Nervous systems in vertebrates: T.Y.B.Sc. Sem VI Notes

7
Notes: Zoology- VI Semester, University of Mumbai, India Prof. S. D. Rathod, B. N. Bandodkar College of Science, Thane -400605 Comparative Anatomy of Chordates Nervous system in Vertebrates Part I: Development and differentiation of brain in Vertebrates 1. The entire nervous system arises from the ectoderm. 2. The ectodermal neural folds are developed which close dorsally to form neural tube. Development and differentiation of primary brain vesicles and their cavities: The vesicles of vertebrate brain: 1. Anterior part of neural tube is slightly swollen which initially differentiated in to three primary vesicles of brain namely first prosencephalon (forebrain), second mesencephalon (midbrain) and third rhombencephalon (hindbrain) containing cavities. 2. At later stages two secondary vesicles form in the area of the prosencephalon, 1a and 1b (see fig. below) developing into telencephalon and diencephalon respectively. 3. The diencephalon gives rise to sac like lateral outgrowths called the optic vesicles. The optic vesicles are pushed downward by two large processes growing forward from the anterior vesicle (the primitive cerebral hemispheres). These ultimately develop into the retina, and other nervous parts of the eye. 4. The other secondary vesicles are developed in the rhombencephalon namely 3a and 3b (see fig. below) developing into metencephalon and myelencephalon respectively. 5. Mesencephalon reduces to form a narrow commissure known as cerebral aqueduct (see fig. below).

description

Notes for T.Y.B.Sc. Mumbai University. Course code Semester-VI – USZ0601.

Transcript of Nervous systems in vertebrates: T.Y.B.Sc. Sem VI Notes

Page 1: Nervous systems in vertebrates: T.Y.B.Sc. Sem VI Notes

Notes: Zoology- VI Semester, University of Mumbai, India

Prof. S. D. Rathod, B. N. Bandodkar College of Science, Thane -400605

Comparative Anatomy of Chordates

Nervous system in Vertebrates

Part I: Development and differentiation of brain in Vertebrates

1. The entire nervous system arises from the ectoderm.

2. The ectodermal neural folds are developed which close dorsally to form neural tube.

Development and differentiation of primary brain vesicles and their cavities:

The vesicles of vertebrate brain:

1. Anterior part of neural tube is slightly swollen which initially differentiated in to three

primary vesicles of brain namely first prosencephalon (forebrain), second

mesencephalon (midbrain) and third rhombencephalon (hindbrain) containing cavities.

2. At later stages two secondary vesicles form in the area of the prosencephalon, 1a and

1b (see fig. below) developing into telencephalon and diencephalon respectively.

3. The diencephalon gives rise to sac like lateral outgrowths called the optic vesicles. The

optic vesicles are pushed downward by two large processes growing forward from the

anterior vesicle (the primitive cerebral hemispheres). These ultimately develop into the

retina, and other nervous parts of the eye.

4. The other secondary vesicles are developed in the rhombencephalon namely 3a and 3b

(see fig. below) developing into metencephalon and myelencephalon respectively.

5. Mesencephalon reduces to form a narrow commissure known as cerebral aqueduct (see

fig. below).

Page 2: Nervous systems in vertebrates: T.Y.B.Sc. Sem VI Notes

Notes: Zoology- VI Semester, University of Mumbai, India

Prof. S. D. Rathod, B. N. Bandodkar College of Science, Thane -400605

The relationships between these early structures and the mature nervous system are summarized

in table-1 below.

Table-1: The Main Subdivisions of the Embryonic Central Nervous System and Mature Adult Forms

Three-vesicle stage Five-vesicle stage Major mature derivatives Related cavity

1. Forebrain

(prosencephalon)

1a. Telencephalon

(endbrain)

1. Cerebral cortex, basal ganglia,

hippocampal formation,

amygdala, olfactory bulb

Lateral ventricles

1b. Diencephalon 2. Thalamus, hypothalamus,

subthalamus, epithalamus, retina,

optic nerves and tracts

Third ventricle

2. Midbrain

(mesencephalon)

2. Mesencephalon

(midbrain)

3. Midbrain Cerebral aqueduct

3. Hindbrain

(rhombencephalon)

3a. Metencephalon

(afterbrain)

4. Pons and cerebellum Fourth ventricle

3b. Myelencephalon

(medullary brain)

5. Medulla Fourth ventricle

4. Caudal part of

neural tube

4. Caudal part of

neural tube

6. Spinal cord Central canal

The cavities of vertebrate brain:

1. The cavities of brain are referred as ventricles. There are four ventricles in vertebrate

brain namely 1. Olfactory ventricle. 2. Lateral ventricle. 3. Third ventricle. 4. Fourth

ventricle

2. The olfactory lobes carry cavities known as olfactory ventricles arising from the

anterior part of the cerebral hemispheres. These grow forward, and soon lose olfactory

ventricles.

