Modern Methods for the Epoxidation of - and -Pinenes, 3-Carene...

59
Chemistry for Sustainable Development 16 (2008) 633691 633 Modern Methods for the Epoxidation of α- and β-Pinenes, 3-Carene and Limonene O. V. BAKHVALOV, V. V. FOMENKO a nd N. F. SALAKHUTDINOV Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Pr. Akademika Lavrentyeva 9, Novosibirsk 630090 (Russia) E-mail: [email protected] Abstract The present review is emphasized on chemical aspects of epoxidation, environmental safety of promising methods for processing such a renewable raw material as terpenes. Various epoxidizing systems are considered, first of all those allowing one to perform catalytic epoxidation of terpenes, as well as their prospective value for commercial introduction. The review has included the materials published within the period from 1988 to 2008. For the convenience of comparing various epoxidizing systems and of choosing optimum conditions for the process carrying out, all the data are listed to form common tables. Key words: terpen, epoxidation, green chemistry, renewable raw material, oxidation Contents Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 633 Some general laws for epoxidation of terpenes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 634 Mechanisms for the interaction of terpenes with epoxidizing agents. Features of some epoxidation processes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 635 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 687 INTRODUCTION The epoxidation of olefins represents a con- venient way to activate and fuction alize them [15] which quite often serves as the first stage of various kinds of industrial production [69]. A plenty of works, including a number of the reviews performed for the last decade [3, 1012] devoted to this process are available from the literature. The authors of the monograph [10] considered epoxidation of alkenes in a partic- ularly academic theoretical aspect wherein ter- penes were out of consideration. There are transformations discussed in this book those proceed under the influence of individual agents enriched with active oxygen on olefins, instead of real epoxidizing systems. The review is useful for understanding the mechanisms of epoxidation, but it is less interesting from the standpoint of choosing the conditions in order to carry out a preparative synthesis of terpene epoxides. An extensive review [3] is devoted mainly to oxidation reactions of compounds from various classes. In the section devoted to the epoxidation, terpenes figured as initial com- pounds only for two reactions among several tens of reactions presented. The authors of [12] listed a number of catalytical epoxidation sys- tems including hydrogen peroxide. However, only one terpene was used among initial alk- enes. A similar approach is described also in a very brief review [11]. Nowadays the success in the field of fine organic synthesis of terpenoids is obvious. From the theoretical point of view it is quite possible that combining known methods of organic syn- thesis one could obtain almost any known or potentially interesting from the practical stand- point of view terpenoids. On the other hand, provided putting a question concerning profound

Transcript of Modern Methods for the Epoxidation of - and -Pinenes, 3-Carene...

Page 1: Modern Methods for the Epoxidation of - and -Pinenes, 3-Carene …sibran.ru/upload/iblock/9a2/9a27e672114e2cfd36ac56983048... · 2013-02-06 · Chemistry for Sustainable Development

Chemistry for Sustainable Development 16 (2008) 633�691 633

Modern Methods for the Epoxidation of ααααα- and βββββ-Pinenes,3-Carene and Limonene

O. V. BAKHVALOV, V. V. FOMENKO and N. F. SALAKHUTDINOV

Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences,Pr. Akademika Lavrentyeva 9, Novosibirsk 630090 (Russia)

E-mail: [email protected]

Abstract

The present review is emphasized on chemical aspects of epoxidation, environmental safety of promisingmethods for processing such a renewable raw material as terpenes. Various epoxidizing systems are considered,first of all those allowing one to perform catalytic epoxidation of terpenes, as well as their prospectivevalue for commercial introduction. The review has included the materials published within the period from1988 to 2008. For the convenience of comparing various epoxidizing systems and of choosing optimumconditions for the process carrying out, all the data are listed to form common tables.

Key words: terpen, epoxidation, green chemistry, renewable raw material, oxidation

Contents

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 633 Some general laws for epoxidation of terpenes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 634Mechanisms for the interaction of terpenes with epoxidizing agents.

