同伦分析方法导论 - sjliao.sjtu.edu.cnsjliao.sjtu.edu.cn/Liao-article/books/beyond_c.pdf ·...

278
超越摄动 ——同伦分析方法导论 廖世俊

Transcript of 同伦分析方法导论 - sjliao.sjtu.edu.cnsjliao.sjtu.edu.cn/Liao-article/books/beyond_c.pdf ·...

超 越 摄 动 ——同伦分析方法导论

廖世俊 著

陈 晨 徐 航 译

北 京

内 容 简 介

图书在版编目(CIP)数据

超越摄动——同伦分析方法导论/廖世俊著, 陈 晨 徐 航 译. —北京:

科学出版社, 2006

ISBN 7-03-000000-0

Ⅰ.超 … Ⅱ.①廖… ②陈… ③徐… Ⅲ. Ⅳ.

中国版本图书馆 CIP 数据核字(2005) 第 000000 号

责任编辑: 田士勇 鄢德平 于宏丽/责任校对: ××× 责任印制: 钱玉芬/封面设计: 王 浩

出 版 北京东黄城根北街 16 号

邮政编码: 100717

http://www.sciencep.com

印刷 科学出版社发行 各地新华书店经销

* 2006 年 2 月第 一 版 开本: B5(720×1000)

2006 年 2 月第一次印刷 印张: 00 0/0

印数: 0—0 000 字数: 000 000

定价: 00.00 元

(如有印装质量问题, 我社负责调换〈科印〉)

·ii· 前言

谨以此书献给我的妻子

, . , ! "#$%$&$'($)*$$$"+ , ,-./01234$567!89: . . ;<= , >?@@AB , CD E$F$G $$$$$H$B .IJLK, MNOP $$ $Q $"$+SRUT$VW$"$+ (homo-

topy analysis method). M$N$X$Y[Z , \$] $^ $$$$$_$H$` , a$$$$ cbcdce Hcfcgch ^ , ,cicjcccckc/c0c1c2c'c/c0clcm 6c7c! c^cnco :

. . p e @$($H$$$"$+$q$T , T$V$W$$"$+$O$r$s $^$t$u $v$w$x$yz$'$|$$$$$-$.$$$/$0$1$2$'$/$0$l$m , $~ , a$"$+ F $$$$$$$$H$B .

~$ , p$$$$$"$+$q$T , T$V$W$$"$+$$$M$N$#$m$$qT .x , d HB> ^ . , TVW$$"$+$$$$$$ j$"$+ , Adomian W$$+S Lyapunov $$ : .+$' δ $$+ . $~ , d$¡$¢$£ $Q S $¤$¥$¦ $ $ "$+ .I$J ¨§$©$W$ª$« . ¬ ©$W ( ¬ 1 ­$®$¬ 5 ­ ) ¯$°$T$V$W$$"$+$ I±²

. ¬ 2 ­$* $^$t$³ $$$$$$´$µ$T$V$W$$"$+$ $I$±$² . ¶$·$¸$¹$º$»¸a­ . ¬ 3 ­ F TVW"+¼½¾¿° , ÀÁPs/0 9 . ¬ 4 ­K

, M$N$Y[Z¨s Lyapunov $$ : .$+S δ $$+$' Adomian W$$+ E £ T$V$W$"$+$k$Ã$Ä . ¬ 5 ­ t $Å ¯$s$T$V$W$$"$+$$Æ$Ç$'$È$É$ , À$O$P$s j$HÊ $$ . ¬$Ë$©$W ( ¬ 6 ­$®$¬ 18 ­ ) Ì$*$T$V$W$$"$+$$ j$$$$ , ¤ H t³ WÍÎ$Ï$ ( ¬ 6 ­ ) ¤ HhÎÏ$ ( ¬ 7

­ ) ÐÎÏÃÑÏÒÃÑ . ( ¬ 8 ­ ) ÐÓÔÕ - Ö× (Thomas-Fermi)ØÙÚ & ( ¬ 9 ­ ) Volterra ÛÜÝ Ú & (¬ 10 ­ ) ¤ HÞßà D ¾ ( ¬ 11 ­ ) ¤ H$Ë$á$&$$$$¨¨à D ¾$ ( ¬ 12 ­ ) âh$ã D$ä ¾$$k$å$Éæ

( ¬ 13 ­ ) èç$é$ê$Õ (Blasius) ë$$ì (¬ 14 ­ ) èí$î$.$ï$ð$$Î$ñ$ò$ì D (¬15 ­ ) óíô.ïðÎñòì D ( ¬ 16 ­ ) óõ · öL÷ (Von Karman) ëøì ( ¬17 ­ ),

e Ò$ù$ú K $$$$û$¼$ü ( ¬ 18 ­ ). ¬$Ë$©$W K ,E ¬ 14 15 ' 18 ­$©

W[ý¨þ[ÿ¨$¹$$H$¯ K .P. Hagedorn ( Darmstadt

9 Ý ) 'Ì K (3Ý ) »¸ IJ ¬ ©W , ÀOP .

Robert B. Stern Jamie

B. Sigal Amy Rodriguez º$Û (CRC P ) $$$$ ä$o ' Nishith Arora

º$Û$ Latex !$$$3 ä"$o . #$$~%$&'( ( $3$$Ý ) *)$H+ ( 3Ý ) -, K ( ./ 9 Ý012#¾ ) Ò Â3 ( ç

· ii · 4656798

: ÝÌ*.ݾ ) ; e<=> ,? Nh@xAB . T= ,

Antonio

Campo ( CDÃÝÝ0 ) K. F. Cheung (EFGÝH'IJ$$#¾ ) ­KL ( MN$$ÝOP$$#$¾ ) Ioan Pop ( Q$ÔRS Cluj $Ý$.$ݾ ) T$'$å ¤U Ï$ Å ¯ .

I$J ($°VW$%X¨Y (K ) Z[$P\@]$Ý^

( _a`bc R 50125923) edf > ^ (gh$Ý$¹iBjk ) K l m© l$3$$Ý$'$Ýn$ì K (DAAD) I o .<o

, #$$~%$¨M$p Ù ; e<=q ,r => sS 9 $'tu .

目 录 ·i·

目 录

第一部分 基本思想

第 1 章 引 论................................................................................................ 3

第 2 章 范例性描述......................................................................................... 8

2.1 范例 ................................................................................................... 8

2.2 由传统解析方法得到的解................................................................... 9

2.2.1 摄动方法 ....................................................................................... 9

2.2.2 Lyapunov 人工小参数法 ..................................................................10

2.2.3 Adomian 分解法 ............................................................................11

2.2.4 δ 展开法.......................................................................................12

2.3 同伦分析解 .......................................................................................13

2.3.1 零阶形变方程 ................................................................................13

2.3.2 高阶形变方程 ................................................................................15

2.3.3 收敛定理 ......................................................................................18

2.3.4 一些基本原则 ................................................................................19

2.3.5 不同形式的解表达..........................................................................20

2.3.6 辅助参数 h的作用..........................................................................33

2.3.7 同伦-帕德近似 ...............................................................................41

第 3 章 系统性描述...................................................................................... 46

3.1 零阶形变方程....................................................................................46

3.2 高阶形变方程....................................................................................48

3.3 收敛定理...........................................................................................50

3.4 基本原则...........................................................................................52

3.5 收敛区域和收敛速度之控制 ..............................................................54

3.5.1 h曲线和 h之有效区域 ....................................................................55

3.5.2 同伦-帕德近似 ...............................................................................55

3.6 进一步一般化....................................................................................57

第 4 章 与传统解析方法之关系 .................................................................. 59

4.1 与 Adomian 分解法之关系 ................................................................59

·iv· 目 录

4.2 与人工小参数法之关系 .....................................................................62

4.3 与 δ 展开法之关系...........................................................................64

4.4 非摄动方法之统一.............................................................................68

第 5 章 优点、局限性及有待解决之问题 ................................................... 69

5.1 优点 ..................................................................................................69

5.2 局限性 ..............................................................................................70

5.3 有待解决的问题 ................................................................................70

第二部分 应 用

第 6 章 具有简单分岔的非线性问题 .......................................................... 73

6.1 同伦分析解 .......................................................................................74

6.1.1 零阶形变方程 ................................................................................74

6.1.2 高阶形变方程 ................................................................................76

6.1.3 收敛定理 ......................................................................................77

6.2 结果分析...........................................................................................78

第 7 章 具有多解的非线性问题 ................................................................. 84

7.1 同伦分析解 .......................................................................................85

7.1.1 零阶形变方程 ................................................................................85

7.1.2 高阶形变方程 ................................................................................86

7.1.3 收敛定理 ......................................................................................88

7.2 结果分析 ...........................................................................................89

第 8 章 非线性特征值问题 ........................................................................ 95

8.1 同伦分析解 ........................................................................................96

8.1.1 零阶形变方程 ................................................................................96

8.1.2 高阶形变方程 ................................................................................97

8.1.3 收敛定理 .................................................................................... 100

8.2 结果分析 .......................................................................................... 101

第 9 章 托马斯-费米原子模型 ................................................................... 108

9.1 同伦分析解 ..................................................................................... 108

9.1.1 渐近性质 .................................................................................... 108

9.1.2 零阶形变方程 .............................................................................. 109

目 录 ·v·

9.1.3 高阶形变方程 .............................................................................. 111

9.1.4 递推表达式 ................................................................................. 112

9.1.5 收敛定理 .................................................................................... 113

9.2 结果分析......................................................................................... 114

第 10 章 Volterra 生态学模型 ................................................................... 120

10.1 同伦分析解 ................................................................................... 120

10.1.1 零阶形变方程 ............................................................................ 120

10.1.2 高阶形变方程 ............................................................................ 122

10.1.3 递推表达式 .............................................................................. 124

10.1.4 收敛定理 .................................................................................. 126

10.2 结果分析 ....................................................................................... 127

10.2.1 选取一般的初始猜测解 ................................................................ 127

10.2.2 选取最佳的初始猜测解 ................................................................ 129

第 11 章 具有奇非线性的自由振动系统 .................................................... 132

11.1 同伦分析解 ................................................................................... 132

11.1.1 零阶形变方程 ............................................................................ 132

11.1.2 高阶形变方程 ............................................................................ 134

11.2 范例 .............................................................................................. 137

11.2.1 例 1 ......................................................................................... 137

11.2.2 例 2 ......................................................................................... 139

11.2.3 例 3 ......................................................................................... 140

11.3 收敛区域之控制 ............................................................................ 142

第 12 章 具有二次型非线性的自由振动系统 ............................................ 144

12.1 同伦分析解 ................................................................................... 144

12.1.1 零阶形变方程 ............................................................................ 144

12.1.2 高阶形变方程 ............................................................................ 147

12.2 范例 .............................................................................................. 149

12.2.1 例 1 ......................................................................................... 149

12.2.2 例 2 ......................................................................................... 153

第 13 章 多维动力系统之极限环 ................................................................157

13.1 同伦分析解 ................................................................................... 158

·vi· 目 录

13.1.1 零阶形变方程 ............................................................................ 158

13.1.2 高阶形变方程 ............................................................................ 161

13.1.3 收敛定理 .................................................................................. 164

13.2 结果分析 ....................................................................................... 165

第 14 章 布拉休斯黏性流 ...........................................................................171

14.1 用幂函数表达的解......................................................................... 171

14.1.1 零阶形变方程 ............................................................................ 171

14.1.2 高阶形变方程 ............................................................................ 173

14.1.3 收敛定理 .................................................................................. 174

14.1.4 结果分析 .................................................................................. 175

14.2 用指数和多项式表达的解 .............................................................. 178

14.2.1 渐近性质 .................................................................................. 178

14.2.2 零阶形变方程 ............................................................................ 179

14.2.3 高阶形变方程 ............................................................................ 180

14.2.4 递推表达式 ............................................................................... 180

14.2.5 收敛定理 .................................................................................. 182

14.2.6 结果分析 .................................................................................. 183

第 15 章 呈指数衰减的边界层流动 ............................................................188

15.1 同伦分析解 ................................................................................... 189

15.1.1 零阶形变方程 ............................................................................ 189

15.1.2 高阶形变方程 ............................................................................ 191

15.1.3 递推公式 .................................................................................. 192

15.1.4 收敛定理 .................................................................................. 194

15.2 结果分析 ....................................................................................... 195

第 16 章 呈代数衰减的边界层流动 ...............................................................202

16.1 同伦分析解 ................................................................................... 202

16.1.1 渐近性质 .................................................................................. 202

16.1.2 零阶形变方程 ............................................................................ 203

16.1.3 高阶形变方程 ............................................................................ 205

16.1.4 递推公式 .................................................................................. 206

16.1.5 收敛定理 .................................................................................. 207

目 录 ·vii·

16.2 结果分析 ....................................................................................... 209

第 17 章 冯·卡门黏性涡流........................................................................214

17.1 同伦分析解 ................................................................................... 215

17.1.1 零阶形变方程 ............................................................................ 216

17.1.2 高阶形变方程 ............................................................................ 219

17.1.3 收敛定理 .................................................................................. 222

17.2 结果分析 ....................................................................................... 223

第 18 章 深水中的非线性前进波 ................................................................229

18.1 同伦分析解 ................................................................................... 230

18.1.1 零阶形变方程 ............................................................................ 230

18.1.2 高阶形变方程 ............................................................................ 233

18.2 结果分析 ........................................................................................ 237

参考文献 ....................................................................................................... 241

附录一 第二章 Mathematica 程序 ............................................................. 248

附录二 第六、七章 Mathematica 程序...................................................... 254

附录三 第八章 Mathematica 程序 ............................................................. 260

附录四 第九章 Mathematica 程序 ............................................................. 265

索引 ............................................................................................................... 268

, ; , .

—— ,

1

! "$#&% ' ( )+*-, . / 0 1 2 3 4 5 6 7 8 %, 9 : 6 7 8 ; < = > .*@?A8ABA)ACADAEAFAGA!AHAI

,7A8AGAJA%AKALAMANAOAIAOAPAQ

. R 5 , SAT 3A4 ,6U7U8UGUJUVUWUXUKUNUYUZUL. [U\U] , ^U_U`Ua ?U8UBUDUEUFUbU?U2UcU%UdUeUfEUgUh

, i Mathematica j Maple k , l NU6U7U8UGUJU%ULUmULUnpo l NU0U)UqULUrXUNU(.)UqU;UsUBUKULUt aUuUv DUEUwU%U6U7U8UGAJ ,

3ULUmU;UsUxUxUyUz :Ut aA|A DAEA~AwA%AGAJ , A ,A5A)AqA;AsA LAmA;AsAA .,A3

,)AqA;AsA %A5AL7AA%AAAA

,nANAALA% SAAA 7AxAxAAAA . A , XUUU)UqUUUU6U7U8AGUJ aASUAU % j 1A2U%A UL .

3U¡, i U6U7U8UGUJaU¢U£ 8U¤U¥U¦U§U(UL ,

)UqUKULUU%UrUXU¨U© ^ «ª . ¬U ,)UqU;UsUbULUmU;s ­ a ® ¯ , ° a ± n ² ³ ´ . S T 3 4 ,

B µ l N S 6 7 8 G JU% LUmUL¶ 5U·U¸U¹UºU%.S » L m ; s W ¼ ½ ¾ ¡ ¿ À Á Â : , iÄÃ Å ; s [1∼12]. Ã Å ; s Æ Ç 6 78AGAJA%AÈA(AÉAn [ 8Ab aAÊ A. .

0#, ÃAÅ ;AsAËA¼AÌAÍA%AÎAÏA S ,

5AÐ :0UÑUU UÒUÓUÔp#ÖÕU×UØAÙAÚ,§UÀUÛUÜUÝp#ÖÞUß UàUáA A%AâUã

. ¢U£UÃUÅ sä ¿UåU¼U520!UæUçUèUéUÐ : UêUëUwUìU'UíUîU S [13]. ïUðUñ G , ÃUÅ ;UsU§ò êUbUóU<U%UÑUîp#ÖôUõAÉAnU%Aö : . aU÷UÃUÅ çUèU%UøUùpúÖP , ûUüUýUþUUÿ % ÃUÅ ;UsU .ÃUÅ ;UsU1U2U (

') ü )U¤U% ÃUÅ MUcUU¦U§ . | 3U4U , ÃUÅ; s 5 Ð : Ã Å M c á SU 6U7U8 GUJU¼ ð ( 7 8UÏ GUJ , : þ 78UÏUGUJU%ULUUbUIU6U7U8UGUJUUL

. , , ÃUÅ MUcU%U¦U§U5 ÃUÅ ;UsU.,U3

, 5 àU ÃUÅ ;Us SU» ÉU%U8 . , 9 B a %U6U7U8UGJU¦U§ % ÃUÅ MUc , 5 ÃUÅ ;Us % .

0, 6U7U8 !U , ÃUÅ"UL##$%

, ¬U , ÃUÅ "UL&#UyU'U6U7U8UGUJ a % .H(*)+

- ,-., (Navier-Stokes)

;A<A=A>A%0/01#3204A%05A806AA¼AÎ. 50104AAê# SA708A%A6A7A8AGAJ

.*

1851 90,0-0.0, (Stokes)[14] 00:0;AA GAJAHAI ,ò ê

<=> Ð : 7U8U;Us [15, 16] j?@UÃUÅ îAUs [17]bBC ÃUÅ îAUs [18, 19]

KULà. R 5 , iD 1.1

UÇ, aUU» HUxU%E*26UUUçUèFGUyU§HIJU)UUéU

ªLKNMNONPNQNRNSNONTNUNVNWNXNYNZ\[N]N^\_, `NaNbNcNdNe ]NfN_NgihkjNSNlNmNn\ZNo\pNq b f\r_

. s?t?u?v , w?x?y?z| Liao S J. A challenging nonlinear problem for numerical techniques. Journal

of Computational and Applied Mathematics, 2005, 181(2): 467∼472. —— N~

· 4 · )

.UH

, UiU[ (White)[20] % , :UÅ 1UîUU?IJU)U~wU%UsU5UUÌUÍU%.0 ¬U9 BU5 ÃUÅ ;UsUUB ÿUSU " ( ) )LUU~UwUbU% | .

1.1 ¡i¢i£i¤i¥i¦i§i¨ª©ª«i¬ª­ª®ª¯ª°ª±i²ª³ª´ª¬ªµi¶¸·\¹

ºN» ½¼N¾ fN¿ ; ¼ T ½ÀNÁ r( ÂiÃÄ Liao S J. An analytic approximation of the drag coefficient for the viscous flow past a

sphere. International Journal of Non-Linear Mechanics, 2002, 37: 1∼18. Å Elsevier ÆNÇNÈNÉ )

Ê » 6 ÃUÅ ;Us&UËÌ SU 0U%ĸAó Aü )AIÍ0Î ÃAÅ ;UsA ('

) ü)U%.1892 9 , Lyapunov [21]

KULU;U<dx

dt= A(t) x0p#

, A(t)¼UÏÐÑÒÓ

.&UËÌ SU ¸Uó ü ) ε, Lyapunov

á ;U<ÔÕUÌdx

dt= ε A(t) x,0ÖADAE ÷A ε

%0× )Aî0A0G . Lyapunov Ø ,§A'A(A)0Ù0Ú0Û

, )A§ ε = 1,UH

ε = 1 ^U9 NUUL .U>U;UsU¿ÜU¼

Lyapunov¸Uó Uü )Us [21].0Ý0Aí S0Þ ¿ Karmishin k [22]

 : , ÿ 00A% δî0AAs

.Î i , Karmishink [22]

&UËÌ SU ¸Uó ü ) δ,á ;U<

x5 + x = 1 (1.1)

ÔÕUÌx1+δ + x = 1 (1.2)

ß1 à á⯠· 5 ·

,0ÖADAE ÷A δ%0× ) , ã á 0× )0AMA¼ [3, 3] ä0å0æ 0" ,

Ë0ÖA·δ = 4NA00"AL

. δî0AAsAé

Lyapunov¸Aó Aü )AsA§A1A2AA5 S0ç % .

qAN0è0éA%5, êë ;UsìËÌU SU ¸Uó ü ) , íî ü ) U§U6U7U8A;A<p#%UâAãAï, ¡ _U: ï %UdUeðUÇ . ñ U ,

¦U§ 'U% **( á G (1.1)ÔÕUÌU ïò G%U;U<

, iδ x5 + x = 1 (1.3),U3

, Ui Karmishin k [22] % ,(Ö;U<

(1.2)U %"ULpo(Ö;U<

(1.3) %"ULóUNU(

. , ,¸Uó Uü )UsUb δ

îAUsôUn SU» 1Us @ I õö÷UãU¸Uó ü ) ε¤U¥

δ.é ÃUÅ ;Us S ,

¸Uó Uü )UsUb δîAUsì ð s ÿSU )"ULUU~UwUbU% | .

AdomianALAs

[23∼25]5 S0ëAa %A%AKAL0!A6A7A8AGAJA%ALAmA;As ,

0 1Ý á §U1ø

4.1 #*ùU> . AdomianULUsU#úUbûúU;U< a % ,

¡ ðè U» ;U<U5üý a ('

) ü ) . ¬U ,à 5 Së WU¼ SUT %U;Us . U , Adomian" )ULþ . R 5 , Adomian

ULUsU¦U§ SU» .(

AdomianULUsUNA%00"ALAxAx0ÿ0ýA(0G

.&0#

,× )00 0 , 30ôAnAÂ : 00U%U;UsUI U'U~Ï

. nU5 ¬ ¼ ,× )U§ (ÙÚÛUU5 SUUa %U% )

,3 · ¸ % 5

, Adomian L s t a ) %+* ( . i ï ¸ ó ü)UsUb

δîAUs

, AdomianULUsU1UUB ÿASA0 " ( ) )

LU~UwUbU% | .¶ 3 4 , ð è 5 Ã Å ; s 5 6 Ã Å ; s ( i ¸ ó ü ) s j δ

î A s bAdomian

ALAs),ì ð s ÿ0ASA b00"ALA00A~AwAb0000A% |

00 . A» ;As0 °Aa :0;Ai ö a % ] 0" SA 6A7A8AGAJ . ¬A , aA± nÿ SU» % j t aUi Û [ U%ULUmU;Us(1)!U6U7U8UGUJ a % , ^U_ %U6U7U8UGUJUÿý (

') ü ) ;

(2) ÿUSU )ULUU~UwUbU% | ;

(3)t a ï )U% **( . ï [31](homotopy)-

[32] (topology)

çAèA% SA 1 , = ÿ Së %ULUmU;Us ï UmU;Us [26∼30](homotopy analysis method).ï %Ý

|U j"!# .Î i , :; úU;U<

A[u(t)] = 0 (1.4)

0p#, A ¼U6U7U8UEUÏ , t

¼UÏ, u(t)

¼$% ).·

u0(t)ðUÇ

u(t)%&'(UßL

, L ðUÇ SU t a 8U2Lf = 0, f = 0 (1.5)

· 6 ·

%)*U7U8UEUÏ. =+, i Û SU ï

H[Φ(t; q); q] = (1 − q) L [Φ(t; q) − u0(t)] + q A[Φ(t; q)] (1.6)

- , q ∈ [0, 1]¼/.ÌUMUc

, Φ(t; q)¼

tb

q )

. q = 0b

q = 1

, \Ua

H[Φ(t; q); q]|q=0 = L[Φ(t; 0) − u0(t)]bH[Φ(t; q); q]|q=1 = A[Φ(t; 1)]

0 G(1.5), ,

Φ(t; 0) = u0(t)5U;U<H[Φ(t; q); q]|q=0 = 0UL

Φ(t; 1) = u(t)5U;U<H[Φ(t; q); q]|q=1 = 0UL

.UH

, .ÌUMUc q 0 U'U

1

,;U<

H[Φ(t; q); q] = 0

ALΦ(t; q)

0 .0ÌAMAc q, &'(AßAL u0(t)M0A0'A;A<

(1.4)AYAZL

u(t).§Uêp#

, ë UUMÜU¼ ò M . ï %Ý ,¸ = ÿ SU»1Ui UU;Us [33]

b ï UU;Us[34] k )Uq;Us

. ñ U , i = : .ÌUMUc q 23 ¸Uó ü ) ε¤U¥

δ,¸Uó Uü )UsUb δ

îAUs 9U: ï IU=U> ,

ø ý Õ 4 4 .,U3

, íî )UqU;UsU%5 ,U> +, ï%67U;Us

(1.6) 8 79 Ua % , R LUmU;UsU%5 , : VU,U5UUµóU% . ; n5 ¬ ¼ , < , = `Ua 6#U'U% **( = U%U7U8UEUÏ L b&'(UßUL , :>?@ABCDEFGHIJ = . KLM IN , OPQR ISTUBVWXY@Z[\I]^_`abcdefghiefjk .lmonqp Hrstu QRvw UBIx lyz , | G~i n I@A , i . , [o QRvw UBd ,

p HE¡ QRvw UB¢I£¤¥¦ n§©¨ª «¬­® N 150 ¯ D° §±¨ «¬c w ­ ® n±² ³b´µ¶·¸I , ¹ 1.1 ° .

º1 » ¼¾½ · 7 ·

[D , QRvw UBx QR yz , ¿ VNxSTI QR (1.6), À NÁÂ@Ã ÄÅÆÇb~iÄÅÆÈb H(t), OP @ÉÊI QR

H(Φ; q, ~, H) = (1 − q) L[Φ(t; q, ~, H) − u0(t)] − q ~ H(t) A[Φ(t; q, ~, H)] (1.7)

GÌË ® (1.6) K @Í , Î ® (1.6) Ï ® (1.7) Ð ~ = −1 i H(t) = 1 Ñ dÒÓ ,ÔÕ dH(Φ; q) = H(Φ; q,−1, 1) (1.8)

QÖ , Ð q × 0 ØÙÚ 1 Ñ , Φ(t; q, ~, H) ×ÛÜÝÞ c u0(t) ßàÚáÜ UIâãc u(t). äÀ , U

H[Φ(t; q, ~, H)] = 0 (1.9)

dåc Φ(t; q, ~, H) V Ïåæåç åèå ßåé q, Àåêåëåæåç åÅåÆåÇåb ~iåÅåÆåÈåb

H(t). Îì , Ð q = 1 Ñ , cí äæç ÅÆÇb ~iÅÆÈb H(t). ° ,

² ST QR (1.6) V Q , îïQR (1.7) WðXY@ñabc , efgh æç ÅÆÇb ~

iÅÆÈb H(t), lmòóô `°u . KLM IN , GXY @Zõöi÷øabcdefghiefjkI[\]^ .

QåRåvåw UåBåNå@åÉåù @åÍåIåUåB , úåûåüåý åIååååþ ÿ v Uå£ . G~ ûü , [35∼39] ÿ¥¦ [28,29,40∼43] ÿåSåF [44, 45] ÿ ü n I ª å¦ [46] ÿ Oldroyd þåb妪 ¦ [47] ÿ ¦¦ [48] ÿ [49, 50] ÿ ! - "# U [51] iLane-Emden U [30] $ . i ,

lm ¢ QRvw UB@AÊI~ Ó .

%2 & ')()*)+),

lô,p H~@ Ã [Iþ v U- /. Ó , 0QRvw UBdxlyz

.

2.1 1 23456Ìn ×789:<; ©/=I ¨ . > t ?Ñ@ , U(t) ? ¨ j , m ?

é , g ?L ¬Ajk . BC ¨ D Ú I 56 «E a U2(t), a þb . F´GHIJ ,

mdU(t)

dt= mg − aU2(t) (2.1)

ÛÜ ZK U(0) = 0 (2.2)LMN

, ; =djkO L ¬-~PVQ ØÙ , RSTÚ @ ÃU Ijk U∞. ° , VW VXY U(t), ë W × U (2.1) RZ[Ú\] jk U∞, V

U∞ =

mg

a(2.3)

V^ > U∞i U∞/g v_? Ò`jkiÒ` Ñ@ . >

t =

(

U∞

g

)

t, U(t) = U∞V (t) (2.4)

p H [Úaéb UV (t) + V 2(t) = 1, t > 0 (2.5)

c ÛÜ ZKV (0) = 0 (2.6)

å , t ?åaåébåÑ@ , · ?ååú t d F . åä , Ð t → +∞ Ñ , V t → ∞ iU(t) → U∞ Ñ , efd cU (2.5) i (2.6) , F ´ ® (2.4),

p H lim

t→+∞V (t) = 1 (2.7)

º2 » gihijikil · 9 ·

U (2.5) i (2.6) dâãc

V (t) = tanh(t) (2.8)

®(2.8) m ~V Qno cdÌËp .

2.2 qsrutuvuwyxyz|yy~|v \ÌËp ,

p H~ISTc w UBD d c . Ó .

2.2.1 ¢/d// n/o c ,

p H B I aé/bÑ/@ t /é ( / é ),

| V (t) ?T abV (t) = α0 + α1t + α2t

2 + α3t3 + · · · (2.9)

ÛÜ ZK (2.6), [Ú α0 = 0. | N u ?T ® ÂU (2.5), +∞∑

k=0

(k + 1) αk+1 +

k∑

j=0

αjαk−j

tk = 1

N u ?T ® ú ° t > 0 , ×Àα1 = 1 (2.10)

αk+1 = − 1

k + 1

k∑

j=0

αjαk−j , k > 1 (2.11)

p HÌ ì[Ú c

Vpert(t) = t − 1

3t3 +

2

15t5 − 17

315t7 + · · · =

+∞∑

n=0

α2n+1 t2n+1 (2.12)

cO Ð Igh 0 6 t < ρ0 ef , , ρ0 ≈ 3/2, ¹ 2.1 ° . [ Ò _ EIN , c (2.12) defghiefjkNãII .

· 10 ·

2.1 ii (2.57) i i¡i (2.8) ¢£¥¤¦¥§©¨«ª¥¬¥­

; ®¥¯ ¨«°¥±¥­ (2.12) ; ²¥¯ ¨ ~ = −1/2 ³¥´¥µ¥¶ ­ ;§¥· ¯ ¨ ~ = −1/5 ³¥´¥µ¥¶ ­ ;¸ §¥· ¯ ¨ ~ = −1/10 ³¥´¥µ¥¶ ­

2.2.2 Lyapunov ¹º»¼½~ Lyapunov ¾ ÇbB ,

p H¿U (2.5) ÀÁ V (t) + ε V 2(t) = 1 (2.13)

, ε ¾ Çb . ä ò , >V (t) = V0(t) + ε V1(t) + ε2 V2(t) + · · · (2.14)

| ® (2.14) ÂU (2.13) i ÛÜ ZK (2.6)

n, > ε QÂ dÃb 0,

p H [Ú ÃÄU

V0(t) = 1, V0(0) = 0

V1(t) + V 20 (t) = 0, V1(0) = 0

...

æÂd c N uU , [ÚV0(t) = t, V1(t) = − t3

3, V2(t) =

2t5

15, · · ·

º2 » gihijikil · 11 ·

· ò , >?T ® (2.14)n

ε = 1,

V (t) = t − 1

3t3 +

2

15t5 − 17

315t7 + · · · =

+∞∑

n=0

α2n+1 t2n+1 (2.15)

®(2.15)

² c (2.12) ÅÆ Q , ÎìëÏ O t Ð] Igh , ¹ 2.1° . /[/Ç/È IN , Lyapunov ¾ ÇbB [Ú Ic/defghiefjkë NãII .

2.2.3 Adomian ÉÊ~ Adomian v cB , ~

V (t) = t −∫ t

0

V 2(t)dt (2.16)

Ë U (2.5) i ÛÜ ZK (2.6).N uUd Adomian c

V (t) = V0(t) +

+∞∑

k=1

Vk(t)

V0(t)= t

Vk(t)=−∫ t

0

Ak−1(t) dt, k > 1

n

Ak(t) =k∑

n=0

Vn(t) Vk−n(t)

Adomian üÌ ® . N u ?T ® ,p H æÂ[Ú

V1(t) = − t3

3, V2(t) =

2t5

15, V3(t) = − 17

315t7, · · ·

×ÀV (t) = t − 1

3t3 +

2

15t5 − 17

315t7 + · · · =

+∞∑

n=0

α2n+1 t2n+1 (2.17)

®(2.17) Í ² / c (2.12) Å/Æ Q , ÎìëÏ O/ Ð/ Igh , ¹ 2.1

° . [ÇÈ IN , Adomian v cB [Ú Ic/defghiefjk ë NãII .

· 12 · 2.2.4 δ ÎÏ~ δ ÐÑ B ,

p H | U (2.5) ÀÁ V (t) + V 1+δ(t) = 1 (2.18)

, δ b . >V (t) = V0(t) +

+∞∑

n=1

Vn(t) δn (2.19)

ä ò , | V 1+δ(t) ÐÑ δ dabV 1+δ =V0 + [V1 + V0 ln V0] δ

+

[

V1(1 + ln V0) +1

2V0 ln2 V0 + V2

]

δ2 + · · · (2.20)

| ® (2.19) i ® (2.20) ÂU (2.18), > δ QÂ dÃb 0, [Ú ÃÄ

UV0 + V0 =1, V0(0) = 0

V1 + V1 =−V0 ln V0, V1(0) = 0

V2 + V2 =−V1(1 + ln V0) −1

2V0 ln2 V0, V2(0) = 0

V3 + V3 =−V2(1 + ln V0) − V1

(

1 +1

2ln V0

)

ln V0

−1

6V0 ln3 V0 −

V 21

2V0, V3(0) = 0

...

æÂd c N uU , [ÚV0(t)=1 − exp(−t)

V1(t)=exp(−t)

[

t − π2

6+ P L

2 (e−t)

]

− (1 − e−t) ln(1 − e−t)

...

P L

n (z) =

+∞∑

k=1

zk

kn

º2 » gihijikil · 13 ·

z I n Lú bÈb (nth polylogarithm function). Ò no c V (t) ≈ 1 + exp(−t)

[

t − π2

6− 1 + P L

2 (e−t)

]

− (1 − e−t) ln(1 − e−t) (2.21)

ÓÔÕÖ Ò no c o× OØ Ã gh 0 6 t < +∞ £ , ¿ No qÒÙÈb P Ln (z)

IÚ , Û[Ü Ò no c ß[Ý D ÝÞß .

à IN ,N uÌ Uá ÿ Lyapunov ¾ Çbái Adomian v cá d[

Iabc/âN/ Q I . ¿ N , abc Ï O/ Ã Ð/ Igh 0 6 t < 3/2 .

Ì ,² c ýo , ã Lyapunov ¾ Çbái Adomian v cá $ ST

Uá d[ Ic , O LM Çbä ßéØÙ , ×À ØåÑ , m Wæ . QÑ ,

à ë/È/ç/è , U/ád @/m W/é/O/êÉ/ë/à . /[/å _IN , ° STc w Uá [Ú IabcdefghiefjkâN/I , Àê , Uáiã Lyapunov ¾ Çbá ÿ Adomian v cái δ v cá $ UáâVWXY à ÷øiõöabcdefghiefjkI[\]^ . ìì , ° STU/á/â a á/í~îXI V (t) O t ï a/ðÑ I LM (2.7). à Ó/ñ ,

l N , aò UáóNST/ Uá , âVWô v í~ ýõ/ I/ö÷ /TÚK ø n d<ù I . · ò , [ÇÈ IN , ¾ Çb ε i δ v_ ÚOU (2.13) i (2.18)

n IV Qúû . ¿ N , δ ÐÑ á¢Ic (2.21) WðOØà gh 0 6 t < +∞ , ×À , Ë Lyapunov ¾ Çb/á¢Ic¸ [ü .G 1

ô °u , ü p H¿ ε i δ I ï è ßé , ýþ U (2.13) i (2.18) mÿ ÉÄÒ ß U . o , K ø n à , ¶ M OPQR iÄÒ ß UNþ LM I .

2.3 uwuvl ` ,

p H W ~ Q I . Ótu QRvw Uádx lyz .

2.3.1 > V0(t) ? V (t) I ÛÜÝÞ c . c ÛÜ ZK (2.6), V

V0(0) = 0 (2.22)

> q ∈ [0, 1] ? °I/è ßé . QRvw U/áx Ö É V (t) →Φ(t; q), Ð è ßé q × 0 ØÙÚ 1 Ñ , Φ(t; q) ×ÛÜÝÞ c V0(t) ßàÚ âãc

Mathematica !"#$%&' ´() , *+,-. . /012 % E-mail 34 ¨[email protected], 56789 ¨ http://numericaltank.sjtu.edu.cn/code.htm, !:;< $=&=>=,=-=?=@=A=B=C Mathematica D=E¥´=0=1=F=& . —— G=H

· 14 · V (t). Ú É , JI/ÅÆJñ

L[Φ(t; q)] = γ1(t)∂Φ(t; q)

∂t+ γ2(t) Φ(t; q) (2.23)

, γ1(t) 6= 0 i γ2(t) K IÈb . ©U (2.5), I ï JñN [Φ(t; q)] =

∂Φ(t; q)

∂t+ Φ2(t; q) − 1 (2.24)

> ~ 6= 0 i H(t) 6= 0 v/_/? °I/ÅÆÇbåi/ÅåÆÈåb . LM ÁÂè ßéq ∈ [0, 1], OP NU

(1 − q) L [Φ(t; q) − V0(t)] = ~ q H(t) N [Φ(t; q)] (2.25)

ÛÜ ZK Φ(0; q) = 0 (2.26)

[å _IN ,p HO PÙ I ; ©JIÅÆÇb ~

ÿ ÅÆÈb H(t) ÿ ÛÜÝÞ cV0(t)

iÅÆJñ L. lmòóô `° ,N uI ; O QRvw Uá nRQ è

LM I-~ , S I QRvw Uá idxT .

Ð q = 0 Ñ , U (2.25) ß L [Φ(t; 0) − V0(t)] = 0, t > 0 (2.27)

c ÛÜ ZKΦ(0; 0) = 0 (2.28)

F ´ ® (2.22) i ® (2.23), U (2.27) i (2.28) IcUN

Φ(t; 0) = V0(t) (2.29)

Ð q = 1 Ñ , U (2.25) ~ H(t) N [Φ(t; 1)] = 0, t > 0 (2.30)

c ÛÜ ZKΦ(0; 1) = 0 (2.31)

VΦ(t; 1) = V (t) (2.32)

©~ 6= 0 ÿ H(t) 6= 0, êF ´I ï (2.24), U (2.30) i (2.31) $ Q U (2.5) i

(2.6). F ´ ® (2.29) i (2.32), Ð è ßé q × 0 ØÙÚ 1 Ñ , Φ(t; q) ×ÛÜÝÞ

º2 » gihijikil · 15 ·

c V0(t) ßàÚ âãc V (t). OWX n , É ßà/ , U (2.25) i(2.26) O QR Φ(t; q). [\ , U (2.25) i (2.26) .

Î p HO JYÅÆÇb ~ÿ ÅÆÈb H(t) ÿ ÛÜÝÞ c V0(t)

iÅÆJ/ñ L d ; , ° , m/B IGH/âJY¶Z , ×ÀÐ 0 6 q 6 1 Ñ Ä/Ò ß U(2.25) i (2.26) dc Φ(t; q) éO , êú è ßé q I m Ò [ , V

V[m]0 (t) =

∂mΦ(t; q)

∂qm

q=0

(2.33)

ë éO , m = 1, 2, 3, · · · [\ , V[m]0 (t) m Ò ß [ b . I ï

Vm(t) =V

[m]0 (t)

m!=

1

m!

∂mΦ(t; q)

∂qm

q=0

(2.34)

F ´\] ÐÑ I M , | Φ(t; q) ^ è ßé q ÐÑ abΦ(t; q) = Φ(t; 0) +

+∞∑

m=1

1

m!

∂mΦ(t; q)

∂qm

q=0

qm (2.35)

® (2.29) i ® (2.34),N uab

Φ(t; q) = V0(t) +

+∞∑

m=1

Vm(t) qm (2.36)

B/C ÅÆÇb ~ÿ ÅÆÈb H(t) ÿ ÛÜÝÞ c V0(t)

iÅÆJ/ñ L JY¶Z ,

×À ab (2.36) O q = 1 Ñ ef . ýþ , Ð q = 1 Ñ , ab (2.36) ß Φ(t; 1) = V0(t) +

+∞∑

m=1

Vm(t) (2.37)

ä ò , F ´ ® (2.32), V (t) = V0(t) +

+∞∑

m=1

Vm(t) (2.38)

N u ?/T ® í~_/X Ì Vm(t) (m = 1, 2, 3, · · ·) ¢ ÛÜÝÞ c V0(t)² âãc

V (t) dëà .

2.3.2 ` I ïaé

V n = V0(t), V1(t), V2(t), · · · , Vn(t)

· 16 · F ´I ï (2.34), m ©ÄÒ ß U (2.25) i (2.26) [Ú _X Ì Vm(t) dbcUi ÛÜ ZK . | U (2.25) i (2.26) ú è ßé q d [ m  , ä ò > q = 0, · òd m!,

pe [Ú °f m Ò ßg L [Vm(t) − χm Vm−1(t)] = ~ H(t) Rm(V m−1) (2.39)

c ÛÜh KVm(0) = 0 (2.40)

ikj

Rm(V m−1)=1

(m − 1)!

∂m−1N [Φ(t; q)]

∂qm−1

q=0

(2.41)

l

χm =

0, m 6 1

1,imno (2.42)

pRq(2.24) r q (2.41), s

Rm(V m−1) = Vm−1(t) +m−1∑

j=0

Vj(t)Vm−1−j(t) − (1 − χm) (2.43)

[ÇÈ ft , Rm(V m−1) uvwxV0(t), V1(t), V2(t), · · · , Vm−1(t)

yz e â| LMv~ m Ò g (2.39) r (2.40) . | , L (2.23), g (2.39) g , h (2.40). , g (2.39) r (2.40) Vm(t) , ¡¢ t£¤¥¦§

Mathematica ¨ Maple ¨ MathLab ©ª«¬­® .pRq

(2.38), ¯°± , ²³´µ¶ · (2.5) r (2.6) ¸¹ p · (2.39) r (2.40) º»¼½¾¿À Á , ÃÄÅÆÀ Á ¼rÇÈÉÊ . ËÌͼ t , ÎÏи¹ÑÒÓÔÕÖ×·r ( ØÙ ) Ú jRÛÜÝÞß ( à ) áâ .

V (t) ¼ m ÈãV (t) ≈

m∑

n=0

Vn(t) (2.44)

ËÌͼ t , ä · (2.25)p L ¨åæç V0(t) ¨åá

â ~ rèâ H(t) é . êë±ì ,p ±í·îïð¼ V (t) vwx

ñóò=ô=õ(2.36) ö=÷=ø=ù=ú=û=ü=ý ô=õ (2.25) þ (2.26), ÿ q =ú , û=ü=ý ô=õ (2.39) þ (2.40), (2.41)∼(2.43). ——

2 · 17 ·

L ¨åæç V0(t) ¨åáâ ~ rèâ H(t).

, Ó xs ! "Èã #·î ,

p ±í·îïð¼ $â&% '&( )r&% '&*&+Ó t , ¼ , § ¯ -. /10 2 .

2.3.3 3 4 5 65 6 2.1 7 8 9 (2.38) : ; , < = Vm(t) > ?1@BA C D E F (2.39) G (2.40),H I J

(2.42) G (2.43) K L , M N O P E F (2.5) G (2.6) Q R .S § T $â+∞∑

m=0

Vm(t)

% ' , US(t) =

+∞∑

m=0

Vm(t)

l V slim

m→+∞Vm(t) = 0 (2.45)

pχm (2.42), » W

n∑

m=1

[Vm(t) − χm Vm−1(t)]

=V1 + (V2 − V1) + (V3 − V2) + · · · + (Vn − Vn−1)

=Vn(t)

± q r q (2.45), s+∞∑

m=1

[Vm(t) − χm Vm−1(t)] = limn→+∞

Vn(t) = 0

p ±í X Y q r L (2.23), » W+∞∑

m=1

L [Vm(t) − χm Vm−1(t)] = L+∞∑

m=1

[Vm(t) − χm Vm−1(t)] = 0

p ±í X Y q r· (2.39), s+∞∑

m=1

L [Vm(t) − χm Vm−1(t)] = ~ H(t)

+∞∑

m=1

Rm(V m−1) = 0

· 18 · Z\[\]_^

~ 6= 0 r H(t) 6= 0, ` y+∞∑

m=1

Rm(V m−1) = 0 (2.46)

pRq(2.43), » W

+∞∑

m=1

Rm(V m−1)=

+∞∑

m=1

Vm−1(t) +

m−1∑

j=0

Vj(t)Vm−1−j(t) − (1 − χm)

=

+∞∑

m=0

Vm(t) − 1 +

+∞∑

m=1

m−1∑

j=0

Vj(t)Vm−1−j(t)

=

+∞∑

m=0

Vm(t) − 1 +

+∞∑

j=0

+∞∑

m=j+1

Vj(t)Vm−1−j(t)

=

+∞∑

m=0

Vm(t) − 1 +

+∞∑

j=0

Vj(t)

+∞∑

i=0

Vi(t)

= S(t) + S2(t) − 1 (2.47)

pRq(2.46) r q (2.47), s

S(t) + S2(t) − 1 = 0, t > 0

pRq(2.22) r q (2.40), » W

S(0) =

+∞∑

m=0

Vm(0) = V0(0) +

+∞∑

m=1

Vm(0) = V0(0) = 0

± / a À X Y q , S(t)V · (2.5) r (2.6) . b c .

ËÌͼ t , ±íê\d p q (2.23) ¼ L q&e f, g1d , γ1(t) 6= 0 r γ2(t)

Ó ¼èâ . hê is jÕ k . l sÎÀê , ²³&mÔ&n\d É&oÊ&p&$â&%&' . &q&r , $â (2.38) ¼&%&'vwxáâ ~ ¨åèâ H(t) ¨åæç V0(t) r L. s t¼ t , u #·îwvwxï²³à¼zy|B ~Ä z ³ . | , mÕáâ ~ ¨ èâ H(t) ¨ æç V0(t) L ~Ä , ¤ $â (2.38)

Ü0 6 t 6 t0 ( )

0 %' , z V Ü h ( ) 0 % '· .

, % 'ê áâ ~ ¨èâH(t) ¨ æç V0(t) L ~ı¼zyBB , º» u #·î .

2 · 19 ·

2.3.4 § ±í , ºwä ·w , ²³wwà¼y||~Ä L ¨

æç V0(t) èâ H(t). êë± , ±íy| e ww , ` y | ~Äw¿Ó¼èâ H(t) ¨=æç V0(t) L. r y , ¥ ± , ÎÀzyBã , V Õ v x ¯µ ¡­ g ~Ä .¢ ¶ Á y £ , #È㯰 ¤ ¥ ¦ ¥ § ¼ èâ ÇÈ . ¨&©&ª , èâ f(x) &« Ó&¼&èâÇÈ , ¬&­&®¼&èâ&¯&°&±&&&²ÇÈ . , èâ¼ ~Ä ¢ ÇÈ ³ y £ ¶ ´ jÕ . ²ÇÈÀï ¶ Á ¼&µ&¶ , ¥&~Ä& ¢ ­&®¼&èâ . s&t¼&¥ , · ¥ L ¨ æç V0(t) èâ H(t) ~ı¼zyB , ¿1RÓ èâ ¸í¼ V (t) . `ÎwwXwY¹d , ²³ ~ÄÀw­w®¼ , ` y ±www²ÇÈÀï¼ ¶ ÁÂ

.Ü ¿wºw»w¼ , ½ww#w¾êw¿wÀ ¨ ( ØÙ ) Úw ( Áw )¶ ·wÃÄ

, ²³ ŠƽÔ~À ¶ ÁÂ Ç ¯ ª&È É&Êϼ&èâ& ¸í g Ë . ̧ , Ó Í Uek(t) | k = 0, 1, 2, · · · (2.48)

X 2 ¸í¯ - Î Ì Ë¼ § èâ . ²³ Ï´ Ë X Y»

V (t) =+∞∑

n=0

cn ek(t) (2.49)

Î Ð , cn Ñâ . Ò ~Ä èâ , èâ H(t) ¨ æç Ë V0(t) ¨ L

Ç V Ó § Ô ~Ä , Õ Æ Ö ×¼ Ø· Ë ÛÜ ¨Ù¬ ¯ « h èâX&Y . Î&v&x&À&¡­&~Äèâ H(t) ¨ æç&Ë V0(t) ¨ L¼ ¯µ , ÚÜÛ Ý Þ . ÎÚµ Ü u #·î1dBß à ¶ ´ jÕ¼ á ¥ .

§ Åí , èâ f(x) ¯ ° « Ó ¼ èâÇÈ , Õ , Ï ¯ ÛÜ Ó ¼ Û ÝÞ , ¬&â³&ã&¯&°ïð&°ÉʼÈã&Ë . Î& , Ï&½&&~Ä&ä&®¼&èâ&äå Èã Ë .

&&æ&ç&è×èâ H(t) ~ı¼éyê , V Õ&vð&ë¼Üì&í&î&ï& , ð Ë X Y1dR¼ ÑâË , § ñ (2.49) dR¼ cn, ò ¯ ° « ó ô , ` õÊ p ~ö ¼wèâÑw÷ .

Ü ¿wºw¼ , ½wwÛwÝwÞwwwwìwíwîwï , èâw¯° « , Ê . ø ù , q õ ú , Ø· V Ó û ü à ¬ Ë . Î v x ²³ë¼ÜÛ ý þ .

±í&Û&Ý&Þ&& ¨ÿì&í&î&ï&&&&Û&ý&þ&& Ü &u&#·î_dêß&à&jÕ¼á ¥ , ¬ Ü à +±¹ u #·î¼ × ¥ .

· 20 · Z\[\]_^

2.3.5 Û Ý Þ±í·îw ¶ ·îÓw , wuw#·îwÏ ¥ ÓwwèâïðÓw X

Y ñ ¼ Ë .

1. R Ë (2.12) À µ Ö t ¼ $â .

Ô , Ï ¤¥§ ¼ § èâ

t2m+1 | m = 0, 1, 2, 3, · · ·

(2.50)

X Y V (t), ðV (t) =

+∞∑

m=0

am t2m+1 (2.51)

g1d , am Ñâ . Î v x h Î Ì¼Ð Û Ý Þ .

h Û Ý Þ Ú (2.22), q r × ~ÄV0(t) = t (2.52)

á V (t) ¼æç Ë , Õ

L[Φ(t; q)] =∂Φ(t; q)

∂t(2.53)

á , h i L (C1) = 0 (2.54)

g1d , C1 ´ â . Û Ý Þ (2.51) · (2.39), èâ H(t)V Ó ~ħ ¼ ñ

H(t) = t2κ (2.55)

ñ (2.54), · (2.39) ËVm(t) = χmVm−1(t) + ~

∫ t

0

τ2κ Rm(V m−1) dτ + C1

g1d , ´ â C1 RÚ (2.40) Ê . ²³ , κ 6 −1 , Vm(t) t−1

. ÎÓª Û Ý Þ (2.51). Ô ù , κ > 1 , Vm(t) Ó t3

, Ô , ð ¤ Èã

â Ö½¾ , t3 ¼ Ñâä , Ó ¯ « ó ô . Î ì í î ï Óª .

Û Ý Þ (2.51) ì í î ï ,V Ó U κ = 0.

¢ ×¼èâH(t) = 1 (2.56)

2 · 21 ·

« , ²Ê . . , Ï ! ñ

V1(t)=1

3~t3

V2(t)=1

3~(1 + ~)t3 +

2

15~

2t5

V3(t)=1

3~(1 + ~)2t3 +

4

15~

2(1 + ~)t5 +17

315~

3t7

...

"¼ ¥ ,¢ ×¼ m Èã Ë

V (t) ≈m∑

k=0

Vk(t) =

m∑

n=0

µm,n0 (~)

(

α2n+1 t2n+1)

(2.57)

g1d , α2n+1 Ë (2.12) Ñâ , ¬èâ µm,n0 (~) § ¼

µm,n0 (~) = (−~)n

m−n∑

j=0

(

n − 1 + j

j

)

(1 + ~)j (2.58)

#$ æç Ë V0(t) ¨ L èâ H(t) %RÊ , ²³& r ­à¼zyBB~Äáâ ~ Ë . Ë!Ìͼ ¥ , Ë (2.57) áâ ~. b ,

èâ µm,n0 (~) i °

µm,n0 (−1)=1, n 6 m (2.59)

¬ ¢ÝÞ À è l'â n, » W

limm→+∞

µm,n0 (~) =

1, |1 + ~| < 1

∞, |1 + ~| > 1(2.60)

±í a À° b)(R´ Ü ¯ - . / ïð . Õ , ~ = −1 , ñ (2.59) ¨ ñ (2.57)

ñ (2.12), » WV (t) = Vpert(t) (2.61)

Ô , Ë (2.12) * ñ (2.57) ~ = −1 ¼À¡ Ì . Lyapunov +, ß áâîïð¼wË (2.15) Adomian wËîïð¼wË (2.17), Ï §wÔ .

Ô , ñ (2.57)Ü

-. ±/ ·î¨ Lyapunov +, ß áâî Adomian Ëî!¼ Ë , `õ ± i01 .

ñ3254 V3(t) 6 4/15 7585956 2/15, 5:5; , <575=5>5? . ——

· 22 · Z\[\]_^

Ë!@wk¼w¥ , $â (2.57) wÑâAwÖáâ ~. ñ (2.60), $â (2.57)

% '¼ V ÕÚ ¥ |1 + ~| < 1, ð

−2 < ~ < 0

wkB¼w¥ , $â (2.57) w%w'w(w)CAwÖ ~ Ë . §D 2.1 w2 , ~ (−2 < ~ < 0)

ËFEFÈ Öä , $â (2.57) % ' ( )FEà . ²³FF , $â (2.57) % ' ()

0 6 t < ρ0

2

|~| − 1

g1d , ρ0 ≈ 3/2 ¥ Ë (2.12) % 'GH . Ô , ~ (−2 < ~ < 0) Èä , $

â (2.57)Ü 'À ( )

0 6 t < +∞0 % ' ÆÉÊ Ë V (t) = tanh(t). ! " Ë #·îÓ , ½ ~Ä ~ Ë ,

²³ ÏÍI Ö× $â (2.57) % ' ( ) . Ô , áâ ~ v x ÚÍI Ö

× $â Ë % ' ( )¼JKH .

2. L R#$Ü~ (−2 < ~ < 0) Ö 0 , Bèâ (2.50) ïð¼ $â Ë (2.57)

Ü 'À( )

0 6 t < +∞0 w , M ~ (−2 < ~ < 0) N ¢ Ë ß , Èãâ VwÓ Ow¯!w°Pʼw T .

#$Ü êë±èâ (2.50) QR·î ¨ Lyapunov +, ß áâîw Adomian

Ëîïð¼ Ë (2.12) ± ®¨ ± i01 , M gÇÈ ³Ó . Ô , V Õ ~Ä

§ ± ®¼ èâ , ` õ ± ²ÇÈ V (t).§ ÅSí , ð ¤ Ó Ë·T (2.5) (2.6), C Ï!UV è * +

V (+∞) = 1

æç Ë (2.52) q rÓÎÀ° . ½ ´ , $â* Ü À è¼ ( ) 0 % ' .

S Õ , $â (2.50)Ü 'À ( ) 0 6 t < +∞

0 Ó ¯ ²ÇÈ V (t).

ªlim

t→+∞

1

(1 + t)m= 0, m > 1

Ô , Bèâ

(1 + t)−m | m = 0, 1, 2, 3, · · ·

(2.62)

2 · 23 ·

X Y¼èâ Ü t → +∞ V èË . Ó ÍWX V (t) Ï X Y»

V (t) =

+∞∑

m=0

bm

(1 + t)m(2.63)

g1d , bm Y Ñâ . Î v x h Π̼ZÐ Û Ý Þ .

Û Ý Þ (2.63), RÚ (2.6) V è * + (2.7), q r , × ~ÄV0(t) = 1 − 1

1 + t(2.64)

á V (t) ¼æç Ë , Õ

L[Φ(t; q)] = (1 + t)∂Φ(t; q)

∂t+ Φ(t; q) (2.65)

á ×¼ , h i °

L(

C2

1 + t

)

= 0 (2.66)

g1d , C2 ´ â . L (2.65), Ø·T (2.39) Ë

Vm(t) = χmVm−1(t) +~

1 + t

∫ t

0

H(τ) Rm(V m−1) dτ +C2

1 + t, m > 1

g_d , ´ â C2 Ú (2.40) Ê . Û Ý Þ (2.63) Ø·FT(2.39), èâ H(t) × ~Ä § ¼ ñ

H(t) =1

(1 + t)κ(2.67)

g1d , κ 'â . ²³ , κ 6 0 , Ø·T (2.39) Ë/ln(1 + t)

1 + t

, gÓª Û Ý Þ (2.63). κ > 1 , (1 + t)−2 Óð Ü Vm(t) d , ` õ ,

(1 + t)−2 ¼ Ñâ[ä , ð ¤ Èãâ Ö½¾\½î « ó ô . Î] ¿ ì í î

ï&& . Ô , &&Û&Ý&Þ (2.63) &ì&í&î&ï&& ,

V&Ó U κ = 1. Î Ç , &²Ê ×¼èâ

H(t) =1

1 + t(2.68)

· 24 · Z\[\]_^

. , Ï^!

V1(t)=− ~

1 + t+

2~

(1 + t)2− ~

(1 + t)3

V2(t)=−~

(

1 +7

12~

)

1

1 + t+

2~(1 + ~)

(1 + t)2

−~

(

1 +7

2~

)

1

(1 + t)3+

10~2

3(1 + t)4− 5~

2

4(1 + t)5

...

× ² , V (t) m Èã Ï X Y»

V (t) ≈2m+1∑

n=0

βm,n(~)

(1 + t)n(2.69)

g1d , βm,n(~) A Ö ~ ¼ Ñâ .

Ë!Ìͼ ¥ , ²³& r ­à¼zyBB~Äáâ ~ Ë . $â (2.69) _±w¥`wË . wab ~

¢ $â (2.69) ¼cd , efghwwwµw$â ( § V ′(0),

V ′′(0), V ′′′(0) © ) ¼w%w' . ²³ ,ÝÞ â¼ÈãwËwãw V ′(0) = 1, SwÕwâÓ

¯ v x ÝÞ ¥ ¼ij Õk ~Ä ~. M ¥ , V ′′(0) V ′′′(0) A Ö ~. Ó Í U R~

Xw2Swww¼ ~ Ëwnw , gww×¼ V ′′(0) w$âw%w' . wJ , ²³wÚ R~ µ Ö V ′′(0) ¼ ~ lmno . ê 2.1,

¢Ý À ~ ∈ R~, ×¼ V ′′(0) $â% ' Æ T ñ . V ′′(0) ∼ ~ )pR Ü R~ ( )Úqrs . ²³ ÚÎÏÚp V ′′(0) ~ p . &q&r , â&¡&2&à&$â&Ë&&&(&) R~. êË (2.69) ïð¼ V ′′(0) V ′′′(0) ~ pR §D 2.2 S 2 . )(Bq , $â (2.69) ïð¼ V ′′(0) V ′′′(0)

Ü−3/2 6 ~ 6 −1/2

&%&' . Ì § , ~ Ä&(&) −3/2 6 ~ 6 −1/2 d 5 ÀÓ&Ë& , $â (2.69) ïð¼ V ′′(0) V ′′′(0) &$â¢&%&'&Æ&&×¼ÉÊË 0 −2, § X 2.1 &X 2.2

S&2 . &ktB¼&¥ , $â&Ë&%&'&*&+ttA&Ö ~ Ë . ê$â (2.69) ïð¼ V ′′(0)

V ′′′(0) $â Ü ~ = −1 % ' äu , ú X 2.1 X 2.2. Î kv à , ²³ Ï ½ ~ ö áâ ~ ÍtI&$â&Ë (2.69) &%&'&*&+ . Ô ù , ²³tt , £ $â V ′′(0) V ′′′(0) % ' , $â (2.69)

Ü 'À ( ) 0 6 t < +∞0 % ' .

