MR Image Formation

42
FMRI – Week 3 – Image Formation Scott Huettel, Duke University MR Image Formation FMRI Graduate Course (NBIO 381, PSY 362) Dr. Scott Huettel, Course Director

description

MR Image Formation. FMRI Graduate Course (NBIO 381, PSY 362) Dr. Scott Huettel, Course Director. Introductory Exercise. Write down the major steps involved in the generation of MR signal Just write an outline, not an essay Note what scanner component contributes to each step. - PowerPoint PPT Presentation

Transcript of MR Image Formation

Page 1: MR Image Formation

FMRI – Week 3 – Image Formation Scott Huettel, Duke University

MR Image Formation

FMRI Graduate Course (NBIO 381, PSY 362)

Dr. Scott Huettel, Course Director

Page 2: MR Image Formation

FMRI – Week 3 – Image Formation Scott Huettel, Duke University

Introductory Exercise

• Write down the major steps involved in the generation of MR signal– Just write an outline, not an essay– Note what scanner component

contributes to each step

Page 3: MR Image Formation

FMRI – Week 3 – Image Formation Scott Huettel, Duke University

Generation of MR Signal

Page 4: MR Image Formation

FMRI – Week 3 – Image Formation Scott Huettel, Duke University

T1 T2

Page 5: MR Image Formation

FMRI – Week 3 – Image Formation Scott Huettel, Duke University

Relaxation Times and Rates

• Net magnetization changes in an exponential fashion– Constant rate (R) for a given tissue type in a given magnetic field– R = 1/T, leading to equations like e–Rt

• T1 (recovery): Relaxation of M back to alignment with B0

– Usually 500-1000 ms in the brain (lengthens with bigger B0)

• T2 (decay): Loss of transverse magnetization over a microscopic region ( 5-10 micron size)– Usually 50-100 ms in the brain (shortens with bigger B0)

• T2*: Overall decay of the observable RF signal over a macroscopic region (millimeter size)– Usually about half of T2 in the brain (i.e., faster relaxation)

Page 6: MR Image Formation

FMRI – Week 3 – Image Formation Scott Huettel, Duke University

T1 Recovery

Page 7: MR Image Formation

FMRI – Week 3 – Image Formation Scott Huettel, Duke University

T2 Decay

Page 8: MR Image Formation

FMRI – Week 3 – Image Formation Scott Huettel, Duke University

T1 and T2 parameters

By selecting appropriate pulse sequence parameters (Week 4’s

lecture), images can be made sensitive to tissue differences in

T1, T2, or a combination.

Page 9: MR Image Formation

FMRI – Week 3 – Image Formation Scott Huettel, Duke University

II

Page 10: MR Image Formation

FMRI – Week 3 – Image Formation Scott Huettel, Duke University

02Bv

Page 11: MR Image Formation

FMRI – Week 3 – Image Formation Scott Huettel, Duke University

Gradients change the Strength, not Direction of the Magnetic

Field

Page 12: MR Image Formation

FMRI – Week 3 – Image Formation Scott Huettel, Duke University

Parts of 2D Image Formation

• Slice selection– Linear z-gradient– Tailored excitation pulse

• Spatial encoding within the slice– Frequency encoding– Phase encoding

Page 13: MR Image Formation

FMRI – Week 3 – Image Formation Scott Huettel, Duke University

Slice Selection

Page 14: MR Image Formation

FMRI – Week 3 – Image Formation Scott Huettel, Duke University

Page 15: MR Image Formation

FMRI – Week 3 – Image Formation Scott Huettel, Duke University

Linear z-gradient

Page 16: MR Image Formation

FMRI – Week 3 – Image Formation Scott Huettel, Duke University

Why can’t we just use an excitation pulse of a single

frequency?

Page 17: MR Image Formation

FMRI – Week 3 – Image Formation Scott Huettel, Duke University

Selecting a Band of Frequencies

Page 18: MR Image Formation

FMRI – Week 3 – Image Formation Scott Huettel, Duke University

Choosing a Slice

Page 19: MR Image Formation

FMRI – Week 3 – Image Formation Scott Huettel, Duke University

Changing Slice Thickness

Page 20: MR Image Formation

FMRI – Week 3 – Image Formation Scott Huettel, Duke University

Changing Slice Location

(Note: manipulating gradient is simpler than changing slice

bandwidth.)