Features of some epoxidation processes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 635Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 687

INTRODUCTION

The epoxidation of olefins represents a con-venient way to activate and fuctionalize them[1�5] which quite often serves as the first stageof various kinds of industrial production [6�9].A plenty of works, including a number of thereviews performed for the last decade [3, 10�12]devoted to this process are available from theliterature. The authors of the monograph [10]considered epoxidation of alkenes in a partic-ularly academic theoretical aspect wherein ter-penes were out of consideration. There aretransformations discussed in this book thoseproceed under the influence of individualagents enriched with active oxygen on olefins,instead of real epoxidizing systems. The reviewis useful for understanding the mechanisms ofepoxidation, but it is less interesting from thestandpoint of choosing the conditions in order

to carry out a preparative synthesis of terpeneepoxides. An extensive review [3] is devotedmainly to oxidation reactions of compoundsfrom various classes. In the section devoted tothe epoxidation, terpenes figured as initial com-pounds only for two reactions among severaltens of reactions presented. The authors of [12]listed a number of catalytical epoxidation sys-tems including hydrogen peroxide. However,only one terpene was used among initial alk-enes. A similar approach is described also in avery brief review [11].

Nowadays the success in the field of fineorganic synthesis of terpenoids is obvious. Fromthe theoretical point of view it is quite possiblethat combining known methods of organic syn-thesis one could obtain almost any known orpotentially interesting from the practical stand-point of view terpenoids. On the other hand,provided putting a question concerning profound

Page 2: Modern Methods for the Epoxidation of - and -Pinenes, 3-Carene …sibran.ru/upload/iblock/9a2/9a27e672114e2cfd36ac56983048... · 2013-02-06 · Chemistry for Sustainable Development

634 O. V. BAKHVALOV et al.

processing of significant amounts of phytoge-nous raw material (for example, turpentines,by-produced in the manufacture of cellulose,or limonene by-produced in obtaining juices ofcitrus plants) the following disadvantages ofknown methods for the conversion of terpe-noids are revealed to be obvious:

1. A necessity to use great volumes of ex-pensive and frequently hazardous reagents inorder to perform the synthesis. These circum-stances cause, in particular, the formation ofhazardous and difficult to recover waste in theamounts several times exceeding the volumesof the obtained product [13].

2. Due to a low selectivity of the reactionsone should carry out a careful and expensivepreparation of reagents and/or separation ofcomplex mixtures of products.

3. A low yield of target products caused bymanifold reactivity of natural compounds.

Solving practical problems, chemists confronteither with one of these circumstances (for ex-ample, performing the process with a high se-lectivity is possible, but it demands high ex-penses and practically non-feasible, hazardousreactants) or with their combination when eventhe application of modern �laboratory� meth-ods of organic synthesis can not provide obtain-ing the products with a reasonable yield. As aresult we have an essential difference in the priceof the products of the general and fine organicsynthesis based on the one hand on the prod-ucts of petrochemistry, and on the other handon the products of dendrochemistry.

It is obvious that the development of �usu-al� non-catalytic methods of organic synthesisin the field of dendrochemistry cannot changethe situation developed. In this connection thecatalytic epoxidation of terpenes could be con-sidered to be one of the most promising direc-tions in the field of using a renewable phyto-genous raw material.

The present review considers the papers con-cerning the epoxidation of available naturallyoccurring terpenes (α- and β-pinenes, 3-careneand limonene) published within the period from1988 to 2008. During last decade, publicationsconcerning biochemical epoxidation of terpe-nes began to appear [14�20] those will be alsoconsidered below. However, the main attentionwill be given to chemical methods for epoxida-

tion. The effects of enantioselectivity and di-astereoselectivity of oxidizing systems under useare not discussed in the present work.

Our work is intended to help researchers andtechnologists in choosing from the literature datasome rational conditions for practical epoxida-tion of terpenes those are suitable for scalingthis process up to industrial synthesis of oxiranes.

SOME GENERAL LAWS FOR EPOXIDATION OF TERPENES

As much as 24, 41, 119 and 129 works, re-spectively, are devoted to the problems of thesynthesis of β-pinene, 3-carene, limonene andα-pinene epoxides in the literature. Such a ra-tio is to a certain extent reflecting the avail-ability of the terpenes listed their readiness forepoxidation and practical importance of ep-oxides obtained. The following order for theability of terpenes to be oxidized [21] is known:3-carene > α-pinene > limonene > β-pinene.

However, the data we have gathered dem-onstrate that the capability of terpenes to ex-hibit the formation of the oxirane cycle de-pends not only on the structure of an initial com-pound, but also on the conditions this reactionis carried out. An essential role is played, forexample, by the size of an attacking complex(a catalyst with an epoxidizing agent [22]), bythe nature of the epoxidizing agent [23], by sol-vent [24] and other conditions of the process.For example, for the epoxidation by t-BuOOHand cumene hydroperoxide the decrease in ac-tivity for both epoxidizing agents can be pres-ened by the following series: cyclohexene > li-monene > α-pinene > β-pinene > camphene.