Ô , ê 2.1, S Î % ' $â V µ ¶ ÁÂ Ë . Ì § , ~ = −1 , $â (2.69)

Ü 'À () 0 6 t < +∞

0 % ' ÆÉÊ Ë , ú X 2.3. f õ £ , ½ w× Ãã¼ ~ pR , ¯ °ñ3x5y

, z55|55~ . ——

2 · 25 ·

² ª È ×¼ ~ ( ) .Ü Ô ( ) 0 ~ÄÀ ~ Ë ,

Ç ÏÊ p ×¼ $â Ë % ' .

Ô , áâ ~Ü u #·î1dBß à jÕ¼ á ¥ .

2.2 H(t) = 1/(1 + t) , (2.69) V ′′(0) ∼ ~ V ′′′(0) ∼ ~ 555

V ′′(0) 20 û55 ; V ′′′(0) 20 û55

2.1 --h , (2.69) V ′′(0) û ~ = −1/2 ~ = −3/4 ~ = −1 ~ = −5/4 ~ = −3/2

5 −0.062 500 −0.001 953 0 −0.001 953 0.062 500

10 −0.001 953 −1.9 ×10−6 0 −1.9 ×10−6 −0.001 953

15 −0.000 061 −1.9×10−9 0 1.9×10−9 0.000 061

20 −1.9×10−6 −1.9×10−12 0 −1.9×10−12 −1.9×10−6

25 −6.0×10−8 −1.8×10−15 0 1.8×10−15 6.0×10−8

30 −1.9×10−9 −1.7×10−18 0 −1.7×10−18 −1.9×10−9

35 −5.8×10−11 −1.7×10−21 0 1.7×10−21 5.8×10−11

40 −1.8×10−12 −1.7×10−24 0 −1.7×10−24 −1.9×10−12

2.2 --h , (2.69) V ′′′(0)

û ~ = −1/2 ~ = −3/4 ~ = −1 ~ = −5/4 ~ = −3/2

5 −3.312 500 −2.138 672 −2 −2.251 953 −6.937 500

10 −2.089 844 −2.000 278 −2 −1.999 516 −1.699 219

15 −2.004 333 −2.000 000 −2 −2.000 001 −2.013 977

20 −2.000 183 −2.000 000 −2 −2.000 000 −1.999 42

25 −2.000 007 −2.000 000 −2 −2.000 000 −2.000 023

30 −2.000 000 −2.000 000 −2 −2.000 000 −1.999 999

35 −2.000 000 −2.000 000 −2 −2.000 000 −2.000 000

40 −2.000 000 −2.000 000 −2 −2.000 000 −2.000 000

· 26 · Z\[\]_^

2.3 --h=−1 , m ¡ (2.69) ¢£¤¡ (2.8) ¥¦

t 10 û 20 û 40 û 60 û §5¨5|1/4 0.244 9 0.244 9 0.244 9 0.244 9 0.244 9

1/2 0.462 1 0.462 1 0.462 1 0.462 1 0.462 1

3/4 0.634 9 0.635 1 0.635 1 0.635 1 0.635 1

1 0.751 6 0.761 6 0.761 6 0.761 6 0.761 6

3/2 0.908 2 0.905 3 0.905 1 0.905 1 0.905 1

2 0.972 0 0.964 4 0.964 0 0.964 0 0.964 0

5/2 0.998 2 0.987 0 0.986 6 0.986 6 0.986 6

3 1.008 2 0.995 0 0.995 0 0.995 1 0.995 1

4 1.011 0 0.997 9 0.999 2 0.999 3 0.999 3

5 1.008 2 0.997 3 0.999 7 0.999 9 0.999 9

10 0.998 4 0.996 8 1.000 3 1.000 1 1.000 0

100 0.998 7 0.999 8 1.000 1 1.000 0 1.000 0

Ó Ö·î¨ Lyapunov +, ß áâî Adomian © Ëî!U¼ Ë (2.12),

−3/2 6 ~ 6 −1/2 , $â (2.69)Ü 'À&(&) 0 6 t < +∞

0 ò&%&'&ÆÉÊË . ª Ô , $â&Ë (2.69) Q (2.57) ±&& ,

#t$ êët«&ât¬ a Â&ã&Ï&Õ Ü 't­t®t¯0 6 t < +∞ ° ±² Ƴ´ Ë . µ¶· ¥ª¸ ,

¢ Ö¹ Î Ì õº , »¼½ (2.62) Q »¼½ (2.50) ¾¿ , ª Ô , À¾ÁÂÃÄÅÆ .ÇÈÉÊ ¬ËÌÍÎÏÐ½Æ (2.69) ÑÒÓÆ (2.12) ÔÕÖ×Ø . Ù ~ = −1Ú

1

1 + t= 1 − t + t2 − t3 + · · ·

ÛÜ Ð½ (2.69) Ô 10 ÝÅÞÆ , Áß

V (t) ∼ t − 1

3t3 +

2

15t5 − 17

315t7 +

62

2835t9 + · · ·

à Öáâã Ú ÒÓн (2.12) ÖáâãäåÎæ !

3. ç èéêéëìíî

limt→+∞

exp(−nt) = 0, n > 1

ªï , 𻼽 exp(−nt) | n > 0 (2.70)

ßòñôóôõôöô÷ôøôùûú V (t) ∼ t − 13

t3 + 25

t5 · · ·, üôýôþôÿ 2/5 ù 2/15, þ , õ . ——

2 · 27 ·

Öt¼t½ t t¸tÁ . "!#$ (2.7), «%t»t¼t½'& »t¼t½(2.50) ¾¿ß . (*) V (t) +Á*,Ï **-

V (t) =

+∞∑

n=0

cn exp(−nt) (2.71)

.0/, cn ¸Ø½ . µ*1*2*3¹*4*5Ö*6*7*8*9*:*; .<*= 9*:*; - (2.71), - (2.6)

Ú -(2.7), >*?*@*A , B*C

V0(t) = 1 − exp(−t) (2.72)

D ¸ V (t) Ô*E*F*G*HÆ , I*J

L[Φ(t; q)] =∂Φ(t; q)

∂t+ Φ(t; q) (2.73)

D ¸*K*L*M*N*O*P , ¹*O*P*+Á*N*QL [C3 exp(−t)] = 0 (2.74)

.0/, C3 ¸*R*S*T½ . U*BÖ m Ý*V*W*X*Y (2.39) ÔƸ

Vm(t)=χmVm−1(t) + ~ exp(−t)

∫ t

0

exp(τ) H(τ) Rm(V m−1) dτ

+C3 exp(−t), m > 1

.0/, R*S*T½ C3

-(2.40) ´*Z .

<*= 9*:*; (2.71)Ú*[ Ý*V*W*X*Y (2.39), K

L¼½ H(t) ¸*,Ï*V -H(t) = exp(−κ t) (2.75)

µ*\ , κ ¸Î*]½ .Ê*^*_*`

, a κ 6 0 ,[ Ý*V*W*X*Y (2.39) ÖÆ*b*c

t exp(−t)

ã , µ Ç*d*e 9*:*; (2.71). a κ > 2 , ¼½» exp(−2t) F*f Ç*g*` [ Ý*V*W*XY (2.39) ÔÆ / , h*I , i*jÅÞݽ**** , exp(−2 t) ãÖؽ*F*f Ç À*k*lm

. µno3pqrstu . vtï , ¸3wxy9:; (2.71) zxypqrstu ,

**| κ = 1. µ*Îô*Z*3*~*BÖ*K*L¼½H(t) = exp(−t) (2.76)

ß ø (2.8) ,V (+∞) 5ÿ 1. , 5ÿ (2.70) 5ÿ (2.50) . ——

· 28 · ''

*, *ï**

V1(t) = −~

2e−t + ~ e−2t − ~

2e−3t

V2(t) = −~

2

(

1 +~

2

)

e−t + ~

(

1 +~

2

)

e−2t − ~

2(1 + ~) e−3t

+~

2

2e−4t − ~

2

4e−5t

...

~*BÃ , V (t) Ô m ÝÅÞ* **

V (t) ≈2m+1∑

n=0

γm,n(~) exp(−nt) (2.77)

.0/, γm,n(~) ¸*** ~ Öؽ .-

(2.77) Ρ ¡b¡c¡K¡L¡¢½ ~ ÖÐ½Æ . ¸¡3ÌÍ ~ Uн (2.77) ±²¡NÔ£¡¤,Ê¡^¡¥¡¦¡§¡g

V ′′(0)Ú

V ′′′(0) Ö ~ ¨©M , ,¡ª 2.3 h¡« .<¡= µ¡¬ ~ ¨©M , ­¡®

@ _¡` ~ ÔÁ¡¯¡° ,à U¡B¡Î¡±â¡²¡³¡´¡¡µ¡³¡¶¡·¡¸Ö¡M¡± . ~ ÔÁ¡¯¡°¡

ÅÞݽ*¹ [ *¹*º , ,*ª 2.3 h*« . ,*»*¹ ~ ÔÁ**¯*°0¼¾½ ~ Ô* ,-

(2.77)¿ g Ö V ′′(0)Ú

V ′′′(0) ÔtÐt½ÀÁ . ? ,<= Zà 2.1,

à ^ ZSÄÀÁÅV ′′(0)

ÚV ′′′(0) Ô*Æ*Ç* . , 2.4

Ú 2.5 h*« , a ~ = −3/2 È −5/4 È −1 È −3/4Ú −1/2 V ′′(0)

ÚV ′′′(0) À*Á*É*Æ*Ç* . **Ê*ËÖ* , a ~ = −1 , н*À*Á

*Ì*Í . ï*Î , Ï*Ð V ′′(0)Ú

V ′′′(0) À*Á , ~*B V (t) ÔÐ½Æ (2.77) Ñ**]*Ò*¯*°0 6 t < +∞ ¼¾À*Á*Å*Æ*ÇÆ (2.8). 5*, , a ~ = −1 , Æ (2.77)

¿ g Ö V (t) ÔÅÞÆÑ*Æ*ÇÆ (2.8) Ó e *­¿ , , 2.6 h*« . Î*Ô*?º , Õ*Ö*×*Ø*Ù*Ú ~ ¨¾M , ÀÛ X*ÜÃÌÍ ~ UнÆÔ*À*Á*NÖ £*¤ .

Ý2.4 --h Þßàáâ , (2.77) ãäå V ′′(0) æá

ç ÿ ~ = −1/2 ~ = −3/4 ~ = −1 ~ = −5/4 ~ = −3/2

5 −0.031 250 −0.000 977 0 −0.000 977 0.031 250

10 −0.000 977 −9.5 ×10−7 0 −9.5 ×10−7 −0.000 977

15 −0.000 031 −9.3×10−10 0 9.3×10−10 0.000 031

20 −9.5×10−7 −9.1×10−13 0 −9.1×10−13 −9.5×10−7

25 −3.0×10−8 −8.9×10−16 0 8.8×10−16 3.0×10−8

30 −9.3×10−10 −8.7×10−19 0 −8.7×10−19 −9.3×10−10

35 −2.9×10−11 −8.5×10−22 0 8.5×10−22 2.9×10−11

40 −9.1×10−13 −8.3×10−25 0 −8.3×10−25 −9.1×10−13

2 · 29 ·

Ý2.5 --h Þßàáâ , (2.77) ãäå V ′′′(0) æá

ç ÿ ~ = −1/2 ~ = −3/4 ~ = −1 ~ = −5/4 ~ = −3/2

5 −2.375 000 −2.041 016 −2 −2.076 172 −3.500 000

10 −2.026 367 −2.000 083 −2 −1.999 854 −1.909 180

15 −2.001 282 −2.000 000 −2 −2.000 001 −2.004 211

20 −2.000 054 −2.000 000 −2 −2.000 000 −1.999 825

25 −2.000 002 −2.000 000 −2 −2.000 000 −2.000 007

30 −2.000 000 −2.000 000 −2 −2.000 000 −2.000 000

35 −2.000 000 −2.000 000 −2 −2.000 000 −2.000 000

40 −2.000 000 −2.000 000 −2 −2.000 000 −2.000 000

Ý2.6 è --h= −1 â , éêë (2.77) ìíîë (2.8) æïð

t 5ç ñ 10

ç ñ 15ç ñ 20

ç òóô1/4 0.244 9 0.244 9 0.244 9 0.244 9 0.244 9

1/2 0.461 9 0.462 1 0.462 1 0.462 1 0.462 1

3/4 0.634 2 0.635 1 0.635 1 0.635 1 0.635 1

1 0.759 6 0.761 6 0.761 6 0.761 6 0.761 6

3/2 0.902 0 0.905 1 0.905 1 0.905 1 0.905 1

2 0.961 2 0.963 9 0.964 0 0.964 0 0.964 0

5/2 0.984 5 0.986 6 0.986 6 0.986 6 0.986 6

3 0.993 7 0.995 0 0.995 1 0.995 1 0.995 1

4 0.998 8 0.999 3 0.999 3 0.999 3 0.999 3

5 0.999 7 0.999 9 0.999 9 0.999 9 0.999 9

10 1.000 0 1.000 0 1.000 0 1.000 0 1.000 0

100 1.000 0 1.000 0 1.000 0 1.000 0 1.000 0

õ2.3 H(t) = exp(−t) ö , ÷øù (2.77) ú V ′′(0) ∼ ~ û V ′′′(0) ∼ ~ üýþÿ ú V ′′(0) 10

ç ñ ; ú V ′′(0) 20ç ñ ; ú V ′′′(0) 10

ç ñ ; þÿ ú V ′′′(0) 20

ç ñ

· 30 · ''

Ê Ë Ö , Ð ½ Æ (2.77) ] Ò ¯ ° 0 6 t < +∞ ¼ Á Â . S Ä Ù2.4∼2.6 Ñ 2.1∼2.3 ´'& ,

Ê^_`, tð~ tÖ ~ , Ð tÆ (2.77) &

Æ (2.69) À*Á**Í . a ~ = −1 , i*jÆ (2.77) Ô 10 ÝÅÞÆ*ÑÑ*Æ*ÇÆ*Ó e*­ . vï , ÐÆ (2.77) & Æ (2.69) , . ,á*h*% , ÐÆ (2.69) &Æ (2.57) . Ù , ¡S¡X¼ , ¡Õ¡Ö¡CΡÒÖ !"Å#*M*N$%ÖÆ .Ê*^*_*`

, V (t) Ô m ÝÅÞÆ (2.77) *> -***

V (t)≈1 + 2

m∑

n=1

[(−1)n exp(−2nt)]µm,n0

(

~

2

)

− exp(−t)

[(

1 +~

2

)

+~

2exp(−2t)

]m

(2.78)

.0/, µm,n

0 (x) - (2.58) Z& . *Ë'Ö* , µm,n0 (~) (Î) g*` .

<*=

N*Q (2.59), a ~ = −2 ,-

(2.78)* ß

V (t) ≈ 1 + 2

m∑

n=1

(−1)n exp(−2nt) + (−1)m+1 exp[−(2m + 1) t] (2.79)

**Ê*ËÖ* , Æ*ÇÆ (2.8) +, Ð

V (t)≈1 + 2

+∞∑

n=1

(−1)n exp(−2nt) (2.80)

à *¯*° 0 < t < +∞ ¼¾À*Á*Å*Æ*ÇÆ , -* , t = 0 . ¿ g 1 /0 −1, 1*? _2. 3*? , ¾*c45ã

(−1)m+1 exp[−(2m + 1)t]

ÅÞÆ (2.79) *]*Ò*¯*° 0 6 t < +∞ ¼¾À*Á*Å*Æ*ÇÆ . 6*Å . 3 ÝÅÞÆV (t) ≈ 1 − 2 exp(−2 t) + 2 exp(−4 t) − 2 exp(−6 t) + exp(−7 t) (2.81)

ÑÑ*Æ*ÇÆ*Ó e *­ , ,*ª 2.4 h*« .

ß3ö5÷5ø (2.79) ý782

m∑

n=1

(−1)n exp(−2nt)

ñ9 ý ù2

m∑

n=1

(−1)n exp(−nt)

þ , õ . ö5÷5ø (2.80) :;<ñ , õ=> . ——

2 · 31 ·

õ2.4 3 ?A@ABù (2.81) CADAEù (2.8) úFG ú 3 ç ñ ô (2.81); H þ ú òóô (2.8)

ÅÞÆ /JIK g*`

ln(1 + t)/(1 + t), t exp(−t)

L ãtÖ ' M N Ç O P . tÒtÓà Q / ,* 3ÉtÎ R tÖtÅtÞtÆ , 1 g 3tάX

Ë IKL ,t sin t, t cos t

S hUTUVUW ã Ò Ó Æ / g ` . Ù Ú XU UXUY É 19 ZU[ ÖU\U]U^U_U` , ,Lindstedt [52] È Bohlin [53] È Poincare [54] È Gylden [55]

S. a'M*k .b ^_`Îc_ + , , Lighthill [56, 57] È Malkin [58] È Kuo [59, 60]

ÚTsien [61]. -* , a t → +∞ ,

ln(1 + t)/(1 + t)Ú

t exp(−t) *d , vï ,à ^ N Çe ÒÓ*X / hTÖVWã .

h*I , 9*:*;*t*u**kf * Ù*8'MÖg&h .* 3 t exp(−t) ã*Çij e ÒÓ*X / hTÖVWã ,Ê*^k*g

V (t) lk*,Ï

tm exp(−nt) | m > 0, n > 1 (2.82)

. mtðtÑ - (2.72) ~ tÖEFGH n , Ñ - (2.73) ~ tÖKLMNOP , - oðjÖ*K*L

H(t) = 1 (2.83)Ê*^ *Õ*Ö*ÚÞÖ*X -p *~*BÖ V (t) Ô m ÝqÞ ,

. *> -***

V (t) ≈ 1 + 2

m+1∑

n=1

m+1−n∑

k=0

σm,n,k0 (~)

[

(−1)n (−nt)k

k!exp(−nt)

]

(2.84)

· 32 · ''

.0/

σm,n,k0 (~) =

1

2

[

µm,n+k0 (~) + µm,n+k−1

0 (~)]

(2.85)

*Ë'Ö* , µm,n0 (~) (Î) g*` .

<*= ~*BÖ V ′′(0)Ú

V ′′′(0) Ô ~ ¨¾M ,Ê

^_`, a −2 < ~ < 0 , Ð (2.84) ]Ò¯° 0 6 t < +∞ ¼"ÀÁÅÆÇ

n (2.8), , 2.7 h*« .

Ý2.7 è --h= −1 â , V (t) æéêë (2.84) ìíîë (2.8) æïð

t 10ç ñ 20

ç ñ 40ç ñ 50

ç ñ òóô1/4 0.244 9 0.244 9 0.244 9 0.244 9 0.244 9

1/2 0.462 1 0.462 1 0.462 1 0.462 1 0.462 1

3/4 0.635 1 0.635 1 0.635 1 0.635 1 0.635 1

1 0.761 6 0.761 6 0.761 6 0.761 6 0.761 6

3/2 0.905 1 0.905 1 0.905 1 0.905 1 0.905 1

2 0.964 0 0.964 0 0.964 0 0.964 0 0.964 0

5/2 0.986 6 0.986 6 0.986 6 0.986 6 0.986 6

3 0.995 3 0.995 0 0.995 1 0.995 1 0.995 1

4 0.999 0 0.999 3 0.999 3 0.999 3 0.999 3

5 0.997 5 0.999 9 0.999 9 0.999 9 0.999 9

10 1.002 1 0.998 2 0.999 9 1.000 0 1.000 0

100 1.000 0 1.000 0 1.000 0 1.000 0 1.000 0

¡rsÖ¡ , ¡S¡X¼ , V (t) l Û kt¡8jÖ (2.50) È(2.62) È (2.70)

Ú(2.82)

, u v a45Ï wtÎ n . ~B ! ,

Ê^ p tÒtÐnUxyn (2.57) È (2.69) È (2.78)

Ú(2.84). ÃQz ,

à ^ l**]*Ò*¯*° 0 6 t < +∞¼"ÀÁÅ tÎÒÆÇ n V (t) = tanh(t). 3? ,

-(2.57) Ù tÒ n / " q |Ì

, vï**Ì~Ö , v * UÎ*Ò ¿ Z −2 < ~ < 0 ,à Î*Ò**¯*°0¼¾À*Á .

Õ*Ö0&J 2.3 È 2.6Ú

2.7,Ê*^*_*`

, * k ÖÐn (2.78) &J**S -ÖÐn (2.69)

Ú *]ã - Ñ k e ÖÐn (2.84) , vï**ÌÖ . ?Ðn (2.84) & Ðn (2.69) . Ù*Ò*5*P!¾3 , *S*X¼ , Ρҡ+¡ÎnÖ#¡M¡N$% . n*¡k\]jÖ * , 1¡? , ðÎ*ÒÖ l Û !"qn . hð*5*P#*T , Â*Æ*ÇnJ . - à !¾3Ux Õ*Ö*×Ø*h TtÖ~ ¨¾M , Ç*Z*~*BÖ ~ Ô*¯*° , C e Ö ~ , s Ú Ø0 J*S*X¿ g ÖÐnÔ*À*Á*¯*° Ú À*Á#*$ . i*j*¹*º*À*Á*¯*°ÖÐ , Ñ**Õ*Ö*CÎ*Ò e Ö ~ , *ÉÎ*ÒÖÐn . a*4*5*Ñ*>*«*3*9*:*;*t*u Ú p*qr*s*t*u**C*½*E*F*G*Hn ÈK*L*M*N*O*P Ú K*L **h*ÉÖ*Ð D ð .

2 · 33 ·

2.3.6 *q --h ,táh% , S X - _tÖtÎÒ ' M , ÕÖ Ü # dK

L¡¢ ~ ¡hTdÝ¡V¡W¡X¡Y , 1¡? ¿ g Ρ8& g&Ö . vï , j**h n*X , *S*X*1*2*3Î* *b*c*K*L*¢ ~ ÖÐn . ¾ÐnÔ*À*Á*¯*° Ú À*Á#*$*KL*¢ ~, h*I , *I*Õ*Ö a*C*½ ~ Ô*Ë*¹*º à ^ . Ù*1*2*3Î*Òs Ú ØÐnÔ*À*Á*¯*° Ú À*Á*#*$Ö*Ü¡¢ .

£ / ,Ê*^ ð¤Î*8äåjÖ¡¢ ¥ ߦx ÐÔ*À*Á*¯*°*Çi**I

Õ¡Ö Ü Î¡Ò¡K¡L¡¢Ës Ú Ø . a¥© * ¡S¡XÔ¡N*1¡2Î*Ò§ i ȨÖ*Ã*N© .

r stÖ , µm,n0 (~) ÔZ & (2.58) Ì ¦ S X É .

à g` tÐn (2.57) È (2.78)

Ú(2.84)

/. ªÖ* , æÖ*Z&l Û 1«¬Ö­®¯ã - Z

ð±²³**É .* 3¾Ùδ , µ¶Ð

1

1 + t= 1 − t + t2 − t3 + · · · = lim

m→+∞

m∑

n=0

(−1)ntn, |t| < 1 (2.86)

Z&x = 1 + ~ + ~ t

z -*¿ g1

1 + t= − ~

(1 − x)

a |x| = |1 + ~ + ~ t| < 1Ú |1 + ~| < 1, i

−1 < t <2

|~| − 1, −2 < ~ < 0

1

1 + t=− ~

1 − x= −~

(

1 + x + x2 + x3 + · · ·)

= −~

+∞∑

n=0

(1 + ~ + ~ t)n

h*I1

1 + t= lim

m→+∞

[

−~

m∑

n=0

(1 + ~ + ~ t)n

]

*¯*°−1 < t <

2

|~| − 1 (−2 < ~ < 0)

߸¹ , º» = ¼½¾¿ , À5ÿÁÂÃÄÅƺ»ÇÈ = ÉÊË5ÿÌÍÎÏÐÑ , ÒÓ;ÔÕÖ× ¿ =þ

, Ø õ , ÙÚ =ÛÜÝ 7Þß . à ¹ , áâã Öäå = × ¿ . ——

· 34 · ''

¼J . ï*Î ,·æS*-

−~

m∑

n=0

(1 + ~ + ~ t)n

=−~

m∑

n=0

n∑

k=0

(

n

k

)

(1 + ~)n−k (~ t)k

=−~

m∑

k=0

m∑

n=k

(

n

k

)

(1 + ~)n−k~

k tk

=

m∑

k=0

(−1)k tk(−~)k+1m−k∑

i=0

(

k + i

k

)

(1 + ~)i

=m∑

k=0

(−1)k tk

[

(−~)k+1m−k∑

i=0

(

k + i

i

)

(1 + ~)i

]

=

m∑

n=0

(−1)n tn µm,n−1 (~)

.0/

µm,n−1 (~) = (−~)n+1

m−n∑

j=0

(

n + j

j

)

(1 + ~)j (2.87)

Ù - (2.87) Ñ*Z& (2.58) &J , ç ^ *É*,ÏèØ -

µm,n−1 (~) = µm+1,n+1

0 (~) (2.88)

vï1

1 + t= lim

m→+∞

m∑

n=0

µm+1,n+10 (~) [(−1)n tn] (2.89)

*¯*°−1 < t <

2

|~| − 1 (−2 < ~ < 0)

¼ . a ~ = −1 È ~ = −1/2Ú

~ = −1/50 ,. ÀÁ¯°SÄ * x −1 < t <

1 È −1 < t < 3Ú −1 < t < 99. é*Ä! , a ~ *d* ,

. À*Á*¯*° *

−1 < t < +∞

vï , Ð (2.89) Ô*À*Á*¯*°*Çil Û ¾K*L*¢ ~ s Ú Ø . ê*Ðé*ÄrsÖ , ätå~ tÖZ & µm,n

0 (~)¥¦ S X tÖ '¼ p , 3 ätå ë · !

2 · 35 ·

1«¬Ö­®¯ã - Z*ð±²³**É . Ù*Òìi , 1*Ãíîz*>*«*3*SXÔ*N Ú e Ã*N .

Bðz*%'M , ç ^ *É*,Ïï*Ò * g&ð*Z*Ã .ñò

2.2 óô é α (α 6= 0, 1, 2, 3, · · ·), ëìõ

(1 + t)α = limm→+∞

m∑

n=0

µm,nα (~)

(

α

n

)

tn (2.90)

ö÷Jø

−1 < t <2

|~| − 1 (−2 < ~ < 0)

ùJúû, üý

(

α

n

)

=α(α − 1)(α − 2) · · · (α − n + 1)

n!

þ

µm,nα (~) = (−~)n−α

m−n∑

j=0

(−1)j

(

α − n

j

)

(1 + ~)j (2.91)

ÿ x = 1 + ~ + ~ t. |x| < 1 |1 + ~| < 1,

−1 < t <2

|~| − 1, −2 < ~ < 0

𭮯*à [62], |x| < 1 |1 + ~| < 1 , ·

(1 + t)α =(−~)−α(1 − x)α = (−~)−α+∞∑

n=0

(−1)n

(

α

n

)

xn

=(−~)−α+∞∑

n=0

(−1)n

(

α

n

)

(1 + ~ + ~ t)n

= limm→+∞

(−~)−αm∑

n=0

(−1)n

(

α

n

)

(1 + ~ + ~ t)n

· 36 · z m *

(−~)−αm∑

n=0

(−1)n

(

α

n

)

(1 + ~ + ~ t)n

=(−~)−αm∑

n=0

(−1)n

(

α

n

)

n∑

j=0

(

n

j

)

(1 + ~)n−j~

j tj

=(−~)−αm∑

j=0

tjm∑

n=j

(−1)n

(

α

n

)(

n

j

)

(1 + ~)n−j~

j

=(−~)−αm∑

j=0

tjm−j∑

i=0

(−1)i+j

(

α

i + j

)(

i + j

j

)

(1 + ~)i~

j

=(−~)−αm∑

j=0

tjm−j∑

i=0

(−1)i+j

(

α

j

)(

α − j

i

)

(1 + ~)i~

j

=m∑

j=0

[(

α

j

)

tj

]

m−j∑

i=0

(−1)i

(

α − j

i

)

(1 + ~)i (−~)j−α

=

m∑

n=0

µm,nα (~)

[(

α

n

)

tn

]

µm,n

α (~) = (−~)n−αm−n∑

j=0

(−1)j

(

α − n

j

)

(1 + ~)j

¥ .

uv& (2.91) α 6= 0, 1, 2, 3, · · · ð , !"#$%&' −∞ < α <

+∞ (%) . #*' k, (2.91), +

µm,nk (~) = (−~)n−k

m−n∑

j=0

(

n − k − 1 + j

j

)

(1 + ~)j (2.92)

!,-. µm,n0 (~) / (2.58) 01 µm,n

−1 (~) / (2.87). 2034 , #56&'α ∈ (−∞, +∞), +

µm,nα (−1) = 1 (2.93)78

, #56%9:*' n, +lim

m→+∞µm,n

α (~) = 1, |1 + ~| < 1 (2.94)

;2 < =?>?@?A?B · 37 ·

CD, EF/ (2.58) (2.91), #*' l > 0, +

µm,n−l (~) = µm+l,n+l

0 (~) (2.95)

(2.93) GHIJKL . |1+~| < 1 , EF/ (2.91), #5M%9:*' n > 0,

+lim

m→+∞µm,n

α (~)

=(−~)n−α+∞∑

k=0

(−1)k

(

α − n

k

)

(1 + ~)k

=(−~)n−α+∞∑

k=0

(

α − n

k

)

(−1 − ~)k

=(−~)n−α [1 + (−1 − ~)]α−n

=1

3 .NOPLG ,

RQ(2.58) /L µm,n

0 (~) 01 (2.87) /L µm,n−1 (~) STUV (2.91) α = 0 α = −1 LWX . $%YZ , [\]^_34R.`aTbcd ' Q (2.57) e (2.78) (2.84) Lfgh%)h .

' Q (2.57) e (2.78) (2.84) fghi2jklm c Qn . o$pq , lrs 'Ltu'GvlL . EFhw (2.60), |1 + ~| < 1 , #56l rx L%9:*' N , +

limm→+∞

N∑

n=0

(

α2n+1t2n+1

)

µm,n0 (~) =

N∑

n=0

α2n+1 t2n+1

y C,x 56%9:*' N , z|'~ , ' Q (2.57) N Q

(2.12) N l .y C

, ' (2.57) ftu'vlh , %LM/ . (α1, α3, α5, α7, · · ·)

S Ll , Y , αk (k = 1, 3, 5, · · ·)

VQ(2.12) ' .

Q(2.12) 2 V l Γ0

(α1, 0, 0, 0, · · ·)(α1, α3, 0, 0, · · ·)

· 38 · (α1, α3, α5, 0, · · ·)

...

z (α1, α3, α5, α7, · · ·) ¡9¢£ . ¤I , ' Q (2.57) 2 V l¥/L Γ (~)

(α1 µ0,00 (~), 0, 0, 0, · · ·)

(α1 µ1,00 (~), α3 µ1,1

0 (~), 0, 0, · · ·)(α1 µ2,0

0 (~), α3 µ2,10 (~), α5 µ2,2

0 (~), 0, · · ·)...

z`l r (α1, α3, α5, α7, · · ·)

L¡9¢£ .

N¦MLG , _§ Γ (~) ¨©~ª«¬' ~. EFhw (2.59),

Γ (−1)( ~ = −1 ) ­`~L Γ0. ~ 6= −18

|1 + ~| < 1

, Γ (~) `~ Γ0. ®¯ C , EFhw (2.60), !°[ z`l(α1, α3, α5, α7, · · ·).

y C, ' Q (2.57) 2 V lm `L Γ (~)

z`l (α1, α3, α5, α7, · · ·) L¡9¢£ . o$pq , Y±¡9¢£L²³´µ¨©~$¶jL z . X , ¡9

lim(x,y)→(0,0)

x2 + y2

|x|

%·¸`L¹eºz (0, 0) L z .V»¼

, S½¾ y = βx, Y ,

β 2 V 5M&' . HIJK , +lim

(x,y)→(0,0)

x2 + y2

|x| =√

1 + β2

$0 , ¿¡9¨©~ z (0,0) L À . Y Qn . VÁ ' Q (2.57) ÃÄÅÆ ¨©~ª«¬' ~.y V s ' µm,n

0 (~) ´¢`L ~

N/.`L z

.ÇÈ_ Qn ,

s ' µm,nα (~) ÉÊ´¢`L α ~

N/¡9¢£L`

z . ~Y rËÌ , Í°/ µm,n

α (~)VÏÎÐÑÒÓÔÕ

.V .Ö σm,n

0 (~) / (2.85) M/ , /

σm,n,kα (~) =

1

2

[

µm,n+kα (~) + µm,n+k−1

α (~)]

(2.96)

;2 < =?>?@?A?B · 39 ·

VÏÎ×ÑÒÓÔÕ,

, |1 + ~| < 1, −∞ < α < +∞. J3ÙØÚ# α ∈ (−∞, +∞),

0 6 n 6 m + 1, +σm,n,k

α (−1) =

1, 0 6 k < m + 1 − n

1/2, k = m + 1 − n(2.97)

lim

m→+∞σm,n,k

α (~) =

1, |1 + ~| < 1

∞, |1 + ~| > 1(2.98)

, n k ( V %9:*' . z s ' µm,n

α (~) σm,n,kα (~)

%Û V LM/ ,y C

, ÉÊ·Ü£ÝÞßÜ' Q à ÄÅÆ . X ,

s ' f(z) Ltu'+∞∑

n=0

f (n)(z0)

n!(z − z0)

n

20/ ÎÐÑàáâãäÕ

limm→+∞

m∑

n=0

µm,nα (~)

[

f (n)(z0)

n!(z − z0)

n

]

Î×ÑàáâãäÕ

limm→+∞

m∑

n=0

σm,n,0α (~)

[

f (n)(z0)

n!(z − z0)

n

]

Y , µm,nα (~) σm,n,0

α (~)TU / (2.91) (2.96) / . ´¢åæfçL ~

α

N, 2HèÞßÜYZ¥/tu'à ÄÅÆ . X , '

V (t)≈m∑

n=0

µm,nα (~)

[

α2n+1 t2n+1]

(2.99)

V (t)≈1 + 2

m∑

n=1

[(−1)n exp(−2nt)]µm,nα

(

~

2

)

− exp(−t)

[(

1 +~

2

)

+~

2exp(−2t)

]m

(2.100)

V (t) ≈ 1 + 2

m+1∑

n=1

m+1−n∑

k=0

σm,n,kα (~)

[

(−1)n (−nt)k

k!exp(−nt)

]

(2.101)

· 40 · Ö m |ézé Q (2.57) e (2.78) (2.84) ééMé/ , Yé , |1 + ~| < 1, α ∈(−∞, +∞). α = π/4 , é' (2.99) éà ÄéÅéÆ ~ é~éêééëéìéëéÜ ,

í

2.5 $î . ~ = −1, α = ±1/2 e ±π/4 , ' (2.100)xï L 20 |z Q (ðñQò f ,

2.8 $î . ~ = −1/2, α = ±1/2 e ±π/4 ,

' (2.101)xï

L 20 |z Qó ðñQò f ,

2.9 $î .y C

,s ' µm,n

α (~) σm,n,kα (~)

ñ& %M/ .

ô2.5 α = π/4 õ , ö?÷?ø (2.99) ù?ú?û?ø (2.8) üÏýÿþ

; ~ = −1 ; ~ = −1/2 ; ~ = −1/5 ; ~ = −1/10

2.8 --h= −1, α = ±1/2 ±π/4 , 20 (2.100) (2.8) t α = −π/4 α = −1/2 α = 1/2 α = π/4

1/4 0.244 9 0.244 9 0.244 9 0.244 9 0.244 9

1/2 0.462 1 0.462 1 0.462 1 0.462 1 0.462 1

3/4 0.635 1 0.635 1 0.635 1 0.635 1 0.635 1

1 0.761 6 0.761 6 0.761 6 0.761 6 0.761 6

3/2 0.905 1 0.905 1 0.905 1 0.905 1 0.905 1

2 0.964 0 0.964 0 0.964 0 0.964 0 0.964 0

5/2 0.986 6 0.986 6 0.986 6 0.986 6 0.986 6

3 0.995 1 0.995 1 0.995 1 0.995 1 0.995 1

4 0.999 3 0.999 3 0.999 3 0.999 3 0.999 3

5 0.999 9 0.999 9 0.999 9 0.999 9 0.999 9

10 1.000 0 1.000 0 0.999 9 1.000 0 1.000 0

100 1.000 0 1.000 0 1.000 0 1.000 0 1.000 0

;2 < =?>?@?A?B · 41 ·

2.9 --h= −1/2, α = ±1/2 ±π/4 , 20 (2.101) (2.8)! t α = −π/4 α = −1/2 α = 1/2 α = π/4

1/4 0.244 9 0.244 9 0.244 9 0.244 9 0.244 9

1/2 0.462 1 0.462 1 0.462 1 0.462 1 0.462 1

3/4 0.635 1 0.635 1 0.635 1 0.635 1 0.635 1

1 0.761 6 0.761 6 0.761 6 0.761 6 0.761 6

3/2 0.905 1 0.905 1 0.905 1 0.905 1 0.905 1

2 0.964 0 0.964 0 0.964 0 0.964 0 0.964 0

5/2 0.986 6 0.986 6 0.986 6 0.986 6 0.986 6

3 0.995 1 0.995 1 0.995 1 0.995 1 0.995 1

4 0.999 3 0.999 3 0.999 3 0.999 3 0.999 3

5 0.999 9 0.999 9 0.999 9 0.999 9 0.999 9

10 1.000 0 1.000 0 0.999 9 1.000 0 1.000 0

100 1.000 0 1.000 0 1.000 0 1.000 0 1.000 0

"$#$%, Í°$& ï , ' `a Tbcd$($)$* L µm,n

0 (~) $+/ (2.58) 20$,+Þ\.-./.0.1.2.+g.3.4.5.6 . Í°.7.8 Ø 'à ÄÅÆ.9 à Ä.: Ý ñ &ÉÊ´¢.;.<l r ª«¬'ìP %$9.=$> . Í°i.& ï ,

s ' µm,nα (~)

9σm,n.k

α (~)

' ~9

α `N+/`L z . $%YZ , [ V `a Tbcd %)h.?@ .l r.A &L¹eÿghL.B.C .

2.3.7 D.E - F.G Ó.H#~ "JIJK X , `a Tbcd B~Yl rJLJM Ø Φ(t; q) ' (2.36) q = 1N Ã Ä . O$PLG , `a Tbcd L$Q$RTS , Í°$U%·ÜLWVX' åæ$Y$Z$[$\Q

V0(t) e ª«.]h.^._ L e ª« s ' H(t)9 ª«¬' ~. `!°[åæfç , 2.a

3.b' (2.36) q = 1N Ã Ä . W U.c OPLG , 'R`a Tbcd xï L.b' Qd à ÄÅÆ.9 à Ä.: ݨ©~ª«¬' ~.

y C, ª«¬' ~ ? @ .l r P %.9.=> b' Q d à ÄÅÆ.9 à Ä.: ÝL »¼.e .fVJgJh b'Ã Ä L cd d l , iJjz (Pade approximation) k¥Jl¶j . b

'+∞∑

n=0

cn xn

d[m, n] |.i.jz V

m∑

k=0

am,k xk

n∑

k=0

bm,k xk

mon, am,k e bm,k ' é' cj (j = 0, 1, 2, 3, · · · , m + n)

ñ + . ´éµ , _qpéééLqijzÉ·Ü£Ý_ßÜ x +$b' d à ÄÅÆ ,

g$h$m à Ä$: Ý . X , #

· 42 · rTsTtouQ

(2.12) vj.i.jz , [1, 1] e [2, 2]9

[3, 3] |.i.jzt,

3t

3 + t2,

t(15 + t2)

15 + 6t2Q(2.12)

d[m, m] |.i.jz2 .w.x

m∑

n=0

am,n0 tn

m−1∑

n=0

bm,n0 tn

, mV.y ' (2.102)

z.m−1∑

n=0

am,n0 tn

m∑

n=0

bm,n0 tn

, mV.| ' (2.103)

mn, am,n

0

9bm,n0

V ' .

N¦MLG , ~ t → +∞ , _.p. r .i.jz

~ z ê .Q

(2.12)d

[4, 4]9

[10, 10] |.i.jz í 2.6 $î .

ô2.6 - (2.106) (2.103) ù?ú?û?ø (2.8) üÏýÿþ

; [4,4] - ; [4,4] ;

[10,10]

`a - i.jz [50] _.p.i.jz 9 `a Tbcd. ²f .V . ñ a.b

' (2.36) q = 1 Ã Ä ,(.) vj.i.jz * .~..<.. q

d[m, n] |

;2 < =?>?@?A?B · 43 ·

i.jz Qm∑

k=0

Am,k(t) qk

n∑

k=0

Bm,k(t) qk

(2.104)

mn, ' Am,k(t)

9Bm,k(t) '..1z Q

V0(t), V1(t), V2(t), · · · , Vm+n(t)ñ + . . , Q (2.104)n

q = 1,7. j.2 (2.32), [m, n] |`a - i.jz

Qm∑

k=0

Am,k(t)

n∑

k=0

Bm,k(t)

(2.105)

# ".I.K X , _.p' Am,n(t)9

Bm,n(t) ¨©~$åæL V (t)d B s ' . `

¶j.B s ' (2.62),TU % vL [1, 1] |`a - i.jz

t(12 + 16t + 7t2)

(1 + t)(12 + 4t + 7t2)9[2, 2] |`a - i.jz

t(168 000 + 362 880 t + 238 000 t2 + 14 160 t3 − 47 124 t4 − 36 308 t5 − 13 419 t6)

3(1 + t)(56 000 + 64 960 t + 33 040 t2 + 12 000 t3 − 2 508 t4 − 9 076 t5 − 4 473 t6)

#~ ".I.K X ,m

[m, m] |`a - i.jz20 .w.xm2+m+1∑

n=1

am,n2 tn

m2+m+1∑

n=0

bm,n2 tn

(2.106)

mTn, am,n

2

9bm,n2

V ' . ¡µ%$¢LG , Í°$£$¤ , am,n2

9bm,n2 ¨©~ª«

¬' ~. ´¢ 2 (2.106) .2 (2.102) e¥2 (2.103) ¦.§¨© , Í°.£.¤ , [m, m] |`a - i.jz.ª ð Ý_­`~ [m2 + m + 1, m2 + m + 1] |.i.jz . .i.jzJ2 (2.102)

9 2 (2.103) ª t → +∞ ~ z ê , I`a - iJjz (2.106)

ª t → +∞ ~ 1.y C

, # x +:*' m, [m, m] |`a - i.jz (2.106) ¨ [m, m] |.i.jz (2.102)

9(2.103) ðñ . X ,

í2.6 $î , [4,4] |`

a - i.jz¨R [4,4] |.i.jz Q .« ñ , ¬.­¨ [10,10] |.i.jz%) . W U Þ , `¶j.B s ' (2.70) ,

m #.vL [1, 1] |`a - i.jz V

· 44 · rTsTtou1 − exp(−2t)

1 + exp(−2t)(2.107)

!:$®$¯G ðñQ V (t) = tanh(t).y C

, `a - i$jz ñ &T¨ $i$jz%) .

`é , véjé`éa - iqjézééÉ gq: bé'éÃ Ä . X ,V . gq: bé' V ′′(0)

9V ′′′(0) Ã Ä , 2 (.) #.b'

∂2Φ(t; q)

∂ t2

t=0

=+∞∑

n=0

V ′′n (0) qn

9∂3Φ(t; q)

∂ t3

t=0

=

+∞∑

n=0

V ′′′n (0) qn

¶jJiJjz ,TU m ~JJ<JJ q

d[m, n] |JiJjz , ¤J q = 1,

m [m, n] |`a - i$jz . ' Q (2.69) 6 ï L V ′′(0)9

V ′′′(0)d `a - i

jz$°K 2.10. ' Q (2.78) 6 ï L V ′′(0)9

V ′′′(0)d `a - i$jz , °K

2.11. ª_.p.m.±.² n , `a - i.jz[HèÞ g.: . V ′′(0)9

V ′′′(0)d ÃÄ

. 2.10 ³´ (2.69) µ V ′′(0) ¶ V ′′′(0) [m, m] ·¸ - ¹º

[m, m] V ′′(0) V ′′′(0)

[1, 1] 0 −3

[2, 2] 0 −2

[3, 3] 0 −2

[4, 4] 0 −2

[5, 5] 0 −2

[10, 10] 0 −2

2.11 ³´ (2.78) µ V ′′(0) ¶ V ′′′(0) [m, m] ·¸ - ¹º

[m, m] V ′′(0) V ′′′(0)

[1, 1] 0 −5.571 43

[2, 2] 0 −2

[3, 3] 0 −2

[4, 4] 0 −2

[5, 5] 0 −2

[10, 10] 0 −2

# "qIqK X , Íé°q£q¤ , $é% [m, m] |é`éa - iqjézéé[éé¨é©é~éªé«é¬é'~.y C

, »éÖéåéæéL ~

Nq¼ , \éIq6q½ véLqbé' Q éÃ Ä , Íé°q¾é¤é2é¶éj

`a - i.j cd Ã Ä ²³ ..".¿ .ÀSÁ$î , [m, m] |`a - i.jz.Â

¨©ª«¬' ~. Ã.ÄLG , Í°iÉ.ªl.Å.±.².Æ xï m '.Ç34 .

;2 < =?>?@?A?B · 45 ·

$%YZ[JÈ 4 Ø `a - iJjzÉHèÞßÜÉ' `a Tbcd xï L.b' Qd à ÄÅÆ ,g.h.m à Ä.: Ý .ÊJË ÞJÈ , ª "JI , Í°´¢l r »JÌJK XJÍJÎ.`a Tbcd d B ".ÏJÐ . Í

°JÑXJÈ 4 Ø `~$% Qbcd , `a Tbcd 2 xï ¨©~ª«¬' ~ L e'R`.B s ' .w Ll.Ò.b' Q .

j.Y.Z.[.\ Q e ª«.]h.^._ 9 ª« s 'åæ_LÓVÔ' , Í°2 QJwJx

Ç`JB s 'JÕ.ÖL.b' ,

y C, 2jJ©J¼LJB s '

%)Þ zl r ¡.]h.×.ØL Q . Í°.? ï.Ù.Ú.Û.Ü.Ý 9.ÞÕ.ß.à Ü.Ý , 0.&.6.YZ.[.\ Q e ª«.]h.^._ 9 ª« s 'Låæ . YZ.á.â.ª·Ü£Ý_ ».ã .`a Tbcd L.vj . Í°34 Ø ª«¬' ~ ÉÊP %.9.=.> b' Q d à ÄÅÆ.9 à Ä.:Ý .CD

, ´¢.ä > ~ å] , 2.æ.çfçL ~

N, 0 ñ a.b' Q Ã Ä . I 8 , Í°.? ï

.`a - i.jz , 0 g.: b' Q LÃ Ä , ¿ cd ¨R.i.jz V %) .

è3 é êìëìíìîìï

ªJð 2IÉn

, Í°jl r »JÌ LXJ_JÍJÎ.`a Tbcd L.B "JÏ.Ð ."JI

, ¦l.ñ#`a Tbcd ¦.§hL.ò.p .

3.1 óõô÷öùøùúüû´µ , l r ¡.]h.×.Ø2jl.ý =.>c £01.Y$Z 9 (

z.) þ.ÿì.ò.p .V»¼

, ½¾l r l.Å.2L.¡.]h c £N [u(r, t)] = 0 (3.1)

mn, NV ¡.]h.^._ , u(r, t)

V q s ' , r9

tTU.9 V . .

u0(r, t) î ðñQ u(r, t)

d Y$Z$[$\ Q , ~ 6= 0V ª«¬' , H(r, t) 6= 0V ª« s ' , L

V ª«.]h.^._ , ¿.^._ %hwL [f(r, t)] = 0, ` f(r, t) = 0 (3.2)

q ∈ [0, 1]fV .<.. , ÆÏ`a

H[Φ(r, t; q); u0(r, t), H(r, t), ~, q]

= (1 − q) L[Φ(r, t; q) − u0(r, t)] − q ~ H(r, t) N [Φ(r, t; q)] (3.3)NOPLG , _.ÀL`a,-.¡êª«¬' ~

9 ¡êª« s ' H(r, t). FÍ°$q , ;.<.¡êª«¬' ~

9 ¡êª« s ' H(r, t)C `a ( . $0 , Y

L`a¨RL`a l$Åh . ª«¬' ~9 ª« s ' H(r, t) ª`a Tbcdn L f j .

NOPLG , Í°.ªåæ.Y.Z.[.\ Q u0(r, t) e ª«.]

h.^._ L e¡êª«¬' ~9 ª« s ' H(r, t) _.U%ÛÜL V' .M

q ∈ [0, 1]V .<.. .

`a (3.3)V ê , »

H[Φ(r, t; q); u0(r, t), H(r, t), ~, q] = 0

Í°çê|. c £

(1 − q) L[Φ(r, t; q) − u0(r, t)] = q ~ H(r, t) N [Φ(r, t; q)] (3.4)

;3 < ?@?A?B · 47 ·

mn, Φ(r, t; q)

V _.p c £ d Q ,m S¨©~.Y.Z.[.\ Q u0(r, t) e ª«.]h.^._

L e ª« s ' H(r, t)9 ª«¬' ~, I 8ó ¨©~..<.. q ∈ [0, 1]. ~ q = 0 ,

ê|. c £ (3.4)xV

L[Φ(r, t; 0) − u0(r, t)] = 0 (3.5)

'Rhw (3.2), JqΦ(r, t; 0) = u0(r, t) (3.6)

~ q = 1 , 'R~ ~ 6= 09

H(r, t) 6= 0, ê|. c £ (3.4) ­`~.á.Z c £N [Φ(r, t; 1)] = 0 (3.7)

.`Φ(r, t; 1) = u(r, t) (3.8)

y C, EF.2 (3.6)

9(3.8), ~..<.. q \ 0 ßÜ.ç 1 , Φ(r, t; q) \.Y.Z.[.\ Q

u0(r, t) . ã (z . ) ç.á.Z c £ (3.1) L Q u(r, t). ª`ag n , Ym

ãV . . Y:G c £ (3.4) k V ê|. c £ d á y .

+/ m |..6'u

[m]0 (r, t) =

∂mΦ(r, t; q)

∂qm

q=0

(3.9)

vjÏtu.Õ.Ö.+g , Φ(r, t; q) 2.Õ.Ö x qd b'

Φ(r, t; q) = Φ(r, t; 0) ++∞∑

m=1

u[m]0 (r, t)

m!qm (3.10)

um(r, t) =

u[m]0 (r, t)

m!=

1

m!

∂mΦ(r, t; q)

∂qm

q=0

(3.11)

j.2 (3.6)9

(3.11), Φ(r, t; q)d b' (3.10) 2 .wV

Φ(r, t; q) = u0(r, t) +

+∞∑

m=1

um(r, t) qm (3.12)

NOPLG , Í°.U%ÛÜL V'Råæ.Y.Z.[.\ Q u0(r, t) eÿª«.]h.^._ L e¡

ꪫ¬' ~9 ª« s ' H(r, t).

L.M °[åæfç , \I Ø(1) $% q ∈ [0, 1], ê|. c £ (3.4) L Q Φ(r, t; q) (.ª ;

(2) m = 1, 2, 3, · · · , +∞, ..6 u[m]0 (r, t) .ª ;

· 48 · rTsTtou(3) Φ(r, t; q)

d b (3.12) ª q = 1 Ã Ä .Â, ª_.p L.M Æ , EF.2 (3.8)

9(3.12), Í°

ç.b Q

u(r, t) = u0(r, t) ++∞∑

m=1

um(r, t) (3.13)

2 (3.13)xï ðñQ

u(r, t)9 YJZJ[J\ Q u0(r, t)

d ,mÉn

, qJ1 um(r, t) '

Æ.À xï L|.£ ñ + .

3.2 õô÷öùøùúüû !"

, +#%$un = u0(r, t), u1(r, t), u2(r, t), · · · , un(r, t)

&' +# (3.11), um(r, t)d =.> ()*+,.( (3.4)

n-. ç . /+,.( (3.4) .0.. q 1 . m

, .23 m!, 4. q = 0, 56

ç m,.(7

L [um(r, t) − χm um−1(r, t)] = ~ H(r, t) Rm(um−1, r, t) (3.14)

mn, χm 8 (2.42) 9# , :

Rm(um−1, r, t)=1

(m − 1)!

∂m−1N [Φ(r, t; q)]

∂qm−1

q=0

(3.15)

/; (3.12) <0; (3.15), =Rm(um−1, r, t) =

1

(m − 1)!

∂m−1

∂qm−1N[

+∞∑

n=0

un(r, t) qn

]∣

q=0

(3.16)

> ?@AB, C=,D( (3.14) E=FG

AHIJKL, : Rm(um−1, r, t)

MLMNMOM9MPHMIMJMK

N QM)M3 8 (3.15).MR

.&M' 9M# (3.15), M,MSMDMM(

(3.14)

ATUVWXYZ[um−1. \] , ^_

W`1a

HIA,SD( (3.14),

)W`bc

u1(r, t), u2(r, t), · · · de , u(r, t)

Am ,fg

u(r, t) ≈m∑

k=0

uk(r, t) (3.17)

7ihkjkl (3.12) mknkokpkqkrkskt (3.4), u q vkwkxkykzk lk| o , k~kkkkkkkpkqrst(3.14) (3.15), (3.16). ——

3 · 49 ·

+,SD() AS; . A(q) B(q)

|q| 6 1 a

A ¡

( ¢ ¤£ 0 ¡ ), ¥¦A(0) = B(0) = 0, A(1) = B(1) = 1 (3.18)

§A(q) =

+∞∑

k=1

αk qk, B(q) =

+∞∑

k=1

βk qk (3.19)

¨M©MªM«A(q) ¬ B(q)

AM­M®M¯M°M± ¡. \ A(q) ¬ B(q)

|q| 6 1 ²aM , 8; (3.18), ³´

+∞∑

k=1

αk = 1,

+∞∑

k=1

βk = 1 (3.20)

56µ¶ · ¸ #A+,SD¹(

[1 − B(q)] L[Φ(r, t; q) − u0(r, t)] = A(q) ~ H(r, t) N [Φ(r, t; q)] (3.21)

C=º»F¼A½

;QFG , 2¾¿À · ¸ #AÁ

,SD¹(L[

um(r, t) −m−1∑

k=1

βk um−k(r, t)

]

= ~ H(r, t) Rm(um−1, r, t) (3.22)

º%ÂRm(um−1, r, t) =

m∑

k=1

αk δm−k(r, t) (3.23)

:δn(r, t) =

1

n!

∂nN [Φ(r, t; q)]

∂qn

q=0

(3.24)

ÃÄ, +,SD¹( (3.4) ¬

Á,SD¹( (3.14)

BA(q) = B(q) = q Ź( (3.21)¬ (3.22) ÆÇÈÉS .

^MÊ ,M· P

HMIMËMÌ)MÍ MÎMÏMÐ ¹M(M¬MFM¼ÒÑMÓ ( ÔMÕ ) ÖM×MØMÙ .

¾!M", 5M6MÚMÛMÜM M· ¹M( (3.1) ÝMÞMß

IMàMáMâGMã ¨ M¹Mä

AMåMæMçMè.Äé

, ¹( (3.1)

AS;PÊ , êëÜ)3ØÙ ·ÏÐ ¹( , ì)3ØÙ · ÔÕ ( ÑÓ ) Ö× . ê)3

Bí ¨ ¹(îðï ¨ ¹(ñí ¨

- ï ¨ ¹(òó< ¡ ¹( . C= ÏÐ ¹(¬ÔÕÖ×Qôõg

A¹äöM÷ , øùúëG

A ÏÐ ¹(¬ÑÓ ( ÔÕ ) ÖM× , ûMüMýMþMëMGAÑMÓMÿMañ ëMG AMHMIMJMK ¬MëGMõ A £ 0 ¡

A(q) B(q). ] , MëM9 ÏMÐ ¹M(MòMóMÑMÓ ( ÔMÕ ) ÖM× Â LMN( ) ¡ . \] , Ùa¹ä B A .

· 50 ·

3.3 ± ¡ A PMÊ .

!"# AM± ¡$$ %Më . )M3&' ,( G

ã ¨ ¹äO RA± ¡ a (3.13)

, ê9 B ü ËÌ Æa .)*

3.1 ( +, )* ) -./u0(r, t) +

+∞∑

m=1

um(r, t)

021, 354 , um(r, t) 62758:92;2<2=2> (3.22), ?2@2A (3.23) (3.24) B (2.42) C2D ,EFG @H=> (3.1) IJ .K §

s(r, t) = u0(r, t) +

+∞∑

m=1

um(r, t)

ª« ± ¡. 8 ; (3.22) ¬ (2.42), 56=M7

~ H(r, t)

+∞∑

m=1

Rm(um−1, r, t)

=

+∞∑

m=1

L[

um(r, t) −m−1∑

k=1

βk um−k(r, t)

]

=L[

+∞∑

m=1

um(r, t) −+∞∑

m=1

m−1∑

k=1

βk um−k(r, t)

]

=L[

+∞∑

m=1

um(r, t) −+∞∑

k=1

+∞∑

m=k+1

βk um−k(r, t)

]

=L[

+∞∑

m=1

um(r, t) −+∞∑

k=1

βk

+∞∑

n=1

un(r, t)

]

7MLONOPOQOROS OTOUOV |= L

[(

1 −

+∞∑

k=1

βk

)

s(r, t)

]

OWOXOY , ZO[ QO\O] . ^`_ 1 −∑+∞

k=1 βk = 0, aOXOYObOcOdOe QOfOg z ]OhOi . ——

3 · 51 ·

=L[(

1 −+∞∑

k=1

βk

)

+∞∑

m=1

um(r, t)

]

=L(

1 −+∞∑

k=1

βk

)

[s(r, t) − u0(r, t)]

\j ~ 6= 0 H(r, t) 6= 0, 8 ; (3.20) ¬ (3.2), ³´+∞∑

m=1

Rm(um−1, r, t) = 0 (3.25)

k ¹l , mn9o (3.23) ¬ (3.24), ³´+∞∑

m=1

Rm(um−1, r, t)=

+∞∑

m=1

m∑

k=1

αk δm−k(r, t)

=

+∞∑

k=1

+∞∑

m=k

αk δm−k(r, t) =

(

+∞∑

k=1

αk

)

+∞∑

n=0

δn(r, t)

mn; (3.20) (3.24) ¬ (3.25), ³´+∞∑

m=1

Rm(um−1, r, t)=

+∞∑

m=0

δm(r, t)

=

+∞∑

m=0

1

m!

∂mN [Φ(r, t; q)]

∂qm

q=0

= 0 (3.26)

^Ê , Φ(r, t; q) 륦pÓP HI ¹q (3.1).§

E(r, t; q) = N [Φ(r, t; q)]ª« ¹q (3.1)

Ar st . u ÃÄE(r, t; q) = 0

úûY pÓ¹q (3.1)

Avwa . mnl9o ,

r st E(r, t; q) ¼Y £ 0D

[qA­®¯°± ¡ j

+∞∑

m=0

qm

m!

∂mE(r, t; q)

∂qm

q=0

=+∞∑

m=0

qm

m!

∂mN [Φ(r, t; q)]

∂qm

q=0

mn (3.26), x q = 1 Å , Ù ªy ;O RE(r, t; 1) =

+∞∑

m=0

1

m!

