Multiscale data assimilation on 2D boundary fluxes of biological aerosols Yu Zou 1 Roger Ghanem 2 1...

20
Multiscale data assimilation on 2D boundary fluxes of biological aerosols Yu Zou 1 Roger Ghanem 2 1 Department of Chemical Engineering and PACM, Princeton University 2 Department of Civil Engineering, USC WCCM VII, LA July 16-22, 2006

Transcript of Multiscale data assimilation on 2D boundary fluxes of biological aerosols Yu Zou 1 Roger Ghanem 2 1...

Page 1: Multiscale data assimilation on 2D boundary fluxes of biological aerosols Yu Zou 1 Roger Ghanem 2 1 Department of Chemical Engineering and PACM, Princeton.

Multiscale data assimilationon 2D boundary fluxes of biological aerosols

Yu Zou1 Roger Ghanem2

1 Department of Chemical Engineering and PACM, Princeton University2 Department of Civil Engineering, USC

WCCM VII, LAJuly 16-22, 2006

Page 2: Multiscale data assimilation on 2D boundary fluxes of biological aerosols Yu Zou 1 Roger Ghanem 2 1 Department of Chemical Engineering and PACM, Princeton.

• Introduction

• Ensemble Kalman filter

• Method of extended state

• Estimation on boundary particle fluxes

• Conclusions and remarks

OutlineOutline

Page 3: Multiscale data assimilation on 2D boundary fluxes of biological aerosols Yu Zou 1 Roger Ghanem 2 1 Department of Chemical Engineering and PACM, Princeton.

IntroductionIntroduction• JHU Biocomplexity Project

Page 4: Multiscale data assimilation on 2D boundary fluxes of biological aerosols Yu Zou 1 Roger Ghanem 2 1 Department of Chemical Engineering and PACM, Princeton.

IntroductionIntroduction• Experimental site

Page 5: Multiscale data assimilation on 2D boundary fluxes of biological aerosols Yu Zou 1 Roger Ghanem 2 1 Department of Chemical Engineering and PACM, Princeton.

IntroductionIntroduction

• Importance of multiscale data assimilation

Microscale quantities: pollen fluxes near boundary

Macroscale quantities: total pollen counts away from boundary

Potential disturbance of canopy on microscale measurements

Use macroscale measurements to calibrate microscale quantities

Page 6: Multiscale data assimilation on 2D boundary fluxes of biological aerosols Yu Zou 1 Roger Ghanem 2 1 Department of Chemical Engineering and PACM, Princeton.

IntroductionIntroduction

• Sequential data assimilation methods

1. Standard Kalman filter (KF), Kalman 1960 Advantage: The updated state and error covariance can be directly computed. Disadvantage: Not valid for nonlinear systems; Not applicable to large systems.

2. Extended Kalman filter (EKF), Gelb 1974 Advantage: The updated state and error covariance can be directly computed. Disadvantage: Nonlinear models are required to be locally linearized. Not valid for strongly nonlinear systems; Not applicable to large systems.

3. Ensemble Kalman filter (EnKF), Evensen 1994 Advantage: Nonlinear models are not required to be locally linearized. Applicable to strongly nonlinear systems; Applicable to large systems.

• The EnKF is used for multiscale data assimilation due to its advantages over the other two Kalman filtering techniques.

Page 7: Multiscale data assimilation on 2D boundary fluxes of biological aerosols Yu Zou 1 Roger Ghanem 2 1 Department of Chemical Engineering and PACM, Princeton.

• Explicit discrete system model

• Observation model

• Forecast Predicted state

Predicated observation Updating Updated state the Kalman gain matrix the statistical members of observation

Ensemble Kalman filterEnsemble Kalman filter

nk)L( m ,mm 1k

llkk )H( m ,z ,vmz 1k 11

,...,Ne,r)L( krr 21 ,mm k|1k

,...,Ne,r)H( kkrr 21|1 ,mh k|1k

,...,Ne,r)( kkrr

krr 21|11 ,hzKmm 1kk|1k1k

11 )

vvhhmh CCCK (k

,...,Ne,rkr

kkr 21111 ,vzz

)L( kkk 0211k ,...,,, mmmmm

• The system model may be in the form of

Page 8: Multiscale data assimilation on 2D boundary fluxes of biological aerosols Yu Zou 1 Roger Ghanem 2 1 Department of Chemical Engineering and PACM, Princeton.

