Motion Planning Technologies & Human‐Robot Interaction · approximately $50K+ (ABB, Kuka,...

54
Motion Planning Technologies & Human‐Robot Interaction Dinesh Manocha Department of Computer Science University of North Carolina at Chapel Hill [email protected] http://gamma.cs.unc.edu 1

Transcript of Motion Planning Technologies & Human‐Robot Interaction · approximately $50K+ (ABB, Kuka,...

Page 1: Motion Planning Technologies & Human‐Robot Interaction · approximately $50K+ (ABB, Kuka, Yaskawa, Fanuc, etc.) • Over the last few years this cost has come down to approximately

MotionPlanningTechnologies&Human‐RobotInteraction

Dinesh ManochaDepartment of Computer Science

University of North Carolina at Chapel Hill

[email protected]://gamma.cs.unc.edu

1

Page 2: Motion Planning Technologies & Human‐Robot Interaction · approximately $50K+ (ABB, Kuka, Yaskawa, Fanuc, etc.) • Over the last few years this cost has come down to approximately

MotionPlanningTechnologies&Human‐RobotInteraction

Dinesh ManochaDepartment of Computer Science

Department of Electrical & Computer EngineeringUniversity of Maryland at College Park (Spring 2018)

[email protected]

2

Page 3: Motion Planning Technologies & Human‐Robot Interaction · approximately $50K+ (ABB, Kuka, Yaskawa, Fanuc, etc.) • Over the last few years this cost has come down to approximately

Robotics Collaborators• Mohit Bansal (UNC) • Andrew Best (UNC)• Sachin Chitta (Willow Garage/SRI)• Biao Jia (UNC)• Sahil Narang (UNC)• Jia Pan (UNC/Berkeley/CityU)• Jean Paul Laumond (LAAS)• Chonhyon Park (Zoox)• Jae Sun Park (UNC)• Zherong Park (UNC)• Jamie Snape (UNC/Kitware)• Fabian Rabe, Shashank Sharma, Christian Scheurer, Uwe Zimmerman (KUKA)• Dorabot (Shenzhen)

Page 4: Motion Planning Technologies & Human‐Robot Interaction · approximately $50K+ (ABB, Kuka, Yaskawa, Fanuc, etc.) • Over the last few years this cost has come down to approximately

Robotics

• Has been around for almost 50 years

• Major success has been in industrial applications: welding, painting, few assembly tasks

• Simple, limited use

• Medical robotics: useful for certain procedures

• Recent trend on consumer robotics

Page 5: Motion Planning Technologies & Human‐Robot Interaction · approximately $50K+ (ABB, Kuka, Yaskawa, Fanuc, etc.) • Over the last few years this cost has come down to approximately

RobotEraisComing!

HRP4C humanoid da vinci

Snake robot

Swarm robots

MEMS bugsBig dog

Page 6: Motion Planning Technologies & Human‐Robot Interaction · approximately $50K+ (ABB, Kuka, Yaskawa, Fanuc, etc.) • Over the last few years this cost has come down to approximately

Robotics: Recent trends

• Autonomous vehicles (Google, Tesla, Uber, Baidu, GM, Ford, SAIC, etc.)

• Warehouse logistics (Amazon, Alibaba, JD.com, etc.)

• Large scale production (Foxconn, etc.)

• Service and social robots (Aldebaran, Sony, Midea, Facebook, Google, etc.)

• Consumer applications (startups)

Page 7: Motion Planning Technologies & Human‐Robot Interaction · approximately $50K+ (ABB, Kuka, Yaskawa, Fanuc, etc.) • Over the last few years this cost has come down to approximately

Robotics & Manufacturing

• Robots have been used for manufacturing and industrial applications since 1970s

• Worldwide robotics spending was $71billion in 2015

• Robotic sales increasing at 17%; expected to be $135 billion in 2019

• Manufacturing sector purchasing hardware + services

Page 8: Motion Planning Technologies & Human‐Robot Interaction · approximately $50K+ (ABB, Kuka, Yaskawa, Fanuc, etc.) • Over the last few years this cost has come down to approximately

Growth in China: 2005-2014

The Chinese suppliers are providing a larger share of robots

Page 9: Motion Planning Technologies & Human‐Robot Interaction · approximately $50K+ (ABB, Kuka, Yaskawa, Fanuc, etc.) • Over the last few years this cost has come down to approximately

RobotsinChinavs.Others

China has been the largest market over the last few years!