∂mE(r, t; q)

∂qm

q=0

= 0 (3.27)

· 52 · mn E(r, t; q) Æ9o , ; (3.27)

@z, x q = 1 Å , 56

bc pÓ¹q (3.1)

Avwa . \] ,

V ± ¡u0(r, t) +

+∞∑

m=1

um(r, t), ê9jpÓ¹q (3.1)

A · a . &| .)*3.2 -./

u0(r, t) +

+∞∑

m=1

um(r, t)

021, 354 , um(r, t) 62758:92;2<2=2> (3.22), ?2@2A (3.23) (3.24) B (2.42) C2D ,E

+∞∑

m=1

Rm(um−1, r, t) =

+∞∑

m=0

δm(r, t) = 0

K ~ Ù&'Â bcA ªy ; (3.26), ü9÷ ¾ Ä . &| .

¹q (3.14) Üj¹q (3.22)

A(q) = B(q) = q ÅAÇÈÉ . \] , 56=

ÀÙ9÷ .)*3.3 -./

u0(r, t) +

+∞∑

m=1

um(r, t)

01, 34 , um(r, t) 6789;<=> (3.14), ?@A (2.42) B (3.15) CD ,

EFG H=> (3.1) J , ?+∞∑

m=1

Rm(um−1, r, t) = 0

mn9÷ 3.1 ¬9÷ 3.3, 56V

Âv

ýþÑMÓMÿMa u0(r, t) H

IMJMKL £ 0 M¡ A(q) ¬ B(q)

¡ ~ M¡ H(r, t), 3wM± ¡

(3.13)

. 9M÷ 3.2 M¾ % , 8 GMã ¨ M¹MäMO R

AM± ¡ fMgMaMÆI¬v

.

3.4 ß A ¬MP ¹Mä , òMò àMåMY M . G , GMã ¨ M¹MäMìåY2

47 2 R A . ÷2¡2 , Ú =2¢Gã ¨ ¹äÆ22£ I .Ä é

, G㨠¹ä22¾2¤2 A¥:¦ ýþÑÓÿ2a u0(r, t) 2HIJK

L 2 ¡ ~

3 · 53 ·

¬ ¡

H(r, t). Ù ¥§¦ ¿]¨© , ª« Y¬­ =®ô¥¦C=Ú M . Cª , ¯ B Ú ¥§¦§°± ¾Gã ¨ ¹ä=² I ¬³´ I Æ åµ .k ¹l , ¶û A· é¸ , Ú ¥§¦§¹ gº»_¨© . \] , ûü åæ p2¼Ý2½2¾ ¬2­ ýþÑÓÿ2a u0(r, t) 2HIJK

L ¬2 ¡

H(r, t).¿À,

¬­ÁÂÃ ·ÄÅ.

, ¿

2 ÆC « ,· P

HIËÌAa®ªëG Aå ¡ ªy

.

Ç,È ÉS% , ¶É÷ÊˬÔÕ ( ÑÓ ) Ö× RÌ , Í ± ýþN å ¡ ØÙO ± P HIËÌA aÎP2Ï Ä . C2ª , ú · O

±APHIËÌ

,

¬2­¿À ®MýMþ MÎ å M¡ Ý ªy a . ÚM¾Mü ËMÌMA ÑÐÒÓ . ÔM¿ , M ¬­ýþ Î

å ¡en(r, t) | n = 0, 1, 2, 3, · · · (3.28)

u(r, t) =

+∞∑

n=0

cn en(r, t) (3.29)

ªy ¹q (3.1) Æa u(r, t), º%Â , cn jÞ ¡ . ; (3.29) Õ¾¹q (3.1)

A ÐÒÓ. j¾Ö×ü ÐÒÓ , ÑÓÿa u0(r, t) ØÙ å ¡ ª« , Ù

u0(r, t) =

M0∑

n=0

an en(r, t) (3.30)

ÚÛ , an

BÞ ¡ , M0

B · ¯Ú ¡ .éÛ

, j¾Ö× ÐÒÓ (3.29),

HIJKLØ¥¦¿ÀÖ×Ýܹq

L[w(r, t)] = 0

ÆaØ ¦ Ù å ¡ ªy , Ùw(r, t) =

M1∑

n=0

bn en(r, t) (3.31)

º%Â , bn jï ¨ Þ ¡ , Ú ¡ M1

¦HIJKL ÆÞ Áß ¾ ¡ w± , üÞ Áß ¾ ¡ ^Ê2à2pÓ¹2q (3.1)

A Þ Á2ß ¾ ¡ FG . ÆC2ª¿] ,

B\2j Á2ß SD¹2q (3.22) Æ

^ajum(r, t) = u∗

m(r, t) + w(r, t)

º%Â , u∗m(r, t)

B¹q (3.22) ÆÇa .

k , j¾¥¦ ÐÒÓ (3.29), CýþA ¡

H(r, t) Øá Áß SD¹q (3.22)

AÇa u∗

m(r, t) ì®ü å ¡ ªy , Ùu∗

m(r, t) = L−1[~ H(r, t) Rm(um−1, r, t)] =

M2∑

n=0

dn en(r, t) (3.32)

· 54 · º%Â , dn jÞ ¡ , L−1 j HIJK L Æâ JK . \] ,

ÐÒÓ(3.29) ½¾ ¬­ ýþÑÓÿa u0(r, t)

HIJKL ¬ ¡

H(r, t).~ ÐÒÓ (3.29),

¬­ôãäå a% Ræ CçÑèéê . \] ,

ÐÒÓ Gã ¨ ¹ä Aëì í Aî .ÐÒÓ B ¿M]MÆ , ª« Yï R Cç A ÐÒÓðñ ÜóòôõöÐ÷øùúûüýþÐÿÐÒÓ

.¬­ Ìæ,È MÉMÀ ,

M¡H(r, t) ëMô

¦ MÙ ÐÒÓðñM w± .

\M] ,

M A ¼MÝ Ð Ò¡ H(r, t) ÆMý . ¶ I· é¸ ,

¦(3.28)

± o A · å en(r, t) Qûü a ªy (3.29) Â Ræ . ¸ Æ , m

ßfga

u(r, t) ≈m∑

n=1

um(r, t) =

M3∑

n=0

cm,n en(r, t) (3.33)

ACïÞ ¡ cm,n xfg

ß ¡ ÅQôÍ . Új ¬­ ¾Cç A ðñ, Ù ù ! , "#$%&' ÐÒÓ()* , + % ,-.

. üp¼/ 0 Ð ¾ ¡ Æýþ .È ÉÀ ,

~ ÐÒÓðñ ¬ ðñ, ôã w± ¡ H(r, t). \] ,

ðñ1 ã ¨ M¹Mä2 ëì 3í PÊ 2 î .mn (3.13), pÓP45 ËÌ Í67³ · ðº ÏMÐ ¹qj Áß S7M¹q (3.14) òMó (3.22)2 458 ËMÌ . 9ª , ¿:pMÓMP45 ËMÌï a , 9 ï Ú 458 ËÌ ìûü ï a . \] ,

¬­ï 9ç Ð; ' ðñ : <= ð ô>?@ABC Ð ,ñ

ò2ô2õ2ö Ð u0(r, t) EDGFG?G@GHGI L÷ DGFGJ H(r, t) &GKG<GLGMGN , OGP GQC øùúûüý (3.14) RS (3.22) TUVC Ð . WXp¼/Y 0 Z[\]^_`

u0(r, t) acbd45e8 L fbdgh H(r, t)2ij

.klÐÒÓðñ a ðñ ªm Ð; ' ðñ , n\]^_ ` u0(r, t) aobd45e8 L fbdgh H(r, t)2ijp ïqr ½¾st . W u ¼v¤ rwx kyz [ 1|~2 .

3.5 YXhv rq . , h f ¡ x¢£¤ l ` ¥ gh¦§ . ¨©ª«¬ ` ~ , © |~­®¯°±r³²£´ ¨© ¥ gh ¤ l YXµ§ ¶·¸¹ ` . º» , ¼ © |~ ,½¾¿ vÀX pÁÂà st

IJÆÅÇÈÉh ` . ÊËÌÍÎÏ

qÐÑÒ

, Ó¦§[\]^_ ` u0(r, t) aÔbd ¶· eÕ L fbdgh H(r, t) ij .Ö ´ ij [\]^_ ` u0(r, t) a×bd ¶· eÕ L fbdgh H(r, t),¯°Ø

ÙÚÁ± r³²£ ij bdÛh ~ Ü . ¨©ªÝ Á «¬ ` ~ , © |~

Þ3 ß àâáâãâäâå · 55 ·

æç ¾¿ Yèé Á bdÛh ~

h ` . êëì 2 íîïðÝñòfóò , bdÛh ~

ôõö h ` f ¡ x . ÷øÏ , ù iú ¥ gh¨û Ã ,bGdGÛGh ~ n GGG f G ¡ xGôGõÅ ¾ ± òýü ( þGÿGì 2 í ). iGj û~ Ü ,

± fGZGGh ` GG f ¡ x . ºG» , ¨G©GªGÝ Á «G¬ `G~G, © G|GG~GG­G® [GYGXGZf Gh ` G f ¡ xG y

.

3.5.1 --h --h © |~ ¾ Yé Á bdÛh ~

h ` . iú ~ Ü , h ` v r ¾ ? ¶·¸¹ é Á Y! q ÂÃ Ç , ë ¶·"#$% a'& ·(#)*+,-.. º/ ¯G° ¾G¿ ÏGYGé Á bdGÛh ~

Gh ` , Ý , W! ÂGÃ Ç012 ª ~. ºG» , 3GbGdGÛGh ~ 4/GYGX56 ² ÅGÇ ,±7 Z8GW! ÂGÃ Ç Ñ ª

~

9¶. ðë ,

γ = u(r, t)|r=0,t=0

ÏYX Á q ÂÃ st Ç , W: , · ;<n=> t

?@.

£ ª γ / ~ gh , AÐ,½ CB 8YCD γ ∼ ~

9¶. ECF§ à 3.1 G§ à 3.3, Ý Á £ ¨© ~ ܵC8

γ hH IJ ` . Ý , ëK `L Y , Ó ° H IM ©Ü , A Ð vγ ∼ ~

9¶ îONvYDPQ ¶R , Sn ~ R~ ;< . /T y , UVW D 9¶ / ~

9¶,

M R~ / ~ . ü Ù , ëKv ~ ÁX ij

~ Ü ,

M hY . Z Ù , ëKNvS[V\ ÂÃ Ç , H ½ B 8Ó ° M ~

9¶.Ö ´

γ ] ÁÂÃ st ,ØÙç B 8 M ~

9¶. ^C_C` ¸ , VC\ ~9¶ B ¾a

,abc ëd ij ~ Ü .

¯°ef, ùghij ` u0(r, t) a bd ¶· eÕ L fbdgh H(r, t) µ§ , ¨©÷k ÂÃ Ç ~ ÁX lm W .n Io ¯°p ¨ ç µ8qr hsóò . v tuv , ¼ ÷k ÂÃ Ç ~

9¶,ë kl γ ∼ ~

9¶,ç w ¿ û ~ Ü ,

h ` u(r, t) vÀx pÁÂÃ st y >Gf=> ýG . ºG» , ~

9ý¶ ­G® T W x y , zGbGdGÛGh ~ nGh ` f ¡ xôõ .

3.5.2 | - ~CCC(Pade approximation) CCC ªC r h , ¡ S ¡ x

. «¬ k , u(r, t) [m, n] ½ ;m∑

k=0

Fk(r) tk

1 +

n∑

k=1

Fm+1+k(r) tk

· 56 · G

m∑

k=0

Gk(t) rk

1 +

n∑

k=1

Gm+1+k(t) rk

SÈî , Fk(r) Gk(t) /CCC . Ü ¾CC Ï , CC;CCÈî , ÕCCC CGÏ y> ÅÇ r

¡ , GÏ=> ÅÇ t

¡ . ½ G ¿ ©¢ ~G î . ë£GÝ , ©¢ G~G ¥ ª¥¤ (3.12)¦q = 1 § ©¨ V W x , º/ª (3.13) Ï« (3.12) î q = 1

¾. º» ,

(3.12)¦

q = 1 = ¬ /­ . ®¯ , ° (3.12)Ñ ª±²ÅÇ

q

´ «¬ ,¾¿

[m, n] ªm∑

k=0

Wk(r, t) qk

1 +

n∑

k=1

Wm+1+k(r, t) qk

Sî , Wk(r, t)

£ £ l ¡ ªuj(r, t), j = 0, 1, 2, 3, · · · , m + n § .

Ù³, EF (3.8), « q = 1,

¯° ¾¿[m, n] ©¢ -

m∑

k=0

Wk(r, t)

1 +

n∑

k=1

Wm+1+k(r, t)

¯°CeCf, [m, n] ©C¢ -

CCC ´ «¬ [m, n] CCC ¾Cµ .¦ tuv

, [m, m] ©¢ - ¨ 12 ª¶·Û ~. º» ,

Ö ´~ ¸Ü¨ZA Ð ª e¹ , G©¢ -

G¯G° 0 ç ¾ G ª . º» Ï ,¯G° Io p ¨ ç W¼ · óòOV W½ .©¢ -

½ ª ¡ ª . ðë ,½ Ó ¡

u(r, t) = u0(r, t) +

+∞∑

n=1

un(r, t)

. ®¯ ,

£ (3.12), 6∂Φ(r, t; q)

∂t= u0(r, t) +

+∞∑

n=1

un(r, t) qn

Þ3 ß àâáâãâäâå · 57 ·

° Ñ ª±² ÅÇ q

,¾¿ «¬ [m, n]

m∑

k=0

Vk(r, t) qk

1 +

n∑

k=1

Vm+1+k(r, t) qk

SÈî , Vk(r, t) Ï r t

C .¦ * ;CCÈ q = 1, ECFC (3.8),

¯° ¾¿[m, n] ©¢ -

u(r, t) ≈

m∑

k=0

Vk(r, t)

1 +

n∑

k=1

Vm+1+k(r, t)

¿ Ý , ~

9¶ ­® T W x § ~ ÁX À . Á , ©¢ -Èç ÈüÃÄÈªÈ ÈÈÈ , ¡ S È ¡Å .

¦ tuv,©¢ -

´ «¬ µ ÁX , ÆÇ ¨ 12 ª¶·Û ~. º» , È ¸ WÉ û ¥ ,È ¸û à ~ ÜG ´ ©¢ -

,¯° ½ ©¢ ~ ¾ ¦ Ä ª .

3.6 ÊÌËÌÍÌËÌÎÐÏÑ vÒÓ Ô Ó Å ~Õ

[1 − B(q)] L[Φ(r, t; q) − u0(r, t)]

=A(q) ~ H(r, t) N [Φ(r, t; q)] + ~2 H2(r, t) Π [Φ(r, t; q); q] (3.34)

½ 3©¢ ~Ö W×WC¼Ø , Sî , u0(r, t) Ù L Ù H(r, t) Ù ~ Ù A(q) B(q) §Ú ëC£ÝC , ~2 /CÛCC¶C·ÛC , H2(r, t) /CÛCC¶C·CC , Π [Φ(r, t); q] / W xCÛ¶·ÜÕ , ÝÜÕ ¦ q = 0 q = 1 = . ª Ô ,Ö

Π [Φ(r, t; 0); 0] = Π [Φ(r, t; 1); 1] = 0 (3.35)

Ý Á S[ M ÑÞ H M © , ßTà Ó Å ~ÕáÁ µ W¼ Ó L[

um(r, t) −m−1∑

k=1

βk um−k(r, t)

]

=~ H(r, t) Rm(um−1, r, t) + ~2 H2(r, t) ∆m(r, t) (3.36)

· 58 · Sî

∆m(r, t)=1

m!

∂mΠ [Φ(r, t; q); q]

∂qm

q=0

(3.37)

V , â²Û¶·Û ~2 Û¶· H2(r, t),ã W xÛ¶·ÜÕ

Π [Φ(r, t; q); q],Ö W× ­ àTG©¢äåæ çèG· . Ü ¾ Ï ,

£ (3.36) µ8 ª 12 ªéx¶·Û ~ ~2.ê ·Cë (3.35)

ÛCC¶C·CÜÕ Π [Φ(r, t; q); q] È ¸ M Z çCè . ðë ,¯°

½ È ¸Π [Φ(r, t; q); q]=A(q)[1 − B(q)]F [Φ(r, t; q)] (3.38)

Sî , F [Φ(r, t; q)] / W x ; GΠ [Φ(r, t; q); q]= [1 − A(q)]

[Φ(r, t; q)]1+q − Φ(r, t; q)

(3.39)..Ù Ð

, ° W¼ ¶·¸¹ , ëd È ¸Û¶·Û ~2 ÙìÛ¶· H2(r, t) ÛCC¶C·CÜÕ Π [Φ(r, t; q); q],pÁCíCî ²CzC .

Ô Ó Å å Õ (3.34)

CïCð <ð ,ñ Ûò 4.3 12.1

.

ó4 ô õ÷ö÷ø÷ù÷ú÷û÷üþýþÿ

í ,¯É° <É© ¢ ä å æ S [Éë Adomian ª æ Ù Lyapunov ÛCCæC δ Cæ . C# åCæ C> Ñ ,

ð ©C¢CCäCåCæC3CVC!CåCæ¬ W.

4.1 Adomian Adomian ªæ [23∼25] Ï W xà ٠À Ùª G¶G·G¸G¹G ªäá

, ï ð ª! s!" Õ " [63∼79] .¦ ì 2 í ,

¯ ° ð W x ð Õ ñ ò ,

£Adomianªæµ8 ª (2.17) #/©¢äåæµ8 ª (2.57) W x÷ð .

,¯°

óò , ©¢äåæ$é Adomian ªæ ./T À% ¤ Adomian ªæ ¥ &' , ¨()*ë v ¶·¸¹N [u(r, t)] = f(r, t) (4.1)

Sî , N / ¶· ÜÕ , u /+, , f(r, t) / , , r t ø;< y >=> ÅÇ . ¶· ÜÕ N

½ ª/N = L0 + N0 (4.2)

Sî , L0 N0 ø/ ¶· ¶· ÜÕ .¦ Ý v , -h ¶· å Õ /

L0[u(r, t)] + N0[u(r, t)] = f(r, t) (4.3)

¼ ð Adomian ªæ ,¯° 3 u(r, t) ;V W x

u(r, t) = u0(r, t) +

+∞∑

n=1

un(r, t) (4.4)

Sîu0(r, t) = L−1

0 [f(r, t)] (4.5)

Çun(r, t) = −L−1

0 [An−1(r, t)], n > 1 (4.6)

· 60 · V: , L−1

0 / L0

. ÜÕ , An(r, t) / Adomian ¡ , S§ Ú ( ÿ Cherruault[66] Babolian[75]) /

An(r, t) =1

n!

[

∂n

∂qnN0

(

u0(r, t) +

+∞∑

n=1

un(r, t)qn

)]∣

q=0

(4.7)

¨©ª Adomian ªæ ,Ö ´ (4.2) ¨6 , ©¢äåæ ØÙÁX .

¨(C« L ;C< W xC¶C· ¶· ÜÕ , u0(r, t) /CgChCiCjCª , ÇCÝCgChCiCjCª¨CY (4.5)

M © , ~ / Ô ¶·Û , H(r, t) / Ô ¶· , q ∈ [0, 1] / W x±² ÅÇ. ¼ ð ©¢äåæ ,

¯°/0 Ô Ó Å å Õ(1 − q) L [Φ(r, t; q) − u0(r, t)] = ~ q H(r, t) N [Φ(r, t; q)] − f(r, t) (4.8)

Sî , Φ(r, t; q) /+, . ü Ù , Z q = 0 q = 1 = , ø6Φ(r, t; 0) = u0(r, t) (4.9)

Φ(r, t; 1) = u(r, t) (4.10)

ºG» , Z±² ÅGÇ q A 0 Ä ¿ 1 = ,ê Ô Ó Å å Õ (4.8)

+, Φ(r, t; q)Aghijª u0(r, t)

Å Ø ¿ -hå Õ (4.1)

J ª u(r, t). ¼ ð213 G§ Ã (4.9),½ 3 Φ(r, t; q) ë v W x Ñ ª q

4 Φ(r, t; q) = u0(r, t) +

+∞∑

n=1

un(r, t) qn (4.11)

Sîun(r, t) =

1

n!

∂nΦ(r, t; q)

∂qn

q=0

(4.12)Ô Ó Å å Õ (4.8) $éghijª u0(r, t) Ù ¶· ¶· ÜÕ L Ù ¶·Û ~ ¶· H(r, t).

Ð Ç ,¯°ÚÁ ¬ Ä ³²£ È ¸Ó ° .

Ó ° H È ¸û , I ª (4.11)

¦q = 1 = , A Ð ,

£ (4.10),¯°Á ª

u(r, t) = u0(r, t) +

+∞∑

n=1

un(r, t) (4.13)

Ü ¾ Ï , (4.13)¦ Ó (4.4) 56 M © .3 Ô Ó Å å Õ (4.8) ° q @ n 7 ,

Ù³ ß n!, 8 ³ « q = 0,¯°Á W Ó Å å Õ ( Z n = 1 = )

L [u1(r, t)] = ~ H(r, t) N [u0(r, t)] − f(r, t) (4.14)

Þ4 ß 9;:âá;<;=;>;?;@;A à · 61 ·

n Ó Å å Õ ( Z n > 2 = )

L [un(r, t) − un−1(r, t)] = ~ H(r, t) Rn(r, t) (4.15)

SîRn(r, t) =

1

(n − 1)!

∂n−1N [Φ(r, t; q)]

∂qn−1

q=0

(4.16)

½ óò , Adomian ªæ#Ï©¢äåæ ¦ (4.2) 6= W x÷ð .º/ ÚÁ ¶· ¶· ÜÕ L ghijª u0(r, t)È ¸ ³²£ ,

¯° Z Ù ½ È ¸L = L0, u0(r, t) = L−1

0 [f(r, t)] (4.17)

«~ = −1, H(r, t) = 1 (4.18)

Æ3 (4.2) (4.17) B² (4.14) (4.15),¯° ø Á

L0 [u1(r, t)] = f(r, t) −L0 [u0(r, t)] −N0 [u0(r, t)] (4.19)

L0 [un(r, t)]

=L0 [un−1(r, t)] − 1

(n − 1)!

∂n−1L0 [Φ(r, t; q)]

∂qn−1

q=0

− 1

(n − 1)!

∂n−1N0 [Φ(r, t; q)]

∂qn−1

q=0

, n > 2 (4.20)£ (4.17), 6f(r, t) −L0 [u0(r, t)] = 0

º» , EF§ Ú (4.7), å Õ (4.19) /L0 [u1(r, t)] = −A0(r, t) (4.21)

Sî , A0(r, t) Ï W x Adomian ¡ . EF§ Ú (4.12), 6

L0 [un−1(r, t)] − 1

(n − 1)!

∂n−1L0 [Φ(r, t; q)]

∂qn−1

q=0

=L0 [un−1(r, t)] −L0

[

1

(n − 1)!

∂n−1Φ(r, t; q)

∂qn−1

q=0

]

=L0 [un−1(r, t)] −L0 [un−1(r, t)]

=0 (4.22)

· 62 · º» , å Õ (4.20) /

L0 [un(r, t)]=− 1

(n − 1)!

∂n−1N0 [Φ(r, t; q)]

∂qn−1

q=0

(4.23)

3 (4.11) B² (4.23), EF Adomian ¡ § Ú (4.7),

¯°ÁL0 [un(r, t)]

=− 1

(n − 1)!

[

∂n−1

∂qn−1N0

(

u0(r, t) ++∞∑

n=1

un(r, t) qn

)]∣

q=0

=−An−1(r, t) (4.24)

ü Ù , å Õ (4.21) å Õ (4.24) ª ç ¬ W ;un(r, t) = −L−1

0 [An−1(r, t)], n > 1 (4.25)

V Adomian ªæµ8 ª (4.6) 56 M © . º» , Adomian ªæ#Ï©¢äåæ ¦ (4.2) 6 , Ç ê u0(r, t) = L−1

0 [f(r, t)], L = L0, H(r, t) = 1, ~ = −1

= W x÷ð .V:C D l ½ . ®¯ ,¯°ÚÁ± Ä ³²£ È ¸ * ;¨© ghCiCjCª u0(r, t) Ù ¶C· ¶· ÜÕ L C¶C·CC H(r, t), Ý àC Ó Å å Õ (4.14) (4.15) Cª ½ ð´ Adomian CªCæÝ Ñ ð C¡ µE ¥ CC; .S7 ,

¯° 56] Á Y ¶· ÜÕ N YF ç ª (4.2). 8 ³ ,

0 Ï8­ , ©C¢CCäCåCæµC8 ªé Á ¶C·ÛC ~, Ó ­® T W x C CGCCª ¡Å À . º» , ©¢äåæ ´ Adomian ªæ µ á W¼ · .

4.2 HIJKLM1892 N , Lyapunov[21]

­ 8 Ûæ .¯°¦ ì 2 íîPOðñò ,

£Lyap-

nov Ûæµ8 ª (2.15) QÏ©¢äåæµ8 ª (2.57) W x÷ð . 3óòSR Lyapunov Ûæ ¦ ë . ©ª Adomian ªæ , º» ,

0 Ï©¢äåæ W x÷ð ./T À¤ Lyapunov Ûæ ¥ &' , ¨()* W x ¶· å ÕN [u(r, t)] = f(r, t) (4.26)

Þ4 ß 9;:âá;<;=;>;?;@;A à · 63 ·

Sî , N Ï ¶· ÜÕ , u Ï+, , f(r, t) Ï , , r t øÏ y >=> ÅÇ . ¶· ÜÕ N

ç ªN = L0 + N0 (4.27)

SÈî , L0 N0 øÏ ¶· ¶· ÜÕ .

£ (4.27), âC² ÛC ε, -ChCåÕ(4.26) /

L0 [Φ(r, t; ε)] + ε N0 [Φ(r, t; ε)] = f(r, t) (4.28)

V: , Φ(r, t; ε) Ï+, . Z ε = 1 = , å Õ (4.28) ü Ù . ©Gª-hå Õ (4.26). º»Φ(r, t; 1) = u(r, t) (4.29)

3 Φ(r, t; ε) Û ε

4 ,Á

Φ(r, t; ε) = u0(r, t) +

+∞∑

n=1

un(r, t) εn (4.30)

¦ (4.30) îO« ε = 1, Ƽ ð (4.29),Á

u(r, t) = u0(r, t) +

+∞∑

n=1

un(r, t) (4.31)

Ó ¦ Ó 56 . ©ª Adomian ªæµ8 ª (4.4).3 (4.30) B² (4.28),Á

L0[u0(r, t)] − f(r, t) +

+∞∑

n=1

εn L0 [un(r, t)]

+ ε N0

[

u0(r, t) +

+∞∑

n=1

un(r, t) εn

]

= 0 (4.32)

«N0

[

u0(r, t) ++∞∑

n=1

un(r, t) εn

]

=+∞∑

n=0

wn(r, t) εn

3éTH° Û ε @ m 7 ,Ù³ « ε = 0,

Á

∂m

∂εmN0

[

u0(r, t) +

+∞∑

n=1

un(r, t) εn

]∣

ε=0

= m! wm(r, t)

¼ð§ Ú (4.7), µ8

wm(r, t) =1

m!

∂m

∂εmN0

[

u0(r, t) +

+∞∑

n=1

un(r, t) εn

]∣

ε=0

= Am(r, t)

· 64 · Sî , Am(r, t) ÏÝU Adomian

¡ . º» , 3N0

[

u0(r, t) +

+∞∑

n=1

un(r, t) εn

]

=

+∞∑

n=0

An(r, t) εn

B² (4.32),¯°Á

L0[u0(r, t)] − f(r, t) +

+∞∑

n=1

εn L0 [un(r, t)] + An−1(r, t) = 0

£ å Õ , 6L0[u0(r, t)] − f(r, t) = 0

L0 [un(r, t)] + An−1(r, t) = 0, n > 11 7ª * å Õ ,¯°Á

u0(r, t) = L−10 [f(r, t)]

un(r, t) = −L−1

0 [An−1(r, t)], n > 1

Ó ° ø Adomian ªæµ8 ª (4.5) (4.6)

M © . º» , Ûæ ¦ ë . ©ª Adomian ªæ .¦4.1

,¯° óÈò¾T Adomian CªCæ#Ï©C¢CCäCåCæ W x÷ð . º» ,

Lyapunov Ûæ 0 Ï©¢äåæ ¦ N = L0 + N0

6 , Ç ê ~ = −1, H(r, t) = 1, L = L0, u0(r, t) = L−1

0 [f(r, t)]

= W x÷ð .ëK3ÝU Û ε VW±² ÅÇ , 3å Õ (4.28) 4/ W x÷k Ô ÓÅ å Õ , XYZ ¬ à ªT .

4.3 δ [\]¦^

2 _a` ,Lbac

δ ædefªg (2.21) h ¦i ¢äåædefjk ªglmn` . op , q ð 3.6 rn`Pfs Ú Ôt Óu å Õ (3.34), vwxyzn ,

|4 9;:;~;<;=;>;?;@;A · 65 ·

δ æ i ¢äåæf . nP , h()* ^ 2 _n`Pf,

V (t) + V 2(t) = 1, V (0) = 0 (4.33)

ð i äåæ , vw LΦ =

∂Φ

∂t+ Φ − 1 (4.34)

L[V0(t)] = 0, V0(0) = 0

f ¡ V0(t), V0(t) = 1 − exp(−t) (4.35)¢£¤¥

(4.33), ¦§¨ N [Φ(t; q), q] =

∂Φ(t; q)

∂t+ [Φ(t; q)]q+1 − 1 (4.36)

©ª, ¦§«¬­®

Π [Φ(t; q), q] = (1 − q)

[Φ(t; q)]q+1 − Φ(t; q)

(4.37)¯°q = 0 ± q = 1 ²³´µ . ¶ ~ · ~2

¸ g¹º» , H(t) · H2(t)¸ g¹¼» . vw½¾µ t¿ u ¤¥

(1 − q)L[Φ(t; q) − V0(t)]= q ~ H(t) N [Φ(t; q), q]

+~2 H2(t) Π [Φ(t; q), q] (4.38)À ÁÂΦ(0; q) = 0 (4.39)Ã

q = 0 ² , ÄÅ ,¤¥

(4.38) mΦ(t; 0) = V0(t) = 1 − exp(−t) (4.40)Ã

q = 1 ² ,¤¥

(4.38) ³ i ´Æ ¤¥ (4.33), ÇpΦ(t; 1) = V (t) (4.41)È

Φ(t; q) ÉÊËÌ´ q fÍλΦ(t; q) = Φ(t; 0) +

+∞∑

n=1

Vn(t) qn (4.42)

· 66 · ÏÑÐÑÒÔÓÕ

Vn(t) =1

n!

∂nΦ(t; q)

∂qn

q=0

(4.43)

Ö× Î» (4.42)°

q = 1 ²ØÙ .cPÚ

(4.40) ± Ú (4.41), ËÛV (t) = V0(t) +

+∞∑

m=1

Vm(t) (4.44)

Vm(t) fÜÝ ¤¥Þßà ¦§ (4.43) áâãä .È µ t¿ u ¤¥ (4.38) åæçuè

q éâ m ê , oëì m!, íë¶ q = 0, vwãäî t¿ u ¤¥L0[Vm(t) − χm Vm−1(t)] = ~ H(t) Rm(t) + ~2 H2(t) ∆m(t) (4.45)

ÁÂVm(0) = 0 (4.46)À ` , χm

cPÚ(2.42) ¦§ , ï

Rm(t)=1

(m − 1)!

∂m−1N [Φ(t; q), q]

∂qm−1

q=0

(4.47)

∆m(t)=1

m!

∂mΠ [Φ(t ; q), q]

∂qm

q=0

(4.48)

©ª, L0 m¦§

L0Φ =∂Φ

∂t+ Φ (4.49)¸ ÈÚ

(4.36) ± (4.37) ðç Ú (4.47) ± (4.48),b

R1(t)= V0(t) + V0(t) − 1

R2(t)= V1(t) + V1(t) + V0(t) ln V0(t)

...

±∆1(t)=V0(t) ln V0(t)

∆2(t)=−V0(t) ln V0(t) + V1(t) [1 + ln V0(t)] +1

2V0(t) ln2 V0(t)

...

|4 ñ;ò;~;ó;ô;õ;ö;÷;ø · 67 ·

° «¬ ¸ùú~ = ~2 = −1, H(t) = H2(t) = 1 (4.50)

î t¿ u ¤¥ V1 + V1 =−V0 ln V0 − R1(t), V1(0) = 0

V2 + V2 =−V1(1 + ln V0) −1

2V0 ln2 V0 − R2(t), V2(0) = 0

...û êéüýî t¿ u ¤¥ , vw bV1(t)=exp(−t)

[

t − π2

6+ P L

2 (e−t)

]

− (1 − e−t) ln(1 − e−t)

...À `P L

n (z) =

+∞∑

k=1

zk

kn

z f n þ廼» (nth polylogarithm function). ÿ , t V (t) ≈ 1 + exp(−t)

[

t − π2

6− 1 + P L

2 (e−t)

]

− (1 − e−t) ln(1 − e−t) (4.51)

À ^2 _a` c δ ÉÊdef (2.21) i . ãf ,

¤¥(4.45)± (4.46) defmgl Ú º» ~ ± ~2, © ,

¯ cδ ÉÊdefgl Ú (2.21) . ü ,

cPÚ(4.35), ËÛ R1(t) = 0. ª ,

c t¿u ¤¥, ËÛ R2(t) = 0. © , î t¿ u ¤¥ ³ i ´ ^ 2 _n`Pf δ ÉÊm ¤¥

~ = ~2 = −1, H(t) = H2(t) = 1

ðçµ t¿ u ¤¥ (4.38),b

∂Φ(t; q)

∂t+ [Φ(t; q)]1+q = 1 (4.52)¯ ^

2 _n` δ ÉÊm ¤¥V (t) + V 1+δ(t) = 1

, δ ± V (t)¸ c

q ± Φ(t; q) ðf . , vw Þ È δ ÉÊn`Pf δ æç uè , f ¤¥ fµ t¿ u ¤¥ . © , δ ÉÊ! i"¤ f .

· 68 · ÏÑÐÑÒÔÓ

4.4 #%$%&%'%(]*),+«üÿ¹ , Adomian

, Lyapunov -./º»± δ ÉÊ!!0 i"¤ f21 . © , 3¨45 ¤ xy °i"¤ f768:9 ãä; . p< , ;f=>??@ A = . ÇBC , D¹ i"¤ f bE .

1:FGIHKJKLKMKNKOQPSRKTKUKVXWXYKZG[HKJK\X]XNKO^P , _K`KaKbKcKdKeKfKgKhXiKjXkXfKlXm WfKnKoKp , qKrKs HKJKLKMKNXOKF ~ = −1, H = 1 t W cKdKuKv . wKxKyKz Liao S J. Comparison

between homotopy analysis method and homotopy perturbation method. Applied Mathematics and

Computation, 2005, 169(2): 1186∼1194. —— |

~5

, "¤ « © . , vw> "¤ ± , ¡ï¢£¤¥¦ .

5.1 § ¨ 45 ¤ © « Lyapunov -./º» · δ Éʱ Adomian

³¨45 ¤ , "¤ «¬¤ª« , ¬´­; "¤ , "¤ ¢®vw¯7°7²±´³¶µ7·7¸¬77¹ ¼»ºl»¦¨m . © , vw Þßà ¼½¾ ¹ ¼» , E ¿ ¨ . ÀÁ , λØÙÂñØÙÄCÀÁ¦´¸µºÅ ¹ ¼» .«Æ, ¬´­; "¤ , "¤ ÇÈ¢®ÉÊ º» ~ ºÅ Ú , ·ÿé¨Ë7Ì7É21 . ÍÎ϶ÐÑØÙÂñØÙÄC³Pº» ~ Ò¦ . ÿ , º» ~ ¢®ÓÉÑÔ±ÜÝλÕØÙÂñØÙÄCÖ×ØÙ . Ú¸ÿÛ ~ ÜP , ¯ÝÄÞä ~ Õ E Âà , ÇßàãÉÑØÙλ .

©ª, á⢣ - ãä ßå ­;ãä 7 7E

,Àæç °èéùú ¬êë¬ ûì ´º» ~.« 3 , ¬´45 ¤ , "¤ ¬ ûì ´íî/ ( ï° ) º» . ÿ , ð>»¦¨ÜÝ ¤¥ ±7ñò ( ) ÁÂ϶óô / ( ° ) º» , Þ ¸ "¤ .í ë , 2" ¤ °2õ2ö ü 2 Ó Lyapunov -2.2/ º »2 , δ É Ê2 ±

Adomian , ;ÉÓ¤¨45 ¤ . © , ËÉ .ã÷£ó , "¤ ¹ ´¬ø Ö× ª

(1) åíù q ∈ [0, 1], µú ¿û ¤¥ üý ° ;

(2) ÿîú ¿û ¤¥ ü ;

(3) þæç û è q ÉÊÿλ ° q = 1 ²ØÙ . ó , "¤ ¢®áâ ²±¶³ ¡ · · ¼»±º» ~. ²±¶³¶¢®Ó¯° Þ È7Òüý Ö× ËÛ . ÿ1 sd` HW . sc W , ` HW , !"#$% d` HWN . —— |

· 70 · ÏÑÐÑÒÔÓ

, üý Ö× ¡¬&'( "¤ Õ E 1 . ü , '( "¤ ÿ)ü*²± üý²±¶³ .¢£ ¦= 3.1 ±¦= 3.3, 0Á'( "¤ »£Î»+ØÙ ,

¯-, óÿé-+7¨-.-/7Õ-+ . © , á7â7!-0-1:Ï32-4-5-67½7¾7 ¡+ ·879:;< ·879¼»±7½¾7-79º» ~ Õ , =Òλ+ØÙ . ÿ= , ó56ü²±¶³>¦Ó'( "¤ Õ E ;±?@;Õ ¹A .

5.2 B C DE ß , ± ³ FGH àIJ Ó . ëK , LMNÉÑOP»Q=>÷âRSTU + ·879:;< ·879¼»±-79º» ~ Õ56 . ǸBC , á⢣Óɤ ¹ ÆV , «+ºÅÆV ·8W»XYÆV±-+7ý ° ÆV .

¯ â ° ÖZ'("[ ¸ü\äþÁ77¸ . +ºÅÆV¢®ÓÉÑ ¹-A ±-\-) ,¯ åRS TU + ·79:;< ±79¼»56ËþÁ÷⸠. W»XYÆV±+ý °ÆV ° 79¼»Ò¦Ï\]þÁ¸ , ¡Òîú ¿û [¥^_ ï+ .

W»XYÆV ¹ ´+ºÅÕ`; ; +ý ° ÆVÉba Ó E . ÿ= , W»XYÆV±-+7ý ° Æ-V7ó-c-d7½7=7 . ¶7--e-f77ó , +7º7ÅÆ-V-g ]-77É7Ñ Ö× ª^áâ-07Á7ï é ï-h7Å-i7É7¤Ì´77¥é-+7¨-:j;-.-/ Õ-k-lÅ-m . n-o Þ ÈåÉÑp ·S¥é+./klÅmq ? no Þ ÈÅiɼ ¹ ¼» Àr¹ ¼»s , ÇßÈ E ¿ ÉÑ¥é+¨:;./q ? ÿ= , =>ü , Ñg Ö× &tÓ'-( "[ Õ7-u; , vwåÉÑpx:;-.-/ , áâÇ7È-y-z7É7¤7¬77 ¹ ¼» .- 7ó , « 2 ÿ¹ , É7Ñ-x-:-;-.-/7-+7È | èé ¬ ¹ ¼»ºÅ .

« 2 ÿý , -~ÿ7Û---7-- | è7é--- ¢7£- , Lindstedt[52],

Bohlin [53], Poincare [54], Gylden [55] . +ºÅVÉZ . ó , ÉÑpS¥+./ , noÈi¤Ûq ? = , ,èé ­+ [ g¡-]¢7-£¤ , ¥0Áï é ïh¦iÉ7¤§-7¥-+x:;./Õklm . £¤¨&tÓ¤­ [ , vw&t©¤­ [ª r O« ;¢­¬®¯°¬±i , ²ß åå |³´ .

5.3 µ·¶·¸·¹·º¼»¾½dÓ¿À ÁÂÃÄÅ '( [ÆÇÈ ; , É ,ÊÂËÌÍÎÏÄÐ QÑÒÓ-Ô R-S T-U-Õ Ö7-9-:-;-<-×-ØjÙ-ÚjÛ ÐjÆ-ÜjÝ . Þ Í-Ð Q-Ñ-Ò-ß-à-á-â Ì ãåäæç

, èéêëìíîïðñòóô (3.34). õöïðñòóô÷øùúûüýþÿ , ÷ ïðñòóô÷øùúûüýþÿ . ——

5 · 71 ·

Ä !É#"#$#%#&#' Ä#(#)#* É#+ , ²#,#-#.#/#0#1á#2#3#"#$#4Ñ#5#6 Ä#78 * ß#9#/ . :<; , Þ#= ÎÏÄÐ#> ÑÒ#?#@#Aá#B#2¯#, .CED ÅEFEG EH JILKEMEN 9jj ÕEOEPEQERESETEU ( VEWEXEYjØ ÌjÍ Éj§Ò[Z ), [\[2[][^-Þ[_[H - Õ[` É[a[b S ãdc[e[f S-Ä[Q[R[S[T[U ?[@-É[+ .e[f[g[h[i[j[k 9 Ð[l H [m[n , o[p[W[9 Õ [H [m[n-Ä . q[r , $[=[s-Û Ð 01jÉE+j¦ Õ EtEu eEf ÕEvEwEx . yEz , E| (Norden E. Huang)[80] E~ ÂjË &EE GjÕj (the empirical mode decomposition method), J QERES Q j# a###0#1#9 S #-Û Ð (intrinsic mode functions) t#u . # Ä ? ,

qEr , .E/E\E2jE3EE$E9 S EjÛ Ð ¯E QERESETEU eEf ÕjÆjÕ t#u .

ã ó ¡¢ ý£¤ ¢¥¦§¨© , 誫 2005 ¬­®¯°±² § æ³<´ Wu

W, Liao S J. Solving solitary waves with discontinuity by means of the homotopy analysis method.

Chaos, Solitons and Fractals, 2005, 26(1): 177∼185. —— ¶µ·¸ ô¹¹º¼» ·½¾¿ ¯ÀÁ ¾Âà (NASA)Goddard¾ÄÅÆÇÈ

(Norden E. Huang) ÉÊËÌͧ Å ùúÎÏÐý Å Ï , Ñ ËÒÓÔÕ Æ ýÖ× . ——

Ø Ù Ú Û Ü Ý

Þàßàáàâ,Þàãàáàä,Þæåçáàè.

—— éJê , ëJìEíJîJïñðàò

ó6 ô õ÷ö÷ø÷ù÷ú÷û÷üþýþÿ

a Duffing × ( #W#Z [11], 198 ), Q#R#S Hw′′(x) + w(x) − w3(x) = 0, w(0) = w(L) = 0 (6.1)

, x t a , w(x) tá 0 6 x 6 L Ì _Û Ð , ′ t

x Ô . ! ww(x) = 0

#H (6.1), "# , ? Ì _ Õ .w , ,

$ ÍLl

, Aá Q%Õ . # , & Ë g'() *+ G,.- .

x =

(

L

π

)

ξ, ε =

(

L

π

)2

, v(ξ) = w(x) (6.2)

H (6.1) Mv′′ + ε(v − v3) = 0, v(0) = v(π) = 0 (6.3)

, ′ t ξ Ô . "/ ε > 0, 01#H#BÉ %Õ v(ξ) = 0. 2 $ Í εl

, H (6.3) Aá Q%Õ, 3#, Ë g G, . Þ4 , .#/56 m#n H (6.3)

Q%Õ7 Aá 7 8 . ! w , 8v(ξ) ?#H (6.3)

Q%Õ, 9 −v(ξ) :; ?< Q%Õ . 2= Ì>#S ,

A = v(π/2), v(ξ) = A u(ξ) (6.4)

?@(6.4) AB#H (6.3), É

u′′ + ε(u − A2u3) = 0, u(0) = u(π) = 0 (6.5)

lCD / ? ,@

(6.5)E

A ? xF . G @ (6.4),MH

u(π/2) = 1 (6.6)

Kahn Ø Zarmi[11] Ë A I L JKLM#L = 2

∫ A

0

dz√

A2 − z2 − (A4 − z4)/2

· 76 · NPOPQSR KL ÕT

L

π

=2

π

1 − A2/2K

(

A2

2 − A2

)

(6.7)

U, K(ζ) ?V ÌVWVXVYVZU[]\ G . ^V_V0V1 KVL Õ , ε = (L/π)2 á |A| ` z 1

a bc . d#9e9f#Hg , Kahn Ø Zarmi[11] ËhiÕ

A ≈ ±2

ε − 1

3, ε > 1 (6.8)

w , , à hiÕ j ε =#+ . Xk , .#/d#9l F#Gm Hg Õ#`n 0o *+ G, Q#R#Sp#l#T#U ã.

6.1 qsrutuvuw6.1.1 xyz|d#9 p~#7 8 u(0) = u(π) = 0,

H (6.5) J Q#R#S , F , u(ξ) #9#* s#t#usin[(2m + 1)ξ] | m > 0 (6.9)

u(ξ) =

+∞∑

m=0

cm sin[(2m + 1)ξ] (6.10)

, cm

T . ' T#U J .

^_ (6.10) p~#7 8 (6.6), !#, F , u0(ξ) = sin(ξ) (6.11)

- Tu(ξ)

, 7L[Φ(ξ; q)] =

∂2Φ(ξ; q)

∂ξ2+ Φ(ξ; q) (6.12)

- T#R#S. #`n#S

L[C1 sin ξ + C2 cos ξ] = 0 (6.13)ã¡ ¡¢¡£¡¤¡¥¡¦Mathematica è 󡧡¨¡©¡ª¡« §¡¬¡­ , ®«¡¯¡°¡± . ²¡³ ©¡´ ¦ © E-mail µ¶ ´

[email protected], ·¡¸ ¥¡¹¡º ´ http://numericaltank.sjtu.edu.cn/code.htm, »¡¼¡½¾ ¨¿ª¿À¿¯¿°ùúý Mathematica Á¿Â § ³ © ³ ª . ——

6 ÃÅÄÅÆÅÇÅÈÅÉÅÊÅËÍÌÍÎÅÏ · 77 ·

, C1 C2

T . GEÐ (6.5), ÑÒÓÔ

N [Φ(ξ; q), α(q)] =∂2Φ(ξ; q)

∂ξ2+ ε

[

Φ(ξ; q) − α2(q)Φ3(ξ; q)]

(6.14)

, q ∈ [0, 1]

TÕ B , α(q)TÖ× q

Ø F . Ù ~ 6= 0 Ú Û , H(ξ) Ú Û . ÜÝÞß %àá Ð

(1 − q) L[Φ(ξ; q) − u0(ξ)] = ~ q H(ξ) N [Φ(ξ; q), α(q)] (6.15)

p~âãΦ(0; q) = Φ(π; q) = 0 (6.16)

!ä , å q = 0 æ , Ð (6.15) (6.16) J TΦ(ξ; 0) = u0(ξ) (6.17)

å q = 1 æ , GEç ~ 6= 0, H(ξ) 6= 0, Ð (6.15) (6.16) èlçé Ð (6.5), 3êΦ(ξ; 1) = u(ξ), α(1) = A (6.18)

"ë# , å q 3 0 ëfëì 1 æ , Φ(ξ; q) 3 ëëíëë u0(ξ) = sin ξ ëf (á ) îëÐ

(6.5) JëïëL u(ξ) ; lëð , α(q) :ë3 ëëëíëëñ A0 ëf (á ) îëïëL ñ

A = v(π/2).ñ CëD / ëò ,%ëàëá ëÐë (6.15) ó nëë ë ~ ë ë H(ξ). ôëõ

~ H(ξ) ëëöë÷ , ëîëç %ëàëá ëÐë (6.15) (6.16) ( n

q ∈ [0, 1] ø n, ù

um(ξ) =1

m!

∂mΦ(ξ; q)

∂qm

q=0

, Am =1

m!

dmα(q)

dqm

q=0

(6.19)

m > 1 øúû . üý , dþÿ (6.17), Φ(ξ; q) α(q) Ñ q J

Φ(ξ; q) = u0(ξ) +

+∞∑

m=1

um(ξ) qm (6.20)

α(q) = A0 +

+∞∑

m=1

Am qm (6.21)

# , ôëõ ~ H(ξ) ëëöë÷ , 3ëê ë (6.20) (6.21) û q = 1 æ , G

· 78 · NPOPQSR@

(6.18),n

u(ξ) = u0(ξ) +

+∞∑

m=1

um(ξ) (6.22)

A = A0 +

+∞∑

m=1

Am (6.23)

6.1.2 yz|T *,

uk = u0(ξ), u1(ξ), u2(ξ), · · · , uk(ξ) , Ak = A0, A1, A2, · · · , Ak? %VàVá VÐV (6.15) (6.16) Õ BVV q m , V m!, VÙ q = 0,

ÜÝ nàá ÐL [um(ξ) − χmum−1(ξ)] = ~ H(ξ) Rm(um−1, Am−1) (6.24)

p~âãum(0) = um(π) = 0 (6.25)

, χm G (2.42) , ùRm(um−1, Am−1)

=1

(m − 1)!

∂m−1N [Φ(ξ; q), α(q)]

∂qm−1

q=0

= u′′m−1(ξ) + ε um−1(ξ)

−ε

m−1∑

n=0

(

n∑

i=0

AiAn−i

)

m−1−n∑

j=0

uj(ξ)

m−1−n−j∑

r=0

ur(ξ)um−1−n−j−r(ξ)

(6.26)

ñ CëD / ëò , úëû Û Ø F um(ξ) Am−1, 2 nëëÛ Mëç um(ξ)

Ð . "# ,!"#$%

, &'() Û* )AÐ +ëL Am−1. ^_ (6.10), , ÓÔ L JÔ (6.13), -.ö÷/ H(ξ), îç àá0 Ð+ (6.24) 123 Ú4 ~ H(ξ) Rm(um−1, Am−1) =

µm∑

n=0

bm,n(Am−1) sin[(2n + 1)ξ] (6.27)

57678 (6.20) 9 (6.21) :7;7<7=7>7?7@7A7B¿Á (6.15) 9 (6.16), C q D7E7F7G7H7I 87J > , »¿¨©7K7L7D7E7M7N7?7@7A7B¿Á (6.24) 9 (6.25), O7P7Q7R7S (6.26). —— T7U

V6 W ÃYXÅÄÅÆÅÇÅÈÅÉÅÊÅËÍÌÍÎÅÏ · 79 ·

Z, bm,n(Am−1) [\ , ]^ µm

Ö× ç m H(ξ) 1 á_ . `aÔ(6.13),

bbm,0(Am−1) 6= 0, c m

àá 0 Ð+ (6.24) 1 d ó Ñeξ sin ξ

f ê ,#g öhij (6.10). [klmnop , ÜÝ #q#rs

bm,0(Am−1) = 0 (6.28)

n]tuvko Û* )/xwzyç Am−1 /|Ð+ ,f ê !"$% . ~ , q Ð+ (6.24) 1

um(ξ)=χm um−1(ξ) −µm∑

n=1

bm,n

4n(n + 1)sin[(2n + 1)ξ]

+C1 sin ξ + C2 cos ξ (6.29)

Z, C1 C2 [\| . `ahij (6.10), C2 -.[ . äê , \| C1

#âã

(6.25) , [å C2 = 0 æ , âã . ò , _ (6.6),

um(π/2) = 0 (6.30)

_ ok C1 1 ñ . nð , Ö q Am−1 um(ξ).Z

Nà [

u(ξ) ≈ u0(ξ) +

N∑

m=1

um(ξ) (6.31)

A ≈ A0 +

N−1∑

m=1

Am (6.32)

6.1.3 6.1 ¡ (6.22) ¢ (6.23) £¤ , ¥§¦ , uk(ξ) ¨©ª« (6.24) ¢ (6.25),¬­®

(6.26) ¢ (2.42) ¯° , ±²³´µª« (6.5) ¶¡ .· b | (6.22) , c-¸lim

m→+∞um(ξ) = 0, ξ ∈ [0,π]

¹ þ _ (6.12) _ (2.42), º, _ (6.24),

~ H(ξ)+∞∑

k=1

Rk(uk−1, Ak−1)

= limm→+∞

m∑

k=1

L[uk(ξ) − χk uk−1(ξ)]

· 80 · »½¼½¾À¿

=L

limm→+∞

m∑

k=1

[uk(ξ) − χk uk−1(ξ)]

=L[

limm→+∞

um(ξ)

]

=0

[ ~ 6= 0 H(ξ) 6= 0, Á _ÂÃ+∞∑

k=1

Rk(uk−1, Ak−1) = 0

Ä _(6.26) ÅÁ _ , ÆÇÈ . `a| (6.22) (6.23) /Ô , ¸

d2

dξ2

[

+∞∑

k=0

uk(ξ)

]

+ ε

[

+∞∑

k=0

uk(ξ)

]

−(

+∞∑

m=0

Am

)2 [+∞∑

k=0

uk(ξ)

]3

= 0

_ (6.11) (6.25),

+∞∑

k=0

uk(0) =

+∞∑

k=0

uk(π) = 0

É , '| (6.22) (6.23) , ÊÝ-ä ò Ð+ (6.5) 1 . ËÌ .

6.2 ÍÏÎÏÐÏÑ`a 6.1, ÜÝ&ÒÓö÷/ÔÕÖ| ~ ÔÕ×| H(ξ), ºØ|

(6.22) (6.23) .ñ q Ù Ú / ò , û # Û Ü h i j (6.10) ÞÝ ß à á â ã 1ä uÑ , åæþ #ç á_ /ÔÕ×| ,

H(ξ) = 1, H(ξ) = sin2(ξ), H(ξ) = cos2(ξ), H(ξ) = cos(2ξ)

è . [kÈ , ÜÝÒÓH(ξ) = 1 (6.33)

_ (6.11) (6.26), ¸~ H(ξ) R1(u0, A0) = ~

(

ε − 1 − 3

4ε A2

0

)

sin ξ +1

4~ ε A2

0 sin(3ξ) (6.34)

Ä _(6.34) è (6.27) éëê , ¸

b1,0 = ~

(

ε − 1 − 3

4ε A2

0

)

, b1,1 =1

4~ ε A2

0

V6 W ìYXYíYîYïYðYñYòYóõôõöY÷ · 81 ·

É , å m = 1 æ , _ (6.28), ÜÝ q ìo Û* )/|ø+ε − 1 − 3

4ε A2

0 = 0 (6.35)

[ ε = (L/π)2 > 0, ùº , Áú/ø+û ε < 1 æû . É , å 0 6 ε 6 1 æ ,# ú

ûÒ . å ε > 1 æ , ø+ (6.35) 1[A0 = ± 2√

3

1 − 1

ε, ε > 1 (6.36)

É , ε = 1 æ Ã ü ù ý / È þ ÿ .ç ø ] Â Ã k ëÒëÓëÔ ! "

Èþÿ/ âã .ñ q Ù Ú / ò ,ç ø Â Ã k # ç / w ó ¸ Ô Õ Ö | ~ / , ù ~ | (6.22) (6.23) 1 ëÔ . , A 1 | (6.23)

ò~ / | .

[k ~ | (6.23) / , Ú Â ε, ÜÝ Ã yç A 1 ~ EÓ ( Ö 24 3.5.1 ). ,

6.1 ù , ε = 10 ε = 25 æ/ A ∼ ~ ]Ó k ! / ~ 1¸ " # $ . `a 6.1, % ε = 10 & , ' −3/4 6 ~ < 0, | (6.23) -

(6.1 ε = 10 ) 25 *,+ A ∼ ~ -7ó.0/0132

ε = 10 4 A H 10 ?050607 ; 8 132 ε = 25 4 A H 10 ?050607 ; % ε = 25 & , ' −1/4 6 ~ < 0, 9| (6.23) - . ùº , `a : ; 6.1 A ∼ ~

=< , ' > ? @ # $ −3/4 6 ~ < 0 (% ε = 10 & ) A B −1/4 6 ~ < 0 ( % ε = 25 & )C ÒÓ ~ D , 9| (6.23) - E A 1 F D . G[ H , % ε = 10, ~ = −1/2 ε = 25, ~ = −1/5 & A 1 D @ I 6.1

C=JÃ. É K , L M ü , ' 9| (6.23)N O

, ç ÔÕÖ| ~ÂÃ / ! u(ξ) 1 9| (6.22) P @^ Q # $ 0 6 ξ 6 π

· 82 · »½¼½¾À¿C N O

. R , ε = 10, ~ = −1/2 & u(ξ) 1 10 S , º, ε = 25, ~ = −1/5 &u(ξ) 1 30 S , > ?è u(ξ) / F T U q t , R 6.2 ù . ùº ,

¹ V~ =< , ºø W X Y ~ 1¸ " # $ ,

f Z Ø 9| (6.22) (6.23)N O

.

[6.1 ε = 10, ~ = −1/2 \ ε = 25, ~ = −1/5 ] , A ^ 30 _,`,a,b,c,`5067? 8 ε = 10, ~ = −1/2 ε = 25, ~ = −1/5

5 0.998 33 1.010 46

10 0.995 88 1.003 13

15 0.996 24 1.001 17

20 0.996 44 1.000 49

25 0.996 44 1.000 17

30 0.996 44 1.000 00

L M ü , A / m S I4 dA ≈ ±

3(1 − ε−1)

m∑

k=0

βm,k(~) εk (6.37)

Zfe, βm,k g h i j ~ /\| . 6.1, % ε

0 k & , !

~ 1¸ " # $ 0 l . LM ü , A 1 9|/ N O # $ ~ m , 6.3. n o , ~ (~ < 0) D p q , 9| (6.23) / N O # $ p k . n Ú r , ~

! g ε 1×| , s~ ε t k ,Z u D !v l

. L M ü , '~ = − 1

1 + ε/3(6.38)

A / 10 S , wA≈± 1

(1 + ε/3)10

1 − 1

ε

(

1.180 3 + 3.907 5 ε + 5.812 8 ε2 + 5.114 9 ε3

+2.946 6 ε4 + 1.160 3 ε5 + 0.316 02 ε6 + 5.872 6 × 10−2 ε7

+ 7.129 8 × 10−3 ε8 + 5.139 6 × 10−4 ε9 + 1.700 1 × 10−5 ε10)

(6.39)

è F @ x y # $ 1 6 ε < +∞C=z T U q t , R 6.3 ù . A / 10 S

(6.39)ÂÃ

limε→+∞

|A| = 1.003 9

Z |[ 0.39%.¹ V _

(6.38), E A / 3 S , wA ≈ ±

(

7 015 ε3 + 70 251 ε2 + 220 917 ε + 226 105)

4 096√

3(ε + 3)3

1 − 1

ε(6.40)

V6 W ìYXYíYîYïYðYñYòYóõôõöY÷ · 83 ·

(6.2 u(ξ) +,~,,,,~.0/0132

ε=10, ~=−1/2 4 , u(ξ) H 10 ?050607 ; 800 .32 ε=10, ~=−1/2 4 , u(ξ) H 20 ?050607 ;

8 132 ε=25, ~=−1/5 4 , u(ξ) H 20 ?050607 ; 00 .32 ε=25, ~=−1/5 4 , u(ξ) H 30 ?050607

(6.3 A ñ 10 ,,,~ (6.37) ,,,~ (6.7) +0

.320 7 (6.7) ; 0 1320 7 (6.8); 0 132 ~ = −1 47H050607 (6.37);.0/0132

~ = −1/2 47H50607 (6.37) ; .0/0132 ~ = −1/4 47H050607 (6.37); 8 132 ~ = −1/(1 + ε/3) 47H050607 (6.39)

Pè F T U q t , R 6.4 ù . ùº , ÔÕÖ| ~ uvko Q m 9| 1 NO #$ NO / ÈW . Ô Õ Ö | ~ @ ç > ø / C ¡ / G V .

