ODDREV11

7
85. Let Then and Then, xtxt ytyt ztzt r r. 2xtxt 2ytyt 2ztzt r dr dt xt 2 yt 2 zt 2 1 2 xt 2 yt 2 zt 2 12 r xti ytj ztk. r r xt 2 yt 2 zt 2 r xti ytj ztk. 87. Let where and are functions of and (using Exercise 77) 1 r 3 i yz yz x j xz xz y k xy xy z 1 r 3 r r r 1 r 3 xy 2 xz 2 xyy xzzi x 2 y z 2 y xxy zz yj x 2 z y 2 z xxz yyzk x 2 y 2 z 2 x i yj z k xx yy zz x i y j z k r 3 d dt r r r r rdrdt r 2 r r rr rr r 2 r 2 r r r r r 3 r r . t, z y, x, r x i y j z k 89. From Exercise 86, we have concluded that planetary motion is planar. Assume that the planet moves in the xy-plane with the sun at the origin. From Exercise 88, we have Since and are both perpendicular to L, so is e. Thus, e lies in the xy-plane. Situate the coordinate system so that e lies along the positive x-axis and is the angle between e and r. Let Then Also, Thus, and the planetary motion is a conic section. Since the planet returns to its initial position periodically, the conic is an ellipse. L 2 GM 1 e cos r GM r e r r r GMre cos r r r L r GM e r r L 2 L L r r L r e r e cos re cos . e e . r r L r L GM r r e . x θ r e Sun Planet y 91. Thus, and r sweeps out area at a constant rate. dA dt dA d d dt 1 2 r 2 d dt 1 2 L A 1 2 r 2 d Review Exercises for Chapter 11 1. (a) Domain: n an integer (b) Continuous except at , n an integer t n t n , rt t i csc t k 3. (a) Domain: (b) Continuous for all t > 0 0, rt ln t i t j t k 68 Chapter 11 Vector-Valued Functions

Transcript of ODDREV11

  • 85. Let Then and Then,

    xtxt ytyt ztzt r r.

    2xtxt 2ytyt 2ztztrdrdt xt2 yt2 zt2

    12xt2 yt2 zt212

    r xti ytj ztk.r r xt2 yt2 zt2r xti ytj ztk.

    87. Let where and are functions of and

    (using Exercise 77)

    1r3 iyz yzx jxz xzy kxy xyz 1r3 r r r

    1r3

    xy2 xz2 xyy xzzi x2y z2y xxy zzyj x2z y2z xxz yyzk

    x2 y2 z2xi yj zk xx yy zzxi yj zk

    r3

    ddt

    r

    r rr rdrdt

    r2

    rr rr rrr2

    r2r r rr

    r3

    r r.t,zy,x,r xi yj zk

    89. From Exercise 86, we have concluded that planetary motion is planar. Assume that the planet moves in the xy-plane with the sun at the origin. From Exercise 88, we have

    Since and are both perpendicular to L, so is e. Thus, e lies in the xy-plane. Situate thecoordinate system so that e lies along the positive x-axis and is the angle between e and r. Let

    Then Also,

    Thus,

    and the planetary motion is a conic section. Since the planet returns to its initial position periodically, the conic is an ellipse.

    L2GM1 e cos r

    GMr e r rr GMre cos r r r L r GMe r

    rL2 L L r r L

    r e r e cos re cos .e e.

    rr L

    r L GMrr e.

    x

    r

    e

    Sun

    Planet

    y

    91.

    Thus,

    and r sweeps out area at a constant rate.

    dAdt

    dAd

    ddt

    12 r

    2

    ddt

    12 L

    A 12

    r2 d

    Review Exercises for Chapter 11

    1.

    (a) Domain: n an integer(b) Continuous except at , n an integert n

    t n,

    rt ti csc tk 3.

    (a) Domain:(b) Continuous for all t > 0

    0,

    rt ln ti tj tk

    68 Chapter 11 Vector-Valued Functions

  • 5. (a)(b)(c)

    (d) 2t i tt 2j 13t 3 3t2 3tk

    r1 t r1 21 t 1i 1 t2j 13 1 t3k 3i j 13 k 2c 1i c 12j 13 c 13k

    rc 1 2c 1 1i c 12j 13 c 13kr2 3i 4j 83 kr0 i

    13.

    y

    x

    1 21

    2

    3

    3

    2

    1

    z

    rt ti ln tj 12 t2k 15. One possible answer is:

    r3t 4 ti, 0 t 4

    r2t 4i 3 tj, 0 t 3r1t 4ti 3tj, 0 t 1

    17. The vector joining the points is One path isrt 2 7t, 3 4t, 8 10t.

    7, 4, 10. 19.

    x

    y

    5

    1 2 33

    32

    z

    rt ti tj 2t2kz 2t2y t,x t,

    t xx y 0,z x2 y2,

    21. limt2

    t2i 4 t2j k 4i k

    7.

