1n an ∈ Z} and Π−1n d8nbn ∈ Z.

I µ(log 2) < 3.891 . . . (best known µ(log 2) < 3.574 . . . )

I µ(log 2) < 4.662 . . . with Pn(x) = Dn

(xn(1− x)n

).

Raffaele Marcovecchio Hypergeometric nature of Legendre-type polynomials

Page 49: On the hypergeometric nature of certain Legendre-type ... fileOn the hypergeometric nature of certain Legendre-type ...

OutlineLegendre polynomials

MotivationsLegendre-type polynomials

Hypergeometric seriesOpen problems

Refiniment

I Let Πn =∏{p ≥

√8n prime : 2[7n/p]) > [6n/p] + [8n/p]}.

I Then Pn(x) = D6n

(x7n(1− x)7n

)∈ ΠnZ[x ]

I and1∫0

Pn(x)1+x dx =

1∫0

Qn(x) dx + Pn(−1) log 2 = an log 2− bn,

I where Qn(x) = Pn(x)−Pn(−1)x+1 ∈ ΠnZ[x ],

I Π−1n an ∈ Z} and Π−1n d8nbn ∈ Z.

I µ(log 2) < 3.891 . . . (best known µ(log 2) < 3.574 . . . )

I µ(log 2) < 4.662 . . . with Pn(x) = Dn

(xn(1− x)n

).

Raffaele Marcovecchio Hypergeometric nature of Legendre-type polynomials

Page 50: On the hypergeometric nature of certain Legendre-type ... fileOn the hypergeometric nature of certain Legendre-type ...

OutlineLegendre polynomials

MotivationsLegendre-type polynomials

Hypergeometric seriesOpen problems

Refiniment

I Let Πn =∏{p ≥

√8n prime : 2[7n/p]) > [6n/p] + [8n/p]}.

I Then Pn(x) = D6n

(x7n(1− x)7n

)∈ ΠnZ[x ]

I and1∫0

Pn(x)1+x dx =

1∫0

Qn(x) dx + Pn(−1) log 2 = an log 2− bn,

I where Qn(x) = Pn(x)−Pn(−1)x+1 ∈ ΠnZ[x ],

I Π−1n an ∈ Z} and Π−1n d8nbn ∈ Z.

I µ(log 2) < 3.891 . . . (best known µ(log 2) < 3.574 . . . )

I µ(log 2) < 4.662 . . . with Pn(x) = Dn

(xn(1− x)n

).

Raffaele Marcovecchio Hypergeometric nature of Legendre-type polynomials

Page 51: On the hypergeometric nature of certain Legendre-type ... fileOn the hypergeometric nature of certain Legendre-type ...

OutlineLegendre polynomials

MotivationsLegendre-type polynomials

Hypergeometric seriesOpen problems

Refiniment

I Let Πn =∏{p ≥

√8n prime : 2[7n/p]) > [6n/p] + [8n/p]}.

I Then Pn(x) = D6n

(x7n(1− x)7n

)∈ ΠnZ[x ]

I and1∫0

Pn(x)1+x dx =

1∫0

Qn(x) dx + Pn(−1) log 2 = an log 2− bn,

I where Qn(x) = Pn(x)−Pn(−1)x+1 ∈ ΠnZ[x ],

I Π−1n an ∈ Z} and Π−1n d8nbn ∈ Z.

I µ(log 2) < 3.891 . . . (best known µ(log 2) < 3.574 . . . )

I µ(log 2) < 4.662 . . . with Pn(x) = Dn

(xn(1− x)n

).

Raffaele Marcovecchio Hypergeometric nature of Legendre-type polynomials

Page 52: On the hypergeometric nature of certain Legendre-type ... fileOn the hypergeometric nature of certain Legendre-type ...

OutlineLegendre polynomials

MotivationsLegendre-type polynomials

Hypergeometric seriesOpen problems

Another representation

(M, 201?)

I Change of variable: x = ww−1 , i.e. 1− x = (1− w)−1.