· 84 · »½¼½¾À¿

(6.4 ~ = −1/(1 + ε/3) * A ñ 3 ,~,,,,~ (6.40) ,,,~ (6.7) +0

.320 7 (6.7);.0/01320 7 (6.8) ; 8 132 70¢050607 (6.40)£ ¡ r / g , hij (6.10) @ ç >ø/ C P ¡ /G V . ]

g `ahij (6.10), L MÒÓ ¤ ¥ ¦ § (6.11) ÔÕ < ¨ © H (6.12). É K , ]g `ahij (6.10), L M q Yø ª (6.28),

f Z lm ξ sin ξ e « Ãü , Æ s ¬ ­ ®¯ °. D qÙÚ « g , j ± ² ù ³ ´ « ­ ® , ξ sin ξ µ g ¶ · Ú ¸ « ¹ ºe¼» ,

[ u(ξ) ½ R ¾o ¿ À×|ξm sin(nξ), ξm cos(nξ) | m > 0, n > 1

IÁ . nP gÂÃÄ ­® Ô Õ × | H(ξ) µ g o«Å . g , ¬ V À × |(6.9) Æ u(ξ)

Ç È ¸ " .

D qÙÚ « g , (6.37) (6.40) é=É (6.8)

È t , R 6.3 6.4

ù . ÉK , E A « 3 S (6.40) P@ÊQ#$ 1 6 ε < +∞C èF

(6.7) T U q t , s Ë ÂÃ >ÿp ε = 1, º Ì « Í Q > Î .¹V ù ý ç - ÏÐ ( Ö 41 3.5.2 ), nÑ uÒ A «9 | ÓN O , I 6.2 ( % ε = 10 ε = 25 & ). L M ü , A « [m, m] S ç - Ï Ð µ h i j ÔÕÖ| ~. Ô [4, 4] S ç - Ï Ð

A ≈ 2√

3

1 − 1

ε

P (ε)

Q(ε)(6.41)

@ Ê Q # $ 1 6 ε < +∞C=z è F (6.7) T U q t , Ô e

»ÖÕ0× (6.5) Ø0Ù0Ú0Û0Ü 0 6 ξ 6 π. Ý0Þ0Ù0Ú0Û0ß , ξ sin ξ Ü0à0á0â . —— ã0ä

å6 æ ì,çYíYîYïYðYñYòYóõôõöY÷ · 85 ·

P (ε)=8 665 210 296 046 039 923 + 2 500 964 782 519 057 396 ε

+604 034 298 653 768 562 ε2 + 62 408 285 303 687 028 ε3

+3 874 319 809 940 915 ε4

Q(ε)=25 430 938 337 575 455 089 + 7 921 677 254 280 814 588 ε

+1 930 521 704 826 790 758 ε2 + 213 027 971 364 041 596 ε3

+13 310 678 950 379 441 ε4

± ² n Q H èf ,ç > ø é¸Èþ >ÿ « < ¨ ­ ® g ¸ " « .

[6.2 ε = 10 \ ε = 25 ] , A ^ [m, m] _,ê,ë - ì,í,b,c,`

[m,m] ε = 10 ε = 25

[2, 2] 0.999 14 1.011 67

[4, 4] 0.996 51 1.001 13

[6, 6] 0.996 44 1.000 12

[8, 8] 0.996 44 0.999 96

[10, 10] 0.996 44 0.999 94

[12, 12] 0.996 44 0.999 94

[15, 15] 0.996 44 0.999 94

î7 ï ðòñòóòôòõòöò÷ùøùúùû

üý <¨­®þ@ ýÿ . G Â H , µLM ³´ Duffing H­® , ª

v′′ + ε(v − v3) = 0 (7.1)

v(0) = v(π) = 0 (7.2)

, ′ I ξ . 6 ² , L M V > Ë !"# >$ «

ε = 1, % V R ¾ À&'sin[(2m + 1)ξ] | m > 0 (7.3)

I Á Ô ÿ . D()* « g , þ @+, ý Q R ¾ À&'sin[(2m + 1)κ ξ] | m > 0, κ > 1 (7.4)

Ô e , κ > 1 g- Q Ë Ê' ,z. V/ I Á (7.2) « &' .

* r0 ,

ª (7.1)

(7.2).12 ý ÿ

. 3 R4 . ± ² , 5 V À&' (7.4), L M V6 7( ª (7.1)

(7.2) 8 2 « 9 ÿ » .

µ: -; ¨ , < ¸A = v(π/2κ), v(ξ) = A u(ξ) (7.5)

=, ª (7.1) > d

u′′ + ε(u − A2u3) = 0, u(0) = u(π) = 0 (7.6)

? ()* « g , @ (7.6)e

A AB . CD@ (7.5), dEu(π/2κ) = 1 (7.7)

»GFIHIJIKILIMINIO Mathematica P ÕIQIRISITIU ØIVIW , XIYIZI[I\ . ]I^I_I` OIS E-mail [email protected], eIfIg ¹Ihdc http://numericaltank.sjtu.edu.cn/code.htm, PIiIjk RlTlm Zl[lnlolplq0à Mathematica ×lr Øl^l_ls T . —— ã0ä

å7 æ t,çvuvwvxvyvzvv|~ · 87 ·

7.1 7.1.1 À&' (7.4)

u(0) = u(π) = 0, % (7.6)

, u(ξ). Á

u(ξ) =

+∞∑

m=0

cm sin[(2m + 1)κξ] (7.8)

Ô , cm ' . ¡¢£¤¥¦§

.¨© ¥¦§(7.8), % @ (7.7), ª«¬­

u0(ξ) = sin(κ ξ) (7.9)

® u(ξ) °¯±²³ ÿ , ´ , κ > 1 µ¶ ' . ·¸¥¦§ (7.8), ¬­L[Φ(ξ; q)] =

∂2Φ(ξ; q)

∂ξ2+ κ2 Φ(ξ; q) (7.10)

® ¹º »¼ ,¡ »¼½ 2¾¿ À

L[C1 sin(κ ξ) + C2 cos(κ ξ)] = 0 (7.11)

´ , C1

C2 ' . 4Á , CD (7.6), < ¾¿ »¼N [Φ(ξ; q), α(q)] =

∂2Φ(ξ; q)

∂ξ2+ ε

[

Φ(ξ; q) − α2(q)Φ3(ξ; q)]

(7.12)

´ , q ∈ [0, 1] ÃÄ >Å , Φ(ξ; q) ÆÇ ξ

q¤ AB&' , α(q) ÆÇ q

¤ AB&' . È ~ 6= 0

¹ºÉ ' , H(ξ) 6= 0 ¹º &' , ÊË 9ÌÍ >

(1 − q)L[Φ(ξ; q) − u0(ξ)] = ~ q H(ξ) N [Φ(ξ; q), α(q)] (7.13)

ÎÏ Φ(0; q) = Φ(π; q) = 0 (7.14)

Ðq = 0 Ñ , (7.13)

(7.14)

¤ ÿ Φ(ξ; 0) = u0(ξ), ξ ∈ [0,π] (7.15)

Ðq = 1 Ñ , (7.13)

(7.14) Ò Ó (7.6), ÔÕΦ(ξ; 1) = u(ξ), α(1) = A (7.16)

· 88 · ÖØ×ØÙÛÚÜ 4 ,

Ðq Ô 0 >ÞÝÞß 1 Ñ , Φ(ξ; q) ÔÞ¯Þ±Þ²Þ³ ÿ u0(ξ) = sin(κξ) >ÞÝ (

Í > )à (7.6)¤á ÿ u(ξ) ;

â, α(q) ãÔ¯±²³ ? A0 >Ý (

Í > )à á ?

A = v(π/2κ).? ()*ä ,

9ÌÍ > (7.13) å 2 ¹ºÉ ' ~ ¹º &

' H(ξ). æç ~

H(ξ) ¬­ ¸è ,Î à Ó9ÌÍ > (7.13)

(7.14) 8 2

q ∈ [0, 1] é 2 ÿ , um(ξ) =

1

m!

∂mΦ(ξ; q)

∂qm

q=0

, Am =1

m!

dmα(q)

dqm

q=0

(7.17)

m > 1 é þê . ëì ,°íîïð <ñ @ (7.15),

.òΦ(ξ; q)

α(q)

ï𠾿q¤óô '

Φ(ξ; q) = u0(ξ) +

+∞∑

m=1

um(ξ) qm (7.18)

α(q) = A0 ++∞∑

m=1

Am qm (7.19)

4Á , æç ~

H(ξ) ¬­ ¸è , ÔÕ óô ' (7.18)

(7.19) ê q = 1 Ñõö ,=

, C@ (7.16),

2 ô ' ÿ

u(ξ) = u0(ξ) +

+∞∑

m=1

um(ξ) (7.20)

A = A0 +

+∞∑

m=1

Am (7.21)

7.1.2 ÷ "ø , <ÂùDÅ

uk = u0(ξ), u1(ξ), u2(ξ), · · · , uk(ξ) , Ak = A0, A1, A2, · · · , Akò 9ÌÍ > (7.13)

(7.14) q m ú , ûü Î m!, ýþÈ q = 0, ª«(

ß mÌÍ >ÿ

L [um(ξ) − χmum−1(ξ)] = ~ H(ξ) Rm(um−1, Am−1) (7.22)

ÎÏ um(0) = um(π) = 0 (7.23)

ÿ (7.18) (7.19) (7.13) (7.14), q , P RS lp (7.22) (7.23), (7.24). —— !

"7 # t%$vuvwvxvyvzvv|~ · 89 ·

´ , χm C (2.42) <Â , Rm(um−1, Am−1)

=1

(m − 1)!

∂m−1N [Φ(ξ; q), α(q)]

∂qm−1

q=0

=u′′m−1(ξ) + ε um−1(ξ)

−ε

m−1∑

n=0

(

n∑

i=0

Ai An−i

)

m−1−n∑

j=0

uj(ξ)

m−1−n−j∑

r=0

ur(ξ)um−1−n−j−r(ξ)

(7.24)

? ()*ä , um(ξ)

Am−1 éAB . &ª«' 2 -() Ó um(ξ) * 6 .Ü 4 ,

¡¢£,+,-,., /,0,1,2 -,(,3 2,4' Î < Am−1. æç H(ξ) ¬

­ ¸è , ÔÕ5 ÌÍ > (7.22)¤67 .8

~ H(ξ) Rm(um−1, Am−1) =

µm∑

n=0

bm,n(Am−1) sin[(2n + 1)κ ξ] (7.25)

´ , bm,n(Am−1) ' , µ¶ ' µm ÆÇ Ó H(ξ)

m.¨©

L¤ À (7.11), 9

bm,0(Am−1) 6= 0, mÌÍ > (7.22)

¤ ÿ: å ¾¿ ξ sin(κ ξ)

¡ +·¸¥¦§(7.8). ;< -= ,

+ ( +>?

bm,0(Am−1) = 0 (7.26)

µ@ -(3 2BA ) Ó Am−1 4' , ÔÕC ¡¢£-. . Dþ , EF7( (7.22)

¤ ÿ

um(ξ)=χm um−1(ξ) +

µm∑

n=1

bm,n

[1 − (2n + 1)2κ2]sin[(2n + 1)κ ξ]

+C1 sin(κξ) + C2 cos(κξ) (7.27)

´Ø , C1

C2 ' .

¨© ¥¦§(7.8), C2 GIH 9 .

? ()*ä , ' C1+ 1 C (7.23) < ,Ü C2 = 0 Ñ (7.23) JLK . MÕ , C

@ (7.7), Eum(π/2κ) = 0 (7.28)

@ (7.28).N - < C1.

â, ª« . Æ ú7( Am−1

um(ξ).

· 90 · ÖØ×ØÙÛÚFB , N

ÌOP ÿ u(ξ) ≈ u0(ξ) +

N∑

m=1

um(ξ) (7.29)

A ≈ A0 +N−1∑

m=1

Am (7.30)

7.1.3 QRSTS,T 7.1 U,V,W,X,Y (7.20) Z (7.21) [,\ , ]_^ , uk(ξ) `,a,b,c (7.22) Z (7.23),def

(7.24) Z (2.42) gh , ijklmnbc (7.6) oY .p 9 ô ' ÿ (7.20) õö ,= G 2

limm→+∞

um(ξ) = 0, ξ ∈ [0,π]

CD@ (2.42) Al@ (7.10) @ (7.22),

q @ , E~ H(ξ)

+∞∑

k=1

Rk(uk−1, Ak−1)

= limm→+∞

m∑

k=1

L[uk(ξ) − χk uk−1(ξ)]

=L

limm→+∞

m∑

k=1

[uk(ξ) − χk uk−1(ξ)]

=L[

limm→+∞

um(ξ)

]

=0

Ü ~ 6= 0

H(ξ) 6= 0, 8 Î ,2

+∞∑

k=1

Rk(uk−1, Ak−1) = 0

ò(7.24) 4 Ä q @ , %Ý" .

¨© ô ' (7.20)

(7.21)¤ õö , E

d2

dξ2

[

+∞∑

k=0

uk(ξ)

]

+ ε

[

+∞∑

k=0

uk(ξ)

]

−(

+∞∑

m=0

Am

)2 [+∞∑

k=0

uk(ξ)

]3

= 0

CD@ (7.9)

(7.23), E+∞∑

k=0

uk(0) =

+∞∑

k=0

uk(π) = 0

"7 # t%$vuvwvxvyvzvv|~ · 91 ·

8 Î , r0 ô ' (7.20)

(7.21) õö , s« G <ä (7.6)¤ ÿ

. tu .

7.2 vxw ¨© <ñ 7.1, ª«'/¬­ ¸è ¹º &' H(ξ)

¹ºÉ ' ~,Î y ô '

(7.20)

(7.21) õö . µ ¾ ê 6 z|ë â , ê +~ ¿,. ¬­ + Í @ ¹º H(ξ). ø , ª«¬­

H(ξ) = 1 (7.31)

=, CD@ (7.9) @ (7.24), E

~ H(ξ) R1(u0, A0)

=~

(

ε − κ2 − 3

4ε A2

0

)

sin(κ ξ) +1

4~ ε A2

0 sin(3κ ξ) (7.32)

¨© @ (7.25),2

b1,0 = ~

(

ε − κ2 − 3

4ε A2

0

)

, b1,1 =1

4~ ε A2

0

CD@ (7.26), ª«ß4 ε − κ2 − 3

4ε A2

0 = 0 (7.33)

´ Ð ε > κ2 Ñ 2 9A0 = ± 2√

3

1 − κ2

ε(7.34)

Ü 4 , µ¶ κ > 1,Ð

ε = κ2 (7.35)

Ñ 6 . ( , ε?

, ê ( 6 = .? ä ,

(7.4) < Ó κ¤?

.Ü 4 , ε

?, ê .+ :¡ ; , ª«' κ = 2 κ = 3 ¢£¤¥ .

? ä ,ô (7.20)

(7.21) õö¦§õö¨©C ¹ºÉ ~ ª< . «¬ ε µ¶ κ, ­ ,

ε > κ2 > 1, ®¯°±²³ A ∼ ~ ´D ( ɵ 24 ¶ 3.5.1 · ), ¸ß¡ ( ~¤¹º ¦

§ ,Î ªy ô (7.21) õö . » ¾ , κ = 2, ε = 10 A 25 A 100 κ = 3, ε = 40 A 90 A 225

Ñ A ∼ ~ ´D , ¼½ ¾¾ 7.1 ¾ 7.2 ¿À .¨© Á ~ ´D , ÂM ,

Ð~ = −1,

ε = 10, κ = 2 A 3 Ñ , ÃÄ ~ = −1/2, ε = 40, κ = 2, ÃÄ ~ = −1/2, ε = 90, κ = 3, ÃÄ ~ = −1/5, ε = 100, κ = 2,

ÎÏ~ = −1/5, ε = 225, κ = 3 Ñ ,

ô (7.21) õö ,¾

7.1 7.2 ¿À .

· 92 · ÖØ×ØÙÛÚÅ

7.1 --h= −1, H(ξ) = 1, ε = 10 Æ κ = 2, 3 Ç A È%É%Ê%Ë%Ì%ÉÍÎ κ = 2 κ = 3

2 0.869 414 205 4 0.364 317 573 1

4 0.869 693 253 2 0.364 310 089 9

6 0.869 685 765 6 0.364 310 019 4

8 0.869 686 026 5 0.364 310 018 7

10 0.869 686 016 4 0.364 310 018 7

12 0.869 686 016 8 0.364 310 018 7

14 0.869 686 016 8 0.364 310 018 7

16 0.869 686 016 8 0.364 310 018 7

18 0.869 686 016 8 0.364 310 018 7

20 0.869 686 016 8 0.364 310 018 7

Å7.2 --h= −1/2, H(ξ) = 1, ε = 40, κ = 2 Æ ε = 90, κ = 3 Ç A È%É%Ê%Ë%Ì%ÉÍÎ ε = 40, κ = 2 ε = 90, κ = 3

2 0.980 70 0.981 71

4 0.999 12 0.998 54

6 0.996 13 0.996 39

8 0.996 34 0.996 25

10 0.996 56 0.996 58

12 0.996 35 0.996 35

14 0.996 49 0.996 48

16 0.996 41 0.996 42

18 0.996 45 0.996 44

20 0.996 43 0.996 44

22 0.996 44 0.996 44

24 0.996 44 0.996 44

26 0.996 44 0.996 44

28 0.996 44 0.996 44

30 0.996 44 0.996 44¾¾7.1 7.2 ¿À , A ~

¤¹º ¦§D«¬ κ A ε 1ÕÏÐ .ÜÑ

, ~

ÒÓÔD ε 1ÕÏÐ . ª«Õ , 9È~ = −

(

1 +ε

3κ2

)−1

(7.36)

Ö×Ø ε > κ2 > 1 «¬ ε κ,ô (7.21) ®ê¦§

κ26 ε < +∞

Ù õö , ´ÚÔ 10ÌOP

A≈±(

1 +ε

3κ2

)−10√

1 − κ2

ε

(

1.180 3 + 3.907 5ε

κ2+ 5.812 8

ε2

κ4

"7 # Û%$%Ü%Ý%Þ%ß%àvv|~ · 93 ·

+5.114 9ε3

κ6+ 2.946 6

ε4

κ8+ 1.160 3

ε5

κ10+ 0.316 02

ε6

κ12

+5.872 6 × 10−2 ε7

κ14+ 7.129 8 × 10−3 ε8

κ16+ 5.139 6 × 10−4 ε9

κ18

+ 1.700 1 × 10−5 ε10

κ20

)

(7.37)

á7.1 H(ξ) = 1, κ = 2 â ε = 10, 40, 100 ã A ∼ ~ äàåæçèêé

ε = 10 ë A 20 ÍÎì ;æçèêé

ε = 40 ë A 20 ÍÎì ; í èêé ε = 100 ë A 20

ÍÎì

á7.2 H(ξ) = 1, κ = 3 â ε = 10, 90, 225 ã A ∼ ~ äàåæçèêé

ε = 10 ë A 20 ÍÎì ;æçèêé

ε = 90 ë A 20 ÍÎì ;í èêé ε = 225 ë A 20 ÍÎì

· 94 · ÖØ×ØÙÛÚ

ê ¶( ¦§ κ2 6 ε < +∞Ù|îðï|ñòóò « á ª ôõöε =

8κ2

π2(2 − A2)

K

(

A2

2 − A2

)

(7.38)

÷¸ E @ , ´ , K Àø¡ùúûüðý|þ¼ ,

¾¾7.3 ¿À . ÿ q ,

¾7.3

«ª«¡ ( Duffing ¼ ¢£ ú ¶ ¼ ¾ .

á7.3 A Þ 10 %Ý (7.37) â%Ý (7.38) æêé ì

; è 1é

κ = 1 ; è 2é

κ = 2; è 3é

κ = 3; è 4é

κ = 4 ; è 5é

κ = 5; è 6é

κ = 6 - OP ( ɵ 41 ¶ 3.5.2 · ), ¯2¨ ô (7.21)

¤ õö¨© ,¾

7.3 7.4 ¿À . ª«Õ , [m, m]Ì

- OP + ÆǹºÉ ~.[4, 4]

Ì - OP

A ≈ 2√

3

1 − κ2

ε

P (ε)

Q(ε)(7.39)

ê ¶( ¦§ 1 6 ε/κ2 < +∞Ù ¹º

, ´P (ε)=8 665 210 296 046 039 923 + 2 500 964 782 519 057 396

( ε

κ2

)

+604 034 298 653 768 562( ε

κ2

)2

+ 62 408 285 303 687 028( ε

κ2

)3

+3 874 319 809 940 915( ε

κ2

)4

Q(ε)=25 430 938 337 575 455 089 + 7 921 677 254 280 814 588( ε

κ2

)

+1 930 521 704 826 790 758( ε

κ2

)2

+ 213 027 971 364 041 596( ε

κ2

)3

+13 310 678 950 379 441( ε

κ2

)4

"7 # Û%$%Ü%Ý%Þ%ß%à "! · 95 ·

Å7.3 H(ξ) = 1, ε = 10 Æ κ = 2, 3 Ç A È [m, m] #$% - &'%Ë%Ì%É[m, m] κ = 2 κ = 3

[1, 1] 0.869 402 945 7 0.364 310 463 6

[2, 2] 0.869 690 237 7 0.364 310 017 8

[3, 3] 0.869 685 956 9 0.364 310 018 7

[4, 4] 0.869 686 017 6 0.364 310 018 7

[5, 5] 0.869 686 016 8 0.364 310 018 7

[6, 6] 0.869 686 016 8 0.364 310 018 7

[7, 7] 0.869 686 016 8 0.364 310 018 7

[8, 8] 0.869 686 016 8 0.364 310 018 7

[9, 9] 0.869 686 016 8 0.364 310 018 7

[10, 10] 0.869 686 016 8 0.364 310 018 7

Å7.4 H(ξ)=1, ε=40, κ=2 Æ ε=90, κ=3 Ç A È [m, m] #$% - &'%Ë%Ì%É

[m, m] ε = 40, κ = 2 ε = 90, κ = 3

[1, 1] 0.974 744 985 5 0.975 317 974 5

[2, 2] 0.998 880 376 6 0.998 825 089 5

[3, 3] 0.996 055 184 0 0.996 076 135 0

[4, 4] 0.996 495 776 6 0.996 492 182 9

[5, 5] 0.996 430 442 0 0.996 430 557 1

[6, 6] 0.996 437 076 6 0.996 436 833 6

[7, 7] 0.996 435 286 0 0.996 435 270 9

[8, 8] 0.996 435 370 7 0.996 435 361 4

[9, 9] 0.996 435 331 4 0.996 435 331 4

[10, 10] 0.996 435 335 2 0.996 435 335 5

[11, 11] 0.996 435 335 1 0.996 435 336 3

[12, 12] 0.996 435 336 2 0.996 435 336 3

[13, 13] 0.996 435 336 3 0.996 435 336 3

[14, 14] 0.996 435 336 3 0.996 435 336 3

[15, 15] 0.996 435 336 3 0.996 435 336 3

ª«Õ , r0 ô (7.21) õö , ( ï Ú ~ Ó« u(ξ)¤ô (7.20) ê ¶

( ¦§ ξ ∈ [0,π]Ù*) õö ,

¾¾7.4 ¾ 7.5 ¿À .

¨© + (7.6),-./

, 9u(ξ) ä , ëì −u(ξ) ã G ¬ä . 0 ø , ª«ê ¾ 7.4 ¾ 7.5 *1 ¹ «ù

.-./ Duffing ¼23 ε Ó ¹ . » ¾ ,

Ðε = 10 Ñ , ¼½ ¹

) Ó κ = 1 ¢ ( -4 , κ = 2

¢ ( -4 , κ = 3 ¢ ( -4 , ÔÕ ¹5 (-4

. °6 , «¬ ε > 1, Duffing ¼23 ¹ 2[√

ε ] ( -4 , ­ ,

[x] À x ­ ¶ . ¿ Î , ε Ó7 ,

-4 ( 7 ,¾¾

7.3 ¿À .Ð

ε 8 Ó9: Ñ , ê 9 : ( -;4 .ÜIÑ

,-;.;/ ;+ (7.1) ;<;= I (7.2) >;?IIÚ;@AB C õD EF ¼ .

· 96 · GIHIJLK

á7.4 H(ξ) = 1, κ = 2 M ε = 10, 40, 100 ã v(ξ) = Au(ξ) NO%ÝP%Ýçèêé

~ = −1, ε = 10 ë v(ξ) Q 5 R ÍÎì ;æçèêé

~ = −1/2, ε = 40 ë v(ξ) Q 10 R ÍÎì ; íèêé~ = −1/5, ε = 100 ë v(ξ) Q 20 R ÍÎì

á7.5 H(ξ) = 1, κ = 3 M ε = 10, 90, 225 ã v(ξ) = Au(ξ) NO%ÝP%ÝS èêé

~ = −1, ε = 10 ë v(ξ) Q 5 R ÍÎì ;æçèêé

~ = −1/2, ε = 90 ë v(ξ) Q 10 R ÍÎì ; íèêé~ = −1/5, ε = 225 ë v(ξ) Q 20 R ÍÎìTVU ¸VWVX, ± + , YVZV[ (7.8) \,V]V^ V_ . V`,»VaVbVcVdVegf ,

Ô ; ¼ ô ;h , i ;j ; I , ¯;kI -;.;/ 2;3I¿ ¹; .; ¼ ô

h YZ[lmªnopqr -./ 23 ¡`ûstu .

v8 w xzyzz|zz~z

6 -./ 23IÓ;; . »ef , ÖÔ ¼ ô h k -./ + Ó ._ 0»a ,j ` -./ + Ó23

u′′(x) + λ u(x) + ε u3(x) = 0 (8.1)

×Ø<=u(0) = u(1) = 0 (8.2)

, ′

x ¡ , ε 0`¢ . ¤£¦¥§©¨ Uª « λn

un(x), ¬u′′

n(x) + λn un(x) + ε u3n(x) = 0 (8.3)

­® <=un(0) = un(1) = 0 (8.4)

¯°∫ 1

0

u2n(x)dx = 1 (8.5)

± , ¥ n > 1 0`² . ³´ [12](A. H. Nayfeh) µXp¶ ·¸ h WX«23 , ¹º»¼ ·¸½¾ un(x) =

√2 sin(nπx) − ε

√2

16n2π

2sin(3nπx) + O(ε2) (8.6)

λn = n2π

2 − 3

2ε + O(ε2) (8.7)

¿ ·¸ À Á ε ÂÃ .

ÅÄÇÆÇÈÇÉÇÊÇËÇÌÇÍ Mathematica ÎÇÏÇÐÇÑÇÒÇÓÇÔÇQÇÕÇÖ , ×ÇØÇÙÇÚÇÛ . ÜÇÝÇÞÇß Í Ò E-mail àáãâ[email protected], äÇåÇæÇçÇè â http://numericaltank.sjtu.edu.cn/code.htm, ÎÇéÇêë ÑÓìÙÚíîïðñ Mathematica òóQÝÞôÓ . —— õö

· 98 · GIHIJLK

8.1 ÷ùøûúûüûý8.1.1 þÿ

<= (8.4), (8.3) , , isin[(2k + 1)nπx] | n > 1, k = 0, 1, 2, 3, · · · (8.8)

un(x),

un(x) =+∞∑

k=0

an,k sin[(2k + 1)nπx] (8.9)

±, an,k . (8.9) nop un(x) YZ[ . YZ[ (8.9), * (8.4) (8.5), ,

un,0(x) =√

2 sin(nπx) (8.10)

_ un(x) !"# . $% , YZ[ (8.9) (8.3), `&' (a

LΦ =∂2Φ

∂x2+ (nπ)2Φ (8.11)¿ (a)Â*

L [C1 sin(nπx) + C2 cos(nπx)] = 0 (8.12)±, C1 C2 + . (8.3), ,-(a

N [Φ(x; q),Λ(q)] =∂2Φ(x; q)

∂x2+ Λ(q) Φ(x; q) + ε Φ3(x; q) (8.13)

±., q ∈ [0, 1]

§ V` /101213 , Φ(x; q) 141516 x q VV , Λ(q) 141516 q V , 7 1819V 6 un(x) λn.jV1:

~ 6= 0 V`11; & ' ¢V , H(x) 6= 0

`; & ' .D< ;¼=2

(1 − q) L [Φ(x; q) − un,0(x)] = q ~ H(x) N [Φ(x; q),Λ(q)] (8.14)

­® <=Φ(0; q) = Φ(1; q) = 0 (8.15)

, @ q = 0 > , ;¼=2 (8.14) (8.15) ÂΦ(x; 0) = un,0(x) (8.16)

?8 @ ACBCDCECFCGCHCI · 99 ·

@ q = 1 > , ;V¼1=12 1 (8.14) (8.15)8191J 61K ! 1 (8.3) (8.4), L1M

Φ(x; 1) = un(x), Λ(1) = λn (8.17)

N $ , @1/101213 q L 0 O1P1Q 1 > , Φ(x; q) L11!1"1#V un,0(x) 2V°1Q1R1SVV un(x), Λ(q) L!"#« λn,0 2°QRS« λn. «TU § , ;¼=2 >?& ' ¢ ~ & ' H(x),

N $ , Φ(x; q) Λ(q) 456 ~ H(x).VW~ H(x) XY , Z[ 6 ;¼=2 (8.14) (8.15)

\ Â q ∈ [0, 1] ]Âun,k(x) =

1

k!

∂kΦ(x; q)

∂qk

q=0

, λn,k =1

k!

∂kΛ(q)

∂qk

q=0

(8.18)

k > 1 ]^ T , _`a

Φ(x; q) =+∞∑

k=0

un,k(x) qk (8.19)

Λ(q) =

+∞∑

k=0

λn,k qk (8.20)

Tq = 1 >bc . de (8.16) (8.17), fg

un(x) = un,0(x) ++∞∑

k=1

un,k(x) (8.21)

λn = λn,0 +

+∞∑

k=1

λn,k (8.22)

WVX 1 1h1i un,k(x) λn,k

819 ºV»VVVVkj VV«l17 !1"#Vmn .

8.1.2 oÿpq , ,-re3

un,m = un,0(x), un,1(x), un,2(x), · · · , un,m(x)

λn,m = λn,0, λn,1, λn,2, · · · , λn,m

;¼=2 (8.14) (8.15)

q ¡ k s , tuZ k!, vw : q = 0, Âx¼=

· 100 · GIHIJLK2

L [un,k(x) − χk un,k−1(x)] = ~ H(x) Rn,k(un,k−1, λn,k−1) (8.23)­®y =un,k(0) = un,k(1) = 0 (8.24)

, χk e (2.42) ,- , Rn,k(un,k−1, λn,k−1)

=u′′n,k−1(x) +

k−1∑

m=0

λn,mun,k−1−m(x)

k−1∑

m=0

un,k−1−m(x)

m∑

j=0

un,j(x)un,m−j(x) (8.25)

«TU § , z Uº,² n > 1, @ k > 1 > , un,k(x) λn,k−1 ] .|§

, Â`n 6 un,k(x) ~ 8 (8.23),

N $ ,¿ j

, ^O;`; , ZS, λn,k−1. § ,; ÂP& ' ;

H(x). *YZ[ (8.9), Rn,k(un,k−1, λn,k−1) f

Rn,k(un,k−1, λn,k−1) =

Mn,k∑

m=0

dn,m sin[(2m + 1)nπx]

±, dn,m , Mn,k 456 n k ² .

YZ[ (8.9), e (8.11) (8.23), H(x) =

H(x) = sin2[(2m − 1) nπx] (m > 1) (8.26)

H(x) = sin[(2m)nπx] (m > 1) (8.27)

H(x) = cos2[(2m − 1) nπx] (m > 1) (8.28)

H(x) = cos[(2m)nπx] (m > 1) (8.29)

(8.19) (8.20) RÏò (8.14) (8.15), q ¡Q¢ £ , ÎÑÒ¤¥¦§ï¨RÏò (8.23) (8.24), ©ª«¬ (8.25). —— õö

?8 @ ACBCDCECFCGCHCI · 101 ·

­ [H(x) = 1 (8.30)±

, m > 1 `² .N $ , Â

H(x) Rn,k(un,k−1, λn,k−1) =

µn,k∑

m=0

bn,km (λk−1) sin[(2m + 1)nπx] (8.31)

, bn,k

m (λk−1) , µn,k ` H(x) n j k S,®² . ¯bn,k0 (λk−1) 6= 0

x¼=2 (8.23) °±?Â~ bn,k

0 (λk−1) sin(nπx)

.N $ ,

* (8.12), un,k(x) ?Âx sin(nπx)

.|¿ j² XYZ[ (8.9). p³´ u , µ¶·¸

bn,k0 (λk−1) = 0 (8.32)

®¹º»`ºjS, λn,k−1 , LM¬ ¿ .T W» k λn,k−1 w , Qun,k(x) = χk un,k−1(x) +

µn,k∑

m=1

~ bn,km (λk−1)

n2π

2 [1 − (2m + 1)2]sin[(2m + 1)nπx]

+C1 sin(nπx) + C2 cos(nπx) (8.33)

±, C1 C2 ] .

YZ[ (8.9), fgC2 = 0

«TU § , W»¼ ¸ ­®y½ ; (8.24),N $ , C1

j¾ S, . ¿M ,

*¯° (8.5), fg∫ 1

0

(

k∑

m=0

un,m(x)

)2

dx = 1 (8.34)

· 102 · GIHIJLK± º»

C21 + 4αC1 + 2β = 1 (8.35)±

α =

∫ 1

0

wn,k(x) sin(nπx)dx, β =

∫ 1

0

w2n,k(x)dx (8.36)

wn,k(x) =

k−1∑

j=0

un,j(x) + χk un,k−1(x)

+

µn,k∑

m=1

~ bn,km (λk−1)

n2π

2 [1 − (2m + 1)2]sin[(2m + 1)nπx] (8.37)

(8.35), QÀ

C1 = −2α +√

4α2 − 2β (8.38)

C1 = −2α −

4α2 − 2β (8.39)

7 k8k9 6 À ` j .kÁ

, 4 s k λn,0 j un,1(x) j λn,1 jun,2(x)

J. z Uº,® n,

« m ¼ ½¾ 89 un(x) ≈ un,0 +

m∑

k=1

un,k(x) (8.40)

λn ≈ λn,0 +

m∑

k=1

λn,k (8.41)

8.1.3 ÂÃÄÅÄÅ 8.1 ÆÇÈÉ

un,0(x) ++∞∑

k=1

un,k(x)

Êλn,0 +

+∞∑

k=1

λn,k

Ë1Ì, Í.Î , un,k(x) Ï1Ð1Ñ1Ò (8.23) j (8.24)

Ê(8.34), Ó1Ô1Õ (8.11) j (8.25)

Ê(2.42)Ö×

, ØÙÚÛÜÝÞÑÒ (8.1)Ê

(8.2) ßàáâÉ Ê àáã .

?8 @ ACBCDCECFCGCHCI · 103 ·

ä ¯abc , µ,fglim

m→+∞un,m(x) = 0

d , e (8.11) j (8.23) (2.42), fg

~ H(x)

+∞∑

k=1

Rk(un,k−1, λn,k−1)

= limm→+∞

m∑

k=1

L[un,k(x) − χkun,k−1(x)]

=L

limm→+∞

m∑

k=1

[un,k(x) − χkun,k−1(x)]

=L[

limm→+∞

un,m(x)

]

=0

å N ~ 6= 0 H(x) 6= 0,\ Z+∞∑

k=1

Rk(un,k−1, λn,k−1) = 0

(8.25) 0æ , ¹° p . «abc , fg

d2

dx2

[

+∞∑

k=0

un,k(x)

]

+

(

+∞∑

m=0

λn,m

)[

+∞∑

k=0

un,k(x)

]

+ ε

[

+∞∑

k=0

un,k(x)

]3

= 0

e (8.10) (8.24), fg+∞∑

k=0

un,k(0) =

+∞∑

k=0

un,k(1) = 0

$% , e (8.34), ¯° (8.5) ç ­® .N $ ,

è Àéabc , 7 µ,§ (8.3) j (8.4) (8.5) un(x) « λn. êë .

8.2 ìîí ú ü«;TU § , a; (8.21) (8.22) ïð& ' ¢; ~ & ' ; H(x).

zUVº1,1 n ε « , VV«V1aV (8.22)

§~ 1ñ1aV , L1M , 711b1c1ò1óV1b1c

· 104 · ôöõö÷ùøúû 456 ~.

,ü 8.1, ý Rþ& ' ¢ ~ & ' H(x)

ZSÿÀéabc .

(8.9) , & ' H(x) = , (8.26)∼(8.30). pq , H(x) = 1. º, n ε « ,

hi λn ∼ ~ e ( ¢ 24 3.5 ) ~ «a (8.22) bcò

ó . , ε = 5 j 25 j −50 >« λ1 ∼ ~ e , 8.1\

. ~ e , ! ª Q ~ "ÂÃòó , ZSÿa# (8.22) bc . 8.1

\, ε = −50

> , λ1 "a# (8.22) $ ~ = −1/2

~ = −2/5 >bc . M , %& - '( ½¾ ( ¢41 ) 3.5.2 ) *+, ú bc , 8.2

\. -./0 ,

è «"a#(8.22) bc , 12#"a# (8.21) 3$²éòó 0 6 x 6 1 4ebc . , ε = −50 > , 2# u1(x) ½¾5 8.2

\.N $ ,

z Uº, n ) ε « , 6 Qbc«)72# .

8.3 8»9 «" 5:½;¾ . 9 2# 5:5 , 8.3 ) 8.4

\.

;8.1 H(x) = 1 < λ1/π

2∼ ~ =B

>@?@A âε = 5 B 20 C@D@E@F ; G >@?@A â ε = 25 B 20 C@D@E@F ; H A â ε = −50 B 30 C@D@E@FI

8.1 H(x) = 1, ε = −50 J λ1/π2 KMLMNMOMPMLD@E@C ~ = −1/2 ~ = −2/5

5 7.537 534 384 2 7.539 945 705 1

10 7.538 448 834 1 7.538 460 057 8

15 7.538 447 119 8 7.538 447 307 8

20 7.538 447 114 1 7.538 447 126 1

25 7.538 447 114 1 7.538 447 114 6

30 7.538 447 114 1 7.538 447 114 1

35 7.538 447 114 1 7.538 447 114 1

40 7.538 447 114 1 7.538 447 114 1

?8 @ ACBCDCECFCGCHCI · 105 ·

I8.2 H(x) = 1, ε = −50 J λ1/π2 K [m, m] QMRMS - TMU OMP

[m,m] ~ = −1/2 ~ = −2/5

[2, 2] 7.540 753 911 1 7.541 081 021 1

[4, 4] 7.538 447 432 1 7.538 448 528 2

[6, 6] 7.538 447 364 4 7.538 448 039 4

[8, 8] 7.538 447 114 1 7.538 447 114 1

[10, 10] 7.538 447 114 1 7.538 447 114 1

[12, 12] 7.538 447 114 1 7.538 447 114 1

[14, 14] 7.538 447 114 1 7.538 447 114 1

[16, 16] 7.538 447 114 1 7.538 447 114 1

[18, 18] 7.538 447 114 1 7.538 447 114 1

[20, 20] 7.538 447 114 1 7.538 447 114 1I8.3 --h= −1, H(x) = 1 J λn/(nπ)2 KMLMNMV

ε n = 1 n = 2 n = 3

−25 4.432 77 1.917 46 1.415 24

−20 3.785 08 1.738 57 1.333 24

−15 3.123 28 1.557 58 1.250 74

−10 2.443 17 1.374 30 1.167 71

−5 1.738 57 1.188 52 1.084 14

0 1 1 1

5 0.212 582 0.808 470 0.915 264

10 −0.647 567 0.613 626 0.829 909

15 −1.618 38 0.415 125 0.743 906

20 −2.756 08 0.212 582 0.657 228

25 −4.130 61 0.005 561 0.569 843

;8.2 ~ = −1/2, H(x) = 1, ε = −50 <CECFMWMX u1(x) YMZM[M\M]MZ^@A â @C@D@E@F ; H A â 5 C@D@E@F ; _ > â 10 C@D@E@F

· 106 · ôöõö÷ùø

;8.3 H(x) = 1 < , ECFMWMX u1(x) YMZM[MZ

H A â ε = 50, ~ = −1/2 B 30 C@D@E@F ; G >@?@A â ε = 25, ~ = −1/2 B 10 C@D@E@F ; ` ^@A â ε = 5,

~ = −1 B 5 C@D@E@F ;>@?@A â

ε = −25, ~ = −1/2 B 20 C@D@E@F ; a ^@A â ε = −50 ~ = −1/2 B20 C@D@E@F

;8.4 ~ = −1, H(x) = 1 < , ECFMWMX u2(x) YMZM[MZ

H A â ε = 100 B 10 C@D@E@F ; G >@?@A â ε = 50 B 5 C@D@E@F ;>@?@A â

ε = −50 B 10 C@D@E@F ;^

A âε = −100 B 20 C@D@E@F

-./0 , bcO· , ~ "ÂÃòó2d , 8.1\e

.N $ , ε fgh

?8 @ ACBCDCECFCGCHCI · 107 ·

i P , ~ "h¶ ijk ; . g ε < 0, l~ = − 1

1 + |ε|(8.42)

h + m 6 bc 5 . æn , $2 6 + ·>o 5 h)2# . gp;!qr ε, sh$ 8.4 8t , s2# 8.5∼ 8.7\e

.u 5:vw

, fg

limε→−∞

λn

ε= −1 (8.43)

I8.4 H(x) = 1 J λn/ε KMLMNMV

ε λ1/ε λ2/ε λ3/ε

−200 −1.221 −1.488 −1.810

−400 −1.152 −1.325 −1.524

−600 −1.122 −1.272 −1.412

−1 000 −1.093 −1.196 −1.310

−2 000 −1.065 −1.135 −1.215

−5 000 −1.041 −1.083 −1.133

−10 000 −1.029 −1.059 −1.090

;8.5 H(x) = 1 < , ECFMWMX u2(x) YMZM[MZ

H Ayx ε = −5 000, ~ = −1/50 B 100 C@D@E@F ; G >@?@Ayxz ε = −1 000, ~ = −1/10 B 20 C@D@E@F ;>@?@Ayxε = −400, ~ = −1/4 B 20 C@D@E@F ;

^@Ayxε = −100, ~ = −1 B 20 C@D@E@F

· 108 · ôöõö÷ùø

;8.6 H(x) = 1, ~ = −1/50, ε = −10 000 <CECFMWMX u3(x) YMZM[MZ

H Ayx 70 C@D@E@F ; _ >yx 90 C@D@E@F

;8.7 H(x) = 1, ~ = −1/20, ε = −10 000 <CECFMWMX u4(x) YMZM[MZ

H Ayx 40 C@D@E@F ; _ >yx 60 C@D@E@F)

limε→−∞

un(x) =

1, 2k/n < x < (2k + 1)/n

−1, (2k + 1)/n < x < (2k + 2)/n(8.44)

?8 @ ACBCDCECFCGCHCI · 109 ·

u|, n > 2, k = 0, 1, 2, · · · , [(n−1)/2], [x]

e g x ~ . h 6 T1U1 , ε = −10 000

> , 6 9éfgh177r ~ h , ZSÿa# (8.21) ) (8.22) bc .

uå 9sê , & ' # ~ $%& 8 : 4c è .

-./0 , (8.38) # C1, 1 2#$~éòó0 < x < 1/n

4 .

u+n (x) eu 2# . w (8.39) C1, 12#$% òó4r ,

u−

n (x) e .u 2# x g¡ . ¢£ , g¤¥

ε ) n, ¦$§9h λn, ¨©¦$ é2# u+n (x) ) u−

n (x), ª«u−

n (x) = −u+n (x)

¬7­, 7727# u−

n (x) "7®7#°¯±7727# u+n (x) "7®7#7²7³ 67´ ,

u7µè 7¢7 ,

u+n (x) ¶· k¸¹º» 5 (8.10). w¼ ¸¹º» 5

un,0(x) = −√

2 sin(nπx)

½ 7¾7 (8.39), 77727# u−n (x) "7®7#7²7³ 6 ¶7¿ . ¢7£ , À7Á7%7&7Â :7

, Ãm 6ÄÅÆÇÈÉ ËÊÌ 2# .ÍÎ ÊÌ vw, ÏÑÐÓÒÔ2# H(x) = 1 ¤t . -./0 , Ð (8.26)∼

(8.29)¥Õ Ö ÒÔ2#3פt²³ vw . l Ø % ÒÔ2# , Ãm 6 1%

h)2# .¬­

, ÐÓsÙ Ö ÒÔ2#¤t ®# 5 ¯ÐÓÒÔ2# H(x) = 1 ¤t ®#²³ ´ . ¢£ , H(x) = 1 Ã× ÄÈÉÚÛ ÒÔ72# , ÜÝ-. Ø ×Þ u 9ß .uà áâÑ , %& : Ã Í ã m 6äÅÆÇå h ÈÉ ÊÌæç hèæçéê

.

ë9 ì íïîïð - ñïòïóïôïõïö

÷ùø oùúËûùüùý - þùÿ (Thomas-Feimi) ùá [81, 82] ûùüùý - þùÿu′′(x) =

u3(x)

x(9.1)

ª« åu(0) = 1, u(+∞) = 0 (9.2)

ûüý - þÿáá á , ½ è átá v .

(9.1) !"# à$ áá%&¡ ' Â( .

Ð (9.1) è (9.2), )* u′′(0) → +∞. ¢£ , u(x)

x = 0 ¦ # à+,

ß . - $./01 2 Â [83, 84] 3 δ 45 [85∼87] 3 Adomian Âú [88∼91],Í

6 #78Ù [92∼97], 9úûüý - þÿ : ú;<=ú . ¨> , ?7 @A êB 9C u′(0)

: B, ¢ ­ , Ï>Dú; 3 D êB .

Ú < , EFG [51] HI Â; , J éê

(1 + x)−n | n > 1

(9.3)

KL ¤M"ûüý - þÿ # àN O 3QP úR; ® ê ú . ¨> , ÜÝ Ä ®ê ú [51]S àTU V ÌW , &X x, 8²³YZ ´ .

÷ø, [\ HI Â;]

, ÀÁ^_#`¶ Û éê , ¤Mûüý - þÿ # ¶ ÌW ® ê ú .

9.1 acbedefeg9.1.1 hijk

(9.1) Ãlmnx [u′′(x)]2 − u3(x) = 0 (9.4)2o

τ = 1 + λ x (9.5)

]qpsrstsusvswsxsyMathematica zss|ss~sssss , ssss . sss y ~ E-mail

[email protected], ssss http://numericaltank.sjtu.edu.cn/code.htm, zss Mathematica ¡¢ . —— £¤

¥9 ¦ §©¨©ª - «©¬©­©®©¯©° · 111 ·

8 , λ > 0 >± ¥² ê , ³ (9.4)2 n

λ3 (τ − 1)

(

d2u

dτ2

)2

− u3(τ) = 0 (9.6)

ª« åu(1) = 1, u(+∞) = 0 (9.7)

B Cµ´µ¶ > , ³ (9.6)ص·µ¸µ¹µº Æǵ» èµ¼ ( X ) ½ ê .

Ê Í, 8 ÅÆÇÅ ² ä .

(9.7), ¾ τ → +∞, u(τ) ¿À êÁÂÃÄ , Å 0 ¿Æ êÁÂÃÄ .¬­

, г(9.6) è (9.7), ÇÈÉ ¥ u(x)

ÊËÌ Í < ÇÎ . ¢£ ,Ø ÏÐÑ

u(τ) ¿À êÁÂÃÄ . , u(τ)

ÌÍ <O u(τ) ∼ τκ, τ → +∞

8 , κ >Ò* ² ê . Ó Î ÀÔ³ (9.6), ÕÖ µ× » ,Ì

κ = −3 (9.8)

¢£ , u(τ) ÃØÙÚ éê O

τ−m | m > 3

(9.9)

Û ­u(τ) =

+∞∑

m=3

cm τ−m (9.10)

8 , cm ê .

(9.10) ÜÝ" ÄÈÉ :ßÞàá .

9.1.2 âãäåæç Þàá(9.10), J å (9.7), )* , ^_

u0(τ) = τ−3 (9.11)

u(τ)¸¹º» ú . Ð (9.6),

½ Þàá(9.10), [\^_

L[Φ(τ ; q)] =(τ

4

) ∂2Φ(τ ; q)

∂τ2+

∂Φ(τ ; q)

∂τ(9.12)

ÒÔ ÆÇ á , 8è Ì ÇÎL(

C1

τ3+ C2

)

= 0 (9.13)

· 112 · éëêëìîí8 , C1 è C2 ê . г (9.6),

¥Õ ÙÚ ÅÆÇ áN [Φ(τ ; q)] = λ3 (τ − 1)

[

∂2Φ(τ ; q)

∂τ2

]2

− Φ3(τ ; q) (9.14)

8 , Φ(τ ; q) ï @A τ è q: Ò* éùê .

Ø ù~ ï# à Å Ä ÒùÔ½ ê ,

H(τ) ï# à Å Ä ÒÔ éê .ð Äñò2 ³

(1 − q) L [Φ(τ ; q) − u0(τ)] = ~ H(τ) q N [Φ(τ ; q)] (9.15)

ª« åΦ(1; q) = 1, Φ(+∞; q) = 0 (9.16)

8 , q ∈ [0, 1] # àßó Ô 2ô .

Ðõ (9.11), ¾ q = 0 ö , ³ (9.15) è (9.16): ú÷

Φ(τ ; 0) = u0(τ) (9.17)

Ð ~ 6= 0 è H(τ) 6= 0, ¾ q = 1 ö , ³ (9.15) è (9.16) Âøù Hú ³ (9.6) è(9.7),

ÛûΦ(τ ; 1) = u(τ) (9.18)

üý, ¾ q

Û0 þXÿ 1, Φ(τ ; q) Û ú u0(τ)

2 ÿ³ (9.6) è (9.7): ú u(τ).

J45èõ (9.17), ÃÓ Φ(τ ; q) 45n q: ê

Φ(τ ; q) = u0(τ) +

+∞∑

k=1

uk(τ) qk (9.19)

8 uk(τ) =

1

k!

∂kΦ(τ ; q)

∂qk

q=0

(9.20)

)* , Φ(τ ; q) @A ú ÒÔ½ ê ~ èÒÔ éê H(x).ÐÑ

~ è H(x) ^_ ,Í

Ãú ê(9.19)

q = 1 ö , Jõ (9.18),

Ì

u(τ) = u0(τ) +

+∞∑

k=1

uk(τ) (9.21)

ÜÝ" ú u0(x) Éú u(x):

.

¥9 ¦ §©¨©ª - «©¬©­©®©¯©° · 113 ·

9.1.3 ãäåæç÷ , Õ

un = u0(τ), u1(τ), u2(τ), · · · , un(τ)

Ó Äñò2 ³ (9.15) è (9.16) & q 9 kL

, q = 0,Ú Í

k!,Ì ñò

2 ³ ]L [uk(τ) − χkuk−1(τ)] = ~ H(τ) Rk(uk−1, τ) (9.22)

!" åuk(1) = 0, uk(+∞) = 0 (9.23)

8 , χk Ðõ (2.42) Õ , #Rk(uk−1, τ)

=

k−1∑

j=0

[

λ3 (τ − 1) u′′j (τ) u′′

k−1−j(τ) − uk−1−j(τ)

j∑

i=0

ui(τ) uj−i(τ)

]

(9.24)

B CR´R¶%$R> , uk(τ)(k > 1)!%" Æ7Ç ³ (9.22) è Æ7Ç7åRRR (9.23).

üý

,R õ (9.21),

HRI ÂR;R³%& ÷ Î Î Ó !%" ³ (9.6) è (9.7): Å7Æ7Ç7ÈÉ' 2 n ÊË $à !" ³ (9.22) è (9.23)

: ÆÇ á ÈÉ .B C´¶$> , ?( '2)*Ø+×¹º ¼ ( X ) ½ ê .Ø, u∗

k(τ) -ï³

L[u∗k(τ)] = ~ H(τ) Rk(uk−1, τ)

$# àæ ú . ./ , Jõ (9.13), ³ (9.22):0 ú÷

uk(τ) = χk uk−1(τ) + u∗k(τ) + C1 τ−3 + C2 (9.25)

8 , ê

C1 è C2 Ð å (9.23) É . ?1 , 23 H(τ) 4* , Ã @ L 9ú ñò2 ³ (9.22) è (9.23). Þàá

(9.10), H(τ) 5 Ä è Ì ÙÚ ò õH(τ) = τσ (9.26)

8 , σ ># à ± S ê . [\67 , ¾σ > 4

]98;:;<(9.19) =;>;?;@;A;B;C;D (9.15) E (9.16), F q G;H;I;J;K <;L A , z~;M;N;G;H;O;B;C;D (9.22) E (9.23), P;Q;R;S;T (9.24). —— £¤

· 114 · éëêëìîíö , UCÿ$ú ·¸ τ ln τ

»,VW Þàá (9.10). ¾

σ < 4

ö , τ−4» $ ê X ÷ Ä , YZ<= ñê[ú ÊË Ê &l\ . ? VW ]^_`a%b

.üRý

, ÷R"%c W ÞRàRá (9.10) d W %]%^%_%` a%b , e%fR^R_ σ = 4. ?%g#É"hi éê

H(τ) = τ4 (9.27)

j , k @ L 9ú ñò2 ³ (9.22) è (9.23).

9.1.4 lm àáno%p ÿ7û7ü7ý - þ7ÿR%qRR%$%r ×%s , t%e ×%u MR8 ê ú : N õ%-RORõ .

[\67 , uk(τ) k-Onuk(τ) =

2k∑

n=0

αk,n

τn+3(9.28)

8 , αk,n ÷ ê . Óv!-OõÀÔ ñò2 ³ (9.22) è (9.23), kCÿÙÚwxõ

αk,j =χkχ2k−j αk−1,j

+4~

[

χ2k+1−j

(

λ3βk,j+1 − γk,j+1

)

− χj λ3βk,j

]

j(j + 3)(9.29)

βk,i =

k−1∑

j=0

min2j,i−2∑

n=max0,i+2j−2k

(n + 3)(n + 4)(i + 1 − n)

×(i + 2 − n) αj,n αk−1−j,i−n−2 (9.30)

γk,i =

k−1∑

j=0

min2j,i−2∑

n=max0,i+2j−2k

δj,n αk−1−j,i−n−2 (9.31)

8

δj,n =

j∑

i=0

min2i,n∑

r=max0,n+2i−2j

αi,r αj−i,n−r (9.32)

y õ (9.23) tαk,0 = −

2k∑

n=1

αk,n (9.33)

¥9 ¦ §©¨©ª - «©¬©­©®©¯©° · 115 ·

y õ (9.11), )* , z# ê ÷α0,0 = 1 (9.34)

üý, Jv|$wxõ ,

yα0,0 = 1, k @ L~ MUt8 ê αk,n. U , [

\Cûüý - þÿq$# N õ ê úu(x) =

+∞∑

k=0

2k∑

n=0

αk,n

(1 + λ x)n+3(9.35)

5$ mñ <=ú÷

u(x) ≈m∑

k=0

2k∑

n=0

αk,n

(1 + λ x)n+3(9.36)

y õ (9.36), tu′(0) ≈ −λ

m∑

k=0

2k∑

n=0

(n + 3)αk,n (9.37)

èu′′(0) ≈ λ2

m∑

k=0

2k∑

n=0

(n + 3)(n + 4)αk,n (9.38)

9.1.5 9.1

u0(τ) +

+∞∑

k=1

uk(τ)

, , uk(τ) (9.22) (9.23), (9.12) 3 (9.24) (2.42) , - ¡ ¢£¤ .¥ 3¦ § , et

limm→+∞

um(τ) = 0

s(τ) = u0(τ) +

+∞∑

k=1

uk(τ)

· 116 · éëêëìîí-O¦ § . ¨Jõ (9.12) 3 (9.22) © (2.42) t

~ H(τ)

+∞∑

k=1

Rk(uk−1, τ)= limm→+∞

m∑

k=1

L[uk(τ) − χkuk−1(τ)]

=L

limm→+∞

m∑

k=1

[uk(τ) − χkuk−1(τ)]

=L[

limm→+∞

um(τ)

]

=0

y ú~ 6= 0 © H(τ) = τ4, & ¹ ¶ τ > 1, võ u M

+∞∑

k=1

Rk(uk−1, τ) = 0

Óõ (9.24) ÀÔvõ , , t+∞∑

k=1

Rk(uk−1, τ)

=

+∞∑

k=1

k−1∑

j=0

[

λ3(τ − 1) u′′j (τ) u′′

k−1−j(τ) − uk−1−j(τ)

j∑

i=0

ui(τ) uj−i(τ)

]

=λ3 (τ − 1)

[

+∞∑

k=0

u′′k(τ)

]2

−[

+∞∑

k=0

uk(τ)

]3

=λ3 (τ − 1)

[

d2s(τ)

dτ2

]2

− s3(τ)

=0

y õ (9.11) © (9.23), nªs(1) = 1, s(+∞) = 0N%«

, s(τ)!%" ³ (9.6) © (9.7),

üRý, >7û7ü7ý - þ7ÿR³ (9.1) © (9.2)

: ú .¬­.

9.2 ®°¯ d f 9.1, [\5ɱ § ú (9.35) .

B C´¶$> , ¦ § ·¸ hi½ § ~ © λ,

\²³´ §: TU ©Y .üý

, 5µ ¶^_ ~ © λ.

¥9 ¦ §©¨©ª - «©¬©­©®©¯©° · 117 ·

ûüý - þÿ , q$· ô y

E =6

7

(

3

)2/3

Z7/3 u′(0)

É , 8 , Z >Ò* ' .üý

,¸¹

u′(0) ètr × $º¶» . [\ KÏ ./~ © λ & u′(0)

: s $²³ . Ǽ N , u′(0)@A ú

~ © λ. & ¹ ¶ u $ ~,

kRÓ u′(0) ½%¾ λ $R#%%¿ § , À%Á%ÂRM 5%$ u′(0) ∼ λ ÃÅÄ ,ÛRû .R/

λ & §u′(0) s : ²³ , ÙÆ 9.1 Uï (~ = −1, ~ = −3/4 © ~ = −1/2). ÇÈ

9.1, u′(0) 5ÿ É $Ê , Ë5 ú Æ 9.1 Ì ÍÎÏÐÑÒ$ÄÓ . ÇÈÆ 9.1, Ô«, Õ 0.2 < λ < 0.3 © −1 6 ~ 6 −1/2 ö ,

§u′(0) .

üý, Ö×ØÙ

λ = 1/4

÷ÚÛÜ ~ Ý λ = 1/4 ÞË § u′(0) ßàá©âã$²³ , Ö×ÁÂä 5$ u′(0) ∼ ~ Ã Ä ( åæ 24 ç© 3.5.1 è ), éÆ 9.2 Uê . Õ λ = 1/4 Þ , u′(0)

Ýàá −2 < ~ < 0 ë .ýì

, Ö×67 , íî u′(0) ß § , 5 u(x) ß%§ %Ý%ï%%à%á 0 6 x < +∞ ëÅ% .