• Extended system model

• Extended observation model

• Microscale system model

• Macroscale system model

• Macroscale observation model

Multiscale data assimilation: Method of extended stateMultiscale data assimilation: Method of extended state

)(L kssks ,1, mm

1,11,111,1 kskssks )(H vmz

)(Fsksksksssks,ks 0,2,1,,

,...,,,,1,111 mmmmmm

)(L skskskssks 0,2,1,,,*

1, ,...,, MMMMM

1,11,1*

1,1 kskssks )(H *vMz

1,

1,11,

ks

ksks

m

mM 1,1k1,s ],[ ksM0Im

1,1ks, ][ ksMI0,m

• Extended state

Page 9: Multiscale data assimilation on 2D boundary fluxes of biological aerosols Yu Zou 1 Roger Ghanem 2 1 Department of Chemical Engineering and PACM, Princeton.

Estimation on boundary particle fluxesEstimation on boundary particle fluxesUpward bridging: a 3-dimensional wind velocity field modelUpward bridging: a 3-dimensional wind velocity field model

sr.v.'Gaussian standardt independen :

0251

031251

position at the ofdeviation standard :

length Obukhov :

051

0]370[320

0.4 constant, sKarman' von :

elocityfriction v :

ydiffusiviteddy turbulent:

,

timescaleLagrangian :

31

31

2

z,i

*z

/*z

izz

/-

*

*zL

L

, z/Lu.

, z/L))L

dz((u.

Zv

L

z/L(z-d)/L, φ

, z/L-(z-d)/L..φ

kk

u

K

/φkzuKK/σt

t

yyxx DvDv ,

step time:

)-(1 ),/exp(

particle theofposition rticalcurrent ve :

series timeessdimensionl a :

)()()()(

2/12

,

1,1

Δt

tt

Z

qz

ZZtqZZv

qq

L

i

i

Zz

ziziLiiziiz

izii

i

Horizontal velocity field

Vertical velocity field Wilson’s model (Wilson et al., 1981)

Model for motion of particles

tvZZ

tvYY

tvXX

izii

yii

xii

,1

1

1

Page 10: Multiscale data assimilation on 2D boundary fluxes of biological aerosols Yu Zou 1 Roger Ghanem 2 1 Department of Chemical Engineering and PACM, Princeton.

Estimation on boundary particle fluxes: Estimation on boundary particle fluxes: Model and numerical experiment set-upModel and numerical experiment set-up

Microscale quantity ms,k: particle number emitted from each cell at the top of the canopy per unit time

Macroscale quantity ms+1,k : total particle count crossing each cell at a height above the canopy top

Page 11: Multiscale data assimilation on 2D boundary fluxes of biological aerosols Yu Zou 1 Roger Ghanem 2 1 Department of Chemical Engineering and PACM, Princeton.

Estimation on boundary particle fluxes: Estimation on boundary particle fluxes: Model and numerical experiment set-upModel and numerical experiment set-up

mns,k+1= mn

s,k

1, 1 1, 1 1, 1( ) ( ) ( )

1,2,3,4

z m vi

s k s k s k

j z

i j i

i

• Microscale system model

)(L kssks ,1, mm

1,11,111,1 kskssks )(H vmz)(Fsksksksssks,ks 0,2,1,,

,...,,,,1,111 mmmmmm

Macroscale measurement: Measuring particle numbers crossing four macroscale cells

Numerical upward bridging Fs+1,s

1. Nominal particle numbers mns,k+1 are

converted to actual numbers mas,k+1

2. Actual number of particles are emitted from the center of each cell 3. Particles are driven by the velocity field 4. Total particle numbers crossing cells at a height above the boundary are counted

• Macroscale system model • Macroscale observation modelInfluence of weather conditions on particle numbersemitted from a forest (Kawashima et al., 1995)

24

1 11

24

1 11

1 1

, 1 , 1

( ) /(24 ) : ( )

( ) /(24 ), : ( / )

,

m m

N

j ik kj

N

j ik kj

k k

a ns k s k

T T T N T hourly air temperature C

W W W N W hourly wind speed m s

P a T b W c

P

Page 12: Multiscale data assimilation on 2D boundary fluxes of biological aerosols Yu Zou 1 Roger Ghanem 2 1 Department of Chemical Engineering and PACM, Princeton.

