Nutritional deposition by nesting Loggerhead sea turtles enhances dune resilience

16
Nutri&onal deposi&on by nes&ng Loggerhead sea turtles (Care%a care%a) enhances dune resilience Jared Chrisp

Transcript of Nutritional deposition by nesting Loggerhead sea turtles enhances dune resilience

Nutri&onal  deposi&on  by  nes&ng  Loggerhead  sea  turtles  (Care%a  care%a)  enhances  dune  resilience  

Jared  Chrisp  

Outline  

•  Objec&ves  

•  Processes  that  influence  dune  ecosystems  

•  Experiment  procedures  

•  Previous  year  results  

Goals  and  Objec&ves  

1.  Quan&fy  the  amount  of  nutrients,  in  the  form  of  unhatched  eggs  and  residual  biomass,  that  remain  aGer  a  nest  hatches  

2.  Determine  if  Sea  oats  (Uniola  paniculata)  gain  mass  by  leaching  nutrients  from  eggs    

The  objec&ve  of  this  experiment  is  to  determine  and  create  an  index  for  the  number  of  nests  needed  on  the  beaches  of  Bald  Head  Island  to  be  significant  enough  to  impact  dune  health.    

Where  do  the  nutrients  come  

from?  

•  Thousands  of  miles  every  three  years  

•  LiSle  feeding  at  nes&ng  grounds  

•  Nutrients  not  otherwise  available  

Source:  seaturtle.org  

Pathways  for  Nutrient  Transfer  

Hatched  Eggs   Unhatched  Eggs  

Successfully  reach  ocean  

Consumed  by  

predators  

Residual  chorioallantoic  

fluid  and  egg  shells  

Trapped  in  nest  

Consumed  by  nest  

predators  

Nutrients  absorbed  by  

plants  

Made  available  to  decomposers  

Energy  lost  as  metabolic  heat  

Sea  Oats  (Uniola  paniculata)  

•  Most  prominent  dune  vegeta&on  

•  Prolific  root  structure  

•  Stabilize  dune  systems  

•  Low  nutrient  condi&ons  

Sea  Oat  Experiment  

•  Controlled  growth    

– Two  growth  mediums  

– Biomass  and  nitrogen  

– Root  to  shoot  ra&os  

– Root  migra&on?  

Sampling  and  Techniques  

•  One  unhatched  egg  

•  One  egg  shell  

•  Percentage  of  nests  with  root  intrusions    

•  Number  of  hatched  and  unhatched  eggs  

Lab  Procedures  

•  Composi&on  of  essen&al  elements  in  eggs  and  shells:  

– calories    – nitrogen  –  lipids  – moisture  – ash  content  

2012  Analysis  

•  Expansion  factors:  – Unhatched  eggs  per  nest  – Hatched  egg  shells  per  nest  – Average  mass  of  eggs    

Final  Des&na&on  of  Eggs*  

 *Final  des&na&on  of  the  total  eggs  (n  =  2377)  for  all  nests  (n  =  20)  along  the  4  mile  stretch  of  Bald  Head  Island’s  east  facing  beach.  

Total Percent  of  total  eggs

Hatched 2115 89%

         Emerge  from  nest 1797 76%          Live  in  nest 318 14%          Dead  in  nest 2 >  1%

Unhatched 262 11%

         Unfertilized 224 9%          Predated 38 2%

2012  Results  

•  Egg  Mass  (g)  – x̄  =  35.33  ±  0.454  – Shell  ~1.43  g  

•  Eggs  per  Nest  – x̄  =  119  ±  7.175  

•  Average  Biomass    – 83,979.41  g  deposited  – ~71,698.5  g  returned  to  water  as  hatchlings  

Con&nua&on  

•  2013  excava&on  data  

•  Sea  oats  stabiliza&on  and  compac&on  tests    

•  GIS  nest  density  and  distribu&on  

References  •  Bouchard,  Sarah  H.  and  Bjorndal,  Karen  A.  "Sea  Turtles  as  

 Biological  Transporters  of  Nutrients  and  Energy  from    Marine  to  Terrestrial  Ecosystems."  Ecological  Society  of    America.  Vol.  81,  No.  8  (2000):  2305-­‐2313.  JSTOR.  Web.    18  May  2013.  

•  Hannan,  Laura  B.  et.  al.  "Dune  Vegeta&on  Fer&liza&on  by    Nes&ng  Sea  Turtles."  Ecological  Society  of    America.    Vol.  88,  No.  4  (2007):  1053-­‐1058.  JSTOR.  Web.  18    May    2013.  

•  Madden,  Derek.  et  al.  "Sea  Turtle  Nes&ng  as  a  Process    Influencing  a  Sandy  Beach  Ecosystem."  Biotropica.    Vol.  40,  No.  6  (2008):  758-­‐765.  JSTOR.  Web.  20  May    2013.  

Ques&ons?