üRý, Õ λ = 1/4 © −2 < ~ < 0 Þ ,

§

(9.35) Ýïàá 0 6 x < +∞ ë . ðé , ~ = −1 © λ = 1/4 Þ , ñ (9.36)

ß 10 òóôõ 100 òóôö÷øù , éÆ 9.3 Uê . úÔ « -¼ , 5 §û

% . ~ = −1 © λ = 1/4 Þ , u(x) %%$ û%ü%ý%þ é%- 9.1 U%ê . Ç%È%% 9.1, e%%ÿ - û . ~ = −1 © λ = 1/4 Þ , § (9.35) k%½ - ß û Í » .

9.1 30 u′(0) ∼ λ

~ = −1 ; ~ = −3/4; ~ = −1/2

· 118 · "!"#%$

9.2 λ = 1/4 & , 30 u′(0) ∼ ~

9.3 ~ = −1 ' λ = 1/4 & , ()* - +,-./00 (9.36)1 10 2345 ;

100 2345

Kobayashi[98] 6 ä § Ê ûu′(0) = −1.588 071 (9.39)

~ = −1 © λ = 1/4 Þ , 7 (9.36) 6 ä 8 9 ¸¹ u′(0) ß ûü óô û , é : 9.2 ;

<9 = ()* - +,>?@A · 119 ·

ê . ÔB , CD%ó%ô%òEFG , HIJK . BL , u′(0) ßMN%â%ã"O u(x) ßMN%âãP%øQ , úRS%ÿ"7UT%Ý x = 0 VWXYZ[\ . ]^ É_ - `a%ó%ô ( æ 41

ç b 3.5.2 è ), ÷ c 8 9 d e u′(0) f g ûü óô û , é : 9.3 ;ê . ~ = −1 bλ = 1/4 Þ , u′′(0) ûü óô û é : 9.4 ;ê . u′′(0) ß É _ - ` aóôé : 9.5 ;ê . Ô B , 7 (9.35) 6 ä u′′(0) h T i j . ú k l D ,

É _ m ü n R o û p W XY Z q r s Z t u .

v9.1 --h= −1 w λ = 1/4 x , yz (9.36) | u(x) ~

x u(x) x u(x)

0.25 0.755 202 4.25 0.099 697 9

0.50 0.606 987 4.50 0.091 948 2

0.75 0.502 347 4.75 0.085 021 8

1.00 0.424 008 5.00 0.078 807 8

1.25 0.363 202 6.00 0.059 423 0

1.50 0.314 778 7.00 0.046 097 8

1.75 0.275 451 8.00 0.036 587 3

2.00 0.243 009 9.00 0.029 590 9

2.25 0.215 895 10.0 0.024 314 3

2.50 0.192 984 15.0 0.010 805 4

2.75 0.173 441 20.0 0.005 784 94

3.00 0.156 633 25.0 0.003 473 75

3.25 0.142 070 50.0 0.000 632 255

3.50 0.129 370 75.0 0.000 218 210

3.75 0.118 229 100 0.000 100 243

4.00 0.108 404 1 000 1.351 3×10−7

v9.2 --h= −1 w λ = 1/4 x , yz (9.37) | u′(0) Kobayashi ~

342 u′(0) (%)

10 −1.285 90 19.03

20 −1.409 32 11.26

30 −1.463 06 7.87

40 −1.492 36 6.03

50 −1.510 63 4.88

60 −1.523 09 4.09

70 −1.532 11 3.52

80 −1.538 95 3.09

90 −1.544 30 2.76

100 −1.548 60 2.49

110 −1.552 14 2.26

120 −1.555 09 2.07

· 120 · "!"#%$v

9.3 --h= −1 w λ = 1/4 x , yz (9.37) | u′(0) ~ [m, m] - Kobayashi ~[m,m] u′(0) (%)

[5, 5] −1.504 19 5.28

[10, 10] −1.546 00 2.65

[15, 15] −1.564 37 1.49

[20, 20] −1.564 74 1.47

[25, 25] −1.576 66 0.72

[30, 30] −1.558 032 0.49

[35, 35] −1.581 87 0.39

[40, 40] −1.583 01 0.32

[45, 45] −1.583 88 0.26

[50, 50] −1.584 69 0.21

[55, 55] −1.585 38 0.17

[60, 60] −1.586 05 0.13

v9.4 --h= −1 w λ = 1/4 x , yz (9.38) | u′′(0) ~

342 u′′(0)

10 3.79

20 6.41

30 8.96

40 11.49

50 14.01

60 16.52

70 19.03

80 21.54

90 24.04

100 26.55

110 29.05

120 31.56

v9.5 --h= −1 w λ = 1/4 x , yz (9.38)| u′′(0) ~ [m, m] -

[m, m] u′′(0)

[5, 5] 122.7

[15, 15] 6 087.7

[30, 30] 168 917

[40, 40] 643 063

[50, 50] 2.157 07 ×106

[60, 60] 8.783 29 ×106

Ý , Ö× x → +∞ Þ u(x) E ñ h T . Ýú ¡ ¢ , Ö× £÷Ú - Ýï ¡àá 0 6 x < +∞ ë¤W ¥ §¦¨M N E û . ;

<9 = ()* - +,>?@A · 121 ·

©, ú ¡ ÿ ª « . ¬ ­ , Ö× W «®7¤¯ ° , - ß û Ý i j ± V E ² J . ³÷ ´ k ÿ , ø µ ^ E ³ n÷ cú ¡ ý ¶ . ú ¡ð · ¸ :®¹ , º ]» Ú û½¼ û t½u½½¾½¿½Z½À , ¸½S½Á½Â½^½Ã _½m ü ½n , ĽŽ½ ͽƽǽȽE , ÷½cr s Z t u É Á g ûü óô û .

Ý Ê W k Ë c i j ± V Ìó Z Àß Íî Z Î Ï ¢ , Liao[51] Ð u(x) : Ñ Òé¢ Óñ

u(x) =

+∞∑

n=1

an

(1 + x)n

Ô ]½^½Ã _½m ü ½n , ÷½c½½½ - ½½½½ ͽ¡ Ô ñ½½E û . Õ ÿ , Ö½½E û½×G x MN%÷ØP . ¬­ ,

× Í¡ij%á ëUrsZtu , ÙÚÛÜÝÞ û Ýij±V Ìó Z À . ú RÔ ß à á â E û ß M Nâã . ³÷ ´ k ÿ , - ½ û S½Á m½ã ^½Ç½È E (9.3) b (9.10) :½Ñ , L½ä , 7æå½ç 6 ä½½½E û O½7¤è ç6 äE û MN%÷fé . ú:"¹ , êë - %ß û ô%Ð%ÿì%Í , Õÿ , í R î ï Ã Ç È E : Ñ , äÝ í×ß®ð¤R S ñÝ D òù Ç È E .

ó10 ô Volterra õ÷ö÷ø÷ù÷ú

ûüýþÿ ë¡¡E Volterra [99] É%é¢r s Z m - m

βdu(t)

dt= u(t) − u2(t) − u(t)

∫ t

0

u(x)dx (10.1)

b 8 9u(0) = α (10.2)

õ®ð , u(t) :ê à E ( i ¬ ), t :êÞ , β = c/(ab) :ê iåE , a > 0 ÿ%âe ÿ E , b > 0 :%ê ÿ E , c > 0 :%êZ ÿ E (%æ [99]∼[102]).

10.1 !#"%$%&%'10.1.1 ()*+,-.

λ > 0 :/012 ¬ · . 34τ = λ t, w(τ) = u(t) (10.3)

(10.1) Ò(

β λ2) dw(τ)

dτ= λ

[

w(τ) − w2(τ)]

− w(τ)

∫ τ

0

w(x)dx (10.4)

É 8 9w(0) = α (10.5)

Small[100] 56 , Ö t u78 Ü9:; ò â< , C å 5 E ² J . ; © , R ^= ¢> Æ Ç È Eexp(−nτ) | n > 1 (10.6)

: Ñ w(τ), ºw(τ) =

+∞∑

n=1

an exp(−nτ) (10.7)

<10 = Volterra ?A@AB@A · 123 ·

C ð , an ÿ E . D áEF Ö t u7GHI . 7JGHI (10.7), K ^L (10.5), RMN8 9OP8

w0(τ) = α exp(−τ) + γ [exp(−τ) − exp(−2τ)] (10.8)

C ð , γ Q > ¡ ¼ R E . STGHI (10.7), 7¤ (10.4), RMNLf =

d f

dτ+ f (10.9)

3 VUW s ZX · , ÖX · p W Z ÀL[e−τ ] = 0 (10.10)

7¤ (10.4), Y= ¢ r s Z m - m X ·N [Φ(τ ; q),Λ(q)] =βΛ2(q)

∂Φ(τ ; q)

∂τ− Λ(q)

[

Φ(τ ; q) − Φ2(τ ; q)]

+Φ(τ ; q)

∫ τ

0

Φ(x; q)dx (10.11)

C ð , q ∈ [0, 1] Q > ¡Z[ , Φ(τ ; q) Q > ¡\] T τ b q È E , Λ(q) Q > ¡\] T q È E^ . ï_ . ~ 6= 0 :/ > ¡ r VUWR E , H(τ) :/ > ¡ r VUWÈ E . `a b Óc

(1 − q) L [Φ(τ ; q) − w0(τ)] = q ~ H(τ) N [Φ(τ ; q),Λ(q)] (10.12)

É 8 9Φ(0; q) = α (10.13)

C ð , q ∈ [0, 1] Q > ¡VZ[ .dq = 0 0 , Òe

Φ(τ ; 0) = w0(τ) (10.14)

dq = 1 0 , ¬ ~ 6= 0 b H(τ) 6= 0, ; © , b Óc (10.12) b (10.13)

m ãfà Tc (10.4) b (10.5), g L

Φ(τ ; 1) = w(τ), Λ(1) = λ (10.15)

¬ ­ ,d

q g 0 F G c 1, Φ(τ ; q) g 8 9OP8 w0(τ) cc (10.4) b (10.5)

78 w(τ), Ãh , Λ(q) ¸g 8 9OP ³Λ(0) = λ0 (10.16)

^jilk Λ(q) mlnlolplq λ(q), rlsltlu , vlm ilwlx . —— ylt

· 124 · "!"#%$z½cz0zz1z2½¬½· λ. ³z½´½k½zQ , zb½Ózzcz| (10.12) z~zUzWzR½E ~ bzUW È E H(τ), 8 9OP8 w0(τ) ~UWR E γ. íMN ª ,

© ; T b Óc| (10.12) b (10.13) 78 Φ(τ ; q) ¦ Λ(q) ¡ q ∈ [0, 1] ¤ñ , ä

wn(τ) =1

n!

∂nΦ(τ ; q)

∂qn

q=0

(10.17)

λn =1

n!

∂nΛ(q)

∂qn

q=0

(10.18)

×n > 1 ñ . , ST « , K ^L (10.14) b (10.16), R Φ(τ ; q)

b Λ(q) Ò= ¢ EΦ(τ ; q) = w0(τ) +

+∞∑

n=1

wn(τ) qn (10.19)

Λ(q) = λ0 +

+∞∑

n=1

λn qn (10.20)

UWRE ~ ¦ γ bUWÈE H(τ) MNª ,© ;T9 ü E q = 1 0MN .

, 7JL (10.15), W E8w(τ) = w0(τ) +

+∞∑

n=1

wn(τ) (10.21)

λ = λ0 +

+∞∑

n=1

λn (10.22)

CM b8

w(τ) ≈ w0(τ) +M∑

n=1

wn(τ) (10.23)

λ ≈ λ0 +

M∑

n=1

λn (10.24)

10.1.2 )*+,- , YJ

wn = w0(τ), w1(τ), · · · , wn(τ) , λn = λ0, λ1, · · · , λn

<10 = Volterra ?A@AB@A · 125 ·

½ zb½Ózzcz| (10.12) b (10.13)× Zz[zz q oz n , z © n!, ò½å . q = 0,

c âb Óc| ^L [wn(τ) − χn wn−1(τ)] = ~ H(τ) Rn(wn−1, λn−1) (10.25)

É 8 9wn(0) = 0 (10.26)

C ð , χn 7 (2.42) Y , äRn(wn−1, λn−1)

=1

(n − 1)!

∂n−1N [Φ(τ ; q),Λ(q)]

∂qn−1

q=0

n−1∑

j=0

w′n−1−j(τ)

j∑

i=0

λiλj−i −n−1∑

j=0

λj wn−1−j(τ)

+n−1∑

j=0

λn−1−j

j∑

i=0

wi(τ)wj−i(τ)

+

n−1∑

j=0

wn−1−j(τ)

∫ τ

0

wj(x)dx (10.27)

ñ¡¡ λn−1 b wn(τ). BL ,» W > ¡¢T wn(τ) £c| (10.25).

¬­ , Ötuï ýþ , ¤¥F¦ > ¡Ec| ©§ λn−1. 7L (10.8) b (10.27),¨ R1(w0, λ0) =

4∑

m=1

a1,m exp(−m τ) (10.28)

C ða1,1 = (α + γ)

(

α +γ

2− λ0 − β λ2

0

)

b a1,j (j = 2, 3, 4) ÿ E . ³ ´ k£Q , UW È E H(τ) . STGHI (10.7)

bc| (10.25), UW È E Â p W= ¢ ÓLH(τ) = exp(κ τ)

C ð , κ Q > ¡ E . ©ª« ,d

κ > 1, c| (10.25) 78 wn(τ) ~ W > ¡¬ E­ ,

Ö­ i j ± V ﮯ , ¬ ­ , ï° ªGHI (10.7).d

k 6 −2 0 , c| (10.25) 7^±l² (10.19) ³ (10.20) ´lµl¶l·l¸2l¹lºl»l¼ (10.12) ³ (10.13), ½ q ¾l¿lÀlÁlÂlrlql¸ ,ÃlÄlÅlÆlÇ ¾l¿lÈlÉ2l¹lºl»l¼ (10.25) ³ (10.26), ÊlËlÌlÍlÎ (10.27). —— ylt

· 126 · ÏÑÐÑÒÔÓ

8 wn(τ) ï~ exp(−2τ) ­ , D ï° ª ;Õ£Ö×ØÙÚÛ . ¬ ­ , κ Â Ö 0 Ü1.d

κ = 1 0 , ï SÝ 6 ¢ T λ0 7 Ec| , t uÞ B ï ý þ , D ï° ªGßàÚÛ . ; © , á W κ = 0 Q R S£ . D ì > § FUW È E

H(τ) = 1 (10.29)

­0 , > b Óc| (10.25) £âã~ exp(−τ) ­ . , ST Z À (10.10), w1(τ)

~ τ exp(−τ) ­ , g L ï° ªGHI (10.7). ¬ ­ , F ÉGHI (10.7), äå qæa1,1 = 0, º

(α + γ)(

α +γ

2− λ0 − β λ2

0

)

= 0 (10.30)

Dçè áEF > ¡¢é λ0 £ êc| ,C pë rì8

λ0 =

1 + 2β(γ + 2α) − 1

2β(10.31)

í å , î ¨ ï8

w1(τ) = ~

4∑

m=2

(

a1,m

m − 1

)

(

exp−τ − exp−mτ)

(10.32)

©ª« , Rn(wn−1, λn−1) ð îñ Ñ ÒRn(wn−1, λn−1) =

2(n+1)∑

m=1

an,m exp(−m τ) (10.33)

C ð , an,m ÿ ê . q æan,1 = 0 (10.34)

o8 Öc| ºðï λn−1. Dh , ð\ £ âb Óc| (10.25) ò (10.26) 78

wn(τ) = χn−1 wn−1(τ) + ~

2(n+1)∑

m=2

(

an,m

m − 1

)

(

e−τ − e−mτ)

(10.35)

10.1.3 óôHIõö÷ ï Volterra £ Í¥ø ,

ë ä¥Ý 6 8£ùL8úñûL . ©ª« , wn(τ) ðñûü

wn(τ) =

2(n+1)∑

m=1

bn,m exp(−mτ) (10.36)

ý10 þ Volterra ?A@ABAÿ · 127 ·

C, bn,m ê . [c| (10.25) ò (10.26), ð=L (n > 1)

λn−1 =

∆n,1 −n−2∑

j=0

(λj + βδj) bn−1−j,1 − βb0,1

n−2∑

i=1

λiλn−1−i

(1 + 2βλ0)b0,1(10.37)

bn,i = χnχ2n+2−ibn−1,i +~ (Πn,i + ∆n,i − χ2n+2−iΓn,i)

(1 − i), i > 2 (10.38)

bn,1 = −2(n+1)∑

i=2

bn,i (10.39)

D Πn,i =

n−1∑

j=max0,[(i+1)/2]−2

λn−1−j dj,i, 2 6 i 6 2(n + 1)

∆n,i =

n−1∑

j=0

min2(n−j),i∑

s=max1,i−2(j+1)

bn−1−j,s cj,i−s, 1 6 i 6 2(n + 1)

Γn,i =

minn−1,n−[(i+1)/2]∑

j=0

(iβδj + λj) bn−1−j,i, 1 6 i 6 2n

C

dn,m =

n∑

i=0

min2(i+1),m−1∑

j=max1,m−2(n−i+1)

bi,j bn−i,m−j , 2 6 m 6 2(n + 1)

cn,m = −bn,m

m

cn,0 =

2(n+1)∑

m=1

bn,m

m

δn =n∑

i=0

λi λn−i

1 6 m 6 2(n + 1)

9ñûL , [x] ñ/N x £ê . JL (10.8), ï=êb0,1 = α + γ, b0,2 = −γ (10.40)

· 128 · ÏÑÐÑÒÔÓ

Dzzê , Kz9z£zL , ðz\zzï ë C zê bn,j .¨ , u(t)

7 M bu(t) ≈

M∑

n=0

2(n+1)∑

m=1

bn,m exp(−m λ t) (10.41)

Cλ ≈

M−1∑

n=0

λn (10.42)

dM → +∞ 0 ,

ë ùLê8

u(t) =

+∞∑

n=0

2(n+1)∑

m=1

bn,m exp(−m λ t) (10.43)

Cλ =

+∞∑

n=0

λn (10.44)

10.1.4 10.1 !"# (10.21) $ (10.22) %& , '( , wn(τ) )*+, (10.25) $

(10.26), -./ (10.27) $ (2.42) 01 , 2345.6+, (10.4) $ (10.5) 7# .8 9 ê8 (10.21) ò (10.22) :; , ä ë

limm→+∞

wm(τ) = 0 (10.45)

, KL (10.9) < (10.25) ò (2.42),ë

~ H(τ)

+∞∑

n=1

Rn(wn−1, λn−1)

= limm→+∞

L [wm(τ)] = L[

limm→+∞

wm(τ)

]

= 0 (10.46)

Jé ~ 6= 0 ò H(τ) = 1, L (10.46) Ý 6+∞∑

n=1

Rn(wn−1, λn−1) = 0 (10.47)

L (10.27) [L (10.47), => ,ë

ý10 þ Volterra ?A@ABAÿ · 129 ·

β

(

+∞∑

n=0

λn

)2d

[

+∞∑

n=0

wn(τ)

]

=

(

+∞∑

n=0

λn

)

[

+∞∑

n=0

wn(τ)

]

−[

+∞∑

n=0

wn(τ)

]2

−[

+∞∑

n=0

wn(τ)

]

∫ τ

0

[

+∞∑

n=0

wn(x)

]

dx (10.48)

JL (10.8) ò (10.26), üe+∞∑

n=0

wn(0) = α (10.49)

L (10.48) ò (10.49) ?c| (10.4) ò (10.5) @BA ,¨ , :C;£ê (10.21) ò

(10.22) äQ Volterra DEFGHIJ . KL .

10.2 MONOPRQST U 10.1, ©á¤V XWY §Z ê (10.21) ò (10.22) :; . [\]^

£_ , `a (10.1)Xbcd e

∫ t

0

u(x)dx

µ =

∫ +∞

0

u(x)dx (10.50)

ñfghiêj , klm ëno ^p . qrs (10.3), t (10.50) rüλ µ =

∫ +∞

0

w(ξ)dξ (10.51)

10.2.1 uvwxyz|~α ò β, ë ê ~ ò γ IX , ê êJ (10.21) ò (10.22)

:;ò:; . l , γ I[ ,

ðCCCCCC ∫ +∞

0u(x)dx ∼ ~ B¡C¢C£ ~

:C;ø C (C¤

24 ¥C¦ 3.5.1§). q¨f© , ª« ö÷ α = 1/10 ¦ β = 1/5

¬­. ® γ = 1 < 2 < 3 < 4 ¯ , °±²

10 ³´µI ∫ +∞

0u(x)dx ∼ ~ X¡¶· 10.1 f . [\]^ _ , γ k 4 ¸¹º

2 ¯ , ±C² ~ IC»C¼CC¾½C¿ , À γ = 1 ¯Cª bCc CÁ »C¼CC .SCT C ~

· 130 · ÂÄÃÄÅÇÆ¡ , ÈÉJù , ® α = 1/10 ¦ β = 1/5 ¯ ,

92 6 γ 6 4,

~c ±²»¼Ê ,Ë ∫ +∞

0u(x)dx I Ì :; . ©¶ , ® γ = 3 ¯ , (10.31), »

λ0 = 1.274 92

° ² ∫ +∞

0u(x)dx I Ìc ~ = −1/2 ¯:; , ¶Í 10.1 f . ÎÏ , Ð o

∫ +∞

0 u(x)dx I CÌ :C; , ±C² λ I CÌ (10.22) ÑC:C; , ¶CÍ 10.1 Cf . ÒCÓ , ÔÕ- Ö×´µ (

¤41 ¥¦ 3.5.2

§) ØùÙÚÛÜ λ ¦ ∫ +∞

0u(x)dx

Ì I:; , ¶Í 10.2 f . ÎÏ , [m, m] ³Ô Õ - Ö×´µªÝÞß ~. l , Ð o∫ +∞

0u(x)dx I Ì :; , ±² Ì (10.21) Ñ c g 0 6 t < +∞ ÊX:;à Ì

[CáCâ [100∼102], ¶C· 10.2 Cf (α = 1/10 ¦ β = 1/5).C ^ CC α ¦ β [ ,ã ØäµÚ\º Ì J .

å10.1 α = 1/10, β = 1/5, æ γ çèéêë , 10 ìíîïð ∫ +∞

0u(x)dx ∼ ~ ñóòôóõ÷ö

γ = 1 ; øóù õ÷ö γ = 2; ú õ÷ö γ = 3; ûóøóù õ÷ö γ = 4

ü10.1 γ = 3, λ0 = 1.274 92, --h= −1/2, α = 1/10, β = 1/5 ý , þÿ (10.23)

(10.24) ∫

0u(x)dx λ

∫+∞

0u(x)dx λ

10 1.194 1.014

20 1.196 0.988

30 1.196 0.983

40 1.197 0.983

50 1.197 0.983

60 1.197 0.984

70 1.197 0.985

80 1.197 0.985

ý10 þ Volterra Aÿ · 131 ·

ü10.2 γ = 3, λ0 = 1.274 92, α = 1/10, β = 1/5 ý ,

0u(x)dx λ [m, m]

- [m,m]

∫+∞

0 u(x)dx λ

[5, 5] 1.196 0.982

[10, 10] 1.197 0.987

[15, 15] 1.197 0.986

[20, 20] 1.197 0.986

[25, 25] 1.197 0.986

[30, 30] 1.197 0.986

[35, 35] 1.197 0.986

[40, 40] 1.197 0.986

å10.2 γ =3, ~=−1/2, α=1/10 β=1/5 ë , ê [100∼102] u(t) ïíîïð ! ø ö "#$ ;

ôóõ÷ö10 %&%

; øóù õ÷ö 20 %&% ; ú õ÷ö 50 %&%10.2.2 uv('()yz|~[\]^ _ , (*(+J w0(τ) ÝÞß Ì γ. ,(- ,

A(. γ [ ,/ (0(1(2Ì, kl 1 »¼Ú(3´J .

ß(4³´µ , »λ µ ≈

∫ +∞

0

w0(x)dx (10.52)

ß³´µ , »λ µ ≈

∫ +∞

0

w0(x)dx +

∫ +∞

0

w1(x)dx (10.53)

,(- , Ø (5 4³´µ (10.52) 6(7(8(9 γ [ , :àß³´µ (10.53) ª /

· 132 · ÂÄÃÄÅÇÆ0

λ µ1 . áâ , ;

∫ +∞

0

w1(x)dx = 0 (10.54)

t (10.54)(0 ¶ Ì `a=<

24β γ λ20 + 2(6α2 + 6γ + 4α γ + γ2)λ0 − 3(4α2 + 8αγ + 3γ2) = 0 (10.55)

> J Ì `a (10.30) ¦ (10.55),

α ¦ β [ , Ø\ λ0 ¦ γ@?BA(2=CED [ .

©¶ , α = 1/10 ¦ β = 1/5 ¯ , λ0 ¦ γ I A(2(D [¨λ0 = 1.026 82, γ = 2.275 38 (10.56)

F ?GAH2ICγ [CJHJHKC¨HLHM γ = 2 ¯ ~ IC»C¼CCÄ@ γ = 3 ¦ γ = 4 ¯ »

¼CC 1HN ( ¶C· 10.1 Cf ), ±C² CÌ JC:C;C\ 1 Ü ( ¶CÍ 10.3 Cf ). ÒCÓ , ÔÕ- ÖC×C´CµCØH,CÙCÚHOHP CÌ J :C;HQ ,

¤ Í 10.4. »C^HR _ , α = 1/10 ¦β = 1/5 ¯ , SHT 5 HKHUCCªCÔ λ0 [ , ¯HVHWCHXHY λ I CÌ :C;CàC±CÔC[0.986, ¶Í 10.1∼ Í 10.4 f . ¶Ô ∫ +∞

0 u(x)dx, ¯(V(W(X(Y λ ÝÞß α ¦ β, ® ∫ +∞

0u(x)dx ½¿¯¸(Z . XÒ , ¯(V(W(X(Y λ Ø / m»([h(\U^p .

ü10.3 γ = 2.275 38, λ0 = 1.026 82, --h= −1, α = 1/10, β = 1/5 ý ,

0u(x)dx

λ ∫+∞

0 u(x)dx λ

10 1.195 0.997

20 1.197 0.985

30 1.197 0.985

40 1.197 0.986

50 1.197 0.986

60 1.197 0.986

70 1.197 0.986

80 1.197 0.986

ü10.4 γ = 2.275 38, λ0 = 1.026 82, α = 1/10, β = 1/5 ý ,

0u(x)dx λ

[m, m]

- [m, m]

∫+∞

0u(x)dx λ

[5, 5] 1.197 0.986

[10, 10] 1.197 0.986

[15, 15] 1.197 0.986

[20, 20] 1.197 0.986

[25, 25] 1.197 0.986

[30, 30] 1.197 0.986

[35, 35] 1.197 0.986

[40, 40] 1.197 0.986

]10 ^ Volterra _` · 133 ·

a t (10.30) ¦t (10.55)(0

γ ¦ λ0 I ?GA(2=C [ , Ø 1 »¼ÚJ(b >J Volterra DEFGH . ® α = 1/10, β = 1/10 < 1/5 < 1/2 < 1 ¦ 10 ¯ , u(t) I ÌJ¶· 10.3 f . g(chi Ì j ∫ +∞

0 u(x)dx, ¯(V(W(X(Y λ, :(d? α ¦ β ±²γ ¦ λ0 I ?BA(2=C [ , ¶Í 10.5 f .

å10.3 e ~ = −1, λ0 γ fg (10.30) (10.55) hikjmlnpo ê , æ α = 1/10

β = 1/10 q 1/5 q 1/2 q 1 q 10 ë , u(t) ïíîï êrr [100∼102] ð ü

10.5 α = 1/10 ý , st ∫∞

0u(x)dx λ uvwx λ0 γ kjmyzpo|

β λ0 γ∫+∞

0 u(x)dx λ

1/10 1.199 33 2.486 33 1.100 1.000

1/5 1.026 82 2.275 38 1.197 0.986

1/2 0.754 14 1.877 01 1.418 0.836

1 0.552 74 1.516 53 1.627 0.626

10 0.156 21 0.571 01 2.572 0.157

(c©(YÍÉ , Ô Õ( b`(~ ( ¡(Q( -d( `a(_»¼ .

11

Æ,

U(t) = f [U(t), U(t), U(t)] (11.1)

, t , t , f [U(t), U(t), U(t)] Æ U(t)U(t)

U(t) . , (11.1) () .

, ÆÆ.

, Æ . ω a Æ. , ω . , . , , . , a , . ,

U(0) = 0, U(0) = a (11.2)

a Æ.

11.1

11.1.1

, Æ

cos(mωt) | m = 1, 2, 3, · · · (11.3)

. τ = ωt U(t) = u(τ), (11.1)

ω2u′′(τ) = f [u(τ), ωu′(τ), ω2u′′(τ)] (11.4)

u(τ) = a, u′(τ) = 0, τ = 0 (11.5)

, ′ τ . (11.3), u(τ)

cos(mτ) | m = 1, 2, 3, · · · (11.6)

11 Æ · 135 ·

,

u(τ) =+∞∑k=1

ck cos(kτ) (11.7)

, ck . .

ω0 ω . , (11.7), (11.5),

u0(τ) = a cos τ (11.8)

u(τ) , , a . (11.7),

L[Φ(τ ; q)] = ω20

[∂2Φ(τ ; q)∂τ2

+ Φ(τ ; q)]

(11.9)

,

L (C1 sin τ + C2 cos τ) = 0 (11.10)

(11.4),

N [Φ(τ ; q),Ω(q)] =Ω2(q)∂2Φ(τ ; q)∂τ2

−f[Φ(τ ; q),Ω(q)

∂Φ(τ ; q)∂τ

,Ω2(q)∂2Φ(τ ; q)∂τ2

](11.11)

, Φ(τ ; q) τ q , Ω(q) q . ,

H(τ) .

(1 − q) L [Φ(τ ; q) − u0(τ)] = q H(τ) N [Φ(τ ; q),Ω(q)] (11.12)

Φ(0; q) = a,

∂Φ(τ ; q)∂τ

∣∣∣∣τ=0

= 0 (11.13)

q = 0 , (11.12) (11.13)

Φ(τ ; 0) = u0(τ), Ω(0) = ω0 (11.14)

q = 1 , = 0 H(τ) = 0, (11.12) (11.13) (11.4)

(11.5), Φ(τ ; 1) = u(τ), Ω(1) = ω (11.15)

, q 0 1 , Φ(τ ; q) u0(τ) = a cos τ u(τ), , Ω(q) ω0 ω.

· 136 ·

(11.14) , Φ(τ ; q) Ω(q) q

Φ(τ ; q) = u0(τ) ++∞∑m=1

um(τ) qm (11.16)

Ω(q) = ω0 ++∞∑m=1

ωm qm (11.17)

um(τ) =1m!

∂mΦ(τ ; q)∂qm

∣∣∣∣q=0

, ωm =1m!

∂mΩ(q)∂qm

∣∣∣∣q=0

(11.18)

Æ, (11.12) H(τ). ,

Φ(τ ; q) Ω(q) . H(τ) , Æ q = 1 . , (11.15),

u(τ) = u0(τ) ++∞∑m=1

um(τ) (11.19)

ω = ω0 ++∞∑m=1

ωm (11.20)

11.1.2

,

un = u0(τ), u1(τ), · · · , un(τ) , ωn = ω0, ω1, · · · , ωn

(11.12) (11.13) q m , q = 0, m!,

L [um(τ) − χmum−1(τ)]= H(τ) Rm(um−1,ωm−1) (11.21)

um(0) = u′m(0) = 0 (11.22)

, χm (2.42) ,

Rm(um−1,ωm−1) =1

(m− 1)!dm−1N [Φ(τ ; q),Ω(q)]

dqm−1

∣∣∣∣q=0

(11.23)

(11.16) Æ (11.17) (11.12) Æ (11.13), q , !!"# (11.21) Æ (11.22), !" (11.23). —— !

11 Æ · 137 ·

Æ, um(τ) ωm−1. # um(τ) (11.21) (11.22). , $$, "#%, ωm−1. (11.7), Æ, Rm(um−1,ωm−1)

Rm(um−1,ωm−1) =ϕ(m)∑n=0

bm,n(ωm−1) cos[(2n+ 1)τ ] (11.24)

, bm,n(ωm−1) ωm−1 Æ, ϕ(m) m (11.1)

. (11.7), H(τ) $

H(τ) = cos(2κτ), κ = 0, 1, 2, 3, · · ·

, κ = 0, $%

H(τ) = 1 (11.25)

L (11.10), "

Rm(um−1,ωm−1)

cos τ %, (11.21) Æ& % τ cos τ . &(11.7). , &#$ (11.24) bm,0 . ''%

bm,0(ωm−1) = 0 (11.26)

! ωm−1. ω0( m = 1 ) Æ, #%Æ. , !' (11.21)

um(τ)=χmum−1(τ) +

ω20

ϕ(m)∑n=2

bm,n(ωm−1)(1 − n2)

cos(nτ)

+C1 sin τ + C2 cos τ (11.27)

, C1 C2 . (11.22), C1 = 0. a,

um(0) − um(π) = 0, m = 1, 2, 3, · · · (11.28)

C2 (11.28) . %, ωm−1 um(τ). M "

u(τ) ≈M∑

m=0

um(τ) (11.29)

ω ≈M∑

m=0

ωm (11.30)

· 138 ·

, ÆF[U(t), U(t), U (t), signU(t), signU(t), signU(t)

]= 0 (11.31)

(Æ,

signx =

1, x > 0

−1, x < 0(11.32)

τ = ω t U(t) = u(τ), (11.31) F[u(τ), ωu′(τ), ω2u′′(τ), signu, signu′, signu′′

]= 0 (11.33)

a (a > 0) , u0(τ) = a cos τ Æ. Æ,

signu = signu0 = sign(cos τ) (11.34)

)signu′ = −sign(sin τ), signu′′ = −sign(cos τ) (11.35)

, (11.33)

F[u(τ), ωu′(τ), ω2u′′(τ), sign(cos τ),−sign(sin τ),−sign(cos τ)

]= 0

sign(cos τ) =4π

+∞∑k=0

(−1)k

2k + 1cos[(2k + 1)τ ] (11.36)

sign(sin τ) =4π

+∞∑k=0

12k + 1

sin[(2k + 1)τ ] (11.37)

f [u(τ), ωu′(τ), ω2u′′(τ)]

=F[u(τ), ωu′(τ), ω2u′′(τ), sign(cos τ),−sign(sin τ),−sign(cos τ)

], %, Æ (11.31).

Æ|x| = x signx

, (11.31) G[U(t), U(t), U(t), |U(t)|, |U(t)|, |U (t)|

]= 0 (11.38)

, G U(t)U (t)U (t)|U(t)||U (t)| |U(t)| Æ.

11 Æ · 139 ·

11.2 (

11.2.1 1

Æ

U(t) + U(t) = ε U(t) U2(t) (11.39)

τ = ωt U(t) = u(τ), *

ω2u′′(τ) + u(τ) = ε ω2 u(τ)u′2(τ) (11.40)

) 11.1 #''Æ. (11.23) (11.39),

Rm(um−1,ωm−1)

=m−1∑n=0

⎛⎝ n∑

j=0

ωjωn−j

⎞⎠ u′′m−1−n + um−1

−εm−1∑n=0

(n∑

i=0

un−i

i∑r=0

ωrωi−r

)⎛⎝m−1−n∑j=0

u′ju′m−1−n−j

⎞⎠ (11.41)

m = 1 , (11.26), %

a− aω20 − 1

4a3εω2

0 = 0 (11.42)

ω0 =

1√1 +

14εa2

(11.43)

ω Æ*"

ω ≈ ω0 + (εa2) [2 + (εa2 − 2)ω2

0 ]32(4 + εa2)ω0

ω≈ω0 + (εa2) [2 + (εa2 − 2)ω2

0 ]16(4 + εa2)ω0

+

2(εa2)6 144(4 + εa2)2ω3

0

[39ω4

0(εa2)3 + 4ω2

0(43ω20 + 17)(εa2)2

+4(97ω40 + 98ω2

0 − 3)(εa2) − 192 (9ω40 − 10ω2

0 + 1)]

· 140 ·

+" . = −1 , &, 0 εa2 < 5 , ! 11.1 . Æ, Æ -', &,-,

! 11.1 . , $ εa2 , $" εa2 Æ$.

= −ω20 = −(1 + εa2/4)−1 , &, 0 εa2 < +∞ ,

! 11.1 .

" 11.1 %(& ω .! 1 # (11.9) +/,$#%-('$()&)*0.*+),; /12* = −(1 + εa2/4)−1 *3-%, (11.44); +2* = −(1 + εa2/4)−1 *0-%, (11.45); ..2* = −1/2 *"-%,; +12* = −1/5 * 6 -%,; &..2* = −1/10

*"-%,

= −(1 + εa2/4)−1

"

ω ≈ 256 + 128εa2 + 13(εa2)2

8(4 + εa2)5/2(11.44)

*"

ω ≈ 393 216 + 393 216εa2 + 142 848(εa2)2 + 21 248(εa2)3 + 1 181(εa2)4

768(4 + εa2)9/2(11.45)

" /1 &,

0 εa2 < +∞

', ! 11.1 . #($, , 2#&,)Æ*0.

11 Æ · 141 ·

11.2.2 2

U(t) + U(t) + ε U3(t) = 0 (11.46)

ω =π√

1 + εa2/22K(µ)

(11.47)

, K(µ) 3+41 ,

µ = − εa2

2 + εa2

τ = ωt U(t) = u(τ), (11.46) ω2u′′(τ) + u(τ) + ε u3(τ) = 0 (11.48)

)% 11.1 #''. (11.23) (11.46),

Rm =m−1∑n=0

⎛⎝ n∑

j=0

ωjωn−j

⎞⎠ u′′m−1−n + um−1

+εm−1∑n=0

⎛⎝ n∑

j=0

ujun−j

⎞⎠um−1−n (11.49)

m = 1 , (11.26), %

a+34εa3 − aω2

0 = 0 (11.50)

ω0 =

√1 +

34εa2 (11.51)

ω Æ*"

ω ≈ ω0 +(εa2)128ω3

0

[2(1 − ω2

0) + 3 εa2]

(11.52)

ω≈ω0 +(εa2)

32 768ω70

1 024(ω4

0 − ω60) + 1 536ω4

0(εa2)

−[(576ω6

0 − 640ω40 + 64ω2

0) − (940ω40 − 168ω2

0 − 4)(εa2)

+ (84ω20 + 12)(εa2)2 + 9(εa2)3

](11.53)

· 142 ·

Æ, . −1 < 0 , &, 0 εa2 < +∞ . = −1, "

ω ≈ 256 + 384εa2 + 141ε2a4

32(4 + 3εa2)3/2(11.54)

*"

ω ≈ 131 072 + 393 216εa2 + 440 832ε2a4 + 218 880ε3a6 + 40 599ε4a8

1 024(4 + 3εa2)7/2(11.55)

&, 0 εa2 < +∞ , *" Æ,, 0.09%

0.07%, '! , ! 11.2 .

" 11.2 %(& ω .! 2 #4 = −1 ---,$#%-('$()&)*0.*+),; +2*5 (11.9) 56"6'.(7."3-%, (11.54); 12*5 (11.63) 56"6'27.(7."3-%, (11.64); ..2*5 (11.63) 56"6'27.(7."0-%,

(11.65)

11.2.3 3

ÆU(t) + U(t) + εU(t)|U(t)| = 0 (11.56)

τ = ωt U(t) = u(τ), *ω2u′′(τ) + u(τ) + εu2(τ) sign[u(τ)] = 0 (11.57)

ω2u′′(τ) + u(τ) + εu2(τ) sign[cos τ ] = 0 (11.58)

11 Æ · 143 ·

)% 11.1 #''. (11.23) (11.46),

Rm =m−1∑n=0

⎛⎝ n∑

j=0

ωjωn−j

⎞⎠u′′m−1−n(τ) + um−1(τ)

+ε sign(cos τ)m−1∑n=0

un(τ)um−1−n(τ) (11.59)

m = 1 , (11.26), %

a+8εa2

3π− aω2

0 = 0 (11.60)

ω0 =

√1 +

8εa3π

(11.61)

Æ, . Æ.2" ,8/, −2 < 0 , . = −1 , "

ω ≈√

1 +8εa3π

− 20, 1 789, 3 901, 1 695406, 4 428, 1 993, 5 152

( εaπ

)2(

1 +8εa3π

)−3/2

(11.62)

/1 &, 0 ε a < +∞ ', ! 11.3 .

" 11.3 %(& ω .! 3 #4 = −1 ---,$#%-('$()&)*0.*+),; +2*5 (11.9) 56"6'27.(7."3-%, (11.62); 12*5 (11.63) 56"6'27.( L 7."3-%,; ..2*5 (11.63) 56"6'27.(7."0-%,

· 144 ·

11.3 /&08)'*

., = −1 $(Æ/. # 2 # 3 , = −1

, &, 0 < εa2 < +∞ 0 εa < +∞ ÆÆ. # 2 # 3 , (11.9) L, = −1, +Æ" , ! 11.2 11.3 . , # 1 , = −1 , ÆÆ&, 0 εa2 < 5 . , = −(1+ εa2/4)−1, 2#&,, &, 0 εa2 < +∞ , ! 11.1 .

Æ, (11.9) Æ L ω20 %. "

L[Φ(τ ; q)] =∂2Φ(τ ; q)∂τ2

+ Φ(τ ; q) (11.63)

0% (11.9), # 2 Æ"

ω ≈ ω0 +(εa2)128ω0

[2(1 − ω2

0) + 3 εa2]

(11.64)

*"

ω≈ω0 +(εa2)

32 768ω50

1 024(ω4

0 − ω60) + 1 536ω4

0(εa2)

− ω20

[(576ω6

0 − 640ω40 + 64ω2

0) − (940ω40 − 168ω2

0 − 4)(εa2)

+ (84ω20 + 12)(εa2)2 + 9(εa2)3

](11.65)

, ω0 (11.51) . 9Æ, = −1 , (11.9) ''Æ (11.54) (11.55) 0, " !Æ&,Æ,

! 11.2 . , &

= −ω−20 = −

(1 +

34εa2

)−1

2#&,, &, 0 εa2 < +∞ . 1 , (11.54) (11.55) Æ/1.

), = −1 , (11.9) ''Æ0, # 3

!Æ&,, ! 11.3 . %, &

= −(

1 +8εa3π

)−1

&, 0 εa < +∞ ÆÆ" . 1 , (11.62) Æ/1.

11 Æ · 145 ·

, (11.63) Æ L, # 1 ω Æ"

ω ≈ ω0 + ω0 (εa2) [2 + (εa2 − 2)ω2

0 ]32(4 + εa2)

*"

ω≈ω0 + ω0 (εa2) [2 + (εa2 − 2)ω2

0 ]16(4 + εa2)

+

2ω0(εa2)6 144(4 + εa2)2

[39ω4

0(εa2)3 + 4ω2

0(43ω20 + 17)(εa2)2

+4(97ω40 + 98ω2

0 − 3)(εa2) − 192 (9ω40 − 10ω2

0 + 1)]

= −1 , (11.44) (11.45).

+#$, ', , ),&,)Æ*0. ( 11"-#Æ .

12 .

*:Æ,

U(t) = f [U(t), U(t), U(t)] (12.1)

, t , t , f [U(t), U(t), U(t)] Æ U(t)U(t)

U(t) . 3, Æ/ . ω a

Æ. 2%2;

δ =1T

∫ T

0

U(t)dt (12.2)

, T = 2π/ω . *:Æ, δ 3. Æ *:Æ0#, . , δ ω %$Æ. , a ,

2 , ω δ % a. ,

U(0) = 0, U(0) = a+ δ (12.3)

a Æ.

, " (12.1) () .

12.1

12.1.1

, Æ

cos(mωt) | m = 0, 1, 2, 3, · · · (12.4)

,

U(t) = δ ++∞∑m=1

cm cos(mωt) (12.5)

, cm .

τ = ωt, U(t) = δ + u(τ) (12.6)

12 Æ 93< · 147 ·

(12.2) (12.3) ω2u′′(τ) = f [δ + u(τ), ωu′(τ), ω2u′′(τ)] (12.7)

u(0) = a, u′(0) = 0 (12.8)

, ′ τ . , u(τ) :

cos(mτ) | m = 1, 2, 3, · · · (12.9)

,

u(τ) =+∞∑m=1

cm cos(mτ) (12.10)

*:.

Æ, ω 2%2; δ %. ω0δ0 ω δ

Æ. (12.10) (12.8),

u0(τ) = a cos τ (12.11)

u(τ) , , a . 4, (12.10) (12.7),

L[Φ(τ ; q)] = ω20

[∂2Φ(τ ; q)∂τ2

+ Φ(τ ; q)]

(12.12)

,

L (C1 sin τ + C2 cos τ) = 0 (12.13)

, q 34, Φ(τ ; q) τ q , C1 C2 . (12.7),

N [Φ(τ ; q),Ω(q),∆(q)]

=Ω2(q)∂2Φ(τ ; q)∂τ2

−f[∆(q) + Φ(τ ; q),Ω(q)

∂Φ(τ ; q)∂τ

,Ω2(q)∂2Φ(τ ; q)∂τ2

](12.14)

, Ω(q) ∆(q) 34 q ∈ [0, 1] , $ ω 2%2; δ.

( 1Æ*= Φ(τ ; q)Ω(q) ∆(q)434 q

0 1 , Φ(τ ; q) u0(τ) *= u(τ), ), Ω(q)

· 148 ·

ω0 *= ω, ∆(q) δ0 *=2%2;δ. )Æ*=, /;<Æ( (4 3.6 #)

H[Φ(τ ; q),Ω(q),∆(q), H(τ), H2(τ), , 2, q]

= (1 − q) L [Φ(τ ; q) − u0(τ)] − q H(τ) N [Φ(τ ; q),Ω(q),∆(q)]

−2 H2(τ) (1 − q)(f [∆(q), 0, 0]− f [δ0, 0, 0]) +

[Ω2(q) − ω2

0

]u′′0(τ)

, q ∈ [0, 1] 34, 2 , H(τ) H2(τ) .

H[Φ(τ ; q),Ω(q),∆(q), H(τ), H2(τ), , 2, q] = 0

(1 − q) L [Φ(τ ; q) − u0(τ)]

= q H(τ) N [Φ(τ ; q),Ω(q),∆(q)]

+2 H2(τ) (1 − q) (f [∆(q), 0, 0]− f [δ0, 0, 0])

+2 H2(τ) (1 − q)[Ω2(q) − ω2

0

]u′′0(τ) (12.15)

Φ(0; q) = a,

∂Φ(τ ; q)∂τ

∣∣∣∣τ=0

= 0 (12.16)

q = 0 , (12.11) (12.15), '

Φ(τ ; 0) = u0(τ), Ω(0) = ω0, ∆(0) = δ0 (12.17)

q = 1 , = 0 H(τ) = 0, (12.15) (12.16) *(12.7) (12.8),

Φ(τ ; 1) = u(τ), Ω(1) = ω, ∆(1) = δ (12.18)

, q 0 1 , Φ(τ ; q) u0(τ) = a cos τ u(τ), %, Ω(q) ω0 ω, ∆(q) δ0 2%2; δ.

Æ, (12.15) 2, 5 H(τ)

H2(τ). =, 1 (12.15) (12.16) Φ(τ ; q)Ω(q)

∆(q) q ∈ [0, 1] %,

u[m]0 (τ) =

∂mΦ(τ ; q)∂qm

∣∣∣∣q=0

, ω[m]0 =

∂mΩ(q)∂qm

∣∣∣∣q=0

, δ[m]0 =

∂m∆(q)∂qm

∣∣∣∣q=0

12 Æ 93< · 149 ·

m 1 %. , (12.17), Φ(τ ; q)Ω(q) ∆(q) q

Φ(τ ; q) = u0(τ) ++∞∑m=1

um(τ) qm (12.19)

Ω(q) = ω0 ++∞∑m=1

ωm qm (12.20)

∆(q) = δ0 ++∞∑m=1

δm qm (12.21)

um(τ) =u

[m]0 (τ)m!

, ωm =ω

[m]0

m!, δm =

δ[m]0

m!(12.22)

2 H(τ) H2(τ) , 1 q = 1

. (12.18),

u(τ) = u0(τ) ++∞∑m=1

um(τ) (12.23)

ω = ω0 ++∞∑m=1

ωm (12.24)

δ = δ0 ++∞∑m=1

δm (12.25)

12.1.2

,

un = u0(τ), u1(τ), · · · , un(τ) , ωn = ω0, ω1, · · · , ωn

δn = δ0, δ1, · · · , δn

(12.15) (12.16) q m , q = 0, m!,

L [um(τ) − χmum−1(τ)] = H(τ) Rm(um−1,ωm−1, δm−1)

+2 H2(τ) Sm(τ,ωm, δm) (12.26)

(12.19)5(12.20) Æ (12.21) (12.15) Æ (12.16), q , !!"# (12.26) Æ (12.27), !" (12.28)∼(12.30). —— !

· 150 ·

um(0) = u′m(0) = 0 (12.27)

, χm (2.42) ,

Rm(um−1,ωm−1, δm−1)

=1

(m− 1)!dm−1N [Φ(τ ; q),Ω(q),∆(q)]

dqm−1

∣∣∣∣q=0

(12.28)

Sm(τ,ωm, δm)

=−(

m∑i=0

ωiωm−i − χm

m−1∑i=0

ωiωm−1−i

)a cos τ

+ [Qm(δm) − χmQm−1(δm−1)] (12.29)

5

Qm(δm) =1m!

dmf [∆(q), 0, 0]dqm

∣∣∣∣q=0

(12.30)

Æ, 54um(τ)ωm−1 δm−1( 2 = 0 ), 62um(τ)ωm δm( 2 = 0 ). , um(τ) (12.26)

(12.27). , $$, "#%, ωm−1 δm−1 (2 = 0 ), 62 ωm δm( 2 = 0 ).

(12.10) (12.26), $1 H(τ) H2(τ)

H(τ) = cos(2κ1τ), H2(τ) = cos(2κ2τ)

, κ1 κ2 . , κ1 = κ2 = 0, $%

H(τ) = 1, H2(τ) = 1 (12.31)

(12.10), *:, (12.26) Æ>>%

bm,0 +ϕ(m)∑n=1

bm,n cos(nτ) (12.32)

, ϕ(m) m * (12.1) 5, n > ϕ(m) bm,n . L (12.13), " bm,1 = 0, m (12.26) um(τ)

& % τ cos τ . 4, " bm,0 = 0, um(τ) % bm,0/ω20. ,

%=&(12.10). , &#$ bm,0 bm,1 ,

bm,0 = 0, bm,1 = 0, m = 1, 2, 3, · · · (12.33)

12 Æ 93< · 151 ·

ωm−1 δm−1( 2 = 0 ), 62 ωm δm( 2 = 0 )

Æ%3. )+, $$, 664. Æ, 2 = 0 m = 1 , (12.33) 3Æ, #%5Æ. , 2 = 0 m = 1 , ω0 δ0, &3% (12.33).

, 2 = 0 ,? ω0 δ0 .7@67 2 = 0,

3" !?8'':+Æ" (4@#).

, 7' m (12.26)

um(τ) = χmum−1(τ) +ϕ(m)∑n=2

bm,n

ω20(1 − n2)

cos(nτ) + C1 sin τ + C2 cos τ (12.34)

, C1 C2 1 . (12.27), ', C1 = 0. a,

um(0) − um(π) = 0, m = 1, 2, 3, · · · (12.35)

, C2 . %, um(τ) (m = 1, 2, 3, · · ·) ωm−1δm−1(2 =

0 ) 62 ωmδm (2 = 0 ). M "

u(τ) ≈M∑

m=0

um(τ) (12.36)

ω ≈M∑

m=0

ωm (12.37)

δ ≈M∑

m=0

δm (12.38)

12.2 (

12.2.1 1

U(t) + U(t) + γ U2(t) = 0 (12.39)

, γ . τ = ωt U(t) = δ + u(τ), *

ω2u′′(τ) + δ + u(τ) + γ [δ + u(τ)]2 = 0 (12.40)

· 152 ·

)% 12.1 #''. (12.28) (12.30),

Rm =m−1∑n=0

⎛⎝ n∑

j=0

ωj ωn−j

⎞⎠u′′m−1−n(τ) + vm−1(τ)

+γm−1∑n=0

vn(τ) vm−1−n(τ) (12.41)

Qm = δm + γ

m∑n=0

δn δm−n (12.42)

vk(τ) = δk + uk(τ) (12.43)

Æ, 2. 867 2 = 0 Æ%. , (12.33), ω0 δ0 Æ3%3

a+ 2aγδ0 − aω20 = 0 (12.44)

γa2

2+ δ0 + γδ20 = 0 (12.45)

ω0 =(1 − 2a2γ2

)1/4, δ0 =

ω20 − 12γ

(12.46)

, 2 = 0 , "

ω≈ω0 − (aγ)2

12ω30

, δ ≈ δ0 (12.47)

*"

ω ≈ ω0 − (aγ)2

6ω30

(1 +

2

)+

2(aγ)4

288ω70

, δ ≈ δ0 +

2a4γ3

144ω60

(12.48)

5"

ω≈ω0 − (aγ)2

4ω30

(1 + +

2

3

)

+

2(aγ)2

1 728ω70

(18 + 41) +

3(aγ)6

3 456ω110

(12.49)

δ≈ δ0 +

2a4γ3

48ω60

(1 +

2

3

)(12.50)

12 Æ 93< · 153 ·

/1= . 'Æ a γ, 39:, 9 (4 24

A 3.5.1 #) B; CD. 8/, −2 < 0 , ω δ , #&, . , Æ , 2#&,. #, = −4/5 62 = −ω2

0 , ω 5" &, |aγ| 1/√

2 ', 0" , ! 12.1 . = −1/5 62 = −ω2

0 , γ δ 5" &, |aγ| 1/

√2 '! , ! 12.2 .

" 12.1 2 = 0 -, ! 1 &:,%(& ω .'$()&)*0.*+),; +2*3;A-%, ω = 1 − 5a2γ2/12; /12* = −4/5 *3-%, (12.47); +12* = −4/5 *<-%, (12.49); ..2* = −ω2

0 *3-%, (12.47); &..2* = −ω20 *<

-%, (12.49)

" 12.2 2 = 0 -, ! 1 &=-8E δ %(6.'$&&)*0.*+),; 12*3-%, (12.47); ..2* = −1/5 *<-%, (12.50); +2* = −ω2

0 *<-%, (12.50)

· 154 ·

|aγ| > 1/√

2 , (12.46) ''Æ ω0 δ0 ..

39+7<, ', (12.39) &, |aγ| 3/4 . , (12.46) , &, 1/

√2 |aγ| 3/4 ÆÆ/

1. &, 0 |aγ| 3/4 ÆÆ" , & &,Æ. 9Æ, 2 = 0 , )Æ. /, 8 2 = 0 Æ%. , (12.46) Æ ω0 |aγ| < 1/

√2 &''! Æ" . ;-#Æ, /Æ>

=ÆF9. ,

ω0 =(

1 − 169a2γ2

)1/4

(12.51)

&, 0 |aγ| 3/4 Æ. (12.46),

δ0 =ω2

0 − 12γ

(12.52)

&, 0 |aγ| 3/4 Æ. Æ, ω δ /4 2. , 2 = −1 :#. "

ω ≈ ω0, δ ≈ δ0 +

4γω20

(ω4

0 − 1 + 2a2γ2)

(12.53)

*"

ω≈ ω0 − 2

12ω30

(3 ω4

0 − 3 + 5 a2γ2)

δ≈ δ0 +

16γω60

(ω4

0 − 1 + 2a2γ2) [

8ω40 +

(3 ω4

0 + 1 − 2 a2γ2)]

5"

ω≈ ω0 − 2

48ω70

12ω4

0

(3ω4

0 − 3 + 5a2γ2)

+ [(21ω8

0 − 18ω40 − 3) + 4

(7ω4

0 + 3)a2γ2 − 12a4γ4

](12.54)

δ≈ δ0 +

288γω100

216 ω8

0 (ω40 − 1 + 2a2γ2)

+54 ω40[(3 ω8

0 − 2 ω40 − 1) + 4(ω4

0 + 1)a2γ2 − 4a4γ4]

+2[9(5 ω12

0 − 3 ω80 − ω4

0 − 1) + 18(3 ω80 + 2 ω4

0 + 3)a2γ2

−2(19 ω40 + 54)a4γ4 + 72 a6γ6

](12.55)

+/1= . 39:, 9 (4 24 A 3.5.1 #), B; &,CD. 8/, = −ω0 ω Æ5" = −ω0/2

12 Æ 93< · 155 ·

2%2; δ Æ5" , = &, 0 |aγ| 3/4 ', ! 12.3

! 12.4 . , 1; Æ (12.51) (12.52), 2 2, &, 0 |aγ| 3/4 ÆÆ1" .

" 12.3 2 = −1, ω0 = (1 − 16a2γ2/9)1/4 > = −ω0 -,

! 1 &:, ω %(6.'$&&)*0.*+),; 12*;A, ω = 1 − 5a2γ2/12; ..2*3-%, (12.53); +2*<-%, (12.54)

" 12.4 2 = −1, ω0 = (1 − 16a2γ2/9)1/4 > = −ω0/2 -,

! 1 &=-8E δ %(&.'$&&)*0.*+),; ..2*3-%, (12.53); +2*<-%, (12.55)

12.2.2 2

U(t) − U(t) + U4(t) = 0 (12.56)

· 156 ·

U(t) = δ + u(τ) τ = ωt, *

ω2u′′(τ) − [u(τ) + δ] + [δ + u(τ)]4 = 0 (12.57)

)% 12.1 #''. (12.28) (12.30),

Rm =m−1∑n=0

⎛⎝ n∑

j=0

ωjωn−j

⎞⎠u′′m−1−n(τ) − vm−1(τ)

+m−1∑n=0

[n∑

i=0

vi(τ)vn−i(τ)

]⎡⎣m−1−n∑j=0

vj(τ)vm−1−n−j(τ)

⎤⎦ (12.58)

Qm =−δm +m∑

n=0

(n∑

i=0

δiδn−i

)⎛⎝m−n∑

j=0

δjδm−n−j

⎞⎠ (12.59)

, vk(τ) (12.43) .

2 = 0 , (12.33), ω0 δ0 %3

a− 3a3δ0 − 4aδ30 + aω20 = 0 (12.60)

38a4 − δ0 + 3a2δ20 + δ40 = 0 (12.61)

ω0 =√

4δ30 + 3a2δ0 − 1 (12.62)

δ0 =12

(õ1 +

√2√µ1

− µ1 − 6a2

)(12.63)

µ1 =−2a2 +3a4

µ0+µ0

2(12.64)

µ0 =(

4 − 4a6 + 2√

4 − 8a6 − 50a12)1/3

(12.65)

12 Æ 93< · 157 ·

"

ω≈ω0 +a2

(4δ30 + 6a2δ0 − 1)ω30

[27160

a4 +(

116

− 920a6

)δ0

+34a2δ20 − 9

5a4δ30 +

52δ40 − 15

2a2δ50 − 11δ70

+(

116δ0 − 3

8a2δ20 − 1

4δ40

)ω2

0

](12.66)

δ≈ δ0 +a4δ0

(4δ30 + 6a2δ0 − 1)ω20

(38a2 +

94δ20

)(12.67)

/, ω0, δ0 (12.62) (12.63) ''. ), 39:,$Æ 9 (424 A 3.5.1 #), B; &,CD. 8/, −2 < < 0 , ω δ

. ?1 = −1 ω Æ" = −3/4 2%2; δ Æ" , = '0 , ! 12.5 ! 12.6 . , .#@# 2 2 = 0 Æ%.

87, ?#($, $ 3.6#Æ;<Æ; Æ" . ?@# ( 1Æ1@@2.