Estimation on boundary particle fluxes: Numerical resultsEstimation on boundary particle fluxes: Numerical results

Otherwise 0,

11 and 11 ,/25),(

11112 mξm-mξm-smS

y-

x-

yx

• True microscale particle numbers: ms,k

true,n=60sec-1, D=0.3m/s • A priori guess for assimilation Estimate: 30sec-1

Error spectral density:

Estimates: t=0 Variances: t=0

Microscale particle numbers

31.0

30.5

30.0

29.5

29.0

120

115

110

105

10095

90

85

80

Page 13: Multiscale data assimilation on 2D boundary fluxes of biological aerosols Yu Zou 1 Roger Ghanem 2 1 Department of Chemical Engineering and PACM, Princeton.

Estimates: t=10Δt Variances: t=10Δt

Microscale particle numbers

Estimation on boundary particle fluxes: Numerical resultsEstimation on boundary particle fluxes: Numerical results

60

50

40

30

20

90

80

70

60

50

40

30

20

Page 14: Multiscale data assimilation on 2D boundary fluxes of biological aerosols Yu Zou 1 Roger Ghanem 2 1 Department of Chemical Engineering and PACM, Princeton.

Estimation on boundary particle fluxes: Numerical resultsEstimation on boundary particle fluxes: Numerical results

Estimates: t=20Δt Variances: t=20Δt

Microscale particle numbers

70

60

50

40

30

20

10

70

60

50

40

30

20

10

Page 15: Multiscale data assimilation on 2D boundary fluxes of biological aerosols Yu Zou 1 Roger Ghanem 2 1 Department of Chemical Engineering and PACM, Princeton.

Estimation on boundary particle fluxes: Numerical resultsEstimation on boundary particle fluxes: Numerical results

Estimates: t=29Δt Variances: t=29Δt

Microscale particle numbers

70

60

50

40

30

20

10

60

50

40

30

20

10

Page 16: Multiscale data assimilation on 2D boundary fluxes of biological aerosols Yu Zou 1 Roger Ghanem 2 1 Department of Chemical Engineering and PACM, Princeton.

Estimation on boundary particle fluxes: Numerical resultsEstimation on boundary particle fluxes: Numerical results

Covariance: t=0

Microscale particle numbers

80

60

40

20

0

-20

-40

Page 17: Multiscale data assimilation on 2D boundary fluxes of biological aerosols Yu Zou 1 Roger Ghanem 2 1 Department of Chemical Engineering and PACM, Princeton.

Estimation on boundary particle fluxes: Numerical resultsEstimation on boundary particle fluxes: Numerical results

Covariance: t=10Δt

Microscale particle numbers

60

50

40

30

0

-10

-20

20

10

Page 18: Multiscale data assimilation on 2D boundary fluxes of biological aerosols Yu Zou 1 Roger Ghanem 2 1 Department of Chemical Engineering and PACM, Princeton.

Estimation on boundary particle fluxes: Numerical resultsEstimation on boundary particle fluxes: Numerical results

Covariance: t=20Δt

Microscale particle numbers

50

40

30

0

-10

20

10

Page 19: Multiscale data assimilation on 2D boundary fluxes of biological aerosols Yu Zou 1 Roger Ghanem 2 1 Department of Chemical Engineering and PACM, Princeton.

Estimation on boundary particle fluxes: Numerical resultsEstimation on boundary particle fluxes: Numerical results

Covariance: t=29Δt

Microscale particle numbers

35

30

25

5

0

20

15

10

-5

-10

Page 20: Multiscale data assimilation on 2D boundary fluxes of biological aerosols Yu Zou 1 Roger Ghanem 2 1 Department of Chemical Engineering and PACM, Princeton.

Conclusions and remarksConclusions and remarks

• A priori microscale information and a correct microscale model are needed for this approach to be implemented.

• The approach may be applied to more realistic problems and coupled with other upward bridging models for wind velocity field.

AcknowledgementsAcknowledgements

• NSF• JHU Biocomplexity research group