The absolute values of the conversion levelin the reactions of t-BuOOH oxidation bycumene hydroperoxide [25] and by some otheroxidizers are presented in Table 1.

One can see that to establish a universal scalefor the reactivity of olefins in the reaction ofdouble bond oxidation with the formation ofoxiranes is impossible. Hence, the statementoccurring in the literature that the double bondin this cycle is much more reactive than a dou-ble bond in a chain or an isolated double bond[31] (which is caused by a somewhat lower en-tropy loss in a cyclic molecule) is valid only fora limited number of epoxidation variants. It is

Page 3: Modern Methods for the Epoxidation of - and -Pinenes, 3-Carene …sibran.ru/upload/iblock/9a2/9a27e672114e2cfd36ac56983048... · 2013-02-06 · Chemistry for Sustainable Development

MODERN METHODS FOR THE EPOXIDATION OF α- AND β-PINENES, 3-CARENE AND LIMONENE 635

contradicted, for example, in [32] where it wasdemonstrated that citral and linalool are readi-ly epoxidized, whereas the yield of α- andβ-pinene amounts to 15 % only.

The latter is caused by a spatial hindrancefor the attack of double bonds by a bulky diatomicMn complex. A surprising dependence of epoxida-tion results on the reaction conditions (mainly onthe nature of a polyoxomethylate catalyst underuse) has been demonstrated in [33], whose authorsobtained 8,9-epoxide from R(+)-limonene with theyield of 89 % under soft conditions. With the useof other catalysts the formation of this compoundunder direct epoxidation conditions either did notoccur or its yield in the mixture with others isomersdid not exceed 30�35 %.

A law manifested by the fact that the ep-oxidation rate increases in the presence of elec-tron accepting groups in the source of activeoxygen as well as of electron donating groupsin alkene [34, 35] is considered to be more uni-versal. It should exhibit in the cases when themechanism of electrophilic oxygen addition tothe double bond is realized. However, the worksconsidered in the review demonstrate a much

more complicated, ambiguous and not conclu-sively established picture of oxiranes forma-tion. Three types of mechanisms are consid-ered to be possible for epoxidation reactions suchas a catalytic oxygen transfer to the doublebond, a free-radical mechanism and a Prile-zhaev reaction for the case when it is performedwith peracids.

MECHANISMS FOR THE INTERACTION OF TERPENES

WITH EPOXIDIZING AGENTS.

THE FEATURES OF SOME EPOXIDATION PROCESSES

The reactions of active oxygen addition tothe double bonds of terpenes use to proceedboth in the presence of catalysts, and withoutthem. The catalysis can be of both homoge-neous and heterogeneous nature. Recently thereis a tendency to use the second variant is mainlyobserved, whose basic advantage consists in thepotentiality of a repeated use of a catalyst.A number of compounds (Tables 3�6) are usedas a source of active oxygen, but much moreoften the latter represents hydrogen peroxideor molecular oxygen (air) (Table 2).

TABLE 1

Comparative reactivity of some terpenes in the reaction of epoxidation

Epoxidation conditions Terpene Conversion Selectivity, % Yield, % Ref.

level, %

O2, Ni(acac)2, Me2CHCHO α-Pinene 100 93 � [26]

Limonene 100 81 �

3-Carene 97 90 �

O2, Ru complex containing α-Pinene 100 98 � [27]cymol and 1,2,4-triazepine, Limonene 100 91 �

Me2CHCHO 3-Carene 96 98 �

60 % H2O2, Al2O3 α-Pinene 69 [28]

Limonene 83

3-Carene 87

35 % H2O2, Me3ReO3, pyridine α-Pinene 100 86 80 [1]

Limonene 100 90 90

β-Pinene 98 89 82

O2, Co salen complex, α-Pinene 70 [29]

Me2CHCHO Limonene 54

3-Carene 48

β-Pinene 64

30 % H2O2, DCC, cationite α-Pinene 73 [30]

Limonene 64

β-Pinene 48

Page 4: Modern Methods for the Epoxidation of - and -Pinenes, 3-Carene …sibran.ru/upload/iblock/9a2/9a27e672114e2cfd36ac56983048... · 2013-02-06 · Chemistry for Sustainable Development

636 O. V. BAKHVALOV et al.

It should be noted that the contribution ofcatalytic processes with the use of molecularoxygen as an oxidizer increases in the order ofβ-pinene, 3-carene, limonene, α-pinene.