" 12.5 2 = 0 > = −1 -, ! 2 &:,%(&.GA'$&&)*0.*+),; 12*3;A-%, ω =

√3(1− 7a2/6); ..2*9A:;, (12.62); +2*3-%,

(12.66)

· 158 ·

" 12.6 2 = 0 > = −3/4 -, ! 2 &=-8E δ %(&.GA'$&&)*0.*+),; ..2*9A:;, (12.63); +2*3-%, (12.67)

13

Liao[39] $( 1, B ;2B<C,

u(t) = f(u, u, u) (13.1)

/, t , · t , f(u, u, u) Æ uu u . , Æ () . 87, $( 1;2B<C.

#, *;Æ2, (4 Kahn[103])

x+ x = ε x(1 − x2 w) (13.2)

w = −ε (w2 − µ x4) (13.3)

, · t , µ ε , x w . , 2B<C. T α = max[x(t)] B<CÆ x(t) Æ. , t = 0,

x(0) = α, x(0) = 0 (13.4)

δ =1T

∫ T

0

w(t)dt (13.5)

ω = T/2π

B<C x(t) . τ = ω t, x(t) = α u(τ), w(t) = δ + v(τ) (13.6)

(13.2) (13.3) ω2 u′′ + u = ε ω u′ (1 − α2δ u2 − α2 u2 v) (13.7)

ω v′ = −ε (δ2 + 2δ v + v2 − µ α4 u4) (13.8)

u(0) = 1, u′(0) = 0 (13.9)

· 160 ·

, ′ τ . 34, (13.5) (13.6), ∫ 2π

0

v(τ)dτ = 0 (13.10)

(13.10) v(τ) Æ<,. Æ αδ ω %.

13.1

13.1.1

, 2B<C . , u(τ) v(τ)

u(τ) =+∞∑n=1

[an cos(nτ) + bn sin(nτ)] (13.11)

v(τ) =+∞∑n=1

[cn cos(nτ) + dn sin(nτ)] (13.12)

, anbncn dn . (13.12) u(τ) v(τ) .

(13.11) (13.12), (13.9) (13.10),

u0(τ) = cos τ, v0(τ) = 0 (13.13)

u(τ) v(τ) . /, BC v(τ) F9, : u(τ) v(τ) ÆF9, v0(τ) = 0. α0δ0 ω0 αδ ω . (13.11) (13.12), (13.7) (13.8),

Luf =∂2f

∂τ2+ f (13.14)

Lvf =∂f

∂τ(13.15)

Lu (C1 cos τ + C2 sin τ) = 0, Lv(C3) = 0 (13.16)

, C1C2 C3 , f ,. , (13.7) (13.8),

13 Æ C=4&D>E · 161 ·

Nu [U(τ ; q), V (τ ; q), A(q),∆(q),Ω(q)]

=Ω2(q)∂2U(τ ; q)∂τ2

+ U(τ ; q)

−ε Ω(q)∂U(τ ; q)∂τ

[1 −A2(q)∆(q)U2(τ ; q) −A2(q)U2(τ ; q)V (τ ; q)

](13.17)

Nv [U(τ ; q), V (τ ; q), A(q),∆(q),Ω(q)]

=Ω(q)∂V (τ ; q)∂τ

+ε[∆2(q) + 2∆(q) V (τ ; q) + V 2(τ ; q) − µ A4(q) U4(τ ; q)

](13.18)

, q ∈ [0, 1]34, U(τ ; q) V (τ ; q) τ q ,, A(q)∆(q)

Ω(q) q ,.

u v , Hu(τ) Hv(τ) .

(1 − q)Lu [U(τ ; q) − u0(τ)]

= q u Hu(τ) Nu [U(τ ; q), V (τ ; q), A(q),∆(q),Ω(q)] (13.19)

(1 − q)Lv [V (τ ; q) − v0(τ)]

= q v Hv(τ) Nv [U(τ ; q), V (τ ; q), A(q),∆(q),Ω(q)] (13.20)

U(0; q) = 1,∂U(τ ; q)∂τ

∣∣∣∣τ=0

= 0,∫ 2π

0

V (τ ; q)dτ = 0 (13.21)

, τ 0, q ∈ [0, 1].

q = 0 , (13.13) , U(τ ; 0) = u0(τ), V (τ ; 0) = v0(τ) (13.22)

q = 1 , (13.19) 1 (13.21) (13.7) 1 (13.10), U(τ ; 1) = u(τ), V (τ ; 1) = v(τ) (13.23)

A(1) = α, ∆(1) = δ, Ω(1) = ω (13.24)

· 162 ·

, 34 q 0 1, U(τ ; q) V (τ ; q) u0(τ) v0(τ) u(τ) v(τ), %, A(q)∆(q) Ω(q) α0δ0 ω0 $Æ αδ ω.

(13.19) (13.20) uv, 5Hu(τ)Hv(τ). =, 1

un(τ)=(

1n!

)∂nU(τ ; q)∂qn

∣∣∣∣q=0

(13.25)

vn(τ)=(

1n!

)∂nV (τ ; q)∂qn

∣∣∣∣q=0

(13.26)

αn =(

1n!

)dnA(q)d qn

∣∣∣∣q=0

(13.27)

δn =(

1n!

)dn∆(q)d qn

∣∣∣∣q=0

(13.28)

ωn =(

1n!

)dnΩ(q)d qn

∣∣∣∣q=0

(13.29)

n 1 %. 56, (13.22), Æ q

U(τ ; q) = u0(τ) ++∞∑n=1

un(τ) qn (13.30)

V (τ ; q) = v0(τ) ++∞∑n=1

vn(τ) qn (13.31)

A(q) = α0 ++∞∑n=1

αn qn (13.32)

∆(q) = δ0 ++∞∑n=1

δn qn (13.33)

Ω(q) = ω0 ++∞∑n=1

ωn qn (13.34)

uvHu(τ) Hv(τ) , 1 q = 1 ,

13 Æ C=4&D>E · 163 ·

(13.23) (13.24),

u(τ) = u0(τ) ++∞∑n=1

un(τ) (13.35)

v(τ) = v0(τ) ++∞∑n=1

vn(τ) (13.36)

α = α0 ++∞∑n=1

αn (13.37)

δ = δ0 ++∞∑n=1

δn (13.38)

ω = ω0 ++∞∑n=1

ωn (13.39)

13.1.2

ÆF,

uk = u0(τ), u1(τ), · · · , uk(τ) , vk = v0(τ), v1(τ), · · · , vk(τ) (13.40)

αk = α0, α1, · · · , αk , δk = δ0, δ1, · · · , δk (13.41)

ωk = ω0, ω1, · · · , ωk (13.42)

(13.19)∼(13.21) q n , n!, q = 0,

Lu [un(τ) − χn un−1(τ)]

=u Hu(τ) Run(un−1,vn−1,αn−1, δn−1,ωn−1) (13.43)

Lv [vn(τ) − χn vn−1(τ)]

=v Hv(τ) Rvn(un−1,vn−1,αn−1, δn−1,ωn−1) (13.44)

un(0) = 0, u′n(0) = 0,∫ 2π

0

vn(τ)dτ = 0 (13.45)

(13.30)∼(13.34) (13.19)∼(13.21), q , !!"# (13.43)∼(13.45), !" (13.46)∼(13.49). —— !

· 164 ·

/, χn (2.42) ,

Run(un−1,vn−1,αn−1, δn−1,ωn−1)

=1

(n− 1)!dn−1Nu [U(τ ; q), V (τ ; q), A(q),∆(q),Ω(q)]

d qn−1

∣∣∣q=0

=n−1∑j=0

u′′n−1−j(τ)

(j∑

i=0

ωiωj−i

)+ un−1(τ) − ε Fn−1(τ)

+εn−1∑j=0

Fn−1−j(τ)j∑

i=0

[δi + vi(τ)]Wj−i(τ) (13.46)

Rvn(un−1,vn−1,αn−1, δn−1,ωn−1)

=1

(n− 1)!dn−1Nv [U(τ ; q), V (τ ; q), A(q),∆(q),Ω(q)]

d qn−1

∣∣∣q=0

=n−1∑j=0

ωj v′n−1−j(τ) + ε

n−1∑j=0

[δj δn−1−j + 2δj vn−1−j(τ)]

+εn−1∑j=0

[vj(τ) vn−1−j(τ) − µ Wj(τ) Wn−1−j(τ)] (13.47)

Fk(τ)=k∑

j=0

ωk−j u′j(τ) (13.48)

Wk(τ)=k∑

j=0

(k−j∑m=0

αm αk−j−m

)[j∑

n=0

un(τ) uj−n(τ)

](13.49)

#2Æ, (13.43) (13.44) Æ8Æ, , !'.

?4un(τ)vn(τ)αn−1δn−1 ωn−1, un(τ) vn(τ) (13.43)(13.44) (13.45). , $$, "#5%, αn−1δn−1 ωn−1. (13.11) (13.12), (13.43)

(13.44), Hu(τ) Hv(τ) !@H@. ,

Hu(τ) = Hv(τ) = 1 (13.50)

n = 1 , (13.13) %4 (13.46) (13.47),

Ru1 = a1,0 cos τ + b1,0 sin τ + b1,1 sin(3τ) (13.51)

13 Æ C=4&D>E · 165 ·

Rv

1 = c1,0 + c1,1 cos(2τ) + c1,2 cos(4τ) (13.52)

, a1,0b1,0b1,1c1,0c1,1 c1,2 τ . " a1,0 = 0 b1,0 = 0,

Lu (13.16), (13.43) u1(τ) & % τ sin τ τ cos τ , &(13.11). 4, " c1,0 = 0, Lv (13.16), (13.44) v1(τ)

& % c1,0 τ , (&(13.12). &(13.43) (13.44),

a1,0 = 0, b1,0 = 0, c1,0 = 0

! 5%

ω0 − α20 δ04

= 0, ω20 − 1 = 0, δ20 − 3α4

8= 0 (13.53)

α0 =

28√

6µ, δ0 = 4

√6µ, ω0 = 1 (13.54)

, Ru

1 = b1,1 sin(3τ)

Rv

1 = c1,1 cos(2τ) + c1,2 cos(4τ)

(13.43)(13.44) (13.45),

u1(τ) = −( ε

8

)u (3 sin τ − sin 3τ) (13.55)

v1(τ) = −(

4ε√µ

6

)v

(sin 2τ +

18

sin 4τ)

(13.56)

%, 67%3ε2(3u + 4

√176µ v

)− 48 ω1 = 0 (13.57)

(246µ3)1/8 α1 + (46)3/4 δ1 = 0 (13.58)

(126µ)3/8α1 − δ1 = 0 (13.59)

α1δ1 ω1, HÆ* (13.43)∼(13.45), u2(τ) v2(τ). %, αn−1δn−1ωn−1un(τ) vn(τ).

u(τ) v(τ) n "

u(τ) =Mu

n∑k=0

[an,k cos(2k + 1)τ + bn,k sin(2k + 1)τ ]

· 166 ·

v(τ) =Mv

n∑k=1

[cn,k cos(2kτ) + dn,k sin(2kτ)]

/, Mun Mv

n " n Æ! . , w(t) x(t) Æ<.

13.1.3 9!

9! 13.1 "#$%(13.35)∼(13.39)&', (, un(τ) ) vn(τ) *+,(13.43)∼ (13.45),-.(13.46)∼(13.49)/0(2.42)12,,345.6+,(13.7)∼(13.10) %.

7 " (13.35) (13.36) ,

limm→+∞um(τ) = 0, lim

m→+∞ vm(τ) = 0

(13.43), (2.42) (13.14),

u Hu(τ)+∞∑n=1

Run(un−1,vn−1,αn−1, δn−1,ωn−1)

=+∞∑n=1

Lu [un(τ) − χnun−1(τ)]

= limm→+∞

m∑n=1

Lu [un(τ) − χnun−1(τ)]

= limm→+∞Lu [um(τ)]

=Lu

[lim

m→+∞um(τ)]

=0

u = 0 Hu(τ) = 0, ''+∞∑n=1

Run(un−1,vn−1,αn−1, δn−1,ωn−1) = 0

%+∞∑n=1

Rvn(un−1,vn−1,αn−1, δn−1,ωn−1) = 0

13 Æ C=4&D>E · 167 ·

(13.46) (13.47) %4, 2, (13.37)∼(13.39) Æ,

(+∞∑i=0

ωi

)2d2

dτ2

⎡⎣+∞∑

j=0

uj(τ)

⎤⎦ +

+∞∑j=0

uj(τ)

= ε

(+∞∑i=0

ωi

)ddτ

⎡⎣+∞∑

j=0

uj(τ)

⎤⎦

×

⎧⎪⎨⎪⎩1 −

(+∞∑i=0

αi

)2⎛⎝+∞∑

j=0

uj

⎞⎠

2+∞∑k=0

[δk + vk(τ)]

⎫⎪⎬⎪⎭

(

+∞∑i=0

ωi

)ddτ

⎡⎣+∞∑

j=0

vj(τ)

⎤⎦

=−ε

⎧⎪⎨⎪⎩[

+∞∑k=0

δk ++∞∑k=0

vk(τ)

]2

− µ

(+∞∑i=0

αi

)4⎛⎝+∞∑

j=0

uj

⎞⎠

4⎫⎪⎬⎪⎭

(13.13) (13.45), +∞∑i=0

ui(0) = 1,+∞∑i=0

u′i(0) = 0,∫ 2π

0

[+∞∑i=0

vi(τ)

]dτ = 0

3 (13.7)∼(13.10) 0G, , (13.35)∼(13.39) *. :=.

13.2 H I

13.1, " (13.35)∼ (13.39) . Æ, + u v. ,

u = v =

, u(τ)v(τ)ωα δ " . 3, 'Æ ε

µ, 6739:, α ∼ δ ∼ ω ∼ 9 (4 24 A 3.5.1 #) B; CD. #, ε = 1/5 µ = 3 , $ 9$;$ αδ ω Æ Æ&,, ! 13.1 . !$, ε = 1/5 µ = 3 ,

" −3/2 < < 0, (13.37)∼(13.39) . #, u = v = −3/4 , ωα

· 168 ·

δ 1 0.969 681.413 99 2.070 15, 13.1 . ( -

7D" (4 41 A 3.5.2 #), <), 13.2 . 8/,

=# αδ ω , ''Æ u(τ) v(τ) , ! 13.2∼ ! 13.4 (ε = 1/5, µ = 3).

" 13.1 Hu(τ ) = Hv(τ ) = 1, ε = 1/5 > µ = 3 -, 10 A'$& ω ∼ >α ∼ > δ ∼ D

12*δ; ..2*α; +2*ω

> 13.1 --hu = --hv = −3/4, Hu(τ ) = Hv(τ ) = 1, ε = 1/5, µ = 3 8,

ω>α Æ δ 9 m :;<=m ω α δ

1 1.000 00 1.393 54 2.059 77

2 0.970 63 1.404 76 2.063 18

3 0.969 66 1.410 20 2.064 58

4 0.969 63 1.412 51 2.066 68

5 0.969 68 1.413 46 2.068 43

6 0.969 69 1.413 82 2.069 44

7 0.969 69 1.413 95 2.069 89

8 0.969 68 1.413 98 2.070 06

9 0.969 68 1.413 99 2.070 11

10 0.969 68 1.413 99 2.070 13

11 0.969 68 1.413 99 2.070 14

12 0.969 68 1.413 99 2.070 15

13 0.969 68 1.413 99 2.070 15

14 0.969 68 1.413 99 2.070 15

13 Æ C=4&D>E · 169 ·

> 13.2 --hu = --hv = −3/4, Hu(τ ) = Hv(τ ) = 1, ε = 1/5,

µ = 3 8, ω>α Æ δ 9 [m, m] :>? - @?;<=[m, m] ω α δ

[1, 1] 0.968 89 1.393 54 2.059 77

[2, 2] 0.969 77 1.414 13 2.083 45

[3, 3] 0.969 68 1.414 14 2.087 35

[4, 4] 0.969 68 1.413 99 2.070 15

[5, 5] 0.969 68 1.413 98 2.070 16

[6, 6] 0.969 68 1.413 99 2.070 15

[7, 7] 0.969 68 1.413 99 2.070 15

" 13.2 ε = 1/5 > µ = 3 -, D>E& x-x′ =8AI+2*u = v = −3/4, Hu(τ) = Hv(τ) = 1 *B-%; 0.*@,

" 13.3 ε = 1/5 > µ = 3 -, D>E& x-w =8AI+2*u = v = −3/4, Hu(τ) = Hv(τ) = 1 *B-%,; 0.*@,

· 170 ·

" 13.4 ε = 1/5 > µ = 3 -, D>E& x′-w =8AI+2*u = v = −3/4, Hu(τ) = Hv(τ) = 1 *B-%,; 0.*@,

), 'Æ ε µ, *;2B<CÆ. #, " ε , #, , "#;" . #, ε = 3/4 µ = 1/6 , αδ ω 9$, = −3/4 , ! 13.5. , :+Æ/1, "#Æ" , ! 13.6∼ ! 13.8 .

( 1AB$;2B<C [39]. 87#$, $( 1(;2B<C.

" 13.5 Hu(τ )=Hv(τ )=1, ε=3/4 > µ=1/6 -, EA'$& ω ∼ >α ∼ > δ ∼ D12*δ; ..2*α; +2*ω

JB?@ µ = 1, CAC. DD?EE. —— !

13 Æ C=4&D>E · 171 ·

" 13.6 ε = 3/4 > µ = 1/6 -, D>E& x-x′ =8AI+2*u = v = −3/4, Hu(τ) = Hv(τ) = 1 * 20 -%,; 0.*@,

" 13.7 ε = 3/4 > µ = 1/6 -, D>E& x-w =8AI+2*u = v = −3/4, Hu(τ) = Hv(τ) = 1 * 20 -%,; 0.*@,

· 172 ·

" 13.8 ε = 3/4 > µ = 1/6 -, D>E& x′-w =8AI+2*u = v = −3/4, Hu(τ) = Hv(τ) = 1 * 20 -%,; 0.*@,

14 FABCDE

BE<&2CÆ*;GD99, f ′′′(η) +

12f(η)f ′′(η) = 0 (14.1)

EJf(0) = f ′(0) = 0, f ′(+∞) = 1 (14.2)

, ′ η = y√U∞/(νx) , EF f(η) 9

f(η) = ψ/√νxU∞, /, U∞ EFKFÆ09), ν G, x y

G (L4FG [20]).

1908 :, G;MH [104](Blasius) ''

f(η) =+∞∑k=0

(−1

2

)kAkσ

k+1

(3k + 2)!η3k+2 (14.3)

, σ = f ′′(0),

A0 = A1 = 1, Ak =k−1∑r=0

(3k − 1

3r

)Ar Ak−r−1 (k 2) (14.4)

Æ σ , G;MH [104] '' η f(η) KL, 2<HGH" , σ = 0.332. 1938 :, Howarth[105] 39;+Æ σ = 0.332 06. , σ = 0.332 06, (14.3) <&, 0 η < ρ0 Æ, /, ρ ≈ 5.690, ! 14.1 . σ = f ′′(0) , , G;MH (14.3) 8B1B.

87, $( 1, 1/, ''G;MHG9H1.

14.1 N=MIIJI

14.1.1

G;MH [104], 3ηαm+β | m 0

(14.5)

· 174 ·

" 14.1 H(η) = 1 -, -- 6JK f ′′(0) &NJ& (14.26)

. Howarth[105] J6&&)*0.*@,; 12* = −1(K>OK)L..2* = −1/2L&..2* = −1/4L

+2* = −1/8

(14.1) (14.2) ,

f(η) =+∞∑k=0

ak ηαk+β (14.6)

, ak , α > 0 β 0 . G;MHG93/

(14.6), (14.2),

f0(η) =12ση2 (14.7)

f(η) , , σ = f ′′(0). (14.6), (14.1) (14.2),

L0[Φ(η; q)] =∂3Φ(η; q)∂η3

(14.8)

L0

(C0 + C1η + C2η

2)

= 0 (14.9)

, C0C1 C2 , Φ(η; q) η q ,, q ∈ [0, 1] 34. O, (14.1),

N [Φ(η; q)] =∂3Φ(η; q)∂η3

+12Φ(η; q)

∂2Φ(η; q)∂η2

(14.10)

14 Æ M?PLH@ · 175 ·

, H(η) .

(1 − q) L0 [Φ(η; q) − f0(η)] = q H(η) N [Φ(η; q)] (14.11)

EJ

Φ(0; q) = 0,∂Φ(η; q)∂η

∣∣∣∣η=0

= 0,∂2Φ(η; q)∂η2

∣∣∣∣η=0

= σ (14.12)

, q ∈ [0, 1] 34.

q = 0 , (14.7)(14.11) (14.12), '

Φ(η; 0) = f0(η) (14.13)

q = 1 , = 0 H(η) = 0, (14.11) (14.12) (14.1) (14.2),

Φ(η; 1) = f(η) (14.14)

, 34 q 0 1 , Φ(η; q) f0(η) f(η).

(14.13), Φ(η; q)

Φ(η; q) = f0(η) ++∞∑k=1

fk(η) qk (14.15)

fk(η) =1k!∂kΦ(η; q)∂qk

∣∣∣∣q=0

(14.16)

Æ, (14.11) H(η). H(η) =, 1 (14.15) q = 1 , , (14.14),

f(η) = f0(η) ++∞∑k=1

fk(η) (14.17)

m "

f(η) ≈ f0(η) +m∑

k=1

fk(η) (14.18)

· 176 ·

14.1.2

O,

fn = f0(η), f1(η), f2(η), · · · , fn(η) (14.19)

(14.11) (14.12) q k , q = 0, k!,

L0 [fk(η) − χk fk−1(η)] = H(η) Rk(fk−1) (14.20)

EJfk(0) = f ′

k(0) = f ′′k (0) = 0 (14.21)

, χk (2.42) ,

Rk(fk−1) = f ′′′k−1(η) +

12

k−1∑n=0

fn(η)f ′′k−1−n(η) (14.22)

(14.8), (14.20)

fk(η)=χkfk−1(η) +

∫∫∫H(η) Rk(fk−1) dη

+C0 + C1η + C2η2 (14.23)

, C0C1 C2 EJ (14.21) .

14.1.3 9!

9! 14.1 "#$(14.17)&', (, fk(η) *+,(14.20))(14.21), -.(14.22))(2.42)12, 35.6+,(14.1))(14.2) %.

7 (2.42) (14.20),

H(η)m∑

k=1

Rk(fk−1) = L[fm(η)]

" (14.17) , lim

m→+∞ fm(η) = 0

(14.8)

H(η)+∞∑k=1

Rk(fk−1) = limm→+∞L[fm(η)] = L

[lim

m→+∞ fm(η)]

= 0

(14.15) (14.11) Æ (14.12), q , !!"# (14.20) Æ (14.21), !" (14.22). —— !

14 Æ M?PLH@ · 177 ·

= 0 H(η) = 0, ''+∞∑k=1

Rk(fk−1) = 0

(14.22) %4, 2,

d3

dη3

[+∞∑k=0

fk(η)

]+

12

[+∞∑k=0

fk(η)

]d2

dη2

[+∞∑k=0

fk(η)

]= 0

(14.7) (14.21)

+∞∑k=0

fk(0) =+∞∑k=0

f ′k(0) = 0,

+∞∑k=0

f ′′k (0) = σ

, "

f0(η) ++∞∑k=1

fk(η)

, (14.1) (14.2) , :=.

14.1.4 FGHI

14.1, ="P2Æ H(η), (14.17)

. (14.6), H(η) $

H(η) = ηκ

, κ . κ < 0 , (14.20) (14.21) η ln η %, &(14.6). ,

κ 0 (14.24)

Æ, κ. , MI.

1. H(η) = 1 J%KL κ = 0, $%, H(η) = 1. /%, Liao[28] ''Æ m " (14.18)

f(η) ≈

m∑k=0

[(−1

2

)kAkσ

k+1

(3k + 2)!η3k+2

]µm,k

0 () (14.25)

, µm,k0 () 3 2 7 (3 21 A) Æ (2.58) . ,

f(η) = limm→+∞

m∑k=0

[(−1

2

)kAkσ

k+1

(3k + 2)!η3k+2

]µm,k

0 () (14.26)

· 178 ·

(14.26) 7IÆ, QL (14.1) (14.2) N. Æ, µm,k

0 () '/. 3 2 7 (3 21 A) , :$

µm,k0 (−1) = 1

, = −1 , (14.26) G;MH (14.3) . , G;MH (14.3) (14.26) :#. ! Liao[28] ;'Æ, (14.26) &,

ρ0 η ρ0

[2|| − 1

]1/3

(−2 < < 0) (14.27)

Æ, /, ρ0 ≈ 5.690 G;MH (14.3)B0. , −1 0, (14.26)&, η ∈ [−ρ0, ρ0] η ∈ [−ρ0,+∞), ! 14.1

. , 39J 2#), (14.26) &,.

A, (14.26) &, η ∈ [0,+∞) Æ. , G;MH [104], "#Æ η ''KL. f ′(+∞) = 1, Æ , B η = 0 :KÆH η = η0 F, 39%

m∑k=0

[(−1

2

)kAkσ

k+1

(3k + 1)!η3k+10

]µm,k

0 () = 1 (14.28)

f ′′(0) . " m :, (−1 < 0) :, η = 8 η = 9 H='')Æ σ = f ′′(0) = 0.332 06, Howarth [105] ', 14.1 .

> 14.1 KML> --h Æ η0 N8, O (14.28) PMN f ′′(0) 9;<=

m = − 1

10Æ η0 = 8 = − 1

12Æ η0 = 9

20 0.328 81 0.327 43

40 0.331 85 0.331 49

60 0.332 05 0.332 01

80 0.332 06 0.332 05

90 0.332 06 0.332 06

100 0.332 06 0.332 06

QO*Liao Shijun. A kind of approximate solution technique which does not depend upon small

parameters (II)*an application in fluid mechanics. International Journal of Non-Linear Mechanics,

1997, 32:815 ∼822 (RS Elsevier R)

2. H(η) = η J%KL κ = 1, $%, H(η) = η. , $Æ m "

f(η) ≈ σ

2η2 +

4m+2∑k=6

bm,k() ηk (14.29)

14 Æ M?PLH@ · 179 ·

, bm,k() Æ. Æ, η5 %, (14.25) . ''SÆ7IÆ. −1 0, (14.29) Æ&,, ! 14.2 . P', (14.25) , (14.29) &, 0 η < +∞ 1.

" 14.2 H(η) = η -, -- 6JK f ′′(0) &NJ& (14.29)

. Howarth[105] J6&&)*0.*@,L12* = −1(K>OK)L..2* = −1/2L&..2* = −1/4L

+2* = −1/8

3. H(η) =√η J%KL

κ = 1/2, $%, H(η) =√η. , $Æ m "

f(η) ≈ σ

2η2 +

7m+4∑k=11

cm,k() (√η )k (14.30)

, cm,k() Æ. Æ, η11/2 %, (14.25) (14.29) . ''37IÆ. −1 0, (14.30) Æ&,, ! 14.3 . P',

(14.25) (14.29) , (14.30) &, 0 η < +∞ 1.

· 180 ·

" 14.3 H(η) =√

η > I--6-, f ′′(0) NJ& (14.30)

. Howarth[105] J6&&)*0.*@,L12* = −1(K>OK)L..2* = −1/2L&..2* = −1/4;

+2* = −1/8

%, 'Æ κ 0, P', $Æ &, 0 η < +∞ 1. 4, 'Æ ( < 0), H(η) = 1 ''Æ&,.

#2Æ, (14.29) (14.30) G;MH (14.3) >, 2. Æ, (14.29) (14.30) = &, 0 η < +∞, , 0 (14.3) ; .

14.2 NQITMTJIJI

14.2.1 QRST

QL''Æ (14.26)(14.29) (14.30) &, η ∈[0,+∞) Æ, #G;MH (14.3), KB1B, σ = f ′′(0) &'. +&, , || !, "#<%N η +Æ" . , (14.1) (14.2) ÆÆ. 0#, (14.5) Æ:EFKFEJ f ′(+∞) = 1.

!Æ η , G;MH [104] (14.1) EJ f ′(+∞) = 1, ''K"

f ′(η) ≈ 1 +A

∫exp(−η2/4)dη

14 Æ M?PLH@ · 181 ·

, A 1 . , η → +∞ , f(η) → η O;P". f(η) -#ÆK". , EJD)O;'"09).

η → +∞ , f(η) → η O;P", 1η, ηn exp(−m λ η) | n 0,m 1, λ > 0 (14.31)

f(η),

f(η) = η ++∞∑m=1

+∞∑n=0

am,n ηn exp(−m λ η) (14.32)

, λ > 0 QC, am,n . (14.32) G;MHG93*/

14.2.2

(14.32), 2 (14.2),

f0(η) = η +1 − exp(−λ η)

λ(14.33)

f(η) . (14.32), (14.1) (14.2),

L[Φ(η; q)] =∂3Φ(η; q)∂η3

+ λ∂2Φ(η; q)∂η2

(14.34)

L [C0 + C1η + C2 exp(−λ η)] = 0 (14.35)

, C0C1 C2 . H(η) . 1 (14.10) Æ N ,

(1 − q) L[Φ(η; q) − f0(η)

]= q H(τ) N [Φ(η; q)] (14.36)

EJ

Φ(0; q) = 0,∂Φ(η; q)∂η

∣∣∣∣∣η=0

= 0,∂Φ(η; q)∂η

∣∣∣∣∣η=+∞

= 1 (14.37)

, q ∈ [0, 1] 34, Φ(η; q) η q ,.

14.1.1 # ,

f(η) = f0(η) ++∞∑k=1

fk(η) (14.38)

fk(η) =1k!∂kΦ(η; q)∂qk

∣∣∣∣∣q=0

(14.39)

· 182 ·

14.2.3

fn =f0(η), f1(η), f2(η), · · · , fn(η)

%, (14.36) (14.37) q k , q = 0, k!,

L[fk(η) − χkfk−1(η)

]= H(η) Rk(fk−1) (14.40)

EJfk(0) = f ′

k(0) = f ′k(+∞) = 0 (14.41)

, χk (2.42) ,

Rk(fk−1) = f ′′′k−1(η) +

12

k−1∑n=0

fn(η) f ′′k−1−n(η) (14.42)

14.2.4 RUV

G;MHG9$<N, , #''Æ. (14.32), H(η) 1

H(η) = ηm exp(−λ n η), m 0, n 0

,

H(η) = 1 (14.43)

39.2 (14.40) (14.41), 8/, fm(η)

fm(η) = bm,00 +

m+1∑n=1

exp(−nλ η)2(m+1−n)∑

k=0

bm,nk ηk (14.44)

, bm,nk . %4 (14.40) (14.41), ÆOO)

bm,00 =χmb

m−1,00 − λ−1

2m−1∑r=0

Γm,1r Π 1,1

r −m+1∑n=2

(n− 1)Γm,n0 Π n,0

0

+m+1∑n=2

2(m−n+1)∑r=1

Γm,nr

(nΠ n,0

r − Π n,0r − λ−1Π n,1

r

)

14 Æ M?PLH@ · 183 ·

bm,10 =χmb

m−1,10 + λ−1

2m−1∑r=0

Γm,1r Π 1,1

r

+m+1∑n=2

⎡⎣nΓm,n

0 Π n,00 +

2(m−n+1)∑r=1

Γm,nr

(nΠ n,0

r − λ−1Π n,1r

)⎤⎦

bm,1k =χm(1 − χk+3−2m)bm−1,1

k +2m−1∑r=k−1

Γm,1r Π 1,k

r (1 k 2m)

bm,nk =χm(1 − χk+1−2m+2n)bm−1,n

k −2(m−n+1)∑

r=k

Γm,nr Π n,k

r

(2 n m, 0 k 2m− 2n+ 2)

bm,m+10 = −Γm,m+1

0 Π m+1,00

Π 1,kr =

r! (r − k + 2)k! λr−k+3

(0 k r + 1)

Π n,kr =

r!k!(n− 1)r−k+1λr−k+3

[1 −

(1 − 1

n

)r−k+1(1 +

r − k + 1n

)]

(n 2, 0 k r)

Γm,nr =

[(1 − χr+1−2m+2n) dm−1,n

r + δm,nr

](1 n m, 0 r 2m− 2n+ 2)

/

δm,nr =

12

m−1∑k=0

minn,k+1∑j=max1,n+k−m

minr,2(k−j+1)∑i=max0,r−2(m−k−n+j)

×ck,ji bm−1−k,n−j

r−i Λm−1−k,n−jr−i

cm,kn =(n+ 1)(n+ 2)(1 − χn+1−2m+2k) bm,k

n+2

−2(kλ)(n+ 1)(1 − χn−2m+2k) bm,kn+1 + (kλ)2 bm,k

n

dm,kn =(n+ 1)(1 − χn−2m+2k) cm,k

n+1 − kλcm,kn

· 184 ·

Λi,jk =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0, i = j = 0, k 2

0, i > 0, j = 0, k 1

0, j > i+ 1

0, k > 2(i+ 1 − j)

1, %

(14.45)

(14.33), 1Æ5

b0,00 = −λ−1, b0,0

1 = 1, b0,10 = λ−1 (14.46)

51,ÆOO),OO' bm,nk (LPOL

4 Liao AF [29]).

(14.44) %4 (14.38),

f(η)= η + limM→+∞

⎡⎣ M∑

m=0

bm,00 +

M+1∑n=1

exp(−nλ η)⎛⎝ M∑

m=n−1

2(m−n+1)∑k=0

bm,nk ηk

⎞⎠⎤⎦

(14.47)

Æ, bm,nk Cλ. ,

ÆMI. 4, (14.47) Æ, η → +∞ f ′(η) → 1 O;P".

14.2.5 9!

9! 14.2 "#$%(14.38)&', (, fk(η) *+,(14.40))(14.41), -.(14.42))(2.42)12, 35.6+,(14.1))(14.2)%.

7 (2.42) (14.40),

H(η)m∑

k=1

Rk(fk−1) = L [fm(η)]

" (14.38) , lim

m→+∞ fm(η) = 0

, (14.34),

H(η)+∞∑k=1

Rk(fk−1) = limm→+∞ L[fm(η)] = L

[lim

m→+∞ fm(η)]

= 0

= 0 H(η) = 0, ''+∞∑k=1

Rk(fk−1) = 0

14 Æ M?PLH@ · 185 ·

(14.42) %4, 2,

d3

dη3

[+∞∑k=0

fk(η)

]+

12

[+∞∑k=0

fk(η)

]d2

dη2

[+∞∑k=0

fk(η)

]= 0

(14.33) (14.41), +∞∑k=0

fk(0) =+∞∑k=0

f ′k(0) = 0,

+∞∑k=0

fk(+∞) = 1

, =#

f0(η) ++∞∑k=1

fk(η)

, (14.1) (14.2) , :=.

14.2.6 FGHI

14.2,="P2Æ Cλ, (14.47) . , 67 λ Æ f ′′(0) . 67 = −1, 2Æ λ . :Æ λ, 0 λ 4, f ′′(0) " 1Æ, ! 14.4 . 'Æ λ (λ 4), f ′′(0) ∼ 9 (4 24 A 3.5.1 #) B; (14.47) CD. #, λ = 4 ,

f ′′(0) ∼ 9MR$Æ&, −3/2 −1/2,! 14.5. λ = 4 = −1 , (14.47) ''Æ f ′′(0)1 0.332 057, Howarth[105] f ′′(0) = 0.332 06 ', 14.2 . 8/, -, f ′′(0) -D. = −3/2 λ = 4 , 25 " ''+ f ′′(0) = 0.332 057.

$( - 7D" (4 41 A 3.5.2#) < f ′′(0) ), 14.3 . 8/, f ′′(0) [m,m] ( - 7D" .

4, f ′′(0) [m,m] ( - 7D" Æ)C λ EP, 14.4. ! 14.4,, = −1 λ 2, f ′′(0)8N. #, λ = 2 = −1

, f ′′(0) 30" −3.7×109. , λ 2 , #, λ = 16 λ = 2,

f ′′(0) ( - 7D" K1 0.332 057, 14.4 . 8/, f ′′(0) [m,m] ( - 7D" , C λ (EP.

· 186 ·

" 14.4 = −1, λ I--6-, O (14.47) -( f ′′(0) ∼ λ D12*10 -%,L..2*20 -%,L+2*30 -%,

" 14.5 λ = 4 -, O (14.47) -( f ′′(0) ∼ D12*10 -%,L..2*20 -%,L+2*30 -%,

8/, =# f ′′(0) , $Æ f(η) f ′(η) &, 0 η < +∞ 1 Howarth[105] . #, λ = 4 = −1 , f ′(η) &, 0 η < +∞ 1 Howarth[105] , 14.5 . ), ( - 7D" < (14.47) )S %, f(η) f ′(η) [m,m]

( - 7D" . ., λ = 2 = −1 , f ′′(0) 8

14 Æ M?PLH@ · 187 ·

N. , λ = 2 = −1 , ( - 7D" , &,0 η < +∞ f(η) , 14.6 . λ = 2 = −1 , ?1 f ′(η) [5,5] ( - 7D" +, ! 14.6 .

Æ, (14.47) H1Æ, &, η ∈ [0,+∞)

SÆ. , (14.1) (14.2) ÆG;MHG9Æ.

#$, ( 1, :Æ, N.

> 14.2 --h = −1 Æ λ = 4 8, OW (14.47) PMN f ′′(0) 9=X;<=-% f ′′(0)

10 0.327 756

20 0.331 851

30 0.332 040

40 0.332 055

45 0.332 057

50 0.332 057

55 0.332 057

QO*Liao Shijun. A uniformly valid analytic solution of two-dimensional viscous flow past a

semi-infinite flat plate. Journal of Fluid Mechanics. Cambridge University Press, 1999, 385: 101∼128

(TP c©1999 Cambridge University Press, RTUR)

> 14.3 --h = −1 Æ λ = 4 8, f ′′(0) 9 [m, m] :>? - @?;<[m, m] f ′′(0) F - QQ-%[4, 4] 0.344 675

[8, 8] 0.332 055

[12, 12] 0.332 056

[16, 16] 0.332 057

[20, 20] 0.332 057

[25, 25] 0.332 057

> 14.4 YL> λ N, f ′′(0) 9 [m, m] :>? - @?;<[m, m] λ = 1 λ = 2 λ = 4 λ = 5 λ = 10

[4, 4] 0.326 857 0.331 867 0.344 675 0.362 964 0.519 751

[8, 8] 0.331 808 0.331 753 0.332 055 0.332 269 0.347 726

[12, 12] 0.332 008 0.332 056 0.332 056 0.332 053 0.332 908

[16, 16] 0.332 043 0.332 057 0.332 057 0.332 057 0.332 084

[20, 20] 0.332 054 0.332 057 0.332 057 0.332 057 0.332 057

[25, 25] 0.332 057 0.332 057 0.332 057 0.332 057 0.332 057

· 188 ·

> 14.5 --h = −1 Æ λ = 4 8, OW (14.47) PMN f ′(η) 9=X;<=ZHowarth[105] [N=9U\

η 20 30 40 50 55 @,0.4 0.132 650 0.132 756 0.132 763 0.132 764 0.132 764 0.132 8

0.8 0.264 412 0.264 488 0.264 707 0.264 709 0.264 709 0.264 7

1.2 0.393 075 0.393 755 0.393 772 0.393 776 0.393 776 0.393 8

1.6 0.514 758 0.516 680 0.516 750 0.516 756 0.516 756 0.516 8

2.0 0.626 372 0.629 553 0.629 754 0.629 764 0.629 764 0.629 8

2.4 0.727 156 0.728 494 0.728 950 0.728 980 0.728 980 0.729 0

2.8 0.814 839 0.810 980 0.811 429 0.811 503 0.811 503 0.811 5

3.2 0.885 026 0.876 124 0.875 982 0.876 066 0.876 066 0.876 1

3.6 0.935 172 0.924 321 0.923 315 0.923 312 0.923 312 0.923 3

4.0 0.966 854 0.957 245 0.955 665 0.955 518 0.955 518 0.955 5

4.4 0.984 622 0.977 780 0.976 154 0.975 900 0.975 900 0.975 9

5.0 0.995 914 0.992 920 0.991 856 0.991 599 0.991 599 0.991 6

6.0 0.999 708 0.999 317 0.999 092 0.999 006 0.999 006 0.999 0

7.0 0.999 987 0.999 961 0.999 939 0.999 926 0.999 926 1.000 0

8.0 1.000 000 0.999 999 0.999 998 0.999 997 0.999 997 1.000 0

QO*Liao Shijun. A uniformly valid analytic solution of two-dimensional viscous flow past a

semi-infinite flat plate. Journal of Fluid Mechanics. Cambridge University Press, 1999, 385*101∼128

(TP c©1999 Cambridge University Press, RTUR)

> 14.6 λ = 2 Æ --h = −1 8, f ′(η) 9 [m, m] :>? - @?;<Z Howarth[105] [N=9U\

η [5, 5] [10, 10] [15, 15] [20, 20] [25, 25] @,0.4 0.133 023 0.132 814 0.132 764 0.132 764 0.132 764 0.132 8

0.8 0.264 655 0.264 688 0.264 709 0.264 709 0.264 709 0.264 7

1.2 0.393 380 0.393 774 0.393 775 0.393 776 0.393 776 0.393 8

1.6 0.516 251 0.516 751 0.516 755 0.516 757 0.516 757 0.516 8

2.0 0.629 577 0.629 759 0.629 765 0.629 766 0.629 766 0.629 8

2.4 0.729 388 0.728 968 0.728 981 0.728 982 0.728 982 0.729 0

2.8 0.812 514 0.811 489 0.811 508 0.811 509 0.811 510 0.811 5

3.2 0.877 471 0.876 059 0.876 079 0.876 081 0.876 081 0.876 1

3.6 0.924 790 0.923 298 0.923 325 0.923 329 0.923 330 0.923 3

4.0 0.956 803 0.955 468 0.955 523 0.955 518 0.955 518 0.955 5

4.4 0.976 987 0.975 798 0.975 872 0.975 871 0.975 870 0.975 9

5.0 0.992 848 0.991 460 0.991 542 0.991 542 0.991 542 0.991 6

6.0 1.000 400 0.998 920 0.998 972 0.998 974 0.998 973 0.999 0

7.0 0.999 989 0.999 920 0.999 920 0.999 922 0.999 921 1.000 0

8.0 0.999 998 0.999 995 0.999 996 0.999 997 0.999 996 1.000 0

14 Æ M?PLH@ · 189 ·

" 14.6 λ=2, =−1 -, f ′(η) & [5, 5] A-G - RR'$. Howarth[105] J6&&)*0.*@,; +2*[5, 5] F - QQ-%

15 V]^_`WaXE

BE<&2CÆ*;GD99. VQEJDÆ 67 Falkner Skan[106] 1931 :''. x 1BE<&2CEÆR2HB, y UY2CÆHB, U 09), ν G, u v 95) xy Æ . Falkner Skan[106] ;', " U !0 xκ, /, κ , , EJD

f ′′′(η) + f(η)f ′′(η) + β[1 − f ′2(η)] = 0 (15.1)

EJf(0) = f ′(0) = 0, f ′(+∞) = 1 (15.2)

β =2κκ+ 1

, η = y

√(1 + κ)U

2νx(15.3)

/, ′ η . 95) uv ''

u = Uf ′(η), v = [f(η) − (κ− 1)ηf ′(η)]

√νU

2(κ+ 1)x(15.4)

Æ, f(η) E β. κ 0 , (15.3), '

0 β 2

κ < 0 , 09) U ∝ xκ x = 0 FW, Falkner-Skan f(η) x = 0 FEÆ. β > 0 β < 0 Æ<& . 1937

:, Hartree[107] Falkner-Skan . 4, ηHartree[107] ''K"

1 − f ′(η) ≈ A exp(−η2/2) η−(2β+1) +B η2β (15.5)

, A B . EJ f ′(+∞) = 1, , η → +∞ , f ∼ η, ,

η → +∞ f → +∞.

Hartree[107] ;', β !, , $ (15.5) B = 0 Æ,

EFKF. β > 0 , N f(η), η → +∞ f ′(η) → 1

15 Æ VZJSUWVX@ · 191 ·

O;P". Hartree[107] 0 β 2 @TÆN. , β

S, (15.5) η( f) ' ∞ A B W, , f ′′(0) =''EFKFÆ. , β , EJ (15.2) N. β < 0 N, Hartree[107]

η → +∞, f ′(η) ' 1, f ′′(0) :0%EFKF, 2'' β0 β 2 @TÆ/1, , β0 = −0.198 $ f ′′(0) = 0. β0 β 2 , Hartree f ′′(0) 0, η → +∞ ,

f ′(η) → 1 Obc[R, X.Y9, (.9)9.

Stewartson[108] :$, β 0 , Falkner-Skan EJ (15.2) N. β < 0 N, Stewartson[108] Fα(η) 0% f(η),

F ′′′α (η) + Fα(η)F ′′

α (η) + β[1 − F ′2α (η)] = 0 (15.6)

EJFα(0) = F ′

α(0) = 0, F ′α(α) = 1 (15.7)

f(η) = lim

α→+∞Fα(η)

/S, Stewartson[108] 8/, &, β0 β < 0 SÆ, 4f ′′(0) < 0, I9.

Stewartson[108] :$4" β < −0.198 8,56, EJ f(0) = f ′(0) =

0 Æ Falkner-Skan , = η &,, &, f ′(η) > 1, 9)&. Hartree[107] Stewartson[108], Libby Liu [109] F, 9)&. , β < β0 '' Æ \. Æ<$, β < β0 , 'Æ f ′′(0) , (15.1) (15.2) , ?1EF.

Æ, Æ#6Æ, #6BB1Æ.

87, $( 1, ''Falkner-Skan EJD9ÆH1.

15.1

15.1.1

(15.5), " β 0, 62 β < 0 B = 0, 56, η → +∞ , f ′(η) → 1 O;P". ,

ηm exp(−n λ η) | m 0, n 0, λ > 0 (15.8)

· 192 ·

f(η),

f(η) =+∞∑m=0

+∞∑n=0

am,n ηm exp(−n λ η) (15.9)

, am,n , λ C. (15.9) Falkner-Skan EJD9.

(15.9), (15.2),

f0(η) = η − 1 − exp(−λ η)λ

+γ[1 − (1 + λ η) exp(−λ η)]

λ2(15.10)

f(η) , , γ . Æ, f ′′0 (0) = λ+ γ (15.11)

(15.9), (15.1) (15.2),

L[Φ(η; q)] =∂3Φ(η; q)∂η3

+ λ∂2Φ(η; q)∂η2

(15.12)

L [C0 + C1η + C2 exp(−λ η)] = 0 (15.13)

, C0C1 C2 , Φ(η; q) η q ,. (15.1),

N [Φ(η; q)] =∂3Φ(η; q)∂η3

+ Φ(η; q)∂2Φ(η; q)∂η2

+ β

1 −

[∂Φ(η; q)∂η

]2

(15.14)

, H(η) . (1 − q) L [Φ(η; q) − f0(η)] = q H(η) N [Φ(η; q)] (15.15)

EJ

Φ(0; q) = 0,∂Φ(η; q)∂η

∣∣∣∣η=0

= 0,∂Φ(η; q)∂η

∣∣∣∣η=+∞

= 1 (15.16)

, q ∈ [0, 1] 34.

q = 0 , Φ(η; 0) = f0(η) (15.17)

q = 1 , q = 0 H(η) = 0, (15.15) (15.16) (15.1) (15.2),

Φ(η; 1) = f(η) (15.18)

15 Æ VZJSUWVX@ · 193 ·

, 34 q 0 1 , Φ(η; q) f0(η) (15.1)

(15.2) f(η). (15.17), Φ(η; q)

Φ(η; q) = f0(η) ++∞∑k=1

fk(η) qk (15.19)

fk(η) =

1k!∂kΦ(η; q)∂qk

∣∣∣∣q=0

(15.20)

Æ, (15.15) H(η), f0(η) γ. =, 1 (15.19) q = 1 , , (15.18),

f(η) = f0(η) ++∞∑k=1

fk(η) (15.21)

(15.21) f0(η) f(η) .

15.1.2

,

fn = f0(η), f1(η), f2(η), · · · , fn(η)

(15.15) (15.16) q k , q = 0, k!,

L [fk(η) − χkfk−1(η)] = H(η) Rk(fk−1) (15.22)

EJfk(0) = f ′

k(0) = f ′k(+∞) = 0 (15.23)

, χk (2.42) ,

Rk(fk−1)= f ′′′k−1(η) +

k−1∑n=0

[fn(η)f ′′

k−1−n(η) − βf ′n(η)f ′

k−1−n(η)]

+β (1 − χk) (15.24)

(15.22) (15.23) !', : "1&ZOT.

(15.19) (15.15) Æ (15.16), q , !!"# (15.22) Æ (15.23), (15.24). —— !

· 194 ·

(15.9) (15.22), H(η) $

H(η) = ηκ1 exp(−λ κ2 η)

, κ1 0 κ2 0 . , κ1 = κ2 = 0, $

H(η) = 1 (15.25)

f∗k (η)

L[f∗k (η)] = Rk(fk−1)

Æ:. (15.13), 3

fk(η) = χk fk−1(η) + f∗k (η) + C0 + C1η + C2 exp(−λ η) (15.26)

, C0C1 C2 EJ (15.23) .

15.1.3 RUdV

39.2 (15.22) (15.23), 8/, fm(η)

fm(η) =m+1∑k=0

Ψm,k(η) exp(−kλ η), m 0 (15.27)

Ψ0,0(η) = b0,00 + b0,0

1 η (15.28)

Ψ0,1(η) = b0,10 + b0,1

1 η (15.29)

Ψm,0(η) = bm,00 , m 1 (15.30)

Ψm,k(η)=2(m+1)−k∑

n=0

bm,kn ηn, m 1, 1 k m+ 1 (15.31)

%4 (15.22) (15.23), JUK [40] bm,nk (m

1, 0 n m+ 1 0 k 2(m+ 1) − n) OO

bm,00 =χmb

m−1,00 − λ−1

2m∑r=0

Γm,1r Π 1,1

r −m+1∑n=2

(n− 1)Γm,n0 Π n,0

0

+m+1∑n=2

2(m+1)−n∑r=1

Γm,nr

(nΠ n,0

r − Π n,0r − λ−1Π n,1

r

)(15.32)

bm,01 =0 (15.33)

15 Æ VZJSUWVX@ · 195 ·

bm,10 =χmb

m−1,10 + λ−1

2m∑r=0

Γm,1r Π 1,1

r +m+1∑n=2

nΓm,n0 Π n,0

0

+m+1∑n=2

2(m+1)−n∑r=1

Γm,nr

(nΠ n,0

r − λ−1Π n,1r

)(15.34)

bm,1k =χm(1 − χk+2−2m) bm−1,1

k +2m∑

r=k−1

Γm,1r Π 1,k

r

1 k 2m+ 1 (15.35)

bm,nk =χm(1 − χk+1−2m+n) bm−1,n

k −2(m+1)−n∑

r=k

Γm,nr Π n,k

r

2 n m, 0 k 2(m+ 1) − n (15.36)

bm,m+1k =−

m+1∑r=k

Γm,m+1r Π m+1,k

r , 1 k m+ 1 (15.37)

/

Π 1,kr =

r! (r − k + 2)k! λr−k+3

, 0 k r + 1

Π n,kr =

r!k!(n− 1)r−k+1λr−k+3

[1 −

(1 − 1

n

)r−k+1(1 +

r − k + 1n

)]

n 2, 0 k r

Γm,nr =

[(1 − χr+1−2m+n) dm−1,n

r + δm,nr + ∆m,n

r

]1 n m, 0 r 2(m+ 1) − n

Γm,m+1r = (δm,m+1

r + ∆m,m+1r )

∆m,nr =−β

m−1∑k=0

minn,k+1∑j=max0,n+k−m

minr,2(k+1)−j∑i=max0,r−2(m−k)+n−j

ak,ji am−1−k,n−j

r−i

δm,nr =

m−1∑k=0

minn,k+1∑j=max1,n+k−m

minr,2(k+1)−j∑i=max0,r−2(m−k)+n−j

ck,ji

× bm−1−k,n−jr−i Λm−1−k,n−j

r−i

m 1, 0 n m+ 1, 0 r 2(m+ 1) − n

· 196 ·

am,kn =(n+ 1)bm,k

n+1Λm,kn+1 − (kλ)bm,k

n Λm,kn (15.38)

cm,kn =(n+ 1)(n+ 2) bm,k

n+2Λm,kn+2 − 2(kλ)(n+ 1)bm,k

n+1Λm,kn+1

+(kλ)2 bm,kn Λm,k

n (15.39)

dm,kn =(n+ 1) cm,k

n+1Λm,kn+1 − (kλ)cm,k

n Λm,kn (15.40)

Λi,jk =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0, i = j = 0, k 2

0, i > 0, j = 0, k 1

0, j > i+ 1

0, k > 2(i+ 1) − j

1, %

(15.41)

(15.10), Æ

b0,00 =

γ − λ

λ2, b0,0

1 = 1, b0,10 =

λ− γ

λ2, b0,1

1 = −γλ

(15.42)

+OO, <' bm,nk .

(15.1) (15.2) M "

f(η)≈ η +

(M∑

m=0

bm,00

)

+M+1∑n=1

exp(−nλ η)⎛⎝ M∑

m=n−1

2(m+1)−n∑k=0

bm,nk ηk

⎞⎠ (15.43)

, BE<&2C Falkner-Skan GD99Æ

f(η)=η +

(+∞∑m=0

bm,00

)

+ limM→+∞

M+1∑n=1

exp(−nλ η)⎛⎝ M∑

m=n−1

2(m+1)−n∑k=0

bm,nk ηk

⎞⎠ (15.44)

, η → +∞ , f ′ → 1 O;P".

15.1.4 9!

"#$

f0(η) ++∞∑k=1

fk(η)

15 Æ VZJSUWVX@ · 197 ·

&',(, fk(η)*+,(15.22))(15.23),-.(15.10)(15.12)(15.24))(2.42)12, (5.6+,(15.1))(15.2)%.

7 ", lim

m→+∞ fm(η) = 0

(15.22) (2.42),

H(η)m∑

k=1

Rk(fk−1) = L[fm(η)]

(15.12),

H(η)+∞∑k=1

Rk(fk−1) = limm→+∞L[fm(η)] = L

[lim

m→+∞ fm(η)]

= 0

= 0 H(η) = 0, ''+∞∑k=1

Rk(fk−1) = 0

(15.24) %4, 2,

d3

dη3

[+∞∑k=0

fk(η)

]+

[+∞∑k=0

fk(η)

]d2

dη2

[+∞∑k=0

fk(η)

]

⎧⎨⎩1 −

[ddη

+∞∑k=0

fk(η)

]2⎫⎬⎭ = 0

34, (15.10) (15.23), +∞∑k=0

fk(0) =+∞∑k=0

f ′k(0) = 0,

+∞∑k=0

f ′k(+∞) = 1

, "

f0(η) ++∞∑k=1

fk(η)

, (15.1) (15.2) . :=.

15.2 H I

15.1, =" (15.21) . Æ, (15.44) 5 λ γ. , ?I5Æ

· 198 ·

. η → +∞ , C λ CD" f ′(η) → 0 Æ). (15.11), γ CD" f ′′

0 (0) , , B; f(η) f0(η) . β < 0 , >. #2Æ, ' λ γ , KGÆ , ),2# (15.44)&,).

, f ′′(0) 2C95ÆLY2, -#Æ. (15.21),

f ′′(0) = f ′′0 (0) +

+∞∑k=1

f ′′k (0) (15.45)

β 5 λ γ. 67, = −1, γ = 0 Æ%, λ . U" λ :, ' β , f ′′(0) 1Æ, ! 15.1 . λ 5, 0 β 2 , Æ f ′′(0) . , λ 5. , λ = 5 γ = 0 Æ%. , f ′′(0) ÆCD39:, f ′′(0) ∼ 9 (4 24 A 3.5.1 #) +B;, ! 15.2 . ,

−5/4 −3/4, 0 β 2 , f ′′(0) . λ = 5, γ = 0 = −1, β0 β 2 , f ′′(0) , , β0 = −0.1988. f ′′(0) 10 20 30 "

" 15.1 = −1, γ = 0 > β = 0, 1, 2 -, 20 A'$& f ′′(0) ∼ λ D

15 Æ VZJSUWVX@ · 199 ·

" 15.2 λ = 5, γ = 0 > β = 0, 1, 2 -, 20 A'$& f ′′(0) ∼ D

f ′′(0)

≈0.466 892 061 269 575 + 1.270 377 798 259 161 β

−0.936 606 137 251 929 9 β2 + 0.656 544 480 481 005 2 β3

−0.298 966 715 661 174 3 β4 + 8.714 746 301 295 173 × 10−2 β5

−1.646 263 530 984 164 × 10−2 β6 + 2.009 360 736 004 046 × 10−3 β7

−1.532 383 017 041 316 × 10−4 β8 + 6.654 735 449 025 599 × 10−6 β9

−1.259 647 041 638 817 × 10−7 β10 (15.46)

f ′′(0)

≈0.469 470 560 483 573 + 1.295 165 031 248 947 β

−1.379 744 175 063 81 β2 + 2.191 127 183 953 301 β3

−3.010 696 768 394 167 β4 + 3.217 599 178 710 972 β5

−2.637 727 245 237 923 β6 + 1.672 089 788 089 693 β7

−0.828 892 704 239 146 3 β8 + 0.324 432 161 735 041 8 β9

−0.100 961 072 953 423 9 β10 + 2.508 145 750 314 333 × 10−2 β11

· 200 ·

−4.979 128 795 292 073 × 10−3 β12 + 7.879 252 632 693 684 × 10−4 β13

−9.872 764 016 512 919 × 10−5 β14 + 9.675 273 712 687 701 × 10−6 β15

−7.265 429 168 115 138 × 10−7 β16 + 4.042 349 583 833 827 × 10−8 β17

−1.573 031 139 104 484 × 10−9 β18 + 3.831 177 670 499 221 × 10−11 β19

−4.409 794 935 993 077 × 10−13 β20 (15.47)

f ′′(0)

≈ 0.469 590 361 531 217 7 + 1.298 441 994 559 965 β

−1.491 321 283 547 855 β2 + 3.075 663 557 218 445 β3

−6.529 797 437 132 239 β4 + 12.028 309 716 995 64 β5

−18.164 359 143 708 1 β6 + 22.241 322 748 548 39 β7

−22.201 844 530 357 51 β8 + 18.256 799 864 439 15 β9

−12.504 410 952 225 7 β10 + 7.205 799 232 502 405 β11

−3.523 684 854 407 225 β12 + 1.472 301 275 851 469 β13

−0.528 386 076 949 657 2 β14 + 0.163 475 339 090 429 3 β15

−4.369 783 644 567 797 × 10−2 β16 + 1.010 062 677 099 088 × 10−2 β17

−2.018 052 269 391 153 × 10−3 β18 + 3.479 126 853 101 193 × 10−4 β19

−5.159 762 018 077 551 × 10−5 β20 + 6.552 517 694 061 283 × 10−6 β21

−7.079 292 502 238 022 × 10−7 β22 + 6.449 249 702 165 323 × 10−8 β23

−4.894 052 058 789 618 × 10−9 β24 + 3.041 591 067 712 079 × 10−10 β25

−1.510 937 645 005 482 × 10−11 β26 + 5.783 596 085 142 942 × 10−13 β27

−1.606 885 758 239 585 × 10−14 β28 + 2.896 755 640 650 334 × 10−16 β29

−2.560 020 533 395 366 × 10−18 β30 (15.48)

0 β 2 , f ′′(0) >D, ?1 10 " Hartree[107] White[20]

Æ'0 , 15.1 ! 15.3 . , β0 β < 0 , f ′′(0) >M. $/7D" , (D f ′′(0) ). #, $( -

7D" (4 41 A 3.5.2 #), (15.45) )<, : β0 β < 0 , 15.2 ! 15.3 . 8/, f ′′(0) Æ [m,m] ( - 7D" .

