Network -on -Chip Using Silicon Photonics Waveguide...

12
Network-on-Chip Using Silicon Photonics Waveguide Arrays Philippe Velha, Nicola Andriolli, Isabella Cerutti Scuola Superiore Sant’Anna, Pisa, Italy Odile Liboiron-Ladouceur McGill University, Montreal, Canada

Transcript of Network -on -Chip Using Silicon Photonics Waveguide...

Page 1: Network -on -Chip Using Silicon Photonics Waveguide Arrayseexu/OPTICS2016/Isabella_Cerutti_OPTICS_2016.pdf · Network -on -Chip Using Silicon Photonics Waveguide Arrays Philippe Velha

Network-on-Chip Using Silicon Photonics Waveguide Arrays

Philippe Velha, Nicola Andriolli, Isabella CeruttiScuola Superiore Sant’Anna, Pisa, Italy

Odile Liboiron-LadouceurMcGill University, Montreal, Canada

Page 2: Network -on -Chip Using Silicon Photonics Waveguide Arrayseexu/OPTICS2016/Isabella_Cerutti_OPTICS_2016.pdf · Network -on -Chip Using Silicon Photonics Waveguide Arrays Philippe Velha

Datacom and Computercom Applications

• Optical network-on-Chip (NoC) – networks interconnecting cores, memories, and/or systems– applications: multi/many-core computing systems, embedded

systems, SoC– main requirements and challenges: chip integration, energy

efficiency, low-latency, packaging scalability

Picture from arteris at www.design-reuse.com

Page 3: Network -on -Chip Using Silicon Photonics Waveguide Arrayseexu/OPTICS2016/Isabella_Cerutti_OPTICS_2016.pdf · Network -on -Chip Using Silicon Photonics Waveguide Arrays Philippe Velha

State of the Art

6

• Photonic integrated NoCs realized mainly based on optical space switching- switching elements: ring resonators, Mach-Zehnder

interferometers, or semiconductor optical amplifier gates Rather limited flexibility and scalability:

if ports ↗, switching elements ↗↗ footprint ↗, power consumption ↗

• Novel domain for multiplexing and switching: mode• Mode multiplexing and demultiplexing demonstrated in Si

PICs:- possibility of handling the individual modes with good

performance

Page 4: Network -on -Chip Using Silicon Photonics Waveguide Arrayseexu/OPTICS2016/Isabella_Cerutti_OPTICS_2016.pdf · Network -on -Chip Using Silicon Photonics Waveguide Arrays Philippe Velha

Proposed NoC Architecture

7

• For scalability, two switching domains:- mode domain- wavelength domain enhance the NoC flexibility,

scalability, parallelism and throughput

• M tiles with N input/output ports each

• In the MN×MN architecture, destination tiles and ports are uniquely identified by wavelengths and modes

• Mode switching is used to select the output tile

• Wavelength switching is used to select the output port

1M

Output Tile 1

Tile M1M

… … Tile 2

Mode switching

Wavelengthswitching

……

…Controller/Schedul

er

Input Tile1

Tile 2

Tile M

Page 5: Network -on -Chip Using Silicon Photonics Waveguide Arrayseexu/OPTICS2016/Isabella_Cerutti_OPTICS_2016.pdf · Network -on -Chip Using Silicon Photonics Waveguide Arrays Philippe Velha

P. Velha, I. Cerutti, O. Liboiron-Ladouceur, N. Andriolli, “A Silicon Photonics Network-on-Chip Architecture based on Mode and Wavelength Switching,” Proceedings of Group IV Photonics (GFP), Vancouver, Canada, agosto 2015

WavelengthWavelengthselectorselector

Controller & Controller & SSchedulercheduler

WavelengthWavelengthselectorselector PIC

Tile i

…Tile 1

TX

TX

Tile Mringwaveguide

in port N

RXRX

RXRX

out port 1

out port N

in port 1Tile j

Tile k

Mode-Wavelength Architecture The Design

Page 6: Network -on -Chip Using Silicon Photonics Waveguide Arrayseexu/OPTICS2016/Isabella_Cerutti_OPTICS_2016.pdf · Network -on -Chip Using Silicon Photonics Waveguide Arrays Philippe Velha