The discovery of the catalytic properties ofMe3ReO3 (ÌÒÎ) in the reactions of epoxidationbecame a remarkable milestone in this researchfield [12]. Many alkenes can be epoxidized inthe presence of this substance under the actionof hydrogen peroxide at a room temperature.

Rhenium being heptavalent in the compoundMe3ReO3, activates hydrogen peroxide throughthe formation of η2-peroxo species 1 and 2. Thestructure of compound 2 is confirmed by the dataof crystallographic analysis; the presence of spe-cies 1 and 2 is proved with the use of NMR spec-troscopic methods [12]. As complex compoundswith nitrogen-containing ligands are formed fromÌÒÎ its reactivity increases. In order to preventthese ligands from washing away the ÌÒÎ is in-troduced into the structure of a polyvinylpyri-dine resin [36] or its complex is incapsulated intopolystyrene [37]. Thus a heterogeneous catalyst isobtained suitable in order to use it repeatedly.

Aluminium oxide have appeared a quite goodcatalyst of epoxidation reaction, in particularbasic one as well as that obtained according tothe method of sol-gel technology [38]. Its cheap-ness, availability and ecological compatibility

have caused interest in detailed studies on potenti-alities of this catalyst application [39, 40]. The mech-anism proposed for epoxidation is as it follows:

Much the same technological parameters arereached with the use anhydrous hydrogen per-oxide and its) 60 % solution for epoxidation at60�70 îÑ. In the latter case the process requiresfor water evaporation from reaction the mix-ture using a Dyne�Stark apparatus. Alumini-um oxide can be used use three times, furtherwith the conservation or even increase in theselectivity of limonene epoxidation the conver-sion level is considerably reduced.

Complexes of transition metals with β-dike-tones are widespread epoxidation catalysts. Theauthors of [41] studied the mechanism and ki-netics for the epoxidation of alkenes in the pres-ence of Ni(acac)2, isobutyl aldehyde and mo-lecular oxygen (usual conditions for the cata-lysts mentioned). A simplified picture of pro-cess is presented below:

TABLE 2

Main components of the systems epoxidizing terpenes

Initial Overall number Number of publications whose authors use:

compound of publications catalysts H2O2 O2

β-Pinene 24 16 (67) 13 (54) 4 (17)

3-Carene 41 29 (71) 28 (68) 7 (17)

Limonene 119 97 (81.5) 46 (39) 24 (20)

α-Pinene 129 106 (82) 43 (33) 40 (31)

Note. The percentage with respect to the total number of publications is specified in brackets.

Page 5: Modern Methods for the Epoxidation of - and -Pinenes, 3-Carene …sibran.ru/upload/iblock/9a2/9a27e672114e2cfd36ac56983048... · 2013-02-06 · Chemistry for Sustainable Development

MODERN METHODS FOR THE EPOXIDATION OF α- AND β-PINENES, 3-CARENE AND LIMONENE 637

The authors of [41] have concluded that theepoxidation reaction occurs at a ratioaldehyde : alkene ≥ 2, whereas the first impor-tant stage is presented by aldehyde coordina-tion with the nickel complex. The role of thiscomplex consists in promoting the hydrogenatom abstraction from aldehyde and in theacceleration of oxidation reaction. From the afore-mentioned Figure one could see both radical andnon-radical reactions to occur within the cycle,however the authors of [41] considered the na-ture of the process to be radical one and basingon kinetic studies came to the conclusion, thatthe reaction rate of the process does not dependon the concentration of an initial substance.

Copper salts can operate as active oxidation(epoxidation) catalysts. The authors of [35] haveproposed a reactivity series for similar com-pounds those they have obtained through theoxidation of adamantine by molecular oxygenin the presence of acetaldehyde. The experi-ments which they carried out in order to findout the oxidation mechanism for substitutedtoluenes in the presence of Cu(OH)2, have dem-onstrated that there are reactive intermediatessuch as Cu3+�O

. or Cu4+=O formed. The data

obtained are mainly strengthening the case forradical mechanisms.

Compounds containing cobalt such as CoN-aY, Co(NO3)2, PW11Co, CoW12, Co phtalocya-nine [42] are also efficient catalysts in the pres-ence of oxygen and aldehyde. The authors ofthis work considered the epoxidation with Co2+

compounds is a free-radical process initiated bysuch adducts as Co3+�O�O. The latter react

with aldehydes, which results in 3RCO• radical

formation with the participation of oxygen ofat the final stage of the process.