By developing (1− (1− x))7n and (1− (1− x))7n

I D6n

(x7n(1− x)7n

)= (−1)n(1− w)6n+1D6n

(w7n

(1−w)8n+1

)I D6n

(w7n

(1−w)8n+1

)=(7nn

)wn

2F1

(8n + 1 7n + 1

n + 1; w

).

More generally, let p1, . . . , pm, q1, . . . , qm ≥ 0 be integers.

I Sm(p1, q1; . . . ; pm, qm; w) :=∑k≥0

( k+p1p1+q1

)· · ·( k+pmpm+qm

)wk .

I (1−w)Sm(p1, q1; . . . ; pm, qm; w) = Lm(p1, q1; . . . ; pm, qm; x).

Raffaele Marcovecchio Hypergeometric nature of Legendre-type polynomials

Page 53: On the hypergeometric nature of certain Legendre-type ... fileOn the hypergeometric nature of certain Legendre-type ...

OutlineLegendre polynomials

MotivationsLegendre-type polynomials

Hypergeometric seriesOpen problems

Another representation

(M, 201?)

I Change of variable: x = ww−1 , i.e. 1− x = (1− w)−1.

By developing (1− (1− x))7n and (1− (1− x))7n

I D6n

(x7n(1− x)7n

)= (−1)n(1− w)6n+1D6n

(w7n

(1−w)8n+1

)

I D6n

(w7n

(1−w)8n+1

)=(7nn

)wn

2F1

(8n + 1 7n + 1

n + 1; w

).

More generally, let p1, . . . , pm, q1, . . . , qm ≥ 0 be integers.

I Sm(p1, q1; . . . ; pm, qm; w) :=∑k≥0

( k+p1p1+q1

)· · ·( k+pmpm+qm

)wk .

I (1−w)Sm(p1, q1; . . . ; pm, qm; w) = Lm(p1, q1; . . . ; pm, qm; x).

Raffaele Marcovecchio Hypergeometric nature of Legendre-type polynomials

Page 54: On the hypergeometric nature of certain Legendre-type ... fileOn the hypergeometric nature of certain Legendre-type ...

OutlineLegendre polynomials

MotivationsLegendre-type polynomials

Hypergeometric seriesOpen problems

Another representation

(M, 201?)

I Change of variable: x = ww−1 , i.e. 1− x = (1− w)−1.

By developing (1− (1− x))7n and (1− (1− x))7n

I D6n

(x7n(1− x)7n

)= (−1)n(1− w)6n+1D6n

(w7n

(1−w)8n+1

)I D6n

(w7n

(1−w)8n+1

)=(7nn

)wn

2F1

(8n + 1 7n + 1

n + 1; w

).

More generally, let p1, . . . , pm, q1, . . . , qm ≥ 0 be integers.

I Sm(p1, q1; . . . ; pm, qm; w) :=∑k≥0

( k+p1p1+q1

)· · ·( k+pmpm+qm

)wk .

I (1−w)Sm(p1, q1; . . . ; pm, qm; w) = Lm(p1, q1; . . . ; pm, qm; x).

Raffaele Marcovecchio Hypergeometric nature of Legendre-type polynomials

Page 55: On the hypergeometric nature of certain Legendre-type ... fileOn the hypergeometric nature of certain Legendre-type ...

OutlineLegendre polynomials

MotivationsLegendre-type polynomials

Hypergeometric seriesOpen problems

Another representation

(M, 201?)

I Change of variable: x = ww−1 , i.e. 1− x = (1− w)−1.

By developing (1− (1− x))7n and (1− (1− x))7n

I D6n

(x7n(1− x)7n

)= (−1)n(1− w)6n+1D6n

(w7n

(1−w)8n+1

)I D6n

(w7n

(1−w)8n+1

)=(7nn

)wn

2F1

(8n + 1 7n + 1

n + 1; w

).

More generally, let p1, . . . , pm, q1, . . . , qm ≥ 0 be integers.