Page 10: Motion Planning Technologies & Human‐Robot Interaction · approximately $50K+ (ABB, Kuka, Yaskawa, Fanuc, etc.) • Over the last few years this cost has come down to approximately

Industrial Robot Costs

• Few years ago entry level industrial robot cost was approximately $50K+ (ABB, Kuka, Yaskawa, Fanuc, etc.)

• Over the last few years this cost has come down to approximately $25K (Baxter, Universal)

• Several Chinese manufacturers have stated that they need $5K industrial robots

• $5K appears to be realistic target if the sales volume is high─ Electronic manufacturing is a driving factor─ Sophisticated household appliances cost less than $5K─ An Indian company is able to sell cars for less than $3K

Page 11: Motion Planning Technologies & Human‐Robot Interaction · approximately $50K+ (ABB, Kuka, Yaskawa, Fanuc, etc.) • Over the last few years this cost has come down to approximately

HardwareAloneisNottheSolution

• In 2011, founder Terry Guo predicted that by 2014 Foxconn would install 1M robots

• However, only tens of thousands robots have been installed on assembly lines by 2016

• Foxconn found automation ineffective for assembly lines where people are better than robots?

Page 12: Motion Planning Technologies & Human‐Robot Interaction · approximately $50K+ (ABB, Kuka, Yaskawa, Fanuc, etc.) • Over the last few years this cost has come down to approximately

RobotsatFoxconn

Page 13: Motion Planning Technologies & Human‐Robot Interaction · approximately $50K+ (ABB, Kuka, Yaskawa, Fanuc, etc.) • Over the last few years this cost has come down to approximately

HardwareAloneisNottheSolution

• We need to pay more attention to software and algorithmic solutions

• Exploit recent growth in computer vision, machine learning, and parallel computing

• Robots need to work next to humans

High performance and impact can only be achieved by a combination of hardware and software + interfaces

Page 14: Motion Planning Technologies & Human‐Robot Interaction · approximately $50K+ (ABB, Kuka, Yaskawa, Fanuc, etc.) • Over the last few years this cost has come down to approximately

Challenge:Human‐RobotInteraction

Page 15: Motion Planning Technologies & Human‐Robot Interaction · approximately $50K+ (ABB, Kuka, Yaskawa, Fanuc, etc.) • Over the last few years this cost has come down to approximately

AutonomousDriving• 1.2 billion vehicles on the roads today

• 84 million new vehicles in 2015• China: 24m          U.S.:   2.7m• India:   3.7m          S.E Asia: 3.8m

15New Delhi Bangkok

Page 16: Motion Planning Technologies & Human‐Robot Interaction · approximately $50K+ (ABB, Kuka, Yaskawa, Fanuc, etc.) • Over the last few years this cost has come down to approximately

AutonomousDriving• 1.2 billion vehicles on the roads today

• 84 million new vehicles in 2015• China: 24m          U.S.:   2.7m• India:   3.7m          S.E Asia: 3.8m

• Autonomous vehicles in Challenging Conditions

16New Delhi Bangkok

Page 17: Motion Planning Technologies & Human‐Robot Interaction · approximately $50K+ (ABB, Kuka, Yaskawa, Fanuc, etc.) • Over the last few years this cost has come down to approximately

Vehicle‐HumanInteractions• It will deal with situations like these

17

Page 18: Motion Planning Technologies & Human‐Robot Interaction · approximately $50K+ (ABB, Kuka, Yaskawa, Fanuc, etc.) • Over the last few years this cost has come down to approximately

Vehicle‐HumanInteractions• It will deal with situations like these

18

Page 19: Motion Planning Technologies & Human‐Robot Interaction · approximately $50K+ (ABB, Kuka, Yaskawa, Fanuc, etc.) • Over the last few years this cost has come down to approximately

Vehicle‐HumanInteractions• Ultimate Challenge

19

Page 20: Motion Planning Technologies & Human‐Robot Interaction · approximately $50K+ (ABB, Kuka, Yaskawa, Fanuc, etc.) • Over the last few years this cost has come down to approximately

RobotSystem:Abstraction

• F:    Feedforward• C:   Control• A:    Actuator• S:    Sensor• S+:   Sensor post‐processing

F C A

S

desired task

S+

desired trajectory movementF

planning and trajectory generation

Page 21: Motion Planning Technologies & Human‐Robot Interaction · approximately $50K+ (ABB, Kuka, Yaskawa, Fanuc, etc.) • Over the last few years this cost has come down to approximately

RobotMotionPlanning• Given initial setting A of the robot, find a valid or optimal trajectory for the robot to reach goal B

• Collision‐free• Other constraints (balance)• Optimal criteria (shortest path, min‐time ...)