Page 21: MR Image Formation

FMRI – Week 3 – Image Formation Scott Huettel, Duke University

Interleaved Slice Acquisition

1

2

3

12

13

Page 22: MR Image Formation

FMRI – Week 3 – Image Formation Scott Huettel, Duke University

Page 23: MR Image Formation

FMRI – Week 3 – Image Formation Scott Huettel, Duke University

Spatial Encoding

Page 24: MR Image Formation

FMRI – Week 3 – Image Formation Scott Huettel, Duke University

How not to do spatial encoding…

Page 25: MR Image Formation

FMRI – Week 3 – Image Formation Scott Huettel, Duke University

… a better approach

Page 26: MR Image Formation

FMRI – Week 3 – Image Formation Scott Huettel, Duke University

Temporal Signal = Combination of

Frequencies

Page 27: MR Image Formation

FMRI – Week 3 – Image Formation Scott Huettel, Duke University

Effects of Gradients on Phase

Page 28: MR Image Formation

FMRI – Week 3 – Image Formation Scott Huettel, Duke University

Core Concept:k-space coordinate = Integral of Gradient Waveform

Page 29: MR Image Formation

FMRI – Week 3 – Image Formation Scott Huettel, Duke University

Fourier TransformFourier Transform

k-spacek-space

kkxx

kkyy

Acquired DataAcquired Data

Image spaceImage space

xx

yy

Final ImageFinal Image

Inverse Fourier Inverse Fourier TransformTransform

Page 30: MR Image Formation

FMRI – Week 3 – Image Formation Scott Huettel, Duke University

Spatial Image = Combination of Spatial

Frequencies

Page 31: MR Image Formation

FMRI – Week 3 – Image Formation Scott Huettel, Duke University

k Space

Page 32: MR Image Formation

FMRI – Week 3 – Image Formation Scott Huettel, Duke University

Image space and k space

Page 33: MR Image Formation

FMRI – Week 3 – Image Formation Scott Huettel, Duke University

Parts of k space

Page 34: MR Image Formation

FMRI – Week 3 – Image Formation Scott Huettel, Duke University

So, we know that two gradients are necessary for encoding

information in a two-dimensional image?

What would happen if we turned on both gradients simultaneously?

Page 35: MR Image Formation

FMRI – Week 3 – Image Formation Scott Huettel, Duke University

• During readout (or data acquisition, DAQ)• Uses gradient perpendicular to slice-selection gradient• Signal is sampled & digitized about once every few microseconds

– Readout window ranges from 5–100 milliseconds– Why not longer than this?

• Fourier transform converts signal S(t) into frequency components S(f )

Frequency Encoding

Page 36: MR Image Formation

FMRI – Week 3 – Image Formation Scott Huettel, Duke University

• Apply a gradient perpendicular to both slice and frequency gradients• The phase of Mxy (its angle in the xy-plane) signal depends on that

gradient• Fourier transform measures phase of each S(f) component of S(t)• By collecting data with many different amounts of phase encoding

strength, we can assign each S(f) to spatial locations in 3D

Phase Encoding

Page 37: MR Image Formation

FMRI – Week 3 – Image Formation Scott Huettel, Duke University

Page 38: MR Image Formation

FMRI – Week 3 – Image Formation Scott Huettel, Duke University

Echo-Planar Imaging (EPI)

Page 39: MR Image Formation

FMRI – Week 3 – Image Formation Scott Huettel, Duke University

. . . . . . . . . .. . . . . . . . . .. . . . . . . . . .. . . . . . . . . .

. . . . . . . . . .. . . . . . . . . .. . . . . . . . . .. . . . . . . . . .. . . . . . . . . .. . . . . . . . . .. . . . . . . . . .. . . . . . . . . .. . . . . . . . . .. . . . . . . . . .. . . . . . . . . .. . . . . . . . . .. . . . . . . . . .. . . . . . . . . .. . . . . . . . . .. . . . . . . . . .

. . . . . . . . . .. . . . . . . . . .. . . . . . . . . .. . . . . . . . . .

. . . . . . . . . .. . . . . . . . . .. . . . . . . . . .. . . . . . . . . .. . . . . . . . . .. . . . . . . . . .. . . . . . . . . .. . . . . . . . . .. . . . . . . . . .. . . . . . . . . .. . . . . . . . . .. . . . . . . . . .. . . . . . . . . .. . . . . . . . . .. . . . . . . . . .. . . . . . . . . .

. . . . .. . . . .. . . . .. . . . .. . . . .. . . . .. . . . .. . . . .. . . . .. . . . .

. . . . .. . . . .. . . . .. . . . .. . . . .. . . . .. . . . .. . . . .. . . . .. . . . .

. . . . .. . . . .

. . . . .. . . . .

. . . . .. . . . .

. . . . .. . . . .

. . . . .. . . . .

. . . . .. . . . .

. . . . .. . . . .

. . . . .. . . . .

. . . . .. . . . .

. . . . .. . . . .

FOV = 1/k, x = 1/K

FOV

k

K

Sampling in k-space

Page 40: MR Image Formation

FMRI – Week 3 – Image Formation Scott Huettel, Duke University

Problems in Image Formation

Page 41: MR Image Formation

FMRI – Week 3 – Image Formation Scott Huettel, Duke University

Magnetic Field Inhomogeneity

Page 42: MR Image Formation

FMRI – Week 3 – Image Formation Scott Huettel, Duke University

Gradient Problems