I Sm(p1, q1; . . . ; pm, qm; w) :=∑k≥0

( k+p1p1+q1

)· · ·( k+pmpm+qm

)wk .

I (1−w)Sm(p1, q1; . . . ; pm, qm; w) = Lm(p1, q1; . . . ; pm, qm; x).

Raffaele Marcovecchio Hypergeometric nature of Legendre-type polynomials

Page 56: On the hypergeometric nature of certain Legendre-type ... fileOn the hypergeometric nature of certain Legendre-type ...

OutlineLegendre polynomials

MotivationsLegendre-type polynomials

Hypergeometric seriesOpen problems

Another representation

(M, 201?)

I Change of variable: x = ww−1 , i.e. 1− x = (1− w)−1.

By developing (1− (1− x))7n and (1− (1− x))7n

I D6n

(x7n(1− x)7n

)= (−1)n(1− w)6n+1D6n

(w7n

(1−w)8n+1

)I D6n

(w7n

(1−w)8n+1

)=(7nn

)wn

2F1

(8n + 1 7n + 1

n + 1; w

).

More generally, let p1, . . . , pm, q1, . . . , qm ≥ 0 be integers.

I Sm(p1, q1; . . . ; pm, qm; w) :=∑k≥0

( k+p1p1+q1

)· · ·( k+pmpm+qm

)wk .

I (1−w)Sm(p1, q1; . . . ; pm, qm; w) = Lm(p1, q1; . . . ; pm, qm; x).

Raffaele Marcovecchio Hypergeometric nature of Legendre-type polynomials

Page 57: On the hypergeometric nature of certain Legendre-type ... fileOn the hypergeometric nature of certain Legendre-type ...

OutlineLegendre polynomials

MotivationsLegendre-type polynomials

Hypergeometric seriesOpen problems

Another representation

(M, 201?)

I Change of variable: x = ww−1 , i.e. 1− x = (1− w)−1.

By developing (1− (1− x))7n and (1− (1− x))7n

I D6n

(x7n(1− x)7n

)= (−1)n(1− w)6n+1D6n

(w7n

(1−w)8n+1

)I D6n

(w7n

(1−w)8n+1

)=(7nn

)wn

2F1

(8n + 1 7n + 1

n + 1; w

).

More generally, let p1, . . . , pm, q1, . . . , qm ≥ 0 be integers.

I Sm(p1, q1; . . . ; pm, qm; w) :=∑k≥0

( k+p1p1+q1

)· · ·( k+pmpm+qm

)wk .

I (1−w)Sm(p1, q1; . . . ; pm, qm; w) = Lm(p1, q1; . . . ; pm, qm; x).

Raffaele Marcovecchio Hypergeometric nature of Legendre-type polynomials

Page 58: On the hypergeometric nature of certain Legendre-type ... fileOn the hypergeometric nature of certain Legendre-type ...

OutlineLegendre polynomials

MotivationsLegendre-type polynomials

Hypergeometric seriesOpen problems

General definition

I L0(x) := 1,Lm(p1, q1; . . . ; pm, qm; x) := xqm(1− x)pmDpm+qm(R), whereR = xpm(1− x)qmLm−1(p1, q1; . . . ; pm−1, qm−1; x).

Back to log 2.

I E.g., let Pn(x) = D5n

(x6n(1− x)6nD7n

(x5n(1− x)5n

)).

One would expect a linear recurrence in the form3∑

i=0ci (n, x)Pn+i (x) = 0 for some c0, . . . , c3 ∈ Z[n, x ]

such that (c0(n, ζ), . . . , c3(n, ζ)) 6= (0, . . . , 0) for anyζ ∈ C.

Raffaele Marcovecchio Hypergeometric nature of Legendre-type polynomials

Page 59: On the hypergeometric nature of certain Legendre-type ... fileOn the hypergeometric nature of certain Legendre-type ...