Initial A

Goal B

Page 22: Motion Planning Technologies & Human‐Robot Interaction · approximately $50K+ (ABB, Kuka, Yaskawa, Fanuc, etc.) • Over the last few years this cost has come down to approximately

Motion Planning

• Widely studied in academic for 40+ years

• Good algorithms and software tools

• Technology transfer (CAD/CAM, games, simulation)• Synthetic environments

• Limited use for industrial or service or entertainment robots

• Challenges for human‐robot systems

Page 23: Motion Planning Technologies & Human‐Robot Interaction · approximately $50K+ (ABB, Kuka, Yaskawa, Fanuc, etc.) • Over the last few years this cost has come down to approximately

Motion Planning: Physical World

The real world is not so niceas virtual reality!

The perceived world!

• Robots use sensors such as cameras, Lidar, tactile, which provide only partial  information about the physical world

• Sensor and actuator error; real‐time data processing

Page 24: Motion Planning Technologies & Human‐Robot Interaction · approximately $50K+ (ABB, Kuka, Yaskawa, Fanuc, etc.) • Over the last few years this cost has come down to approximately

Collision & Proximity Queries

Geometric reasoning of spatial relationships among objects (in a dynamic environment)

d

Closest Points & Separation Distance

d

Penetration Depth

Collision Detection Contact Points & Normals

Page 25: Motion Planning Technologies & Human‐Robot Interaction · approximately $50K+ (ABB, Kuka, Yaskawa, Fanuc, etc.) • Over the last few years this cost has come down to approximately

Our Prior work: Proximity Computations

Multiple software systems• I‐Collide, RAPID, PQP, DEEP, SWIFT, SWIFT++, DeformCD, PIVOT, Self‐CCD, RVO, HRVO

http://gamma.cs.unc.edu/software/#collision

• More than 150,000 downloads from 1995 onwards

• Issued more than 55 commercial licenses (Kawasaki, MSC Software, Ford, Honda, Sensable, Siemens, BMW, Phillips, Intel, Boeing, etc.)

Page 26: Motion Planning Technologies & Human‐Robot Interaction · approximately $50K+ (ABB, Kuka, Yaskawa, Fanuc, etc.) • Over the last few years this cost has come down to approximately

RobotSensors:DataCollection

Cameras

Page 27: Motion Planning Technologies & Human‐Robot Interaction · approximately $50K+ (ABB, Kuka, Yaskawa, Fanuc, etc.) • Over the last few years this cost has come down to approximately

HandlingSensorData

• Human environments• Clutter, dynamic obstacles

• Data from 3D sensors• Large number of points (~10k for laser scans, ~20k for stereo)

• Real‐time computation important for fast online reactive grasping, motion planning

Page 28: Motion Planning Technologies & Human‐Robot Interaction · approximately $50K+ (ABB, Kuka, Yaskawa, Fanuc, etc.) • Over the last few years this cost has come down to approximately

FCL:NoisyPointCloudData[UNC&WillowGarage2013]

Rigid Objects Point Clouds Deformable Objects

ArticulatedObjects

(Discrete)Collision Detection

Y Y Y Y

Continuous Collision Detection

Y Y Y Y

Self Collision Detection

Y Y Y Y

PenetrationEstimation

Y N N N

Distance Computation

Y N Y Y

Broad‐phaseCollision

Y Y Y Y

Page 29: Motion Planning Technologies & Human‐Robot Interaction · approximately $50K+ (ABB, Kuka, Yaskawa, Fanuc, etc.) • Over the last few years this cost has come down to approximately

FCL:Usage• Independent code, but ROS interface is provided

• Available at http://gamma.cs.unc.edu/FCL

• Part of MoveIt: http://moveit.ros.org/wiki/MoveIt!