Page 3: Nervous systems in vertebrates: T.Y.B.Sc. Sem VI Notes

Notes: Zoology- VI Semester, University of Mumbai, India

Prof. S. D. Rathod, B. N. Bandodkar College of Science, Thane -400605

3. The telencephalic vesicles become the cerebral hemispheres, and their cavities become

the paired lateral ventricles (lateral telocoeles) of the adult brain.

4. The third ventricle lies in the diencephalon (diocoele). Later in development the lateral

walls of the diencephalon become greatly thickened to form the thalami, thus reducing

the size and changing the shape of the diocoele, which is known in adult anatomy as the

third brain ventricle.

5. The fourth ventricle lies in metencephalon. The anterior part of the fourth ventricle is

known as metacoele and the posterior part as myelocoele.

Flexures of brain:

1. As the result of unequal growth of these different parts of brain, three flexures are formed

and the embryonic brain becomes bent on itself in a somewhat zigzag fashion; the two

earliest flexures are concave ventrally and are associated with corresponding flexures of

the whole head.

2. The first flexure appears in the region of the mid-brain, and is named the ventral

cephalic flexure. By means of it the fore-brain is bent in a ventral direction around the

anterior end of the notochord and fore-gut, with the result that the floor of the fore-brain

comes to lie almost parallel with that of the hind-brain. This flexure causes the mid-brain

to become, for a time, the most prominent part of the brain, since its dorsal surface

corresponds with the convexity of the curve.

3. The second bend appears at the junction of the hind-brain and medulla spinalis. This is

termed the cervical flexure, and increases from the third to the end of the fifth week,

when the hind-brain forms nearly a right angle with the medulla spinalis; after the fifth

week erection of the head takes place and the cervical flexure diminishes and disappears.

4. The third bend is named the pontine flexure, because it is found in the region of the

future pons Varoli.

Page 4: Nervous systems in vertebrates: T.Y.B.Sc. Sem VI Notes

Notes: Zoology- VI Semester, University of Mumbai, India

Prof. S. D. Rathod, B. N. Bandodkar College of Science, Thane -400605

5. Both the cervical and the pontine flexures eventually straighten out, but the cephalic

flexure remains prominent throughout development.

Evolution of cerebral hemispheres & cerebellum with reference to shark, frog, lizard,

pigeon & rabbit:

1. Telencephalon, called lamina terminalis and the roof of the cerebrum is called cortex or

pallium. The telencephalon then appears to be composed of two divisions, the anterior of

which is subsequently developed into the cerebral hemispheres, corpora striata, and the

olfactory lobes. The hemispheres undergo enormous enlargement in their later development

and extend dorsally and posteriorly as well as anteriorly, eventually covering the entire

diencephalon and mesencephalon under their posterior lobes.

2. Posterior part of forebrain, the diencephalon, consisting of the thalamus and

hypothalamus, representing the anterior vesicle. The median evagination in the roof of the

diencephalon develops into epiphysis.

3. The mesencephalon becomes specialized as the optic lobes, visual centers associated with

the optic nerves. The dorsal and lateral walls of the mesencephalon later increase rapidly in

thickness and become the optic lobes (copora quadrigemina) of the adult brain. . It serves as

the main pathway of the fiber tracts which connect the cerebral hemispheres with the

posterior part of the brain and the spinal cord.

4. The hindbrain became divided into anterior metencephalon and posterior myelencephalon.

The metencephalon shows ventrally and laterally an extensive ingrowth of fiber tracts giving

rise to the pons and to the cerebellar peduncles of the adult metencephalon. The roof of the

metencephalon undergoes extensive enlargement and becomes the cerebellum of the adult

brain. The ventro-lateral wall of the cerebrum becomes thick and called corpus striatum.