OutlineLegendre polynomials

MotivationsLegendre-type polynomials

Hypergeometric seriesOpen problems

General definition

I L0(x) := 1,Lm(p1, q1; . . . ; pm, qm; x) := xqm(1− x)pmDpm+qm(R), whereR = xpm(1− x)qmLm−1(p1, q1; . . . ; pm−1, qm−1; x).

Back to log 2.

I E.g., let Pn(x) = D5n

(x6n(1− x)6nD7n

(x5n(1− x)5n

)).

One would expect a linear recurrence in the form3∑

i=0ci (n, x)Pn+i (x) = 0 for some c0, . . . , c3 ∈ Z[n, x ]

such that (c0(n, ζ), . . . , c3(n, ζ)) 6= (0, . . . , 0) for anyζ ∈ C.

Raffaele Marcovecchio Hypergeometric nature of Legendre-type polynomials

Page 60: On the hypergeometric nature of certain Legendre-type ... fileOn the hypergeometric nature of certain Legendre-type ...

OutlineLegendre polynomials

MotivationsLegendre-type polynomials

Hypergeometric seriesOpen problems

General definition

I L0(x) := 1,Lm(p1, q1; . . . ; pm, qm; x) := xqm(1− x)pmDpm+qm(R), whereR = xpm(1− x)qmLm−1(p1, q1; . . . ; pm−1, qm−1; x).

Back to log 2.

I E.g., let Pn(x) = D5n

(x6n(1− x)6nD7n

(x5n(1− x)5n

)).

One would expect a linear recurrence in the form3∑

i=0ci (n, x)Pn+i (x) = 0 for some c0, . . . , c3 ∈ Z[n, x ]

such that (c0(n, ζ), . . . , c3(n, ζ)) 6= (0, . . . , 0) for anyζ ∈ C.

Raffaele Marcovecchio Hypergeometric nature of Legendre-type polynomials

Page 61: On the hypergeometric nature of certain Legendre-type ... fileOn the hypergeometric nature of certain Legendre-type ...

OutlineLegendre polynomials

MotivationsLegendre-type polynomials

Hypergeometric seriesOpen problems

General definition

I L0(x) := 1,Lm(p1, q1; . . . ; pm, qm; x) := xqm(1− x)pmDpm+qm(R), whereR = xpm(1− x)qmLm−1(p1, q1; . . . ; pm−1, qm−1; x).

Back to log 2.

I E.g., let Pn(x) = D5n

(x6n(1− x)6nD7n

(x5n(1− x)5n

)).

One would expect a linear recurrence in the form3∑

i=0ci (n, x)Pn+i (x) = 0 for some c0, . . . , c3 ∈ Z[n, x ]

such that (c0(n, ζ), . . . , c3(n, ζ)) 6= (0, . . . , 0) for anyζ ∈ C.

Raffaele Marcovecchio Hypergeometric nature of Legendre-type polynomials

Page 62: On the hypergeometric nature of certain Legendre-type ... fileOn the hypergeometric nature of certain Legendre-type ...

OutlineLegendre polynomials

MotivationsLegendre-type polynomials

Hypergeometric seriesOpen problems

General definition

I L0(x) := 1,Lm(p1, q1; . . . ; pm, qm; x) := xqm(1− x)pmDpm+qm(R), whereR = xpm(1− x)qmLm−1(p1, q1; . . . ; pm−1, qm−1; x).

Back to log 2.

I E.g., let Pn(x) = D5n

(x6n(1− x)6nD7n

(x5n(1− x)5n

)).

One would expect a linear recurrence in the form3∑

i=0ci (n, x)Pn+i (x) = 0 for some c0, . . . , c3 ∈ Z[n, x ]

such that (c0(n, ζ), . . . , c3(n, ζ)) 6= (0, . . . , 0) for anyζ ∈ C.

Raffaele Marcovecchio Hypergeometric nature of Legendre-type polynomials

Page 63: On the hypergeometric nature of certain Legendre-type ... fileOn the hypergeometric nature of certain Legendre-type ...