Page 30: Motion Planning Technologies & Human‐Robot Interaction · approximately $50K+ (ABB, Kuka, Yaskawa, Fanuc, etc.) • Over the last few years this cost has come down to approximately

FCLApplication:OptimalInverseKinematicsforPathPlanning(SWRI)

Page 31: Motion Planning Technologies & Human‐Robot Interaction · approximately $50K+ (ABB, Kuka, Yaskawa, Fanuc, etc.) • Over the last few years this cost has come down to approximately

TaskExecutionsofRobots• Advances in technology allow robots to perform complex tasks

<PR2: fetching a beer from the fridge> <Baxter: $22k robot needs no programming>

Page 32: Motion Planning Technologies & Human‐Robot Interaction · approximately $50K+ (ABB, Kuka, Yaskawa, Fanuc, etc.) • Over the last few years this cost has come down to approximately

TaskExecutionwithMultipleComponents

• A task is decomposed into many primitive subtasks

<PR2: taking out a drink from the fridge>

(From Willow Garage)

1. Move the body to the fridge.2. Move the left arm to the handle.3. Move the body to open the fridge door.4. Move the body to in front of the fridge.5. Move the left arm to hold the door.6. Move the right arm to the beer.7. Grasp the bottle.8. Move the right arm to the basket.9. Release the bottle.

1. Move the body to the fridge.2. Move the left arm to the handle.3. Move the body to open the fridge door.4. Move the body to in front of the fridge.5. Move the left arm to hold the door.6. Move the right arm to the beer.7. Grasp the bottle.8. Move the right arm to the basket.9. Release the bottle .

Most of the subtasks are moving the robot to the next desired pose

Page 33: Motion Planning Technologies & Human‐Robot Interaction · approximately $50K+ (ABB, Kuka, Yaskawa, Fanuc, etc.) • Over the last few years this cost has come down to approximately

SubtaskExecution• ‘Move the body to the fridge’ subtask

• Use sensors to recognize the objects and obstacles in the environment

• Compute a collision‐free path to the pose close to the fridge

• Control motors to execute the computed motion

Page 34: Motion Planning Technologies & Human‐Robot Interaction · approximately $50K+ (ABB, Kuka, Yaskawa, Fanuc, etc.) • Over the last few years this cost has come down to approximately

RobotPlanning:Challenges• How to perform motion planning computation in realtime?• How to handle high DOF robots?• How to handle noisy sensor data?• How to enable human‐robot collaboration?

• Our solution using trajectory optimization http://gamma.cs.unc.edu/ITOMP/ITOMP_ROS

Page 35: Motion Planning Technologies & Human‐Robot Interaction · approximately $50K+ (ABB, Kuka, Yaskawa, Fanuc, etc.) • Over the last few years this cost has come down to approximately

OurWork

• Realtime Planning algorithm for Robots

• End‐effector task constraints• Smooth trajectory• Avoid singularities• Dynamic obstacles• Adapt to human actions• Parallel trajetory optimization using CPU and GPU cores

http://gamma.cs.unc.edu/ITOMP/ITOMP_ROS

Page 36: Motion Planning Technologies & Human‐Robot Interaction · approximately $50K+ (ABB, Kuka, Yaskawa, Fanuc, etc.) • Over the last few years this cost has come down to approximately

ParallelTrajectoryOptimization

• Parallel optimization of multiple trajectories• Use Multiple threads 

• Start from different initial trajectories• Trajectories are generated by quasi‐random sampling

• Exploits the multiple CPU cores (multi‐cores) or GPU‐based cores (many‐cores)

• Used for realtime Motion & Cartesian Planning

http://gamma.cs.unc.edu/ITOMP/ITOMP_ROS/

Page 37: Motion Planning Technologies & Human‐Robot Interaction · approximately $50K+ (ABB, Kuka, Yaskawa, Fanuc, etc.) • Over the last few years this cost has come down to approximately

DynamicObstaclesfromKinect

• Depthmap

37

Reconstructed Octomap

Page 38: Motion Planning Technologies & Human‐Robot Interaction · approximately $50K+ (ABB, Kuka, Yaskawa, Fanuc, etc.) • Over the last few years this cost has come down to approximately

MotionPlanningonKUKAManipulators

38

Page 39: Motion Planning Technologies & Human‐Robot Interaction · approximately $50K+ (ABB, Kuka, Yaskawa, Fanuc, etc.) • Over the last few years this cost has come down to approximately

DoraPicker:AmazonChallenge

39

Page 40: Motion Planning Technologies & Human‐Robot Interaction · approximately $50K+ (ABB, Kuka, Yaskawa, Fanuc, etc.) • Over the last few years this cost has come down to approximately

SafeMotionPlanningforHuman‐RobotInteraction

Page 41: Motion Planning Technologies & Human‐Robot Interaction · approximately $50K+ (ABB, Kuka, Yaskawa, Fanuc, etc.) • Over the last few years this cost has come down to approximately