Page 5: Nervous systems in vertebrates: T.Y.B.Sc. Sem VI Notes

Notes: Zoology- VI Semester, University of Mumbai, India

Prof. S. D. Rathod, B. N. Bandodkar College of Science, Thane -400605

The ventral and lateral walls of the myelencephalon become the floor and side-walls of the

medulla of the adult brain. The medulla becomes specialized as a control center for some

autonomic and somatic pathways concerned with vital functions (such as breathing, blood

pressure, and heartbeat). The dorsal wall of myelencephalon is thin and receives rich blood

vessels thus forming posterior choroid plexus. The pons is above the medulla and also acts as

a connecting tract. The cerebellum enlarged and became a structure concerned with balance,

equilibrium, and muscular coordination.

Part II: Comparative anatomy of brain in vertebrates:

Brain of all vertebrates, from fish to man, is built in accordance with the same architectural plan.

However, form of brain differs in different vertebrates in accordance with the habits and

behavior of the animals.

1. Elasmobranches:

Olfactory lobes are correspondingly large.

Optic lobes and pallium are relatively moderate in size.

Saccus vasculosus, thin-walled vascular sensory organ, is attached to pituitary and

connected with cerebellum.

Pineal apparatus is well-developed.

Cerebellum is especially large due to active swimming habit.

Ruffle-like restiform bodies are present.

2. Amphibians:

Olfactory lobes are smaller than optic lobes.

Corpus striatum receives greater number of sensory fibres.

Cerebral hemispheres are more developed than in fishes.

Page 6: Nervous systems in vertebrates: T.Y.B.Sc. Sem VI Notes

Notes: Zoology- VI Semester, University of Mumbai, India

Prof. S. D. Rathod, B. N. Bandodkar College of Science, Thane -400605

Less-developed cerebellum.

Medulla is also small.

Pineal body is small.

3. Reptilians:

Telencephalon becomes the largest region of brain.

Olfactory lobes are larger than in amphibians.

A pair of auditory lobes is found posterior to optic lobes.

The third ventricle is reduced to a narrow cerebral aqueduct.

Cerebellum is somewhat pear-shaped and larger than in amphibians.

Modern reptiles show a great development in the basal parts of the forebrain. There are large

numbers of nervous connections between the thalamus and the hemispheres. The latter are

larger than the optic lobes, showing the increased importance of the former. The walls of the

thalamus are very thick and many of the optic nerve paths end there as well as many in the

midbrain.

4. Birds:

Brain is proportionately larger than that of a reptile.

Olfactory lobes are small.

Two cerebral hemispheres are larger, smooth and projected posteriorly over the

diencephalon to meet the cerebellum.

Pallium is thin but corpus striatum is greatly enlarged.

Optic lobes are conspicuously developed.

The cerebellum is greatly enlarged with several superficial folds.

5. Mammals:

Brain is proportionately larger than in other vertebrates.

Cerebral hemispheres of Prototheria, Metatheria & Eutheria are smaller & smooth, larger

& smooth, greatly enlarged & divided into lobes respectively.

The two hemispheres are jointed internally by transverse band-like fibres called corpus

callosum.

Olfactory lobes are relatively small but well defined.

Four almost solid optic lobes are present.

The mammalian brain is completely dominated by the cerebral hemispheres. The roof has

developed enormously and spread out forming the cerebral cortex which in humans is thrown

into a number of elaborate folds and almost covers the rest of the brain. The cortex is made up

millions of cells. The more folded the surface, the more cells it can contain. These cells make up

the gray matter. Their axons, which make up the tracts or pathways in the brain, form the white

Page 7: Nervous systems in vertebrates: T.Y.B.Sc. Sem VI Notes

Notes: Zoology- VI Semester, University of Mumbai, India

Prof. S. D. Rathod, B. N. Bandodkar College of Science, Thane -400605

matter underneath the cortex. The white matter of the spinal cord is also made up of nerve axons,

surrounding the central gray matter.

Conclusion: Discussing the evolution of brain in these vertebrate groups, it is clear that they are

originated from a common ancestral stock. Their general plan of brain supports this.

Prepared by

Mr. S. D. Rathod

Associate Professor

Department of Zoology

B. N. Bandodkar College of Science, Thane