OutlineLegendre polynomials

MotivationsLegendre-type polynomials

Hypergeometric seriesOpen problems

TheoremFor any p1, . . . , pm > 0 and q1, . . . , qm ≥ 0 integers, there existeffectively computable polynomials αl ,r (n), l = 0, . . . ,m,r = 0, . . . , s not all zero such that for all k = 0, 1, 2, . . . andn = 0, 1, 2, . . .

m∑l=0

s∑r=0

αl ,r (n)

(k − r + p1(n + l)

(p1 + q1)(n + l)

)· · ·(

k − r + pm(n + l)

(pm + qm)(n + l)

)= 0.

Raffaele Marcovecchio Hypergeometric nature of Legendre-type polynomials

Page 64: On the hypergeometric nature of certain Legendre-type ... fileOn the hypergeometric nature of certain Legendre-type ...

OutlineLegendre polynomials

MotivationsLegendre-type polynomials

Hypergeometric seriesOpen problems

Remarks

I m in the summ∑l=0

. . . is critical (false withm−1∑l=0

. . . )

I one can take s = Mm(m−1)2 + (M − 1)m + 1, where

M = (p1 + q1) + · · ·+ (pm + qm).

I By taking k = yn, and letting n→∞ in

m∑l=0

s∑r=0

αl ,r (n)

(k − r + p1(n + l)

(p1 + q1)(n + l)

)· · ·(

k − r + pm(n + l)

(pm + qm)(n + l)

)= 0,

one finds the roots of the characteristic polynomial of therecurrence for Sm(p1n, q1n; . . . ; pmn, qmn; w), i.e. forLm(p1n, q1n; . . . ; pmn, qmn; x).

Raffaele Marcovecchio Hypergeometric nature of Legendre-type polynomials

Page 65: On the hypergeometric nature of certain Legendre-type ... fileOn the hypergeometric nature of certain Legendre-type ...

OutlineLegendre polynomials

MotivationsLegendre-type polynomials

Hypergeometric seriesOpen problems

Remarks

I m in the summ∑l=0

. . . is critical (false withm−1∑l=0

. . . )

I one can take s = Mm(m−1)2 + (M − 1)m + 1, where

M = (p1 + q1) + · · ·+ (pm + qm).

I By taking k = yn, and letting n→∞ in

m∑l=0

s∑r=0

αl ,r (n)

(k − r + p1(n + l)

(p1 + q1)(n + l)

)· · ·(

k − r + pm(n + l)

(pm + qm)(n + l)

)= 0,

one finds the roots of the characteristic polynomial of therecurrence for Sm(p1n, q1n; . . . ; pmn, qmn; w), i.e. forLm(p1n, q1n; . . . ; pmn, qmn; x).

Raffaele Marcovecchio Hypergeometric nature of Legendre-type polynomials

Page 66: On the hypergeometric nature of certain Legendre-type ... fileOn the hypergeometric nature of certain Legendre-type ...

OutlineLegendre polynomials

MotivationsLegendre-type polynomials

Hypergeometric seriesOpen problems

Remarks

I m in the summ∑l=0

. . . is critical (false withm−1∑l=0

. . . )

I one can take s = Mm(m−1)2 + (M − 1)m + 1, where

M = (p1 + q1) + · · ·+ (pm + qm).

I By taking k = yn, and letting n→∞ in

m∑l=0

s∑r=0

αl ,r (n)

(k − r + p1(n + l)

(p1 + q1)(n + l)

)· · ·(

k − r + pm(n + l)

(pm + qm)(n + l)

)= 0,

one finds the roots of the characteristic polynomial of therecurrence for Sm(p1n, q1n; . . . ; pmn, qmn; w), i.e. forLm(p1n, q1n; . . . ; pmn, qmn; x).

Raffaele Marcovecchio Hypergeometric nature of Legendre-type polynomials

Page 67: On the hypergeometric nature of certain Legendre-type ... fileOn the hypergeometric nature of certain Legendre-type ...