    1

    11x

    y

    1 x 1

    y 21 x2

    x2 y2 1

    yt 2 sin2 txt cos t,

    rt cos ti 2 sin2 tj 9.

    x

    y2

    1

    2

    1

    z

    z t2 z y2y t

    x 1

    rt i tj t2k 11.

    y

    x

    1 212

    3

    2

    2

    3

    1

    z

    z 1y sin t,x 1,

    rt i sin tj k

    t 0

    x 1 1 1 1

    y 0 1 0

    z 1 1 1 1

    1

    32

    2

    Review Exercises for Chapter 11 69

  • 25. and are increasing functions at and is adecreasing function at t t0.

    ztt t0,ytxt 27. cos t i t cos tj dt sin t i t sin t cos tj C

    29. cos t i sin tj tk dt 1 t2 dt 12t1 t2 lnt 1 t2 C

    31.

    rt t2 1i et 2j et 4kr0 j k C i 3j 5k C i 2j 4k

    rt 2ti etj etk dt t2i etj etk C 33. 22

    3t i 2t2j t3k dt 3t2

    2 i 2t33 j

    t4

    4 k2

    2

    323 j

    35. 2e 2i 8j 2k 20

    et2i 3t2j k dt 2et2i t3j tk2

    0

    37.

    3 cos t2 sin2 t cos2 t, 3 sin t2 cos2 t sin2 t, 0

    6 sin t cos2 t 3 sin2 tsin t, 0at vt 6 cos tsin2 t 3 cos2 t cos t,

    3cos2 t sin2 t 1

    3cos2 t sin2 tcos2 t sin2 t 1

    vt 9 cos4 t sin2 t 9 sin4 t cos2 t 9

    vt rt 3 cos2 t sin t, 3 sin2 t cos t, 3

    rt cos3 t, sin3 t, 3t

    39.

    direction numbers

    Since the parametric equations are

    rt0 0.1 r4.1 0.1, 16.8, 2.05z 2 12 t.y 16 8t,x t,

    r4 0, 16, 2,

    r4 1, 8, 12

    rt 1t 3, 2t, 12

    t0 4rt lnt 3, t2, 12t, 41. Range feet x v0

    2

    32 sin 2 752

    32 sin 60 152

    23.

    (a)

    (c)

    (e)

    Dtrt 10t 1

    10t2 2t 1

    rt 10t2 2t 1

    Dtrt ut 3t2 4t

    rt ut 3t2 t2t 1 t3 2t2

    rt 3i j

    ut ti t2j 23t3krt 3ti t 1j,

    (b)

    (d)

    (f )

    Dtrt ut 83t3 2t 2i 8t3j 9t2 2t 1k

    rt ut 23t4 t3i 2t4j 3t3 t 2 tk

    Dtut 2rt 5i 2t 2j 2t 2k

    ut 2rt 5ti t2 2t 2j 23t3k

    rt 0

    43. v0 809.8sin 40 34.9 m secRange x v02

    9.8 sin 2 80

    70 Chapter 11 Vector-Valued Functions

  • 45.

    does not exist

    does not exist

    (The curve is a line.) a N

    a T 0

    Nt

    Tt i

    at 0

    vt 5

    vt 5i

    rt 5ti 47.

    a N 1

    2t4t 1

    a T 1

    4tt4t 1

    Nt i 2t j

    4t 1

    Tt i 12t j4t 1 2t 2t i j4t 1

    at 14tt

    j

    vt 4t 1

    2t

    vt i 12t

    j

    rt ti tj

    49.

    a N 2

    e2t e2t

    a T e2t e2t

    e2t e2t

    Nt et i etj

    e2t e2t

    Tt eti etj

    e2t e2t

    at et i et jvt e2t e2t

    vt eti etj rt eti etj 51.

    a N 5

    51 5t2

    51 5t2

    a T 5t

    1 5t2

    Nt 5t i 2j k51 5t2

    Tt i 2tj tk1 5t2

    at 2j kv 1 5t2

    vt i 2tj tk

    rt ti t2j 12t2k

    53.

    When

    Direction numbers when

    z t 34y

    2t 2,x 2t 2,

    c 1b 2,a 2,t 34 ,

    rt 2 sin ti 2 cos tj k

    z 34 .y

    2,x 2,t 34 ,

    z ty 2 sin t,x 2 cos t,rt 2 cos ti 2 sin tj tk,

    55. v 9.56 1044600 4.56 mi sec

    57.