15 Æ VZJSUWVX@ · 201 ·

> 15.1 λ = 5, γ = 0 Æ --h = −1 8, OW (15.45) PMN f ′′(0) 9=X=ZWhite[20] Æ Hartree[107] N[N=9U\

β 10 20 25 30 @,-%, -%, -%, -%,

2.0 1.686 47 1.687 19 1.687 21 1.687 22 1.687 2

1.6 1.517 09 1.521 48 1.521 52 1.521 52 1.521 5

1.2 1.331 47 1.335 78 1.335 72 1.335 72 1.335 7

1.0 1.230 79 1.232 66 1.232 58 1.232 59 1.232 6

0.8 1.122 10 1.120 27 1.120 28 1.120 27 1.120 3

0.6 1.001 07 0.995 72 0.995 85 0.995 84 0.995 8

0.5 0.933 79 0.927 55 0.927 67 0.927 68 0.927 7

0.4 0.860 38 0.854 35 0.854 40 0.854 42 0.854 4

0.3 0.779 22 0.774 83 0.774 74 0.774 75 0.774 8

0.2 0.688 30 0.686 91 0.686 74 0.686 71 0.686 7

0.1 0.595 19 0.587 11 0.587 07 0.587 05 0.587 0

0.0 0.466 89 0.469 47 0.469 56 0.469 59 0.469 6

−0.1 0.329 80 0.323 63 0.321 97 0.320 96 0.319

−0.14 0.268 76 0.253 74 0.249 60 0.246 82 0.239

−0.16 0.236 76 0.215 59 0.209 47 0.205 15 0.190

−0.18 0.203 72 0.174 99 0.166 22 0.159 71 0.128

−0.19 0.186 79 0.153 69 0.143 29 0.135 37 0.086

−0.198 0.173 06 0.136 14 0.124 26 0.115 04 0

QO*Liao Shijun. A uniformly valid analytic solution of two-dimensional viscous flow past a

semi-infinite flat plate. Journal of Fluid Mechanics. Cambridge University Press, 1999, 358:101∼128

(Cambridge University Press, RTUR)

" 15.3 λ = 5, γ = 0 > = −1 -, f ′′(0) &V&.J6()&)*12*10 -%, (15.46)L..2*20 -%, (15.47)L&..2*30 -%, (15.48)L+2*[15,15]

F - QQ-%L+X0.*Hartree[107] @,LNX0.*Stewartson[108] @,

· 202 ·

> 15.2 λ = 5, γ = 0 Æ --h = −1 8, f ′′(0) N [m, m] :>? - @?;<Z White[20] Æ Hartree [107] N[N=9U\

β [5,5] [10,10] [15,15] @,2.0 1.686 36 1.687 22 1.687 22 1.687 2

1.6 1.520 26 1.521 51 1.521 51 1.521 5

1.2 1.333 99 1.335 71 1.335 72 1.335 7

1.0 1.230 63 1.232 60 1.232 59 1.232 6

0.8 1.118 16 1.120 27 1.120 27 1.120 3

0.6 0.993 72 0.995 84 0.995 84 0.995 8

0.5 0.925 63 0.927 69 0.927 68 0.927 7

0.4 0.852 46 0.854 43 0.854 42 0.854 4

0.3 0.772 87 0.774 74 0.774 76 0.774 8

0.2 0.684 78 0.686 70 0.686 71 0.686 7

0.1 0.584 84 0.586 97 0.587 04 0.587 0

0.0 0.467 36 0.469 60 0.469 60 0.469 6

−0.1 0.322 91 0.319 35 0.319 27 0.319

−0.14 0.254 76 0.240 74 0.239 84 0.239

−0.16 0.218 13 0.193 80 0.191 28 0.190

−0.18 0.179 80 0.138 70 0.131 60 0.128

−0.19 0.160 04 0.106 77 0.094 55 0.086

−0.198 0.143 98 0.078 33 0.059 12 0

8/, =# f ′′(0) (15.45) , $Æ f(η) f ′(η) &, 0 η < +∞ . 0 β 2 , f ′(η) !D, 20 " Hartree [107] ', ! 15.4. , β0 β < 0 , β -[" β0, f ′(η)

-M. , "#;Æ" N:+Æ, ! 15.4 .

/1=:, Hartree[107] /A40 β 2 NSβ0 β < 2

f ′′(0) 0, η → +∞ f ′(η) → 1 O;P". , ., β0 β < 0 , Stewartson[108] 8/ f ′′(0) < 0 Æ, η → +∞ f ′(η) → 1 O;P", Y9. Y: Stewartson[108] /1, S γ ,

f ′′0 (0) = γ + λ < 0

' λ γ, :,$Æ f ′′(0) ∼ 9, || !ÆS , $. , 8/, =#, =1 Hartree . #,

γ = −5.5, β = −15/100, λ = 2 = −1/10 , 1 Hartree . ,

(15.44) \'' Stewartson[108] Y9Æ. ), (15.44) \'' Libby Liu[109] )9)Æ. Æ, Stewartson[108]Libby Liu[109] , #!O+Y: η → +∞ f ′(η) → 1

15 Æ VZJSUWVX@ · 203 ·

T]ÆO;P", Æ=<,<ÆBN&,, !FE<KFÆ. , ]ZÆ, Stewartson[108]Libby Liu[109] ''Æ η → +∞ T]ÆO;P". UH"#;Æ: \Z. β < 0

, Falkner-Skan9TEFKF;ÆK[PÆ. ", ^)$( 1+, (W_Æ.

" 15.4 λ = 5>γ = 0 > = −1 -, O (15.43) -( f ′(η)

&&V'$. Hartree[107] J6&&)*+2*β = 2 *@,L&..2*β = 1 *@,L..2*β = 0 *@,L12*β = −0.16 *@,L+X0.*β = 2 * 20 -%,L+XQ*β = 1 * 20 -%,LNX0.*β = 0 * 20 -%,LN

XQ*β = −0.16 * 50 -%,

16 V`^_`WaXE

3, EJD9)XV=O;Y$Æ. , Kuiken[110, 111]

'' +EFKFO%Y$ÆEJD9.

#, Kuiken[111] 1\RZ;,9, 1</ , 38Æ

f ′′′(η) + θ(η) − f ′2(η) = 0 (16.1)

θ′′(η) = 3 σ f ′(η) θ(η) (16.2)

3SEJ

f(0) = f ′(0) = 0, θ(0) = 1 (16.3)

f ′(+∞) = θ(+∞) = 0 (16.4)

, ′ η , σ ÆT:, f(η) θ(η) EJD9Æ)VX G. L4 Kuiken[111] AF.

Kuiken[111] Æ. , 8, B1BÆ. U., ^.W''3Æ1. 87, $( 1, ''3Æ.

16.1

16.1.1 QRST

EJ (16.4), η → +∞ , f ′(η) θ(η) ='" 0. , "#VEFKFK". Kuiken[111] ;', f ′(η) θ(η) η → +∞ =O%Y$.

1ξ = 1 + λ η, F (ξ) = f ′(η), S(ξ) = θ(η) (16.5)

(16.1) (16.2)

λ2 F ′′(ξ) + S(ξ) − F 2(ξ) = 0 (16.6)

λ2 S′′(ξ) = 3 σ F (ξ) S(ξ) (16.7)

16 Æ V]JSUWVX@ · 205 ·

EJF (1) = 0, S(1) = 1 (16.8)

F (+∞) = S(+∞) = 0 (16.9)

, λ > 0 C.

F (ξ) S(ξ) ξ → +∞ K"F ∼ ξα1 , S ∼ ξα2 (16.10)

, α1 α2 [. (16.10) %4 (16.6) (16.7), 2_VÆ0%,

α1 = −2, α2 = −4 (16.11)

, F (ξ) S(ξ) EFKF%Y$, Sξ−n | n 2

(16.12)

F (ξ) S(ξ),

F (ξ)=+∞∑n=2

an

ξn(16.13)

S(ξ)=+∞∑n=4

bnξn

(16.14)

, anbn . (16.13) (16.14) F (ξ) S(ξ) .

16.1.2

(16.13) (16.14), 5EJ (16.8) (16.9),

F0(ξ) = γ(ξ−2 − ξ−3

), S0(ξ) = ξ−4 (16.15)

F (ξ) S(ξ), , γ . (16.13) (16.14),

5 (16.6) (16.7),

LF Φ =(ξ

3

)∂2Φ∂ξ2

+∂Φ∂ξ

(16.16)

LSΦ =(ξ

5

)∂2Φ∂ξ2

+∂Φ∂ξ

(16.17)

LF

(C1 + C2 ξ

−2)

= 0 (16.18)

LS

(C3 + C4 ξ

−4)

= 0 (16.19)

· 206 ·

, C1C2C3C4 . (16.6) (16.7),

NF [Φ(ξ; q),Θ(ξ; q)]=λ2 ∂Φ(ξ; q)∂ξ2

+ Θ(ξ; q) − Φ2(ξ; q) (16.20)

NS [Φ(ξ; q),Θ(ξ; q)]=λ2 ∂2Θ(ξ; q)∂ξ2

− 3 σ Φ(ξ; q) Θ(ξ; q) (16.21)

, q ∈ [0, 1] 34, Φ(ξ; q) Θ(ξ; q) ξ q . 8 F S

, HF (ξ) HS(ξ) . 3(1 − q) LF [Φ(ξ; q) − F0(ξ)]

= q F HF (ξ) NF [Φ(ξ; q),Θ(ξ; q)] (16.22)

(1 − q) LS [Θ(ξ; q) − S0(ξ)]

= q S HS(ξ) NS [Φ(ξ; q),Θ(ξ; q)] (16.23)

EJΦ(1; q) = Φ(+∞; q) = Θ(+∞; q) = 0, Θ(1; q) = 1 (16.24)

q = 0 , Φ(ξ; 0) = F0(ξ), Θ(ξ; 0) = S0(ξ) (16.25)

, F0(ξ) S0(ξ) (16.15). q = 1 ,

F = 0, S = 0, HF (ξ) = 0, HS(ξ) = 0

, (16.22)∼(16.24) * (16.6)∼(16.9), Φ(ξ; 1) = F (ξ), Θ(ξ; 1) = S(ξ) (16.26)

, q 0 1 , Φ(ξ; q) Θ(ξ; q) F0(ξ)S0(ξ) (16.6)∼ (16.9) F (ξ)S(ξ).

, (16.25), S

Φ(ξ; q)=F0(ξ) ++∞∑n=1

Fn(ξ) qn (16.27)

Θ(ξ; q)=S0(ξ) ++∞∑n=1

Sn(ξ) qn (16.28)

Fn(ξ) =

1n!∂nΦ(ξ; q)∂qn

∣∣∣∣q=0

, Sn(ξ) =1n!∂nΘ(ξ; q)∂qn

∣∣∣∣q=0

(16.29)

16 Æ V]JSUWVX@ · 207 ·

C λ, (16.15) γ, FS , 5HF (ξ)HS(ξ) =, 1 q = 1 , (16.26),

F (ξ)=F0(ξ) ++∞∑n=1

Fn(ξ) (16.30)

S(ξ)=S0(ξ) ++∞∑n=1

Sn(ξ) (16.31)

m "

F (ξ)≈F0(ξ) +m∑

n=1

Fn(ξ) (16.32)

S(ξ)≈S0(ξ) +m∑

n=1

Sn(ξ) (16.33)

16.1.3

, F m = F0(ξ), F1(ξ), F2(ξ), · · · , Fm(ξ)

Sm = S0(ξ), S1(ξ), S2(ξ), · · · , Sm(ξ)

(16.22) 1 (16.24) 34 q n , n!, q = 0,

LF [Fn(ξ) − χnFn−1(ξ)]=F HF (ξ) RFn (F n−1,Sn−1) (16.34)

LS [Sn(ξ) − χnSn−1(ξ)]=S HS(ξ) RSn(F n−1,Sn−1) (16.35)

EJFn(1) = Sn(1) = Fn(+∞) = Sn(+∞) = 0 (16.36)

, χn (2.42) ,

RFn (F n−1,Sn−1)=λ2 F ′′

n−1(ξ) + Sn−1(ξ)

−n−1∑j=0

Fj(ξ) Fn−1−j(ξ) (16.37)

RSn(F n−1,Sn−1)=λ2 S′′

n−1(ξ) − 3 σn−1∑j=0

Fj(ξ) Sn−1−j(ξ) (16.38)

(16.27) Æ (16.28) (16.22)∼(16.24), q , !!"# (16.34)∼(16.36), !" (16.37) Æ (16.38). —— !

· 208 ·

(16.34)∼(16.36)8Æ3. , "&Z<T,

!7'L[.

(16.13) (16.14), HF (ξ) HS(ξ) $

HF (ξ) = ξκ1 , HS(ξ) = ξκ2 (16.39)

, κ1 κ2 . 8/, κ1 1 (62)κ2 1 , ln ξ %. &(16.13) (16.14). κ1 −1 (62)κ2 −1 , F (ξ) S(ξ) ξ−2 ξ−4 %. &ecafg. ecaf,

&κ1 = κ2 = 0

$%

HF (ξ) = HS(ξ) = 1 (16.40)

16.1.4 RUdV

39 (16.34)∼(16.36),8/, Fn(ξ) Sn(ξ)

Fn(ξ) = ξ−22n+1∑j=0

an,j ξ−j , Sn(ξ) = ξ−4

2n∑j=0

bn,j ξ−j (16.41)

, an,j bn,j . (16.41) %4 (16.34)∼(16.36), OO) (j 1)

an,j =χn χ2n+1−j an−1,j

+3 F

[χ2n+2−j λ

2 (j + 1)(j + 2)an−1,j−1 + χ2n+1−jbn−1,j−1 −An,j−1

]j(j + 2)

(16.42)

bn,j =χn χ2n−j bn−1,j

+5 S

[χ2n+1−j λ

2 (j + 3)(j + 4)bn−1,j−1 − 3σ Bn,j−1

]j(j + 4)

(16.43)

an,0 = −2n+1∑j=1

an,j, bn,0 = −2n∑

j=1

bn,j (16.44)

16 Æ V]JSUWVX@ · 209 ·

An,i =n−1∑j=0

min2j+1,i∑r=max0,i+2j−2n+1

aj,r an−j−1,i−r (16.45)

Bn,i =n−1∑j=0

min2j+1,i∑r=max0,i+2j−2n+2

aj,r bn−j−1,i−r (16.46)

(16.15), 54a0,0 = γ, a0,1 = −γ, b0,0 = 1 (16.47)

$OO), 5, an,j bn,j .

, Æ

F (ξ)=+∞∑n=0

2n+1∑j=0

an,j

ξj+2, S(ξ) =

+∞∑n=0

2n∑j=0

bn,j

ξj+4(16.48)

) (16.5),

f ′(η)=+∞∑n=0

2n+1∑j=0

an,j

(1 + λ η)j+2, θ(η) =

+∞∑n=0

2n∑j=0

bn,j

(1 + λ η)j+4(16.49)

m "

f ′(η) ≈m∑

n=0

2n+1∑j=0

an,j

(1 + λ η)j+2, θ(η) ≈

m∑n=0

2n∑j=0

bn,j

(1 + λ η)j+4(16.50)

f(η) ≈m∑

n=0

2n+1∑j=0

an,j

λ (j + 1)

[1 − 1

(1 + λ η)j+1

](16.51)

f ′′(0) ≈ −λm∑

n=0

2n+1∑j=0

(j + 2)an,j (16.52)

f(+∞) ≈m∑

n=0

2n+1∑j=0

an,j

λ (j + 1)(16.53)

θ′(0) ≈ −λm∑

n=0

2n∑j=0

(j + 4)bn,j (16.54)

16.1.5 9!

9! 16.1 "#$%(16.30))(16.31)&', (, Fn(ξ) ) Sn(ξ) *+,(16.34)∼(16.36), -.(16.37)(16.38) )(2.42)12, 345.6+,(16.6) ∼(16.9)h%.

· 210 ·

7 " (16.30) (16.31) , lim

m→+∞Fm(ξ) = 0, limm→+∞Sm(ξ) = 0

, (16.16) (16.17),

LF

[lim

m→+∞Fm(ξ)]

= 0, LS

[lim

m→+∞Sm(ξ)]

= 0

(16.34) (16.35), (2.42),

F HF (ξ)m∑

n=1

RFn (F n−1,Sn−1) = LF [Fm(ξ)]

S HS(ξ)m∑

n=1

RSn(F n−1,Sn−1) = LS [Sm(ξ)]

,

F HF (ξ)+∞∑n=1

RFn (F n−1,Sn−1) = LF

[lim

m→+∞Fm(ξ)]

= 0

S HS(ξ)+∞∑n=1

RSn(F n−1,Sn−1) = LS

[lim

m→+∞Sm(ξ)]

= 0

F = 0S = 0HF (ξ) = 0 HS(ξ) = 0,

+∞∑n=1

RFn (F n−1,Sn−1) = 0

+∞∑n=1

RSn(F n−1,Sn−1) = 0

(16.37) (16.38) %4, 2,

λ2 ∂2

∂ξ2

[+∞∑n=0

Fn(ξ)

]+

+∞∑n=0

Sn(ξ) −[

+∞∑n=0

Fn(ξ)

]2

= 0 (16.55)

λ2 ∂2

∂ξ2

[+∞∑n=0

Sn(ξ)

]− 3 σ

[+∞∑n=0

Fn(ξ)

] [+∞∑n=0

Sn(ξ)

]= 0 (16.56)

16 Æ V]JSUWVX@ · 211 ·

(16.15) (16.36), +∞∑n=0

Fn(1) =+∞∑n=0

Fn(+∞) =+∞∑n=0

Sn(+∞) = 0,+∞∑n=0

Sn(1) = 1 (16.57)

(16.55)∼(16.57) (16.6)∼(16.9) L[0G, , (16.30) (16.31) 8 . :=.

16.2 H I

87Æ(Æ4FSλ γ. , IÆÆ. 16.1,"JÆ, (16.30)

(16.31) .

(16.15)Æ F0(ξ) γ. (16.15)

%4 (16.6) (16.7), 2_0%, λ γ Æ%3, 3

λ =

√3σ20

(1 − 9σ

10

)−1/4

, γ =(

1 − 9σ10

)−1/2

(16.58)

[ (16.58) σ < 10/9 Æ, λ γ Æ=ÆF9. (16.58), , σ 1 ,

γ ∼ 1, λ ∼ √σ

, 'ÆÆT: σ, =B;Æ λγF

S CD, 3Æ. #,

σ = 1 Æ%.

f ′′(0) = λ F ′(0), θ′(0) = λ S′(0)

LY2X3, , "-#Æ. 14, 67B;Æ f ′′(0) θ′(0) ÆCD. F = S = −1/2,

γ = 1, 2, 3 , θ′(0) f ′′(0) λ Æ<&,=, &, γ = 3 ,

! 16.1 ! 16.2 . , λ = 1/3, γ = 3, F = S = −1/2 , f ′′(0) θ′(0)

. Y:H, L^:,! 16.3 Æ f ′′(0) ∼ θ′(0) ∼

9, B; λ = 1/3, γ = 3 S = F = CD. σ = 1, λ = 1/3, γ = 3, S = F = −1/2 , f ′′(0) θ′(0) , 16.1 . , 'ÆÆT: σ, Æ λγF S , f ′′(0) θ′(0) . #, σ = 1/10, λ = 1/5, γ = 1,

F = S = −1/2 , 5 σ = 10 λ = 1/3, γ = 1, F = −1/4, S = −1/10 ,

· 212 ·

f ′′(0) θ′(0) %. σ > 10, λ = 1, γ = 1, F = −1/4, S = −1/σ ,

5 σ < 1/10, γ = 1, F = S = −1/2, λ = 1/5(6;) , (. , ! 16.4 ! 16.5 , =# f ′′(0) θ′(0) , $Æ f(ξ)

θ(ξ) & 0 ξ < +∞ =.

" 16.1 σ = 1, F = S = −1/2 -, 24 A'$& θ′(0) ∼ λ D+2*γ = 1L12*γ = 2L..2*γ = 3

" 16.2 σ = 1, F = S = −1/2 -, 24 A'$& f ′′(0) ∼ λ D+2*γ = 1L12*γ = 2L..2*γ = 3

16 Æ V]JSUWVX@ · 213 ·

" 16.3 σ = 1, γ = 3, λ = 1/3, F = S = -, 24 A'$& f ′′(0) ∼ > θ′(0) ∼ D+2*θ′(0)L12*f ′′(0)

> 16.1 σ = 1, λ = 1/3, γ = 3, --hF = --hS = −1/2 8, f ′′(0) Æ θ′(0) N m :=X;<=Z Kuiken[111] [N=9U\

m f ′′(0) θ′(0)5 0.713 814 −0.831 716

10 0.706 453 −0.765 271

15 0.702 547 −0.769 478

20 0.697 170 −0.771 491

25 0.694 380 −0.770 640

30 0.693 538 −0.770 001

35 0.693 342 −0.769 872

40 0.693 268 −0.769 879

45 0.693 227 −0.769 876

50 0.693 213 −0.769 866

Kuiken @, 0.693 212 −0.769 861

( - 7D" (4 41 A 3.5.2 #), <) f ′′(0) θ′(0) , 16.2 16.3 . 8/, S = F = [m,m] ( - 7D" .

Æ, OO) (16.42)∼(16.47), (16.1) (16.2) Æ. EFKFO%Y$. 3 15 7, ( 1B EFKFO;Y$Æ Falkner-Skan EJD9. , ( 1 1/:ÆEJD9%Æ.

· 214 ·

" 16.4 f ′(η) &V&.J6&&)*NX0.*σ = 1/10, F = S = −1/2, λ = 1/5, γ = 1 *, 30 -%,L+X0.*σ = 1,

F =S =−1/2, λ=1/3, γ =3 *, 20 -%,LNXQ: σ=10, F =−1/4, S =−1/10,

λ = 1/3, γ = 1 *, 40 -%,L+2*@,

" 16.5 θ(η) &V&.J6&&)*NX0.*σ = 1/10, F = S = −1/2, λ = 1/5, γ = 1 *, 30 -%,L+X0.*σ = 1,

F =S =−1/2, λ=1/3, γ =3 *, 20 -%,; NXQ: σ=10, F =−1/4, S =−1/10,

λ = 1/3, γ = 1 *, 40 -%,; +2: @,

16 Æ V]JSUWVX@ · 215 ·

> 16.2 f ′′(0) 9 [m, m] :>? - @?;<Z Kuiken N[N= [111] 9U\σ = 1/10 σ = 1 σ = 10

[m, m]λ = 1/5, γ = 1 λ = 1/3, γ = 3 λ = 1/3, γ = 1

[5, 5] 0.952 170 0.705 940 0.433 555

[10, 10] 0.921 936 0.693 438 0.452 229

[15, 15] 0.924 108 0.693 214 0.447 038

[20, 20] 0.924 087 0.693 212 0.447 107

[25, 25] 0.924 088 0.693 212 0.447 117

[30, 30] 0.924 086 0.693 212 0.447 117

[35, 35] 0.924 084 0.693 212 0.447 117

[40, 40] 0.924 083 0.693 212 0.447 117

[45, 45] 0.924 083 0.693 212 0.447 117

[50, 50] 0.924 083 0.693 212 0.447 117

Kuiken "@, 0.924 083 0.693 212 0.447 117

> 16.3 θ′(0) 9 [m, m] :>? - @?;<Z Kuiken N[N= [111] 9U\σ = 1/10 σ = 1 σ = 10

[m, m]λ = 1/5, γ = 1 λ = 1/3, γ = 3 λ = 1/3, γ = 1

[5, 5] −0.347 058 −0.774 151 −1.615 83

[10, 10] −0.350 119 −0.770 018 −1.492 63

[15, 15] −0.350 027 −0.769 866 −1.497 33

[20, 20] −0.350 058 −0.769 861 −1.497 08

[25, 25] −0.350 058 −0.769 861 −1.497 10

[30, 30] −0.350 059 −0.769 861 −1.497 10

[35, 35] −0.350 059 −0.769 861 −1.497 10

[40, 40] −0.350 059 −0.769 861 −1.497 10

[45, 45] −0.350 059 −0.769 861 −1.497 10

[50, 50] −0.350 059 −0.769 861 −1.497 10

Kuiken "@, −0.350 059 −0.769 861 −1.497 10

17 i · jkDlE

87, bc_EF4Y\UY4Y z d) Ω

]e`ZÆVQG95dQÆÆD99. 9*=

1r

∂(rVr)∂r

+1r

∂Vθ

∂θ+∂Vz

∂z=0 (17.1)

W; - H\XH (Navier-Stokes)

Vr∂Vr

∂r+ Vz

∂Vr

∂z− V 2

θ

r= ν

[∂2Vr

∂r2+

1r

∂Vr

∂r+∂2Vr

∂z2− Vr

r2

]− 1ρ

∂p

∂r(17.2)

Vr∂Vθ

∂r+ Vz

∂Vθ

∂z+VrVθ

r= ν

[∂2Vθ

∂r2+

1r

∂Vθ

∂r+∂2Vθ

∂z2− Vθ

r2

](17.3)

Vr∂Vz

∂r+ Vz

∂Vz

∂z= ν

[∂2Vz

∂r2+

1r

∂Vz

∂r+∂2Vz

∂z2

]− 1ρ

∂p

∂z(17.4)

5SEJVθ = rΩ , Vr = Vz = 0, z = 0 F (17.5)

Vr = Vθ = 0, z = +∞ F (17.6)

, ρ 95, ν G, p V2, VrVθVz 0dÆ) .

η = z

√Ων

(17.7)

2 Vr = (rΩ) f(η) (17.8)

Vθ = (rΩ) g(η) (17.9)

Vz =√νΩ w(η) (17.10)

p = −ρνΩ P (η) (17.11)

17 Æ W · YZH]@ · 217 ·

(17.1)∼(17.6) 3 3

f ′′ = f2 − g2 + f ′ w (17.12)

g′′ = g′ w + 2f g (17.13)

w w′ = P ′ + w′′ (17.14)

2f + w′ = 0 (17.15)

EJ

f(0) = f(+∞) = 0, g(0) = 1, g(+∞) = 0, w(0) = 0 (17.16)

, ′ η . (17.15)

f = −w′

2(17.17)

(17.17) %4 (17.12) (17.13) ,

w′′′ − w′′ w +12w′ w′ − 2g2 = 0 (17.18)

g′′ − w g′ + w′ g = 0 (17.19)

EJ

w(0) = w′(0) = w′(+∞) = 0, g(0) = 1, g(+∞) = 0 (17.20)

LPO, L4X · [\ [112](Von Karman) 5 Zandbergen Dijkstra[113] F7.

38Æ#Æ.!B;2, X ·[\ [112]Cochran[114]Hettis[115] Rogers Lance[116] Benton[117] McLeod[118] Zandbergen Dijkstra[119]Ackroyd[120] 5 Hulzen[121], =L[9B;. ^Æ/16Æ, 6BB1Æ. 87, ( 1, ''G9H1Æ.

17.1

X · [\G_9EFKFÆd) Æ, #[-#Æ. Benton[117] ,

γ = −w(+∞) (17.21)

· 218 ·

1w(η) = −γ [1 − s(η)] (17.22)

#, Benton[117], ^434ξ = λ η (17.23)

, λ C. (17.22) (17.23), (17.18) (17.19) γλ3s′′′ + γ2λ2(1 − s)s′′ +

12γ2λ2s′s′ − 2g2 = 0 (17.24)

λg′′ + γ(1 − s)g′ + γs′g = 0 (17.25)

EJs(0) = g(0) = 1, s(+∞) = g(+∞) = 0, s′(0) = s′(+∞) = 0 (17.26)

, ′ ξ . Æ, !ÆC λ, , (17.21) Æ γ Æ.

17.1.1

Rogers Lance[116] ÆB;, X · [\G_9EFKFO;Y$.

1978 :, Dijkstra O'=;ÆK". Hulzen[121] ''%;Æ. ", _aJUK [43] ( 1, 6'' %;Æ. 87, ''

exp(−n ξ) | n 1 (17.27)

Æ s(ξ) g(ξ) ,

s(ξ) =+∞∑n=1

an exp(−nξ), g(ξ) =+∞∑n=1

bn exp(−nξ) (17.28)

, an bn . (17.28) s(ξ) g(ξ) .

ε . (17.28) EJ (17.26),

s0(ξ)=2 exp(−ξ) − exp(−2ξ) (17.29)

g0(ξ)=exp(−ξ) + ε [exp(−2ξ) − exp(−ξ)] (17.30)

s(ξ) g(ξ) . (17.28), 5 (17.24) (17.25),

Lsf =∂3f

∂ξ3+ 2

∂2f

∂ξ2− ∂f

∂ξ− 2f (17.31)

Lgf =∂2f

∂ξ2− f (17.32)

17 Æ W · YZH]@ · 219 ·

\

Ls [C1 exp(ξ) + C2 exp(−ξ) + C3 exp(−2ξ)] = 0 (17.33)

Lg [C1 exp(ξ) + C2 exp(−ξ)] = 0 (17.34)

, C1C2 C3 . O, (17.24) (17.25),

Ns [S(ξ; q), G(ξ; q),Λ(q),Γ (q)]

=Γ (q)Λ3(q)∂3S(ξ; q)∂ξ3

+ Γ 2(q)Λ2(q) [1 − S(ξ; q)]∂2S(ξ; q)∂ξ2

+(

12

)Γ 2(q)Λ2(q)

[∂S(ξ; q)∂ξ

]2

− 2G(ξ; q)2 (17.35)

Ng [S(ξ; q), G(ξ; q),Λ(q),Γ (q)]

=Λ(q)∂2G(ξ; q)∂ξ2

+ Γ (q) [1 − S(ξ; q)]∂G(ξ; q)∂ξ

+Γ (q)G(ξ; q)∂S(ξ; q)∂ξ

(17.36)

, q ∈ [0, 1] 34, S(ξ; q) G(ξ; q) ξ q , Λ(q) Γ (q) q . g s , Hs(ξ) Hg(ξ) .

(1 − q) Ls [S(ξ; q) − s0(ξ)]

= q s Hs(ξ) Ns[S(ξ; q), G(ξ; q),Λ(q),Γ (q)] (17.37)

(1 − q) Lg [G(ξ; q) − g0(ξ)]

= q g Hg(ξ) Ng[S(ξ; q), G(ξ; q),Λ(q),Γ (q)] (17.38)

EJ

S(0; q) = 1, S(+∞; q) = 0,∂S(ξ; q)∂ξ

∣∣∣∣ξ=0

=∂S(ξ; q)∂ξ

∣∣∣∣ξ=+∞

= 0 (17.39)

G(0; q) = 1, G(+∞; q) = 0 (17.40)

q = 0 , (17.29) (17.30), 5 (17.37)∼(17.40),

S(ξ; 0) = s0(ξ), G(ξ; 0) = g0(ξ) (17.41)

· 220 ·

q = 1 , s = 0g = 0Hs(ξ) = 0 Hg(ξ) = 0, (17.37)∼(17.40) = (17.24)∼(17.26),

S(ξ; 1) = s(ξ), G(ξ; 1) = g(ξ), Λ(1) = λ, Γ (1) = γ (17.42)

(17.41), q

S(ξ; q) = s0(ξ) ++∞∑n=1

sn(ξ) qn (17.43)

G(ξ; q) = g0(ξ) ++∞∑n=1

gn(ξ) qn (17.44)

Λ(q) = λ0 ++∞∑n=1

λn qn (17.45)

Γ (q) = γ0 ++∞∑n=1

γn qn (17.46)

, λ0 γ0 λ γ ,

sn(ξ) =1n!

∂nS(ξ; q)∂qn

∣∣∣∣q=0

(17.47)

gn(ξ) =1n!

∂nG(ξ; q)∂qn

∣∣∣∣q=0

(17.48)

λn =1n!

∂nΛ(q)∂qn

∣∣∣∣q=0

(17.49)

γn =1n!

∂nΓ (q)∂qn

∣∣∣∣q=0

(17.50)

(17.37) (17.38) sg Hs(ξ)Hg(ξ). , 1 q = 1 , (17.42)

s(ξ) = s0(ξ) ++∞∑n=1

sn(ξ) (17.51)

g(ξ) = g0(ξ) ++∞∑n=1

gn(ξ) (17.52)

λ = λ0 ++∞∑n=1

λn (17.53)

γ = γ0 ++∞∑n=1

γn (17.54)

17 Æ W · YZH]@ · 221 ·

17.1.2

O, ]

sk = s0(ξ), s1(ξ), s2(ξ), · · · , sk(ξ)

gk = g0(ξ), g1(ξ), g2(ξ), · · · , gk(ξ)

λk = λ0, λ1, λ2, · · · , λk , γk = γ0, γ1, γ2, · · · , γk

(17.37)∼(17.40) q n , n!, 2 q = 0,

Ls [sn(ξ) − χn sn−1(ξ)] = s Hs(ξ) Rsn(sn−1, gn−1,λn−1,γn−1) (17.55)

Lg [gn(ξ) − χn gn−1(ξ)] = g Hg(ξ) Rgn(sn−1, gn−1,λn−1,γn−1) (17.56)

EJ

sn(0) = gn(0) = sn(+∞) = gn(+∞) = 0, s′n(0) = s′n(+∞) = 0 (17.57)

, χn (2.42) ,

Rsn(sn−1, gn−1,λn−1,γn−1)

=1

(n− 1)!∂n−1Ns [S(ξ; q), G(ξ; q),Λ(q),Γ (q)]

∂qn−1

∣∣∣∣q=0

=n−1∑k=0

[αn−1−k s′′′k (ξ) + βn−1−k s

′′k(ξ)]

−n−1∑k=0

βn−1−k

⎡⎣ k∑

j=0

sj(ξ) s′′k−j(ξ)

⎤⎦

+12

n−1∑k=0

βn−1−k

⎡⎣ k∑

j=0

s′j(ξ) s′k−j(ξ)

⎤⎦

−2n−1∑k=0

gn−1−k(ξ) gk(ξ) (17.58)

(17.43)∼(17.46) (17.37)∼(17.40), q , !!"# (17.55)∼(17.57), !" (17.58)∼(17.62). —— !

· 222 ·

Rgn(sn−1, gn−1,λn−1,γn−1)

=1

(n− 1)!∂n−1Ng [S(ξ; q), G(ξ; q),Λ(q),Γ (q)]

∂qn−1

∣∣∣∣q=0

=n−1∑k=0

[λn−1−k g′′k (ξ) + γn−1−k g

′k(ξ)]

+n−1∑k=0

γn−1−k

k∑j=0

[s′j(ξ) gk−j(ξ) − sj(ξ) g′k−j(ξ)

](17.59)

αn =n∑

k=0

λn−k δk (17.60)

βn =n∑

k=0

γn−k δk (17.61)

δn =n∑

k=0

γn−k

k∑j=0

λj λk−j (17.62)

(17.55) (17.56) Æ8Æ, , !', : "&ZOT.

Æ4sn(ξ)gn(ξ)λn−1 γn−1. # sn(ξ) gn(ξ)

(17.55) (17.56). , $$, &34%, λn−1 γn−1. (17.28), 5 (17.55) (17.56), $

Hs(ξ) = exp(κs ξ), Hg(ξ) = exp(κg ξ) (17.63)

, κs κg . (17.29) (17.30),

Rs1(s0, g0,λ0,γ0) =

4∑k=1

c1,k(λ0, γ0) exp(−kξ) (17.64)

Rg1(s0, g0,λ0,γ0) =

3∑k=1

d1,k(λ0, γ0) exp(−kξ) (17.65)

, c1,k(λ0, γ0) d1,k(λ0, γ0) ξ EÆ. /. 3/#$ c1,1(λ0, γ0) d1,1(λ0, γ0) ,

2γ0(γ0 − λ0)λ20 = 0, γ0 − λ0 = 0 (17.66)

17 Æ W · YZH]@ · 223 ·

γ0 = λ0 (17.67)

`", =# c1,1(λ0, γ0) = 0, d1,1(λ0, γ0) = 0 . , /[3.

3*/ c1,1(λ0, γ0) c1,2(λ0, γ0) , 2γ0(γ0 − λ0)λ2

0 = 0, (1 − ε)2 + 3γ20λ

20 − 4γ0λ

30 = 0 (17.68)

Nγ0 =

√|1 − ε|, λ0 =

√|1 − ε| (17.69)

! $$, 4S. , " κs > 0, (17.55) >> exp(−2ξ) (6) exp(−ξ) %. , (17.33), s1(ξ) ξ exp(−2ξ)

(6)ξ exp(−ξ) %, (17.28). , κs 0

3, κs −1 , s(ξ) exp(−3ξ) %5Y^. 66ecaf . , (17.28) ecaf, &

κs = 0 (17.70)

Hs(ξ) = 1. %, κg = 0 (17.71)

Hg(ξ) = 1.

,(17.28)ecaf, 2, &J

Hs(ξ) = Hg(ξ) = 1 (17.72)

2%cn,1(λn−1,γn−1) = 0, cn,2(λn−1,γn−1) = 0 (17.73)

λn−1 γn−1, , cn,1(λn−1,γn−1)cn,2(λn−1,γn−1) S

Rsn(sn−1, gn−1,λn−1,γn−1) =

2n+2∑k=1

cn,k(λn−1,γn−1) exp(−kξ) (17.74)

Rgn(sn−1, gn−1,λn−1,γn−1) =

2n+2∑k=1

dn,k(λn−1,γn−1) exp(−kξ) (17.75)

· 224 ·

% (17.73) Æ3 (%3 n 2 Æ), (17.55) (17.56) 5EJ (17.57). 8/

sn(ξ)=2n+2∑k=1

an,k exp(−kξ) (17.76)

gn(ξ)=2n+2∑k=1

bn,k exp(−kξ) (17.77)

, an,k bn,k . "%4 (17.55)∼(17.57), an,k

bn,k OO).

17.1.3 9!

9! 17.1 "#$(17.51)∼(17.54)&', (, sn(ξ) ) gn(ξ) *+,(17.55)∼(17.57), -.(17.31)(17.32)(17.38))(2.42)12, 345.6+,(17.24)∼(17.26)%.

7 " (17.51) (17.52) ,

limm→+∞ sm(ξ) = 0, lim

m→+∞ gm(ξ) = 0 (17.78)

(17.31)(17.32)(2.42) 5 (17.55) (17.56),

s Hs(ξ)+∞∑n=1

Rsn(sn−1, gn−1,λn−1,γn−1)

= limm→+∞Ls [sm(ξ)] = Ls

[lim

m→+∞ sm(ξ)]

= 0 (17.79)

g Hg(ξ)+∞∑n=1

Rgn(sn−1, gn−1,λn−1,γn−1)

= limm→+∞Lg [gm(ξ)] = Lg

[lim

m→+∞ gm(ξ)]

= 0 (17.80)

s = 0g = 0Hs(ξ) = 0 Hg(ξ) = 0, ''+∞∑n=1

Rsn(sn−1, gn−1,λn−1,γn−1) = 0 (17.81)

+∞∑n=1

Rgn(sn−1, gn−1,λn−1,γn−1) = 0 (17.82)

17 Æ W · YZH]@ · 225 ·

(17.58) (17.59) %4 (17.82), 2, (17.51)∼(17.54),

(+∞∑i=0

γi

)⎛⎝+∞∑j=0

λj

⎞⎠

3

d3

dξ3

[+∞∑k=0

sk(ξ)

]

+

(+∞∑i=0

γi

)2⎛⎝+∞∑

j=0

λj

⎞⎠

2 [1 −

+∞∑k=0

sk(ξ)

]d2

dξ2

[+∞∑k=0

sk(ξ)

]

+12

(+∞∑i=0

γi

)2⎛⎝+∞∑

j=0

λj

⎞⎠

2

ddξ

[+∞∑k=0

sk(ξ)

]ddξ

[+∞∑k=0

sk(ξ)

]

−2

[+∞∑k=0

gk(ξ)

]2

= 0 (17.83)

⎛⎝+∞∑

j=0

λj

⎞⎠ d2

dξ2

[+∞∑k=0

gk(ξ)

]+

(+∞∑i=0

γi

)⎛⎝1 −

+∞∑j=0

sj(ξ)

⎞⎠ d

[+∞∑k=0

gk(ξ)

]

+

(+∞∑i=0

γi

)⎡⎣+∞∑

j=0

gj(ξ)

⎤⎦ d

[+∞∑k=0

sk(ξ)

]= 0 (17.84)

3, (17.29)(17.30) (17.57), +∞∑n=0

sn(0) =+∞∑n=0

gn(0) = 1,+∞∑n=0

sn(+∞) =+∞∑n=0

gn(+∞) = 0 (17.85)

+∞∑n=0

s′n(0) =+∞∑n=0

s′n(+∞) = 0 (17.86)

Æ (17.24)∼(17.26) 0G, ', " (17.51)∼(17.54) ,

X · [\G_9. :=.

17.2 H I

17.1, " (17.51)∼(17.54) Æ. 54εsg. , 5ÆI. ,

s = g =

· 226 ·

267b ε γ = −w(+∞) ÆCD.

, 'Æ ε , γ S, 39:,! 17.1 Æ γ ∼ 9 (4 24 A 3.5.1 #) b γ CD. γ ∼ 9, , ε = 0, −1/5 < 0 62 ε = 1/4, −3/5 < 0 , γ . #, ε = 0, s = g = −1/5 62 ε = 1/4, s = g = −1/2 , $Æ γ Benton[117] ', 17.1 . ε = 1/4, −3/5 < 0 0ε = 0, −1/5 < 0 D. $ ε = s = g ),Æ). ( - 7D" (4 41 A, 3.5.2 #) (<)Æ, 17.2 .

! 17.1, ε 0 0.5, Æ&,7f^, #c9<Z$. , $ ε Æ&. ε , ε γ1 = λ1 = 0, $

√1 − ε

(119 − 328ε+ 193ε2

)− 5(3 + 19ε) = 0

ε ≈ 0.261 67 (17.87)

! 17.1 , ε = 0.261 67 $Æ Æ&. , ε = 0.261 67,

s = g = −1/2 , γ ;D, 17.1 17.2 .

" 17.1 19 A'$& γ ∼ D&..2*ε = 0L12*ε = 1/4L..2*ε = 0.261 67L+2*ε = 1/2

17 Æ W · YZH]@ · 227 ·

> 17.1 γ = −w(+∞) 9 m :>?;<=ε = 0 ε = 1/4 ε = 0.261 67

ms = g = −1/5 s = g = −1/2 s = g = −1/2

10 0.879 446 0.882 352 0.882 977

20 0.881 898 0.884 437 0.884 454

30 0.883 607 0.884 477 0.884 477

40 0.884 173 0.884 474 0.884 474

50 0.884 337 0.884 474 0.884 474

> 17.2 γ = −w(+∞) 9 [m, m] :>? - @?;<ε = 0 ε = 1/4 ε = 0.261 67

[m, m]s = g = −1/5 s = g = −1/2 s = g = −1/2

[5, 5] 0.879 337 0.883 856 0.885 038

[10, 10] 0.884 502 0.884 482 0.884 475

[15, 15] 0.884 436 0.884 474 0.884 474

[20, 20] 0.884 474 0.884 474 0.884 474

[25, 25] 0.884 474 0.884 474 0.884 474

8/, n 0, λn = γn

, λ = γ

& Cochran[114] ξ K". X · [\G_9,]Æ/.

8/, =# γ , $Æ s(ξ) g(ξ) & 0 ξ <

+∞ . #, ε = 0, s = g = −1/5 , w(η) g(η) Benton[117] ', ! 17.2 ! 17.3 . , ! 17.4 ! 17.5 , ε = 1/4,

g = s = −1/2 , ?1 g(η) w(η) [1, 1] ( - 7D"

g(η) ≈ ∆1(η)Π1(η)

, w(η) ≈ −γ[∆2(η)Π2(η)

](17.88)

( Benton /1 [117] '! ,

∆1(η)=(

935 649 + 3 881 640√

3)

exp(−γη)

+(

456 252 + 2 097 200√

3)

exp(−2γη)

+(

785 007 − 311 640√

3)

exp(−3γη)

+(

220 464 − 317 520√

3)

exp(−4γη)

· 228 ·

−(

22 212 + 25 200√

3)

exp(−5γη) − 4 608 exp(−6γη)

Π1(η)=(

1 247 532 + 3 022 880√

3)

+(

192 492 + 1 858 080√

3)

exp(−γη)

+(

982 512 + 544 320√

3)

exp(−2γη)

−(

33 552 + 100 800√

3)

exp(−3γη) − 18 432 exp(−4γη)

∆2(η)=(

1 364 904 − 477 008√

3)

−(

2 855 992 − 962 752√

3)

exp(−γη)

+(

1 612 135 − 497 280√

3)

exp(−2γη)

−(

115 206 − 14 336√

3)

exp(−3γη)

−(

6 545 + 2 800√

3)

exp(−4γη) + 704 exp(−5γη)

Π2(η)=(

1 364 904 − 477 008√

3)

+(

28 446 + 8 736√

3)

exp(−γη)

−(

57 777 + 2 800√

3)

exp(−2γη) + 5 184 exp(−3γη)

γ = 0.884 474. 7ÆX · [\91.

" 17.2 w(η) &&V&. Benton[117] J6&&)*0.*@,L+2*ε = 0, s = g = −1/5 * 20 -%,

17 Æ W · YZH]@ · 229 ·

" 17.3 g(η) &&V&. Benton[117] J6&&)*0.*@,L+2*ε = 0, s = g = −1/5 * 20 -%,

" 17.4 ω(η) & [1, 1] A-G - RR'$. Benton[117] J6&&)*0.*@,L+2*[1, 1] F - QQ-% (17.88)

· 230 ·

" 17.5 γ(η) & [1, 1] A-G - RR'$. Benton[117] J6&&)*0.*@,L+2*[1, 1] F - QQ-% (17.88)

87, ?#($, ( 1W; · H\XH5;GD9(ÆÆ. [2L^` Liao[41] %a+94_`9AF.

18 mnopqg

E<Ra) C .[Æ*;-2d. 7d^`hÆc_ (x, y), , x dÆdÆ[L, y dUY. 95EGVQ, a_i2. φ(x, y) )b, ζ(x) d. 95Æ;Æ;H

∇2φ(x, y) = 0, (x, y) ∈ Ω (18.1)

Ω = (x, y) | −∞ < x < +∞,−∞ < y < ζ(x)

)b φ(x, y) EJ

C2φxx + gφy +12∇φ∇(∇φ∇φ) − 2C∇φ∇φx = 0, y = ζ(x) (18.2)

ζ(x) =1g

(Cφx − 1

2∇φ∇φ

), y = ζ(x) (18.3)

5\elim

y→−∞∂φ

∂y= 0 (18.4)

, g -2), _ x y Æc. QL),(18.1) Æ, #EJ (18.2) (18.3) [Æ, Æd^. b]ÆRd7Æ, 19 Uc+a^ !B;2. H\XH [122](Stokes) 7$, d?" [123, 124]. , !B;2 [125∼127] jH\XH$, O';Æ" . <d, 5^2bd, Schwartz[128] ` H\XHÆ, 581" . , &><, "/Æ7D" (Pade approximation) B<d (H/L)max = 0.141 18, /,

H d, L d&.

1 Schwartz[128] , Longuet-Higgins[129] H\XH:Æfd, d_ H/L = 0.1411b. B;$, 'Æd&, )2d_Æ72. 4, Longuet-Higgins[130, 131] ^-2dÆbL[ B;, 28/4d<, cdb, de=, bbZ^. Chen Saffman[132] 39<8/,

· 232 ·

QÆdÆ-2d H/L ≈ 0.13 g. H\XHÆ" [133∼136] L^f -2dÆ:.

87, $( 1, EJÆE.

18.1

18.1.1

)b φ ;Æ;H (18.1) \eEJ (18.4). , φ

exp(mky) sin(nkx) | m 1, n 1 (18.5)

,

φ(x, y) =+∞∑m=1

+∞∑n=1

αm,n exp(mky) sin(nkx) (18.6)

, k = 2π/L d, αm,n . (18.6) )b φ(x, y) . $%, dζ(x)

cos(m k x) | m 0 (18.7)

,

ζ(x) =+∞∑m=0

βm cos(mkx) (18.8)

(18.8) d ζ(x) .

(18.6), 5 Airy dA,

φ0(x, y) = A C0 exp(ky) sin(kx) (18.9)

C0 =√g

k(18.10)

)b φ(x, y) ) C , , A [.

ζ0(x) = 0 (18.11)

ζ(x) , O<. (18.2) Æ%,

L [Φ(x, y; q),Λ(q)] = Λ2(q)∂2Φ(x, y; q)

∂x2+ g

∂Φ(x, y; q)∂y

(18.12)

18 Æ ec#fgh · 233 ·

, q ∈ [0, 1] 34, Λ(q) q , Φ(x, y; q) xy q .

(18.2) (18.3),

N [Φ(x, y; q),Λ(q)]

=Λ2(q)Φxx(x, y; q) + gΦy(x, y; q)

+12∇Φ(x, y; q)∇ [∇Φ(x, y; q)∇Φ(x, y; q)]

−2Λ(q)∇Φ(x, y; q)∇Φx(x, y; q) (18.13)

Z [Φ(x, y; q),Λ(q)]

=1g

[Λ(q) Φx(x, y; q) − 1

2∇Φ(x, y; q)∇Φ(x, y; q)

](18.14)

( 1/*=. Rd, bd4φ(x, y) → Φ(x, y; q)ζ(x) → η(x; q) C → Λ(q), , q 0

1 , Φ(x, y; q)η(x; q) Λ(q) φ(x, y)ζ(x) C

. ,//*=, (18.1)∼(18.4),∇2Φ(x, y; q) = 0, (x, y) ∈ Ω(q) (18.15)

5 y = η(x; q) ÆEJ(1 − q) L [Φ(x, y; q) − φ0(x, y),Λ(q)]

= q 1 H1(x) N [Φ(x, y; q),Λ(q)] (18.16)

(1 − q) [η(x; q) − ζ0(x)]

= q 2 H2(x) η(x; q) −Z[Φ(x, y; q),Λ(q)] (18.17)

\eEJlim

y→−∞∂Φ(x, y; q)

∂y= 0 (18.18)

, q ∈ [0, 1] 34, 12 , H1(x)H2(x) , &

Ω(q) = (x, y) | −∞ < x < +∞,−∞ < y < η(x; q)

q ∈ [0, 1] Z*3.

', q = 0 , ), (18.15) EJ (18.16)∼(18.18)

Φ(x, y; 0) = φ0(x, y), η(x; 0) = ζ0(x), Λ(0) = C0 (18.19)

· 234 ·

, C0 ). q = 1 ,

1 = 0, 2 = 0, H1(x) = 0, H2(x) = 0

(18.15)∼(18.18) = (18.1)∼(18.4),

Φ(x, y; 1) = φ(x, y), η(x; 1) = ζ(x), Λ(1) = C (18.20)

, q 0 1 , (18.15)∼(18.18) ÆE *=.

(18.19), Φ(x, y; q)η(x; q) Λ(q) q

Φ(x, y; q) = φ0(x, y) ++∞∑m=1

φ[m]0 (x, y)m!

qm (18.21)

η(x; q) = ζ0(x) ++∞∑m=1

ζ[m]0 (x)m!

qm (18.22)

Λ(q) = C0 ++∞∑m=1

C[m]0

m!qm (18.23)

φ[m]0 (x, y) =

∂mΦ(x, y; q)∂qm

∣∣∣∣q=0

(18.24)

ζ[m]0 (x) =

∂mη(x; q)∂qm

∣∣∣∣q=0

(18.25)

C[m]0 =

dmΛ(q)dqm

∣∣∣∣q=0

(18.26)

(18.16) (18.17) 12 H1(x)H2(x).

, 1 q = 1 F, , (18.20),

φ(x, y) = φ0(x, y) ++∞∑m=1

φ[m]0 (x, y)m!

(18.27)

ζ(x) = ζ0(x) ++∞∑m=1

ζ[m]0 (x)m!

(18.28)

C = C0 ++∞∑m=1

C[m]0

m!(18.29)

18 Æ ec#fgh · 235 ·

18.1.2

O, ]

φn =φ0(x, y), φ

[1]0 (x, y), φ[2]

0 (x, y), · · · , φ[n]0 (x, y)

ζn =ζ0(x), ζ

[1]0 (x), ζ[2]

0 (x), · · · , ζ[n]0 (x)

Cn =C0, C

[1]0 , C

[2]0 , · · · , C[n]

0

4,

Φ[m](x, y; q) =∂mΦ(x, y; q)

∂qm(18.30)

η[m](x; q) =∂mη(x; q)∂qm

(18.31)

Λ[m] =dmΛ(q)

dqm(18.32)

(18.15) (18.18) q m , 2 q = 0, ∇2φ

[m]0 (x, y) = 0, (x, y) ∈ Ω0 (18.33)

5\eEJlim

y→−∞∂φ

[m]0 (x, y)∂y

= 0 (18.34)

Ω0 = (x, y) | −∞ < x < +∞,−∞ < y ζ0(x)

&#2Æ, EJ (18.16) (18.17) y = η(x; q) , y =

η(x; q) q. , y = η(x; q) , DmΦ(x, y; q)

Dqm=[∂

∂q+ η[1](x; q)

∂y

]m

Φ(x, y; q) (18.35)

, η[1](x; q) (18.31) . & Dm/Dqm % ∂m/∂qm, ''. /,

DmΦ(x, y; q)Dqm

=Φ[m](x, y; q) + Rm[Φ(x, y; q),Λ(q)] (18.36)

JB?!"DmΦ(x, y; q)

Dqm=

[∂

∂p+ η[1](x; q)

∂y

]m

Φ(x, y; q)

gk, ∂∂pd ∂

∂q, CAC, DD?EE. —— !

· 236 ·

, Rm , Φ[m](x, y; q) (18.30) . +, Λ(q) η(x; q), y = η(x; q),

Dmη(x; q)Dqm

=∂mη(x; q)∂qm

= η[m](x; q) (18.37)

DmΛ(q)Dqm

=dmΛ(q)

dqm= Λ[m](q) (18.38)

(18.31) (18.32) &.

(18.16) (18.17) q m , q = 0, y = ζ0(x) FÆEJ

m∑i=0

(m

i

)Di[Λ2(q)

]Dqi

∣∣∣∣∣q=0

Dm−iΦxx(x, y; q)Dqm−i

∣∣∣∣q=0

+gDmΦy(x, y; q)

Dqm

∣∣∣∣q=0

=m χmDm−1L [Φ(x, y; q),Λ(q)]

Dqm−1

∣∣∣∣q=0

+m 1 H1(x)Dm−1N [Φ(x, y; q),Λ(q)]

Dqm−1

∣∣∣∣q=0

(18.39)

ζ[m]0 (x) = m Wm(x, ζm−1,Cm−1) (18.40)

, χm (2.42) ,

Wm(x, ζm−1,Cm−1)=χm ζ[m−1]0 (x)

+2 H2(x)

[ζ[m−1]0 (x) − Dm−1Z [Φ(x, y; q),Λ(q)]

Dqm−1

∣∣∣∣q=0

]

(18.41)

(18.36) %4 (18.39) , y = ζ0(x) F,

C20

∂2φ[m]0 (x, y)∂x2

+ g∂φ

[m]0 (x, y)∂y

= Sm(x,φm−1, ζm,Cm) (18.42)

18 Æ ec#fgh · 237 ·

Sm(x,φm−1, ζm,Cm)

=

m χm

Dm−1L [Φ(x, y; q),Λ(q)]Dqm−1

+m 1 H1(x)Dm−1N [Φ(x, y; q),Λ(q)]

Dqm−1

−C20 Rm [Φxx(x, y; q),Λ(q)] − g Rm [Φy(x, y; q),Λ(q)]

−m∑

i=1

(m

i

)Di[Λ2(q)

]Dqi

Dm−i [Φxx(x, y; q)]Dqm−i

∣∣∣∣∣q=0

(18.43)

EJ (18.40) (18.42) d ζ0(x) . , .J ζ0(x) = 0 *8U .

E m" (18.33)EJ (18.40)(18.42). , Wm(x, ζm−1,Cm−1) % (m− 1) " . , ζ [m]

0 (x) Y[ (18.40) <'. 1, %4φ[m]

0 (x, y) C[m]0 , #

φ[m]0 (x, y) ), (18.33) EJ (18.34) (18.42). ,

$$, "#% C[m]0 .

(18.6) (18.8), (18.40) (18.42), $H1(x) H2(x)

H1(x) = cos(n1kx), H2(x) = cos(n2kx)

, n1n2 . ,

n1 = n2 = 0

$%H1(x) = H2(x) = 1 (18.44)

, (18.6) (18.8), Sm(x,φm−1, ζm,Cm)

Sm(x,φm−1, ζm,Cm) =m∑

n=1

bm,n(Cm) sin(nkx), m 1 (18.45)

, bm,n(Cm) ] Cm . , (18.42), bm,1(Cm) = 0 ,

φ[m]0 (x, y) & %, 66 (18.6). ia

H, &#$bm,1(Cm) = 0, m 1 (18.46)

%

αm(Cm−1) C[m]0 + βm(Cm−1) = 0

· 238 ·

, αm(Cm−1) βm(Cm−1) . , C[m]0 . ),

$$, (18.6) . , !'

φ[m]0 (x, y) =

m∑n=1

am,n exp(nky) sin(nkx) (18.47)

am,n =

bm,n(Cm)(kn)g − C2

0 (kn)2, 2 n m (18.48)

Æ, am,1 K. d H , 1

ζ[m]0 (0) − ζ

[m]0 (L/2) =

H, m = 1

0, m 2(18.49)

(18.49) %γm am,1 + δm = 0

, γm δm %. , am,1. (18.9) Æ φ0(x, y) A , (18.40) (18.49) ,

A = − gH

2 2 k C20

(18.50)

1,Rd C[m]0 am,1 Æ%." C

[m]0

am,1 , !' m " φ[m]0 (x, y). <>&Z. fl

, ζ[m]0 (x)C [m]

0 φ[m]0 (x, y).

m 1 , Dm/Dqm S9. y = η(x; q) Æ)b Φ(x, y; q) q = 0 FL[

Φ(x, y; q) =+∞∑m=0

DmΦ(x, y; q)Dqm

∣∣∣∣q=0

(qm

m!

)(18.51)

%, Φ(x, y; q) ( y = η(x; 0) FL[

Φ(x, y; q) =+∞∑n=0

+∞∑r=0

∂nΦ[r](x, y; q)∂yn

∣∣∣∣q=0

(qr

n! r!

)[η(x; q) − η(x, 0)]n (18.52)

0G Φ(x, y; q) , 2 (18.19) (18.22) +∞∑m=0

DmΦ(x, y; q)Dqm

∣∣∣∣q=0

(qm

m!

)

=+∞∑n=0

+∞∑r=0

∂nΦ[r](x, y; q)∂yn

∣∣∣∣q=0

(qr

n! r!

)[+∞∑s=1

(qs

s!

)ζ[s]0 (x)

]n

(18.53)

18 Æ ec#fgh · 239 ·

>>%, 20G q , m 1 Dm/Dqm . O&Z<. [24JUK Cheung[50] AF.

18.2 H I

41 2. , IÆ. O,

1 = 2 =

, ) C)b φ(x, y)d ζ(x) d_. , (18.27)(18.28) (18.29) &) . #,h, " <%. (18.27)(18.28) (18.29) M "

φ(x, y) ≈ φ0(x, y) +M∑

m=1

φ[m]0 (x, y)m!

(18.54)

ζ(x) ≈ ζ0(x) +M∑

m=1

ζ[m]0 (x)m!