OutlineLegendre polynomials

MotivationsLegendre-type polynomials

Hypergeometric seriesOpen problems

Results

I With m = 3 and(p1, p2, p3, p4; q1, q2, q3, q4; x) = (4, 5, 3; 1, 2, 0;−1) oneobtains µ(log 2) < 3.57455 . . . ;

I With m = 4 and(p1, p2, p3, p4; q1, q2, q3, q4; x) = (5, 6, 7, 4; 1, 2, 3, 0;−1) oneobtains µ2(log 2) < 12.84161 . . . ;

µ2(log 2) < 15.65142 . . . (M, 2009).

Raffaele Marcovecchio Hypergeometric nature of Legendre-type polynomials

Page 68: On the hypergeometric nature of certain Legendre-type ... fileOn the hypergeometric nature of certain Legendre-type ...

OutlineLegendre polynomials

MotivationsLegendre-type polynomials

Hypergeometric seriesOpen problems

Results

I With m = 3 and(p1, p2, p3, p4; q1, q2, q3, q4; x) = (4, 5, 3; 1, 2, 0;−1) oneobtains µ(log 2) < 3.57455 . . . ;

I With m = 4 and(p1, p2, p3, p4; q1, q2, q3, q4; x) = (5, 6, 7, 4; 1, 2, 3, 0;−1) oneobtains µ2(log 2) < 12.84161 . . . ;

µ2(log 2) < 15.65142 . . . (M, 2009).

Raffaele Marcovecchio Hypergeometric nature of Legendre-type polynomials

Page 69: On the hypergeometric nature of certain Legendre-type ... fileOn the hypergeometric nature of certain Legendre-type ...

OutlineLegendre polynomials

MotivationsLegendre-type polynomials

Hypergeometric seriesOpen problems

Results

I With m = 3 and(p1, p2, p3, p4; q1, q2, q3, q4; x) = (4, 5, 3; 1, 2, 0;−1) oneobtains µ(log 2) < 3.57455 . . . ;

I With m = 4 and(p1, p2, p3, p4; q1, q2, q3, q4; x) = (5, 6, 7, 4; 1, 2, 3, 0;−1) oneobtains µ2(log 2) < 12.84161 . . . ;

µ2(log 2) < 15.65142 . . . (M, 2009).

Raffaele Marcovecchio Hypergeometric nature of Legendre-type polynomials

Page 70: On the hypergeometric nature of certain Legendre-type ... fileOn the hypergeometric nature of certain Legendre-type ...

OutlineLegendre polynomials

MotivationsLegendre-type polynomials

Hypergeometric seriesOpen problems

Indications for further work

I Binomial identities in explicit form.

I Generating function & partial differential equation, e.g.:T3(w , z) =

∑k,n≥0

(k+3n3n

)(k+4n5n

)(k+5n7n

)wkzn, PDE with ∂

∂z only.

I Generalize the classical case:T2(w , z) =

∑k,n≥0

(k+nn

)2wkzn = 1√

(1−w−z)2−4wz.

Supposing that the characteristic of the ground fieldis zero:

I is T3(w , z) =∑

k,n≥0

(k+nn

)3wkzn algebraic?

I is Tm(w , z) =∑

k,n≥0

( k+np1n(p1+q1)

)· · ·( k+npmn(pm+qm)

)wkzn algebraic,

for general p1, . . . , pm; q1, . . . , qm and m > 2?

Raffaele Marcovecchio Hypergeometric nature of Legendre-type polynomials

Page 71: On the hypergeometric nature of certain Legendre-type ... fileOn the hypergeometric nature of certain Legendre-type ...

OutlineLegendre polynomials

MotivationsLegendre-type polynomials

Hypergeometric seriesOpen problems

Indications for further work

I Binomial identities in explicit form.I Generating function & partial differential equation, e.g.:

T3(w , z) =∑

k,n≥0

(k+3n3n

)(k+4n5n

)(k+5n7n

)wkzn, PDE with ∂

∂z only.