    13t5

    0 513

    s ba

    rt dt 504 9 dt

    rt 2i 3j224

    4

    2

    6810121416

    4 6 8 10 12 14x

    y

    (0, 0)

    (10, 15)

    rt 2ti 3tj, 0 t 5

    Review Exercises for Chapter 11 71

  • 59.

    s 420

    30 cos t sin t dt 120 sin2 t

    2 2

    0 60

    30cos t sin t rt 30cos4 t sin2 t sin4 t cos2 t

    rt 30 cos2 t sin ti 30 sin2 t cos tj

    10

    10

    2

    10 102 2x

    y rt 10 cos3 ti 10 sin3 tj

    61.

    s ba

    rt dt 309 4 16 dt 3

    029 dt 329

    rt 3i 2j 4k

    xy6 8

    2 410

    22

    64

    81012

    z

    (0, 0, 0)

    (9, 6, 12) rt 3ti 2tj 4tk, 0 t 3

    63.

    x

    y

    z

    4

    468

    68

    (8, 0, 0)

    (0, 8, )22

    s ba

    rt dt 20

    65 dt 652

    rt < 8 sin t, 8 cos t, 1, rt 65

    rt 8 cos t, 8 sin t, t, 0 t 2 65.

    52

    0 dt 52 t

    0

    52

    014 cos2 t sin2 t dt

    s 0

    rt dt

    rt 12 i cos tj sin tk

    0 t rt 12ti sin tj cos tk,

    67.

    Line

    k 0

    rt 3ti 2tj 69.

    K r rr3

    20

    5t2 432 25

    4 5t232

    r r i20 jt1 k2t2 4j 2k, r r 20 rt j 2k rt 2i tj 2tk, r 5t2 4

    rt 2ti 12t2j t2k

    71.

    At and r 1732 1717.x 4, K 11732

    K y1 y232 1

    1 x232

    y 1

    y x

    y 12x

    2 273.

    At and r 22.x 1, K 1232

    1

    22

    24

    K y1 y232 1x2

    1 1x2]32

    y 1x, y

    1x2

    y ln x

    75. The curvature changes abruptly from zero to a nonzeroconstant at the points B and C.

    72 Chapter 11 Vector-Valued Functions

  • Problem Solving for Chapter 11

    1.

    (a)

    (b)

    At

    (c) K a lengtht a, K a.

    K t cos2t2

    2 t sin2t2

    2 1 t

    xt t sint2

    2 , yt t cost2

    2

    s a0xt2 yt2 dt a

    0dt a

    xt cost2

    2 , yt sint2

    2

    xt t0cosu

    2

    2 du, yt t

    0sinu

    2

    2 du 3. Bomb:Projectile:At 1600 feet: Bomb:

    seconds.

    Projectile will travel 5 seconds:

    Horizontal position:

    At bomb is at

    At projectile is at Thus,

    Combining,

    v0 200

    cos 447.2 ftsec

    v0 sin v0 cos

    400200 tan 2 63.4.

    v0 cos 200.

    5v0 cos .t 5,

    5000 40010 1000.t 10,

    v0 sin 400.

    5v0 sin 1625 1600

    3200 16t2 1600 t 10

    r2t v0 cos t, v0 sin t 16t2

    r1t 5000 400t, 3200 16t2

    5.

    Thus, and

    s2 2 16 cos2 t2 16 sin2t2 16.

    1K 4 sin

    t2

    1

    4 sin 2

    K 11 cos cos sin sin 2 sin 2

    3 1 cos 1

    8 sin3 2

    x sin , y cos

    st t

    2 sin 2 d 4 cos

    2t

    4 cos t2

    2 2 cos 4 sin2 2

    x2 y2 1 cos 2 sin2

    x 1 cos , y sin , 0 2

    7.

    ddt rt

    rt rtrt rt rt rt rt

    ddt rt

    2 2rt ddt rt

    r2t rt rt

    Problem Solving for Chapter 11 73

  • 9.

    x

    y

    z

    3

    123

    4 4

    6 T

    T

    B

    B

    N

    N

    B2 35i

    45k

    N2 j

    At t 2, T

    2 45i

    35k

    B T N 35 sin ti 35 cos tj

    45k

    N cos ti sin tj

    T 45 cos ti 45 sin tj

    T 45 sin ti 45 cos tj

    35k

    rt 4 cos ti 4 sin tj rt 4 sin ti 4 cos tj 3k, rt 5

    rt 4 cos ti 4 sin tj 3tk, t 2 11. (a)

    Hence, and

    for some scalar

    (b) Using Exercise 10.3, number 64,

    Now,

    Finally,

    KT B.

    B KN N T

    Ns dds B T B T B T

    KN dTds TsTs Ts dTds . N.

    T NT T TN

    B T T N T T T N

    T

    N NT N TN

    B N T N N N T N

    B T N.

    .

    dBds T

    dBds N

    dBds B

    T T N T T TT 0

    T dBds T T N T T N

    dBds

    dds T N T N T N

    constant length dBds BB T N 1

    13.

    (a)

    (c)

    (e) limt

    K 0

    K2 0.51

    K1 2 2

    2 132 1.04

    K0 2

    K 2t2 2

    2t2 132

    3 3

    2

    2

    0 t 2rt t cos t, t sin t,(b)

    (graphing utility)

    (d)

    (f ) As the graph spirals outward and the curvaturedecreases.

    t,

    0 50

    5

    202t2 1 dt 6.766

    Length 20

    rt dt

    74 Chapter 11 Vector-Valued Functions