(18.55)

C ≈ C0 +M∑

m=1

C[m]0

m!(18.56)

B;22P) C d H hN. Schwartz[128] '') M " (

C

C0

)2

≈M∑

j=0

aj (kH)2j (18.57)

, aj . $/7D" , Schwartz YL Æ, Æd_ (H/L)max = 0.141 18. 87'') M "

C

C0≈

M∑j=0

bj (kH)2j (18.58)

, bj . , 'Æ kH , CD39:, C/C0 ∼ 9 (4 24 A 3.5.1 #) . 8/, =#), )b φ(x, y) d ζ(x) .

( - 7D" (4 41 A 3.5.2 #), <YL))

· 240 ·

. 8/, ) [κ, κ] ( - 7D"

C

C0≈

1 +κ(κ+1)/2∑

n=1Γ2κ,n (kH)2n

1 +κ(κ+1)/2∑

n=1∆2κ,n (kH)2n

(18.59)

, Γ2κ,j∆2κ,j . Æ, [κ, κ] ( - 7D" (18.59) O(H2κ2+2κ), $0 Schwartz[128] ''Æ [κ, κ]/7D" Æ O(H2κ) #.

18.1'') C2/C20 `( –7D" (18.59),5 Schwartz[128]

O(H116)0G. d_ H/L 0.10 , [6, 6]( -7D" Schwartz

2=. , EF) O(H82), 0 Schwartz ?. C2 [10, 10] ( - 7D" O(H220), d_ H/L > 0.12 ,

Schwartz +,W. ( - 7D" !D, Æd_@T,

20 22 " 6!". ($ 20 " , 5( - 7D" Æ.

> 18.1 C2/C20 9 [κ, κ] :>? - @?;<Z Schwartz[128] rs9U\

H/L Schwartz , κ = 6 κ = 8 κ = 10 κ = 11

0.040 1.015 92 1.015 92 1.015 92 1.015 92 1.015 92

0.070 1.049 55 1.049 55 1.049 55 1.049 55 1.049 55

0.100 1.103 67 1.103 67 1.103 67 1.103 67 1.103 67

0.120 1.151 82 1.151 90 1.151 84 1.151 82 1.151 81

0.130 1.178 20 1.178 65 1.178 34 1.178 21 1.178 21

0.135 1.189 96 1.191 48 1.190 61 1.190 03 1.190 03

0.140 1.193 0 1.201 50 1.198 33 1.193 69 1.193 85

QO*Liao, Cheung. Homotopy analysis of nonlinear progressive waves in deep water. Journal

of Engineering Mathematics. Kluwer Academic Publishers, 2003, 45(2): 105∼116 (Kluwer Academic

Publishers TP c©(2003) Kluwer Academic Publishers, R Kluwer Academic Publishers TUR)

18.2 '' C/C0 [10, 10] [11, 11] ( - 7D" Longuet-Higgins 0G. H/L 0.121 921 , ( - 7D" Longuet-

Higgins . H/L 0.131 249 , [10, 10] ( - 7D" '. '"B<d, Æ)0G, ! 18.1 . ( 1 Longuet-Higgins =d_ H/L = 0.138 712 F''),

=$)d_Æ72. )( -7D" d_ H/L 0.14

Longuet-Higgins'! , #;Æd_ ($'"B<dd JB?@! 1, CAC, DD?EE. —— !

18 Æ ec#fgh · 241 ·

^), $;D. H/L = 0.14 , Schwartz[128] ''Æ) A0c?.

!9i/B;fÆ,-2dÆ6i!^e, ÆB;B<d^*0_Æ. B<d^bÆ, (. $( 1B; Chen Saffman[132] 8/ÆH/L ≈ 0.13

-2dÆ g/f>Æ.

> 18.2 C/C0 9 [κ, κ] :>? - @?;<Z Longuet-Higgins[129] rs9U\H/L Longuet-Higgins , κ = 10 κ = 11

0 1.000 00 1.000 00 1.000 00

0.045 266 1.010 16 1.010 16 1.010 16

0.064 351 1.020 65 1.020 65 1.020 65

0.079 187 1.031 43 1.031 43 1.031 43

0.091 809 1.042 47 1.042 47 1.042 47

0.102 959 1.053 66 1.053 66 1.053 66

0.108 093 1.059 26 1.059 26 1.059 26

0.112 962 1.064 82 1.064 82 1.064 82

0.117 572 1.070 29 1.070 29 1.070 29

0.121 921 1.075 58 1.075 58 1.075 58

0.125 993 1.080 59 1.080 60 1.080 60

0.129 760 1.085 16 1.085 17 1.085 17

0.133 178 1.089 04 1.089 06 1.089 06

0.136 178 1.091 84 1.091 88 1.091 88

0.136 723 1.092 22 1.092 28 1.092 28

0.137 249 1.092 55 1.092 60 1.092 60

0.137 755 1.092 75 1.092 84 1.092 85

0.138 242 1.092 90 1.093 00 1.093 01

0.138 712 1.092 95 1.093 06 1.093 08

0.139 170 1.092 91 1.093 02 1.093 05

0.139 610 1.092 79 1.092 85 1.092 90

0.140 060 1.092 58 1.092 50 1.092 58

0.140 530 1.092 40 1.091 89 1.092 02

0.141 100 1.092 30 1.090 66 1.090 89

QO*Liao, Cheung. Homotopy analysis of nonlinear progressive waves in deep water. Journal

of Engineering Mathematics. Kluwer Academic Publishers, 2003, 45(2):105∼116 (Kluwer Academic

Publishers TP c©(2003) Kluwer Academic Publishers, R Kluwer Academic Publishers TUR)

· 242 ·

" 18.1 ec#fghgda C/C0 >hb H/L &c"12*[10,10] F - QQ-%,L+2: [11,11] F - QQ-%; NX0*Schwartz[128] ,;

+X0*Longuet-Higgins[129] ,QO*Liao, Cheung. Homotopy analysis of nonlinear progressive waves in deep water. Journal of

Engineering Mathematics. Kluwer Academic Publishers, 2003, 45(2):105∼116 (Kluwer Academic

Publishers TP c©2003 Kluwer Academic Publishers, R Kluwer Academic Publishers TUR)

m t u v

1 Cole J D. Perturbation Methods in Applied Mathematics Waltham: Blaisdell Publishing Com-

pany 1968

2 Von Dyke M. Perturbation Methods in Fluid Mechanics. California: The Parabolic Press, 1975

3 Nayfeh A H. Introduction to Perturbation Techniques. New York: John Wiley & Sons, 1981

4 Nayfeh A H. Problems in Perturbation. New York: John Wiley & Sons, 1985

5 Grasman J. Asymptotic methods for relaxation oscillations and applications. Applied Mathe-

matical Sciences, 1987, 63

6 Lagerstrom P A. Matched asymptotic expansions: ideas and techniques. Applied Mathematical

Sciences, 1988, 76

7 Hinch E J. Perturbation Methods. Cambridge Texts in Applied Mathematics. Cambridge:

Cambridge University Press, 1991

8 Murdock J A. Perturbations: Theory and Methods. New York: John Wiley & Sons, 1991

9 Bush A W. Perturbation Methods For Engineers and Scientists. CRC Press Library of Engi-

neering Mathematics. Florida: CRC Press, Boca Raton, 1992

10 Kevorkian J, Cole J D. Multiple scales and singular perturbation methods. Applied Mathe-

matical Sciences, 1995, 114

11 Kahn P B, Zarmi Y. Nonlinear Dynamics: Exploration through Normal Forms. New York:

John Wiley & Sons., Inc., 1998

12 Nayfeh A H. Perturbation Methods. New York: John Wiley & Sons, 2000

13 Dai S Q et al. Top 10 progress of theoretical and applied mechanics in the 20th century.

Advances in Mechanics(in Chinese), 2001, 31(3): 322∼326

14 Stokes G G. Cambridge Philos., 1851, 9:8

15 Oseen C W. Uber die Stokessche Formel und die verwandte Aufgabe in der Hydrodynamik.

Arkiv. Mat. Astron. Phsik., 1910, 6

16 Goldstein S. Concerning some solutions of the boundary layer equations in hydrodynamics.

Proc. Cambridge Philos. Soc., 1929, 26

17 Whitehead N. Quart. J. Math., 1889, 23: 143

18 Proudman, Pearson J R. Expansion at small Reynolds number for the flow past a sphere and

a circular cylinder. J. of Fluid Mechanics, 1957, 2: 237∼262

19 Chester W, Breach D R. On the flow past a sphere at low Reynolds number. J. Fluid Mechanics,

1969, 37: 751∼760

20 White F M. Viscous Fluid Flow. New York: McGraw-Hill, 1991

· 244 ·

21 Lyapunov A M. (1892), General Problem on Stability of Motion(English translation). London:

Taylor & Francis, 1992

22 Karmishin A V, Zhukov A T, Kolosov V G. Methods of Dynamics Calculation and Testing for

Thin-Walled Structures(in Russian) Moscow Mashinostroyenie, 1990

23 Adomian G. Nonlinear stochastic differential equations. J. Math. Anal. and Applic., 1976, 55:

441∼452

24 Adomian G, Adomian G E. A global method for solution of complex systems. Math. Model.,

1984, 5: 521∼568

25 Adomian G. Solving Frontier Problems of Physics: The Decomposition Method. Boston and

London: Kluwer Academic Publishers, 1994

26 Liao S J. The Proposed Homotopy Analysis Technique for the Solution of Nonlinear Problems.

Shanghai Jiao Tong University, 1992

27 Liao S J. A kind of linearity-invariance under homotopy and some simple applications of it in

mechanics. no. 520, Institute of Shipbuilding, University of Hamburg, 1992

28 Liao S J. A kind of approximate solution technique which does not depend upon small param-

eters (II): an application in fluid mechanics(reprinted with permission from Elsevier). Int. J.

of Non-Linear Mech., 1997, 32: 815∼822

29 Liao S J. An explicit, totally analytic approximation of Blasius viscous flow problems(reprinted

with permission from Elsevier). Int. J. of Non-Linear Mech., 1999, 34(4): 759∼778

30 Liao S J. A new analytic algorithm of Lane-Emden equation. Applied Mathematics and Com-

putation, 2003, 142(1): 1∼16

31 Hilton P J. An Introduction to Homotopy Theory. Cambridge: Cambridge University Press,

1953

32 Sen S. Topology and Geometry for Physicists. Florida: Academic Press, 1983

33 Grigolyuk E I, Shalashilin V I. Problems of Nonlinear Deformation: The Continuation Method

Applied to Nonlinear Problems in Solid Mechanics. Dordrecht: Kluwer Academic Publishers,

1991

34 Alexander J C, Yorke J A. The homotopy continuation method: numerically implementable

topological procedures. Trans. Am. Math. Soc., 1978, 242: 271∼284

35 Liao S J. A second-order approximate analytical solution of a simple pendulum by the process

analysis method. J. Appl. Mech., 1992, 59: 970∼975

36 Liao S J. A kind of approximate solution technique which does not depend upon small param-

eters: a special example. Int. J. of Non-Linear Mech., 1995, 30: 371∼380

37 Liao S J, Chwang A T. Application of homotopy analysis method in nonlinear oscillations.

ASME J. of Appl. Mech., 1998, 65: 914∼922

38 Liao S J. An analytic approximate technique for free oscillations of positively damped systems

with algebraically decaying amplitude. Int. J. Non-Linear Mech., 2003, 38(8): 1173∼1183

39 Liao S J. An analytic approximate approach for free oscillations of self-excited systems. Int. J.

Non-Linear Mech., 2004, 39(2): 271∼280

jbef · 245 ·

40 Liao S J. A uniformly valid analytic solution of 2D viscous flow past a semi-infinite flat

plate(Cambridge University Press Copyright c©1999 Cambridge University Press, reprinted

with permission). J. of Fluid Mech., 1999, 385: 101∼128

41 Liao S J. An analytic approximation of the drag coefficient for the viscous flow past a

sphere(reprinted with permission from Elsevier). Int. J. of Non-Linear Mech., 2002, 37: 1∼18

42 Liao S J. On the homotopy analysis method for nonlinear problems(in press). Applied Math-

ematics and Computation

43 Yang C, Liao S J. On the explicit, purely analytic solution of Von Karman swirling viscous

flow. Submitted

44 Liao S J, Campo A. Analytic solutions of the temperature distribution in Blasius viscous flow

problems. J. of Fluid Mech., 2002, 453: 411∼425

45 Wang C et al. On the explicit analytic solution of Cheng-Chang equation. Int. J. Heat and

Mass Transfer, 2003, 46(10): 1855∼1860

46 Ayub M, Rasheed A, Hayat T. Exact flow of a third grade fluid past a porous plate using

homotopy analysis method. Int. J. Engineering Science, 2003, 41: 2091∼2109

47 Hayat T, Masood Khan and Ayub M. On the explicit analytic solutions of an Oldroyd 6-

constant fluid(in press). Int. J. Engineering Science

48 Liao S J. On the analytic solution of magnetohydrodynamic flows of non-Newtonian fluids over

a stretching sheet. J. of Fluid Mech., 2003, 488: 189∼212

49 Liao S J. Application of process analysis method to the solution of 2D nonlinear progressive

gravity waves, J. of Ship Res., 1992, 36(1): 30∼37

50 Liao S J, Cheung K F. Homotopy analysis of nonlinear progressive waves in deep water(with

kind permission of Kluwer Academic Publishers). Journal of Engineering Mathematics, 2003,

45(2): 105∼116

51 Liao S J. An explicit analytic solution to the Thomas-Fermi equation. Applied Mathematics

and Computation, 2003, 144: 495∼506

52 Lindstedt A. Uber die integration einer fur die strorungstheorie wichtigen differentialgleichung.

Astron, Nach., 1882, 103: 211∼220

53 Bohlin K P. Uber eine neue Annaherungsmethode in der Storungstheorie. Akad Handl. Bihang.,

1889,14

54 Poincare H. (1892), New Methods of Celestial Mechanics(English translation). NASA TTF-

450, 1967, I-III

55 Glyden H. Nouvelles recerches sur les series employees dans les theories des planets. Acta

Math., 1893, 9: 1∼168

56 Lighthill M J. A technique for rendering approximate solutions to physical problems unformly

valid, Phil. Mag., 1949, 40: 1179∼1201

57 Lighthill H J. A technique for rendering approximate solutions to physical problems uniformly

valid. Z. Flugwiss., 1961, 1: 267∼275

58 Malkin T G. Methods of Poincare and Lyapunov in Theory of Non-linear Oscillations(in Rus-

sian). Moscow, 1949

· 246 ·

59 Kuo Y H. On the flow of an incompressible viscous fluid past a flat plate at moderate Reynolds

numbers. J. Math and Phys., 1953, 32: 83∼101

60 Kuo Y H. Viscous flow along a flat plate moving at high supersonic speeds. J. Aeron. Sci.,

1956, 23: 125∼136

61 Tsien H S. The Poincare-Lighthill-Kuo method. Advan. Appl. Mech., 1956, 4: 281∼349

62 Newton I. On the Binomial Theorem For Fractional and Negative Exponents (A Source Book in

Mathematics, Edited by Walcott, G. D.). New York and London: McGraw Hill Book Company,

1929, 224∼228

63 Rach R. On the Adomian method and comparisons with Picard’s method. J. Math. Anal. and

Applic., 1984, 10: 139∼159

64 Rach R. A convenient computational form for the An polynomials. J. Math. Anal. and Applic.,

1984, 102: 415∼419

65 Adomian G, Rach. On the solution of algebraic equations by the decomposition method. Math.

Anal. Appl., 1985, 105(1): 141∼166

66 Cherruault Y. Convergence of Adomian’s method. Kyberneters, 1988, 8(2): 31∼38

67 Adomian G. A review of the decomposition method and some recent results for nonlinear

equations. Comp. and Math. with Applic., 1991, 21: 101∼127

68 Abbaoui K, Cherruault Y. Convergence of Adomian’s method applied to nonlinear equations.

Math. Compact. Model., 1994, 20(9): 69∼73

69 Khuri S A. A new approach to the cubic Schrodinger equation: An application of the decom-

position technique. Applied Mathematics and Computation, 1998, 97: 251∼254

70 Michael G. A note on the decomposition method for operator equations. Applied Mathematics

and Computation, 1999, 106: 215∼220

71 Wazwaz A M. The decomposition method applied to systems of partial differential equations

and to the reaction-diffusion Brusselator model. Applied Mathematica and Computation, 2000,

110: 251∼264

72 Wazwaz A M. A new algorithm for solving differential equations of Lane-Emden type. Applied

Mathematics and Computation, 2001, 118: 287∼310

73 Babolian E, Biazar J. Solving the problem of biological species living together by Adomian

decomposition method. Applied Mathematica and Computation, 2001, 129: 339∼343

74 Ramos J I, Soler E. Domain decomposition techniques for reaction-diffusion equations in two-

dimensional regions with re-entrant corners. Applied Mathematics and Computation, 2001,

118: 189∼221

75 Babolian E, Biazar J. On the order of convergence of Adomian method. Applied Mathematics

and Compututation, 2002, 130: 383∼387

76 Babolian E, Biazar J. Solution of nonlinear equations by modified Adomian decomposition

method. Applied Mathematics and Computation, 2002, 132: 167∼172

77 Shawagfeh N T. Analytical approximate solutions for nonlinear fractional differential equations.

Applied Mathematica and Computation, 2002, 131: 517∼529

jbef · 247 ·

78 Casasus L, Al-Hayani W. The decomposition method for ordinary differential equations with

discontinuities. Applied Mathematics and Computation, 2002, 131: 245∼251

79 Wazwaz A M. Exact solutions for variable coefficients fourth-order parabolic partial differential

equations in higher-dimensional spaces. Applied Mathematics and Computation, 2002, 130:

415∼424

80 Huang R E et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear

and non-stationary time series analysis. Proc. R. Soc. Lond. A, 1998, 454: 903∼995

81 Fermi E. Un metodo statistico par la determinzione di alcune Proprieta dell’atome, 1927, 6:

602∼607

82 Thomas L H. The calculation of atomic fields. Proc. Cambridge Philos. Soc., 1927, 23: 542∼548

83 Bush V, Caldwell S H. Thomas-Fermi equation solution by the differential analyzer. Phys.

Rev., 1931, 38: 1898∼1901

84 Burrows B L, Core P W. A variational iterative approximate solution of the Thomas-Fermi

equation. Quart. Appl. Math., 1984, 42: 73∼76

85 Milton K A, Bender C M, Pinsky S S. A new perturbation approach to nonlinear problems.

J. Math. Phys., 1989, 30(7): 1447∼1450

86 Laurenzi B J. An analytic solution to the Thomas-Fermi equation. J. Math. Phys., 1990,

31(10): 2535∼2537

87 Cedillo A. A perturbative approach of the Thomas-Fermi equation in terms of the density. J.

Math. Phys., 1993, 34: 2713

88 Chan C Y, Hon Y C. A constructive solution for a generalized Thomas-Fermi theory of ionized

atoms. Quart. Appl. Math., 1987, 45: 591∼599

89 Hon Y C. A decomposition method for the Themos-Fermi equation. SEA Bull. Math., 1996,

20(3): 55∼58

90 Venkatarangan S N, Rajalashmi K. Modification of Adomian’s decomposition method to solve

equation containing radicals. Comput. Math. Appl., 1995, 29(6): 75∼80

91 Wazwaz A M. The modified decomposition method and the Pade approximants for solving

Thomas-Fermi equation. Mathematics and Computatio, 1999, 105:11∼19

92 Luning C D, Perry W L. An iterative technique for solution of the Thomas-Fermi equation uti-

lizing a non-linear eigenvalue problem. Quarterly of Applied Mathematics, 1977, 35: 257∼268

93 Wu M S. Modified variational solution of the Thomas-Fermi equation for atoms. Phys. Rev.

A, 1982, 26(1): 57∼61

94 Civan F, Sliepcevich C M. On the solution of the Thomas-Fermi equation by differential

quadrature. J. Comput. Phys., 1984, 56: 343∼348

95 Chan C Y, Du S W. A constructive method for the Thomas-Fermi equation. Quarterly of

Applied Mathematics, 1986, 44: 303∼307

96 Allan M. Chebyshev series solution of the Thomas-Fermi equation. Comp. Phys. Comm., 1992,

67: 389∼391

· 248 ·

97 Pert G J. Approximations for the rapid evalution of the Thomas-Fermi equation. J. Phys. B,

1999, 32(6): 5067∼5082

98 Kobayashi et al. Some coefficients of the TFD function. J. Phys. Soc. Japan, 1955, 10: 759∼765

99 Scudo F M. Vito Volerra and theoretical ecology. Theoret. Population Biol., 1971, 2: 1∼23

100 Small R D. Mathematical modelling: classroom notes in applied mathematics. SIAM, Philadel-

phia, PA, 1989

101 TeBeest K G. Numerical and analytical solutions of Volterra’s population model. SIAM Rev.,

1997, 39(3): 484∼493

102 Wazwaz A M. Analytical approximations and Pade approximations for Volterra’s population

model. Applied Mathematics and Computation, 1999, 100:13∼25

103 Kahn P B, Zarmi Y. Nonlinear Dynamics: Exploration through Normal Forms. New York.

John Wiley & Sons, Int., 1997

104 Blasius H. Grenzschichten in Fussigkeiten mit kleiner Reibung. Z. Math. Phys., 1908, 56: 1∼37

105 Howarth L. On the solution of the laminar boundary layer equations. Proc. Roy. Soc. London

A, 1938, 164: 547∼579

106 Falkner V M, Skan S W. Some approximate solutions of the boundary layer equations. Phil.

Mag., 1931, 12: 865∼896

107 Hartree D R. On an equation occuring in Falker-Skan’s approximate treatment of the equations

of the boundary layer. Proc. Cambr. Phil. Soc., 1937, 33: 223∼239

108 Stewartson K. Further solutions of the Falkner-Skan equation. Proc. Camb. Phil. Soc., 1954,

50: 454∼465

109 Libby P A, Liu T M. Further solutions of the Falkner-Skan equation. AIAA Journal, 1967, 5:

1040∼1042

110 Kuiken H K. On boundary layers in fluid mechanics that decay algebraically along stretches

of wall that are not vanishingly small. Q. J. Mech. Appl. Math., 1981, 27: 387∼405

111 Kuiken H K. A backward free-convective boundary layer. IMA Journal of Applied Mathemat-

ics, 1981, 34: 397∼413

112 Von Karman T. Uber laminare und turbulence Reibung. ZAMM, 1921, 1: 233∼252

113 Zandbergen P J, Dijkstra D. Von Karman swirling flows. Ann. Rev. Fluid Mech., 1987, 19:

465∼491

114 Cochran W G. The flow due to a rotating disk. Proc. Camb. Phil. Soc., 1934, 30: 365∼375

115 Hettis H E. On the integration of a class of differential equations occuring in boundary layer

and other hydrodynamic problems. Proc. 4th Midwestern Conf. on Fluid Mech., Purdue, 1955

116 Rogers M H, Lance G N. The rotationally symmetric flow of a viscous fluid in the presence of

an infinite rotating disk. J. Fluid Mech., 1960, 7: 617∼631

117 Benton E R. On the flow due to a rotating disk. J. Fluid Mech., 1966, 24(4): 781∼800

118 McLeod J B. Von Karman’s swirling flow problem. Arch. Ration. Mech. Anal., 1969, 33:

91∼102

jbef · 249 ·

119 Zandbergen P J, Dijkstra D. Non-unique solutions of the Navier-Stokes equations for the

Karman swirling flow. Journal of Engineering Mathematics, 1977, 11: 167∼188

120 Ackroyd J A D. On the steady flow produced by a rotating disc either surface suction or

injection. J. Eng. Math., 1978, 12: 207∼220

121 Hulzen V. Computational problems in producing Taylor coefficients for the rotating disk prob-

lem. Sigsam Bull. ACM, 1980, 14: 36∼49

122 Stokes G G. On the theory of oscillation waves. Trans. Cambridge Phil. Soc., 1849, 8: 441∼455

123 Stokes G G. Supplement to a paper on the theory of oscillation waves. Mathematical and

Physical Papers, 1880, 1: 314∼326

124 Stokes G G. On the highest waves of uniform propagation. Proc. of Cambridge Phil. Soc.,

1883, 4: 361∼365

125 Korteweg D J, de Vries G. On the change of form of long waves advancing in a rectangular

canal and on a new type of long stationary waves. Phil. Mag., 1895, 39: 422∼443

126 Wehausen J V, Laitone E V. Handbush der Physik. 1960, 9: 446∼778

127 Chiang C M. The nonlinear evolution of Stokes waves in deep water. J. of Fluid Mech., 1971,

47: 337∼352

128 Schwartz L W. Computer extension and analytic continuation of Stokes’ expansion for gravity

waves. J. of Fluid Mech., 1974, 62(3): 553∼578

129 Longuet-Higgins M S. Integral properties of periodic gravity waves of finite amplitudes. Proc.

R. Soc. Lond., 1975, 342: 157∼174

130 Longuet-Higgins M S. The instability of gravity of finite amplitude in deep water (1): super-

harmonics. Proc. R. Soc. Lond. A, 1978, 360: 471∼488

131 Longuet-Higgins M S. The instability of gravity of finite amplitude in deep water (2): subhar-

monics. Proc. R. Soc. Lond. A, 1978, 360: 489∼505

132 Chen B, Saffman P G. Numerical evidence for the existence of new types of gravity waves of

permanent form on deep water. Studies in Appl. Math., 1980, 62: 1∼21

133 Cokelet E D. Steep gravity waves in water of arbitrary uniform depth. Phil. Trans. R. Soc.

Lond. A, 1977, 286: 183∼230

134 Longuet-Higgins M S, Cokelet E D. The deformation of steep surface waves on water (I): a

numerical method of computation. Proc. R. Soc. Lond. A, 1976, 350: 1∼26

135 Longuet-Higgins M S, Cokelet E D. The deformation of steep surface waves on water (II):

growth of normal mode instabilities. Proc. R. Soc. Lond. A, 1978, 364: 1∼28

136 Longuet-Higgins M S, Fox M J H. Theory of the almost-highest wave (Part 2): Matching and

analytic extension. J. Fluid Mech., 1978, 85: 769∼786

wxy 2 Mathematica nz

(************************************************************************

coV ′(t) + V 2(t) = 1,

9AgjV (0) = 0.

dhde !. jfh E-mail ! [email protected]

kgijp* http://numericaltank.sjtu.edu.cn/code.htm

Mathematica kekl:(A) D. il. Mathematica kjqf. lm*gk.Tl, 2002

(B) himmjkhi. MATHEMATICA !m. nn*nnno.Tl. 2002

(C) lnj. Mathematica k+m. lm*l(mn.Tl, 2004*************************************************************************)

<<Calculus‘Pade‘;

<<Graphics‘Graphics‘;

(************************************************************************

orospq?————————————————————————————————————–

BASE = 1 ndpoq (2.50)

BASE = 2 ndppq (2.62)

BASE = 3 ndpqq (2.70)

BASE = 4 ndpoqrqqr (2.82)

************************************************************************)

BASE = 1;

(************************************************************************

56kQ chi[ m ]

dkQ7. chi[ m ] 56 (2.42)

*************************************************************************)

chi[ m ] := If[ m <= 1, 0, 1 ];

(************************************************************************

56kQ GetR[ m ]

dkQ7. R[ m ] 56 (2.43)

*************************************************************************)

GetR[ m ] := Module[ temp, n,temp[ 1 ] = D[ v[ m-1 ], x ];

temp[ 2 ] = Sum[ v[ n ] * v[ m-1-n ], n, 0, m-1 ];

qlG 2 Æ Mathematica ps · 251 ·

temp[ 3 ] = temp[ 1 ] + temp[ 2 ] + chi[ m ] -1;

R[ m ] = temp[ 3 ]//Expand;

];

(************************************************************************

56kQ GetRHS[ m ]

dkQ7. (2.39) trq*************************************************************************)

GetRHS[ m ] := Module[ ,GetR[ m ];

RHS[ m ] = Expand[ hbar * H[ x ] * R[ m ] ];

];

(************************************************************************

566'q H[ x ]

*************************************************************************)

H[ x ]:=Module[ temp,If[ BASE == 1 || BASE == 4, temp = 1 ];

If[ BASE == 2, temp = 1/x ];

If[ BASE == 3, temp = Exp[ -x ] ];

Expand[ temp ]

];

(************************************************************************

56kQ GetInitial

dkQ7. V(t) 9A:;,*************************************************************************)

GetInitial = Module[ ,If[ BASE == 1, v[ 0 ] = x ];

If[ BASE == 2, v[ 0 ] = 1 - 1/x ];

If[ BASE == 3 || BASE == 4, v[ 0 ] = 1 - Exp[ -x ] ];

Print[ ‘‘ initial guess = ’’, v[ 0 ] ];

];

(************************************************************************

566'27.( L

dkQ7.6'27.(56 (2.23)

*************************************************************************)

L[ f ] := Module[ ,If[ BASE == 1, gamma[ 1 ] = 1; gamma[ 2 ] = 0 ];

If[ BASE == 2, gamma[ 1 ] = x; gamma[ 2 ] = 1 ];

If[ BASE == 3 || BASE == 4, gamma[ 1 ] = 1; gamma[ 2 ] = 1 ];

Expand[ gamma[ 1 ] * D[ f,x ] + gamma[ 2 ] * f ]

];

· 252 ·

(************************************************************************

56kQ Linv[ f ]

dkQ566'27.( (2.23) m.( L−1

s: n75q f, t!on, u:

L[u] = f

*************************************************************************)

Linv[ f ] := Module[ temp, EQ, u, solution,EQ = L[ u[ x ] ] - f;

temp = DSolve[ EQ == 0, u[ x ], x ];

solution = temp[ [ 1, 1, 2 ] ] /. C[ ] -> 0;

Expand[ solution ]

];

(************************************************************************

m.( L−1 7uLinv[ a * f + b * g ] := a * Linv[ f ] + b * Linv[ g ]

*************************************************************************)

Linv[ p Plus ] := Map[ Linv, p ];

Linv[ c * f ] := c * Linv[ f ] /; FreeQ[ c, x ];

(************************************************************************

56kQ GetSPECIAL[ m ]

dkQ7.# (2.39) D,*************************************************************************)

GetSPECIAL[ m ] := Module[ temp,temp = Expand[ RHS[ m ] ];

SPECIAL = Linv[ temp ];

];

(************************************************************************

56kQ GetCOMMON[ m ]

dkQ7.# (2.39) p,*************************************************************************)

GetCOMMON[ m ] := Module[ temp, u, solution,temp = DSolve[ L[ u[ x ] ] == 0, u[ x ], x ];

solution = temp[ [ 1, 1, 2 ] ];

COMMON = SPECIAL + chi[ m ] * v[ m-1 ] + solution;

];

(************************************************************************

56kQ Getv[ m ]

dkQ7.# (2.39) Æ (2.40) ,

qlG 2 Æ Mathematica ps · 253 ·

*************************************************************************)

Getv[ m ] := Module[ temp, EQ, x0, res,If[ BASE == 1 || BASE == 3 || BASE == 4, x0 = 0 ];

If[ BASE == 2, x0 = 1 ];

EQ = Expand[ COMMON/.x->x0 ];

temp = Solve[ EQ == 0, C[ 1 ] ];

res = COMMON/.temp[ [ 1, 1 ] ];

v[ m ] = res//Expand;

];

(************************************************************************

56kQ HP[ F,m,n ]

dkQ7.

F ≈+∞∑k=0

fk

[ m,n ] F - QQ-%, ut §2.3.7 Æ §3.5.2************************************************************************)

hp[ F , m , n ] := Block[ i, k, dF, temp, q,dF[ 0 ] = F[ 0 ];

For[ k = 1, k< = m + n, k = k + 1, dF[ k ] = Expand[ F[ k ] - F[ k-1 ] ] ];

temp = dF[ 0 ] + Sum[ dF[ i ] * q∧i, i, 1, m + n ];

Pade[ temp, q, 0, m, n ]/.q->1

];

(************************************************************************

56q (2.58)

*************************************************************************)

mu0[ m , n , h ] := (-h)∧n * Sum[ Binomial[ n - 1 + j, j ]*(1+h)∧j, j, 0, m-n ];

(************************************************************************

56q (2.85)

*************************************************************************)

sigma0[ m , n , k , h ] := ( mu0[ m, n+k, h ] + mu0[ m, n+k-1, h ] )/2;

(************************************************************************

56q (2.91)

*************************************************************************)

mu[ m , n , alpha , h ] := If[ n>m, 0, (-h)∧(n - alpha)

*(1+Sum[ (-1)∧j * Binomial[ alpha - n, j ] * (1 + h)∧j, j, 1, m - n ]) ];

(************************************************************************

56q (2.96)

· 254 ·

*************************************************************************)

sigma[m , n , k , alpha , h ] := (mu[m, n+k, alpha, h]+mu[m, n+k-1, alpha, h])/2;

(************************************************************************

vkQ*************************************************************************)

ham[ m0 , m1 ] := Module[ temp, k, variable,For[ k = Max[ 1, m0 ], k <= m1, k = k + 1,

Print[ ‘‘k = ’’, k ];

GetRHS[ k ];

GetSPECIAL[ k ];

GetCOMMON[ k ];

Getv[ k ];

If[ BASE == 1 || BASE == 3 || BASE == 4, variable = t ];

If[ BASE == 2, variable = 1 + t ];

If[ k == 1, V[ 0 ] = v[ 0 ] /. x -> variable ];

V[ k ] = Simplify[ V[ k-1 ] + v[ k ] /. x -> variable ];

Vtt0[ k ] = D[ V[ k ], t, 2 ] /. t ->0 //Expand;

Vttt0[ k ] = D[ V[ k ], t, 3 ] /. t ->0 //Expand;

If[PRN == 1,

Print[‘‘V’’(0)=’’, N[Vtt0[k],20],‘‘delta=’’,N[Vtt0[k]-chi[ k ]*Vtt0[k-1],20]];

Print[‘‘V’’(0) = ’’, N[Vttt0[k],20],‘‘ delta = ’’,N[Vttt0[k] - chi[k] * Vttt0[k-1],20]];

];

];

Print[ ‘‘ Successful !’’ ];

];

(************************************************************************

osqUtovq erpn7?

1 ndp ‘‘o’’

0 ndp ‘‘s’’

*************************************************************************)

PRN = 1;

(************************************************************************

ku@*************************************************************************)

hbar = h;

(************************************************************************

qUvvq*************************************************************************)

Print[ ‘‘The main code is ham[ N start,N end ]’’ ];

Print[ ‘‘BASE = ’’, BASE ];

qlG 2 Æ Mathematica ps · 255 ·

Print[ ‘‘Auxiliary function = ’’, H[ x ] ];

Print[ ‘‘Initial guess = ’’, v[ 0 ] ];

Print[ ‘‘PRN = ’’, PRN ];

Print[ ‘‘hbar = ’’, hbar ];

(* R 5 -% *)

ham[ 1, 5 ];

(* R V (t) [ 1,1 ] F - QQ-% *)

hp[ V, 1, 1 ]//Simplify;

wx 6s7 Mathematica nz

(************************************************************************

cov′′ + ε(v − v3) = 0

tugjv(0) = v(π) = 0

ruj"pq sin[(2m + 1)κξ] | m 0, κ > 1

gkkappa = 1 ndpw 6 wkappa > 1 ndpw 7 w

———————————————————————————————————

!wo56kappa => Ex, gp5pq (7.4) 56a[0] => (7.5) k A 9A:;@u[0] => (7.6) , u(x) "9A:;,u[k] => k (7.22) Æ (7.23) ,U[k] => u(x) k -%A[k] => A k -%

ux[k] => u′k(x)

uxx[k] => u′′k(x)

uu[k] =>k∑

n=0

un(x) uk−n(x)

aa[n] =>n∑

k=0

ak an−k

R[k] => !" (7.24)

RHS[k] => k (7.22) trqSPECIAL => k (7.22) D,

dhde !. jfh E-mail ! [email protected],

kgijp* http://numericaltank.sjtu.edu.cn/code.htm

*************************************************************************)

<<Calculus‘Pade‘;

<<Graphics‘Graphics‘;

(************************************************************************

56 u(x) 9A:;,Æ A 9A:;@

ql9 6>7 Æ Mathematica ps · 257 ·

************************************************************************)

GetInitial := Module[ ,

u[ 0 ] = Sin[ kappa * x ];

U[ 0 ] = u[ 0 ];

a[ 0 ] = 2/Sqrt[ 3 ] * Sqrt[ 1 - kappa∧2/epsilon ];

A[ 0 ] = a[ 0 ];

];

(************************************************************************

566'q************************************************************************)

H[ x ] := 1;

(************************************************************************

56q chi[ k ]

************************************************************************)

chi[ k ] := If[ k<=1 , 0 , 1 ];

(************************************************************************

566'27.( L

************************************************************************)

L[ f ] := Module[ temp ,

Expand[ D[ f , x , 2 ] + kappa∧2 * f ]

];

(************************************************************************

566'27.(m.( L−1

************************************************************************)

Linv[ Sin[ m * x ] ] := Sin[ m * x ]/(1 - m∧2);Linv[ Cos[ m * x ] ] := Cos[ m * x ]/(1 - m∧2);Linv[ c ] := c /; FreeQ[ c , x ];

(************************************************************************

m.( L−1 7uLinv[ a * f + b * g ] := a * Linv[ f ] + b * Linv[ g ] L

************************************************************************)

Linv[ p Plus ] := Map[ Linv , p ];

Linv[ c * f ] := c * Linv[ f ] /; FreeQ[ c , x ];

(************************************************************************

56kQ GetR[ k ]

dkQ7. R[ k ] 56 (7.24)

************************************************************************)

GetR[ k ] := Module[ temp ,

· 258 ·

temp = Sum[ aa[ n ] * uuu[ k - 1 - n ] , n , 0 , k - 1 ];

R[ k ] = TrigReduce[ uxx[ k - 1 ] + epsilon * (u[ k - 1 ] - temp) ]//Expand;

];

(************************************************************************

56kQ GetRHS[ k ]

dkQ7. (7.22) trq************************************************************************)

GetRHS[ k ] := Module[ temp ,

GetR[ k ];

RHS[ k ] = Expand[ TrigReduce[ hbar * H[ x ] * R[ k ] ] ];

];

(************************************************************************

56kQ CheckRHS[ k ]

dkQvm RHS[ k ] oswx Sin[ kappa * x ] q************************************************************************)

CheckRHS[ k ] := Module[ temp , C1 ,

temp[ 0 ] = TrigReduce[ RHS[ k ] ]//Expand;

C1 = Coefficient[ temp[ 0 ] , Sin[ kappa * x ] ];

temp[ 1 ] = temp[ 0 ] - C1 * Sin[ kappa * x ];

RHS[ k ] = Expand[ temp[ 1 ] ];

temp[ 2 ] = RHS[ k ] /. Sin[ kappa * x ] - >0;

RHS[ k ] = Expand[ temp[ 2 ] ];

];

(************************************************************************

56kQ GetuAll[ k ]

dkQ7.rxr u(x) v"q************************************************************************)

GetuAll[ k ] := Module[ ,

uu[ k ] = Sum[ u[ j ] * u[ k - j ] , j , 0 , k ]//Expand;

uuu[ k ] = Sum[ u[ j ] * uu[ k - j ] , j , 0 , k ]//Expand;

uxx[ k ] = Expand[ D[ u[ k ] , x , 2 ] ];

];

(************************************************************************

56kQ Geta[ k ]

dkQq, (7.26), R a[ k ]

************************************************************************)

Geta[ k ] := Mpdule[ temp , eq ,

If[ k ==1 , Print[ ‘‘ a[ 0 ] is given by (7.34)’’ ] ];

If[ k > 1 ,

temp[ 0 ] = Expand[ RHS[ k ] ];

ql9 6>7 Æ Mathematica ps · 259 ·

temp[ 1 ] = TrigReduce[ temp[ 0 ] ]//Expand;

eq = Coefficient[ RHS[ k ] , Sin[ kappa * x ] ];

temp[ 0 ] = Solve[ eq == 0 , a[ k - 1 ] ];

a[ k - 1 ] = temp[ 0 ][ [ 1 , 1 , 2 ] ]//Expand;

];

];

(************************************************************************

56kQ Getaa[ k ]

************************************************************************)

Getaa[ k ] : =Module[ ,

aa[ k ] = Expand[ Sum[ a[ j ] * a[ k - j ] , j , 0 , k ] ];

];

(************************************************************************

56kQ GetSPECIAL[ k ]

dkQ7. (7.22) D,************************************************************************)

GetSPECIAL[ k ] := Module[ temp ,

temp = TrigReduce[ RHS[ k ] ]//Expand;

SPECIAL = Linv[ temp ];

];

(************************************************************************

56kQ Getu[ k ]

dkQ7. (7.22) Æ (7.23) ,************************************************************************)

Getu[ k ] := Module[ temp , C1 ,

temp = SPECIAL + chi[ k ] * u[ k - 1 ];

C1 = - temp /. x - >Pi/2/kappa;

u[ k ] = Expand[ temp + C1 * Sin[ kappa * x ] ];

];

(************************************************************************

56kQ HP[ F,m,n ]

dkQ7.

F ≈+∞∑k=0

fk

[ m,n ] F - QQ-%, ut 2.3.7 xÆ 3.5.2 x***********************************************************************)

hp[ F , m , n ] := Block[ i , k , dF , temp , q ,

dF[ 0 ] = F[ 0 ];

For[ k = 1 , k <= m + n , k = k + 1 , dF[ k ] = Expand[ F[ k ] - F[ k - 1 ] ] ];

· 260 ·

temp = dF[ 0 ] + Sum[ dF[ i ] * q∧i , i , 1 , m + n ];

Pade[ temp , q , 0 , m , n ]/.q - >1

];

(************************************************************************

vkQ************************************************************************)

ham[ m0 , m1 ] := Module[ temp , k , n ,

For[ k=Max[ 1 , m0 ] , k <= m1 , k = k + 1 ,

Print[ ‘‘k = ’’ , k ];

Getaa[ k - 1 ];

GetuAll[ k - 1 ];

GetRHS[ k ];

Geta[ k ];

A[ k - 1 ] = Expand[ Sum[ a[ n ] , n , 0 , k - 1 ] ];

Print[‘‘ A = ’’, A[ k - 1 ], ‘‘ increment= ’’, a[ k - 1 ] - chi[ k - 1 ]*a[ k - 2 ]];

CheckRHS[ k ];

GetSPECIAL[ k ];

Getu[ k ];

U[ k ] = U[ k - 1 ] + u[ k ];

];

Print[ ‘‘Successful !’’ ];

];

(************************************************************************

R u(x) 9A:;,Æ A 9A:;@************************************************************************)

GetInitial;

(************************************************************************

ku@************************************************************************)

kappa = 2;

epsilon = N[ 10 , 50 ];

hbar = - 1;

(************************************************************************

qUvvq************************************************************************)

Print[ ‘‘ kappa = ’’ , kappa ];

Print[ ‘‘ epsilon = ’’ , epsilon ];

Print[ ‘‘ hbar = ’’ , hbar ];

Print[ ‘‘ a[ 0 ] = ’’ , a[ 0 ] ];

Print[ ‘‘ u[ 0 ] = ’’ , u[ 0 ] ];

ql9 6>7 Æ Mathematica ps · 261 ·

Print[ ‘‘ H(x) = ’’ , H[ x ] ];

(* R 10 -% *)

ham[ 1, 10 ];

(* R u(x) [ 3,3 ] F - QQ-% *)

hp[ U, 3, 3 ]//Simplify;

wx 8 Mathematica nz

(************************************************************************

cou′′(x) + λ u(x) + ε u3(x) = 0

tugju(0) = u(1) = 0

n75 ε, sqytDy@ λn ÆDyq un(x), rzu′′

n(x) + λn un(x) + ε u3n(x) = 0

Ætugjun(0) = un(1) = 0.

dhde !. jfh E-mail ! [email protected]

kgijp* http://numericaltank.sjtu.edu.cn/code.htm

************************************************************************)

<<Calculus‘Pade‘;

<<Graphics‘Graphics‘;

(************************************************************************

orx3yy———————————————————————————————————

NORMALIZATION = 1 ndpx3yy (8.38)

NORMALIZATION = 2 ndpx3yy (8.39)

************************************************************************)

NORMALIZATION = 1;

(************************************************************************

56 un(x) 9A:;,(************************************************************************)

u[ 0 ] = Sqrt[ 2 ] * Sin[ n * Pi * x ];

U[ 0 ] = u[ 0 ];

(************************************************************************

566'q H(x)

************************************************************************)

H[ x ] := 1;

(************************************************************************

56q chi[ k ]

************************************************************************)

chi[ k ] := If[ k <= 1 , 0 , 1 ];

qlr 8 Æ Mathematica ps · 263 ·

(************************************************************************

566'27.( L

************************************************************************)

L[ f ] := Module[ temp ,

Expand[ D[ f , x , 2 ] + (n * Pi)∧2 * f ] ];

(************************************************************************

566'27.(m.( L−1

************************************************************************)

Linv[ Sin[ m * x ] ] := Sin[ m * x ]/(n∧2 * Pi∧2 - m∧2);Linv[ Cos[ m * x ] ] := Cos[ m * x ]/(n∧2 * Pi∧2 - m∧2);

(************************************************************************

m.( L−1 7uLinv[ a * f + b * g ] := a * Linv[ f ] + b * Linv[ g ] L

************************************************************************)

Linv[ p Plus ] := Map[ Linv , p ];

Linv[ c * f ] := c * Linv[ f ] /; FreeQ[ c , x ];

Linv[ c ] := c /; FreeQ[ c , x ];

(************************************************************************

56kQ GetR[ k ]

dkQ7. R[ k ] 56 (8.25)

************************************************************************)

GetR[ k ] := Module[ temp , n ,

temp[ 1 ] = uxx[ k - 1 ];

temp[ 2 ] = lambdau[ k - 1 ];

temp[ 3 ] = uuu[ k - 1 ];

temp[ 4 ] = TrigReduce[ temp[ 1 ] + temp[ 2 ] + epsilon * temp[ 3 ] ];

R[ k ] = Expand[ temp[ 4 ] ];

];

(************************************************************************

56kQ GetRHS[ k ]

dkQ7. (8.23) trq************************************************************************)

GetRHS[ k ] := Module[ temp ,

GetR[ k ];

RHS[ k ]= Expand[ TrigReduce[ hbar * H[ x ] * R[ k ] ] ];

];

(************************************************************************

56kQ GetuAll[ k ]

dkQ7.rxr un(x) v"q

· 264 ·

************************************************************************)

GetuAll[ k ] := Module[ temp ,

uxx[ k ] = Expand[ D[ u[ k ] , x , 2 ] ];

temp = Sum[ u[ j ] * u[ k - j ] , j , 0 , k ];

uu[ k ] = TrigReduce[ Expand[ temp ] ];

temp = Sum[ u[ j ] * uu[ k - j ] , j , 0 , k ]//Expand;

uuu[ k ] = TrigReduce[ temp ];

lambdau[ k ] = Sum[ lambda[ j ] * u[ k - j ] , j , 0 , k ]//Expand;

];

(************************************************************************

56kQ Getlambda[ k ]

dkQq, λn,k−1

************************************************************************)

Getlambda[ k ] := Module[ temp , eq ,

temp[ 1 ] = TrigReduce[ RHS[ k ] ];

temp[ 2 ] = Expand[ temp[ 1 ] ];

eq = Coefficient[ temp[ 2 ] , Sin[ n * Pi * x ] ];

temp[ 3 ] = Solve[ eq == 0 , lambda[ k - 1 ] ];

lambda[ k - 1 ] = temp[ 3 ][ [ 1 , 1 , 2 ] ];

];

(************************************************************************

56kQ CheckRHS[ k ]

dkQvm RHS[ k ] oswx Sin[ n * Pi * x ] q************************************************************************)

CheckRHS[ k ] := Module[ temp , C1 ,

temp[ 0 ] = Expand[ RHS[ k ] ];

C1 = Coefficient[ temp[ 0 ] , Sin[ n * Pi * x ] ];

temp[ 1 ] = temp[ 0 ] - C1 * Sin[ n * Pi * x ];

RHS[ k ] = Expand[ temp[ 1 ] ];

temp[ 0 ] = RHS[ k ] /. Sin[ n * Pi * x ] ->0;

RHS[ k ] = Expand[ temp[ 0 ] ];

];

(************************************************************************

56kQ GetuSpecial

dkQ7. (8.23) D,************************************************************************)

GetuSpecial[ k ] := Module[ temp ,

temp[ 0 ] = Expand[ RHS[ k ] ];

temp[ 1 ] = Coefficient[ temp[ 0 ] , Sin[ n * Pi * x ] ];

temp[ 2 ] = Expand[ temp[ 1 ] * temp[ 1 ] ];

If[ temp[ 2 ] == 0 , , Print[ ‘‘ GetuSpecial: something is wrong ! ’’ ] ];

qlr 8 Æ Mathematica ps · 265 ·

uSpecial = Linv[ temp[ 0 ] ];

];

(************************************************************************

56kQ Getu[ k ]

dkQ7. (8.23) Æ (8.24) ,************************************************************************)

Getu[ k ] := Module[ eq , temp , C1 , w , j , alpha , beta ,

temp[ 1 ] = uSpecial + chi[ k ] * u[ k - 1 ];

u[ k ] = Expand[ temp[ 1 ] ];

w = Expand[ TrigReduce[ Sum[ u[ j ] , j , 0 , k ] ] ];

alpha = Coefficient[ w , Sin[ n * Pi * x ] ]/2;

beta = TrigReduce[ w∧2 - 1 ]/.Cos[ j ] ->0;

temp[ 2 ] = Simplify[ 4 * alpha∧2 - 2 * beta ];

If[ NORMALIZATION == 1 , C1 = - 2 * alpha + Sqrt[ temp[ 2 ] ] ];

If[ NORMALIZATION == 2 , C1 = - 2 * alpha - Sqrt[ temp[ 2 ] ] ];

u[ k ] = temp[ 1 ] + C1 * Sin[ n * Pi * x ];

];

(************************************************************************

56kQ HP[ F,m,n ]

dkQ7.

F ≈+∞∑k=0

fk

[ m,n ] F - QQ-%, ut 2.3.7 xÆ 3.5.2 x************************************************************************)

hp[ F , m , n ] := Block[ i , k , dF , temp , q ,

dF[ 0 ] = F[ 0 ];

For[ k = 1 , k< = m + n , k = k + 1 , dF[ k ] = Expand[ F[ k ] - F[ k - 1 ] ] ];

temp = dF[ 0 ] + Sum[ dF[ i ] * q∧i , i , 1 , m + n ];

Pade[ temp , q , 0 , m , n ]/.q - >1

];

(************************************************************************

vkQ************************************************************************)

ham[ m0 , m1 ] := Module[ temp , k , j ,

For[ k = Max[ 1 , m0 ] , k <= m1 , k = k + 1 ,

Print[ ‘‘ k = ’’ , k ];

GetuAll[ k - 1 ];

GetRHS[ k ];

Getlambda[ k ];

lambda[ k - 1 ] = Expand[ lambda[ k - 1 ] ];

· 266 ·

LAMBDA[ k - 1 ] = Expand[ Sum[ lambda[ j ] , j , 0 , k - 1 ] ];

Print[k-1, ‘‘th approx. of lambda/(n*Pi)∧2 = ’’,N[LAMBDA[ k - 1 ]/n∧2/Pi∧2,30] ];

CheckRHS[ k ];

GetuSpecial[ k ];

Getu[ k ];

U[ k ] = U[ k - 1 ] + u[ k ];

];

Print[ ‘‘Successful !’’ ];

];

(************************************************************************

ku@************************************************************************)

n = 1;

epsilon = N[ - 50 , 100 ];

hbar = - 1/2;

(************************************************************************

qUvvq************************************************************************)

Print[ ‘‘ n = ’’ , n ];

Print[ ‘‘ epsilon = ’’ , epsilon ];

Print[ ‘‘ H(x) = ’’ , H[ x ] ];

Print[ ‘‘ u0 = ’’ , u[ 0 ] ];

Print[ ‘‘ hbar = ’’ , hbar ];

Print[ ‘‘ NORMALIZATION = ’’ , NORMALIZATION ];

(* R 10 -% *)

ham[ 1 , 10 ];

(* R λn/(nπ)2 [ 3,3 ] F - QQ-% *)

hp[ LAMBDA , 3 , 3 ]/n∧2/Pi∧2

wx| 9 Mathematica nz

(************************************************************************q, Thomas-Feimi J(kz (9.6)

λ3 (τ − 1)[u′′(τ)]2 − u3(τ) = 0

rztugj (9.7)

u(1) = 1, u(+∞) = 0

gkτ = 1 + λ x

snQOJA (9.1) Æ (9.2).

dhde !. jfh E-mail ! [email protected]

kgijp* http://numericaltank.sjtu.edu.cn/code.htm************************************************************************)

<<Calculus‘Pade‘;

<<Graphics‘Graphics‘;

(************************************************************************

56 u(τ) 9A:;,************************************************************************)

u[ 0 ] = 1/t∧3;U[ 0 ] = u[ 0 ] /. t-> 1 + lambda * x;

Ux[ 0 ] = D[ U[ 0 ] , x ] /. x-> 0;

(************************************************************************

566'q H[ t ]

This module defines the auxiliary function H[ t ]

************************************************************************)

H[ t ] := t∧4;

(************************************************************************

566'27.( L

************************************************************************)

L[ f ] := t * D[ f , t , 2 ]/4 + D[ f , t ];

(************************************************************************

566'27.(m.( L−1

************************************************************************

Linv[ f ] := Block[ temp , G , g , solution ,

temp = DSolve[ L[ g[ t ] ] == f , g[ t ] , t ];

G = Expand[ temp[ [ 1 , 1 , 2 ] ] /. C[ 2 ] -> 0 ];

temp = Solve[ BC[ G ] == 0 , C[ 1 ] ];

· 268 ·

solution = G /. temp[ [ 1 ] ];

Expand[ solution ]

];

(************************************************************************

m.( L−1 7uLinv[ a * f + b * g ] := a * Linv[ f ] + b * Linv[ g ] L

************************************************************************)

Linv[ p Plus ] := Map[ Linv , p ];

Linv[ c * f ] := c * Linv[ f ] /; FreeQ[ c , t ];

(************************************************************************

56q chi[ m ]

************************************************************************)

chi[ m ] := If[ m <= 1 , 0 , 1 ];

(************************************************************************

56kQ GetuAll[ k ]

dkQ7.rxr u(τ) v"q************************************************************************)

GetuAll[ k ] := Module[ ,

utt[ k ] = Expand[ D[ u[ k ] , t , 2 ] ];

uu[ k ] = Expand[ Sum[ u[ i ] * u[ k - i ] , i , 0 , k ] ];

uuu[ k ] = Expand[ Sum[ uu[ i ] * u[ k - i ] , i , 0 , k ] ];

uttutt[ k ] = Expand[ Sum[ utt[ i ] * utt[ k - i ] , i , 0 , k ] ];

];

(************************************************************************

56kQ R[ k ]

dkQ7. R[ k ] 56 (9.24)

************************************************************************)

R[ k ] := Expand[ lambda∧3 * (t - 1) * uttutt[ k - 1 ] - uuu[ k - 1 ] ];

(************************************************************************

56tugj (9.23)

************************************************************************)

BC[ f ] := f /. t -> 1;

(************************************************************************

56kQ HP[ F,m,n ]

dkQ7.

F ≈+∞∑k=0

fk

qlt 9 Æ Mathematica ps · 269 ·

[ m,n ] F - QQ-%, ut 2.3.7 xÆ 3.5.2 x************************************************************************)

hp[ F , m , n ] := Block[ i , k , dF , temp , q ,

dF[ 0 ] = F[ 0 ];

For[ k = 1 , k < = m + n , k = k + 1 , dF[ k ] = Expand[ F[ k ] - F[ k - 1 ] ] ];

temp = dF[ 0 ] + Sum[ dF[ i ] * q∧i , i , 1 , m + n ];

Pade[ temp , q , 0 , m , n ] /. q - >1

];

(************************************************************************

vkQ(************************************************************************

ham[ begin , end ] := Block[ uSpecial ,

For[ k = begin , k <= end , k = k + 1 ,

Print[ ‘‘k = ’’ , k ];

GetuAll[ k - 1 ];

RHS = Expand[ hbar * H[ t ] * R[ k ] ];

uSpecial = Linv[ RHS ];

u[ k ] = Expand[ uSpecial + chi[ k ] * u[ k - 1 ] ];

U[ k ] = Expand[ U[ k - 1 ] + u[ k ] ] /. t -> 1 + lambda * x;

Ux[ k ] = D[ U[ k ] , x ] /. x -> 0;

Print[ ‘‘u’(0) = ’’ , N[ Ux[ k ] , 24 ] ];

];

Print[ ‘‘successful ’’ ];

];

(************************************************************************

ku@************************************************************************)

hbar = -1;

lambda = 1/4;

(************************************************************************

qUvvq************************************************************************)

Print[ ‘‘ hbar = ’’ , hbar ];

Print[ ‘‘ lambda = ’’ , lambda ];

(* R 10 -% *)

ham[ 1 , 10 ];

(* R u′(0) [ 3 , 3 ] F - QQ-% *)

hp[ Ux , 3 , 3 ]

270

B

134,146

38

211

71

204

231

! 231

" 231

232

232

#$%&'() 190

*+,-./ 173

C

01 54

23456 160

23457 13,46,76,87,98,135,147,174,181

192,205,232

D

89:; 231

<=> 39

<?> 38

@A 144

BCDE 109

B6 201

B@ 159

E

=FGHI 146

F

HJ@KL 4

MNL 12,64

OPQRSTU V6LWW11W

OPQRSTU V6KLWW59

XYTZ[UQ\ ]^_`LWW62W

Va 75,81,91,96

Vab 94

cd` 14,46,77,87,98,112,123,135,148,161,

175, 192,206,219

cd 14,46,77,87,98,112,123,135,148,161

174,192,202,219

cdIef 14,46,76,87,98,111,123,135,147,

160,174,192,205,218,232

G

"ghiK 15,48,78,88,100,113,125,136,

149,163,175,182,193,207,221,235

J

jkl 159

mno 111

mp 111,121

6n 53,76,98,111,135,147,160,174,181,192

6nqr 19

6stqr 19,54

uvV6L 71

K

wxyzf 181,184,185,192,198,218

L

+|+-K 231

~ 271

K 216

KL 6

ghiK 13,46,60,77,87,98,112,123,175

N

---K 216

P

41,55,239

Q

HI 134

i 6,13,98,112,123

49

R

211

]^_` 4

S

239

J@KL 3

17,50,79,90,102,115,128,166,176,

196,209,224

231

z 204

z 231

T

MN 15,47,60,77,88,112,124,136,149,

162,175,193,206,220,234

DE 97

DE7 97

5

- 42,55,69,94,104,131,185,213,

226,239

KL 6

--K 110

--qfG 110

W

V-¡VK 122

¢zV* 204

X

£¤qr 19,54,80,91

¥i¦ 204,216

¥i 173,216

¥6 190

hi 6,47

hi§ 15,47,148,235

Z

¨© '(:; 231

¨©ª@ 134,146

.)/ 173,190

AdomianB1o 60,64

AdomianV6L 5,11

AdomianV6KL 59

Duffingªf 75,94

Duffing oscillator 86

Falkner-Skan 203

Falkner-Skan '()/ 191

high-order deformation equation 66

homotopy 46

Lyapunov]^_`L 4,62

VolterraG 122

MNL 12,64

h«¬­®x 24

h¯I 24,28,55,69,81,91,104,117,129

h°¬­®± 28,55,69,81,104,129