Motivation:UncertainHumanMotions

• Co‐robots (or cobot)• Sharing workspace with human

• Human safety• Uncertain human motions

• Noisy representation ofhuman motion

• Need future motionprediction

• Need collision handlingwith noisy data

Page 42: Motion Planning Technologies & Human‐Robot Interaction · approximately $50K+ (ABB, Kuka, Yaskawa, Fanuc, etc.) • Over the last few years this cost has come down to approximately

Ourwork• Human motion prediction

• Action classification• Trajectory estimationand prediction

• Safe motion planning• Collision handling with noisy data

• Efficient task planning• Reduce task completion time• Delays when attempting to avoid collisions

Current Future

Page 43: Motion Planning Technologies & Human‐Robot Interaction · approximately $50K+ (ABB, Kuka, Yaskawa, Fanuc, etc.) • Over the last few years this cost has come down to approximately

Human‐RobotPlanner

Intention & MotionEstimation

EnvironmentRobot

Motion Planner

Taskplanner

Page 44: Motion Planning Technologies & Human‐Robot Interaction · approximately $50K+ (ABB, Kuka, Yaskawa, Fanuc, etc.) • Over the last few years this cost has come down to approximately

SafeMotionPlanningusingPrediction

44

Page 45: Motion Planning Technologies & Human‐Robot Interaction · approximately $50K+ (ABB, Kuka, Yaskawa, Fanuc, etc.) • Over the last few years this cost has come down to approximately

SafeMotionPlanningusingPrediction

45

Page 46: Motion Planning Technologies & Human‐Robot Interaction · approximately $50K+ (ABB, Kuka, Yaskawa, Fanuc, etc.) • Over the last few years this cost has come down to approximately

NaturalLanguageHuman‐RobotCommunication

46Handling complex attributes

Page 47: Motion Planning Technologies & Human‐Robot Interaction · approximately $50K+ (ABB, Kuka, Yaskawa, Fanuc, etc.) • Over the last few years this cost has come down to approximately

RobotsandCrowds• Goal: Get where you are going without running into anyone

• Challenges• Each other agent is an obstacle• Dynamic obstacles• Reactive• Complex landscape

• Distributed motion planning problem!

Multi-agent Planning 47

Page 48: Motion Planning Technologies & Human‐Robot Interaction · approximately $50K+ (ABB, Kuka, Yaskawa, Fanuc, etc.) • Over the last few years this cost has come down to approximately

Crowd Simulation & Prediction

Page 49: Motion Planning Technologies & Human‐Robot Interaction · approximately $50K+ (ABB, Kuka, Yaskawa, Fanuc, etc.) • Over the last few years this cost has come down to approximately

Trajectory Prediction: Multi-Agent Planning + Bayesian Learning

Page 50: Motion Planning Technologies & Human‐Robot Interaction · approximately $50K+ (ABB, Kuka, Yaskawa, Fanuc, etc.) • Over the last few years this cost has come down to approximately

Autonovi‐Sim:AutonomousDrivingSimulation

• 3 Modes in AutonoVi‐Sim• Manual• Basic Follower• AutonoVi navigation algorithm

50

Manual Drive Basic Follower AutonoVi

Page 51: Motion Planning Technologies & Human‐Robot Interaction · approximately $50K+ (ABB, Kuka, Yaskawa, Fanuc, etc.) • Over the last few years this cost has come down to approximately

Vehicle‐PedestrianInteractions• Vehicle accounts for pedestrians and comes to a stop

Page 52: Motion Planning Technologies & Human‐Robot Interaction · approximately $50K+ (ABB, Kuka, Yaskawa, Fanuc, etc.) • Over the last few years this cost has come down to approximately

Vehicle‐PedestrianInteractions• Modeling vehicle dynamics and pedestrian behaviors

Page 53: Motion Planning Technologies & Human‐Robot Interaction · approximately $50K+ (ABB, Kuka, Yaskawa, Fanuc, etc.) • Over the last few years this cost has come down to approximately

Vehicle‐BicycleInteractions

53

Page 54: Motion Planning Technologies & Human‐Robot Interaction · approximately $50K+ (ABB, Kuka, Yaskawa, Fanuc, etc.) • Over the last few years this cost has come down to approximately

Conclusions• The next challenge in robotics is to make them work with humans

• Builds on work in AI, computer vision, NLP, machine learning and simulation

• New Designs for Corobots: Robots working with humans

• Key technology for autonomous vehicles

• Need more investments in software and interfaces