I Generalize the classical case:T2(w , z) =

∑k,n≥0

(k+nn

)2wkzn = 1√

(1−w−z)2−4wz.

Supposing that the characteristic of the ground fieldis zero:

I is T3(w , z) =∑

k,n≥0

(k+nn

)3wkzn algebraic?

I is Tm(w , z) =∑

k,n≥0

( k+np1n(p1+q1)

)· · ·( k+npmn(pm+qm)

)wkzn algebraic,

for general p1, . . . , pm; q1, . . . , qm and m > 2?

Raffaele Marcovecchio Hypergeometric nature of Legendre-type polynomials

Page 72: On the hypergeometric nature of certain Legendre-type ... fileOn the hypergeometric nature of certain Legendre-type ...

OutlineLegendre polynomials

MotivationsLegendre-type polynomials

Hypergeometric seriesOpen problems

Indications for further work

I Binomial identities in explicit form.I Generating function & partial differential equation, e.g.:

T3(w , z) =∑

k,n≥0

(k+3n3n

)(k+4n5n

)(k+5n7n

)wkzn, PDE with ∂

∂z only.

I Generalize the classical case:T2(w , z) =

∑k,n≥0

(k+nn

)2wkzn = 1√

(1−w−z)2−4wz.

Supposing that the characteristic of the ground fieldis zero:

I is T3(w , z) =∑

k,n≥0

(k+nn

)3wkzn algebraic?

I is Tm(w , z) =∑

k,n≥0

( k+np1n(p1+q1)

)· · ·( k+npmn(pm+qm)

)wkzn algebraic,

for general p1, . . . , pm; q1, . . . , qm and m > 2?

Raffaele Marcovecchio Hypergeometric nature of Legendre-type polynomials

Page 73: On the hypergeometric nature of certain Legendre-type ... fileOn the hypergeometric nature of certain Legendre-type ...

OutlineLegendre polynomials

MotivationsLegendre-type polynomials

Hypergeometric seriesOpen problems

Indications for further work

I Binomial identities in explicit form.I Generating function & partial differential equation, e.g.:

T3(w , z) =∑

k,n≥0

(k+3n3n

)(k+4n5n

)(k+5n7n

)wkzn, PDE with ∂

∂z only.

I Generalize the classical case:T2(w , z) =

∑k,n≥0

(k+nn

)2wkzn = 1√

(1−w−z)2−4wz.

Supposing that the characteristic of the ground fieldis zero:

I is T3(w , z) =∑

k,n≥0

(k+nn

)3wkzn algebraic?

I is Tm(w , z) =∑

k,n≥0

( k+np1n(p1+q1)

)· · ·( k+npmn(pm+qm)

)wkzn algebraic,

for general p1, . . . , pm; q1, . . . , qm and m > 2?

Raffaele Marcovecchio Hypergeometric nature of Legendre-type polynomials

Page 74: On the hypergeometric nature of certain Legendre-type ... fileOn the hypergeometric nature of certain Legendre-type ...

OutlineLegendre polynomials

MotivationsLegendre-type polynomials

Hypergeometric seriesOpen problems

Indications for further work

I Binomial identities in explicit form.I Generating function & partial differential equation, e.g.:

T3(w , z) =∑

k,n≥0

(k+3n3n

)(k+4n5n

)(k+5n7n

)wkzn, PDE with ∂

∂z only.

I Generalize the classical case:T2(w , z) =

∑k,n≥0

(k+nn

)2wkzn = 1√

(1−w−z)2−4wz.

Supposing that the characteristic of the ground fieldis zero:

I is T3(w , z) =∑

k,n≥0

(k+nn

)3wkzn algebraic?

I is Tm(w , z) =∑

k,n≥0

( k+np1n(p1+q1)

)· · ·( k+npmn(pm+qm)

)wkzn algebraic,

for general p1, . . . , pm; q1, . . . , qm and m > 2?

Raffaele Marcovecchio Hypergeometric nature of Legendre-type polynomials