Innovative approachSupermodes instead of Modes

10

• Missing component: mode selector• dynamic and flexible selection and de/multiplexing of the modes

• Proposed approach: use of supermodes• different from the set of modes propagating in standard multi-

mode waveguides • advantages:

• larger design flexibility• easier integration of electrical controls (e.g., each waveguide

can be individually tuned)• footprint hardly larger than the size of a standard multi-mode

waveguide

Page 7: Network -on -Chip Using Silicon Photonics Waveguide Arrayseexu/OPTICS2016/Isabella_Cerutti_OPTICS_2016.pdf · Network -on -Chip Using Silicon Photonics Waveguide Arrays Philippe Velha

Conventional multiplexing technique:

space division multiplexing

Optical multiplexing using modes

Novel optical techniques: supermodes

Multi-mode waveguide (MMW)MMW

Array of single-mode waveguides (SMW)SMW

SMW

SMW

Array of coupled single-mode waveguides

CSMWCSMWCSMW

Comparison of Multiplexing Techniques

Page 8: Network -on -Chip Using Silicon Photonics Waveguide Arrayseexu/OPTICS2016/Isabella_Cerutti_OPTICS_2016.pdf · Network -on -Chip Using Silicon Photonics Waveguide Arrays Philippe Velha

Aperiodic array of waveguides

• Si-based fabrication• Fabricated through SiEPIC program in an E-beam run at the

Univ. of Washington on 220nm SOI with single-etch process

18

Page 9: Network -on -Chip Using Silicon Photonics Waveguide Arrayseexu/OPTICS2016/Isabella_Cerutti_OPTICS_2016.pdf · Network -on -Chip Using Silicon Photonics Waveguide Arrays Philippe Velha

Super-Modes Generated by Parallel, Coupled Waveguides

19

simulations spectra measurements

Results obtained on an array of five coupled Si waveguides with a width a [430, 440, 450, 440, 430] nm and a gap of [540, 530, 530, 540] nm

Page 10: Network -on -Chip Using Silicon Photonics Waveguide Arrayseexu/OPTICS2016/Isabella_Cerutti_OPTICS_2016.pdf · Network -on -Chip Using Silicon Photonics Waveguide Arrays Philippe Velha

Mode Selector Arrays of Coupled Single-mode Waveguides

21

Results obtained on an array of five coupled Si waveguides with a width a

[430, 440, 450, 440, 430] nm and a gap of

[550, 500, 500, 550] nm φ=πφ=0

φ φ

(a) (b) (c)

Mode 1

Mode 1 Mode 3

Mach-Zehnder configuration with phase shifters capable of inducing a generic shift on each arm [5], to enable the generation of the desired supermode

Page 11: Network -on -Chip Using Silicon Photonics Waveguide Arrayseexu/OPTICS2016/Isabella_Cerutti_OPTICS_2016.pdf · Network -on -Chip Using Silicon Photonics Waveguide Arrays Philippe Velha

Conclusions

• Mode-wavelength architecture has the potential of high scalability, low footprint, low power consumption

• Supermodes are a new domain to explore for switching and multiplexing– high scalability, low crosstalk, limited footprint– easy generation of supermodes– mode switching feasible with phase shifter

• Further investigation is required for developing supermodetheory and components

22

Page 12: Network -on -Chip Using Silicon Photonics Waveguide Arrayseexu/OPTICS2016/Isabella_Cerutti_OPTICS_2016.pdf · Network -on -Chip Using Silicon Photonics Waveguide Arrays Philippe Velha

Thank you!Emails: [email protected]

This work was supported by MIUR through FIRB project MINOS, by MAE through the high-relevance bilateral project NANO-RODIN