Under the conditions specified the reactivi-ty with the repeated use is exhibited also bycobalt polyoxometallates, applied onto modifiedmesoporous silicate matrices. The nature of amatrix and its treatment influence the cata-lyst activity [43].

The greatest number of works (18 publica-tions) is devoted to the studies on the catalyticsystem based on Mn porphyrin. This system ismodified through the introduction of aromaticsubstituents into the positions 5, 10, 15, 20 ofthe porphyrin ring. The best results were ob-tained in the case of porphyrins with phenylsubstituents. The metal of the porhyryn com-plex is bound with axial ligands such as chlo-rine, acetyl group, nitrogen-containing com-pounds (N-alkylimidazole). A more complicatedtwo-phase system was also proposed with thereductive activation of oxygen [44] (Fig. 1).

The complication of porphyrin catalysts isexpressed also in the introduction of addition-al substituents (Scheme 1, structures 3�5).

Catalysts are also synthesized those have thestructures with the cavities located lower thanthe porphyrin ring plane wherein axial ligands(nitrogen-containing heterocycles) can be placed.These ligands could influence the results ofepoxidation [45].

The epoxidation mechanism hypothesized isdemonstrated in Scheme 2 [46].

Methods for immobilizing the catalysts underdiscussion are also proposed, for example, ontozeolite Y [47], polystyrene [48], modified SiO2 [49].All the modifications of Mn porphyrins are ableto catalyze to a greater or lesser extent the reac-tions of allyl oxidation of terpenes.

Alkene + 2H+ + 2e + O2 > Epoxide + H2O

Fig. 1. Schematic presentation of a catalytic system, whichillustrates the role of [Rh(C5Me5)bipyCl2] complex as aphase-transfer catalyst. C5Me5 � pentamethylpentadiene.

Page 6: Modern Methods for the Epoxidation of - and -Pinenes, 3-Carene …sibran.ru/upload/iblock/9a2/9a27e672114e2cfd36ac56983048... · 2013-02-06 · Chemistry for Sustainable Development

638 O. V. BAKHVALOV et al.

Scheme 1.

Scheme 2.

.

Page 7: Modern Methods for the Epoxidation of - and -Pinenes, 3-Carene …sibran.ru/upload/iblock/9a2/9a27e672114e2cfd36ac56983048... · 2013-02-06 · Chemistry for Sustainable Development

MODERN METHODS FOR THE EPOXIDATION OF α- AND β-PINENES, 3-CARENE AND LIMONENE 639

A catalytic system based on Fe porphyrin isof limited occurrence. This system was subject-ed to a detailed investigation by the authors of[50]. The role of the catalyst could consists, toall appearance, in the initiation of a chain re-action via hydrogen abstraction from terpeneand decomposition of the hydroperoxide orhydroperoxyl radicals formed from radicals 6and 7 and molecular oxygen.

The radicals form with porphyrins a cation-radical species according to the equation(P)Fe3+X + ROO(H) → (P)+

.Fe4+(=O)X + RO(H)

This intermediate species is considered to beresponsible for the epoxidation:(P)+

.Fe4+(=O)X + Alkene > (P)+

.Fe3+X + Epoxide

8

The authors of [51] have found out that withthe increase of electron donating effect of sub-stituents in the phenyl fragments of porphyrincomplexes their catalytic activity falls. They pro-posed the relationship ln k = 1.2168σ � 7.9968for Mn porphyrin complex, and the relationshipln k = 0.625σ � 8.2426 for Fe porphyrin com-plex, where k is a the reaction rate constant,and σ is the Hammet constant for a substituent.

Cobalt porphypin catalysts under aerobicconditions in the presence of aldehydes arecharacterized as universal ones: they are ableto oxidize alcohols, benzyl compounds, arenes,alkenes, alkanes [52, 53]. In this case the reac-tions proceed via cobalt oxo species similar tointermediate species 8. In the publications in-cluded in the aforementioned reviews, amongall the set of terpenes considered only limonenewas entered into reaction with the Co porphy-rin catalyst The authors investigated the influ-ence of the substituent nature in the aromaticfragments of porphyrins upon the results ofthe reaction and noted that electron donatingsubstituents cause an increase in the activityof catalysts. Aldehydes, especially 2-methyl-propanal, perform the function of reductiveoxygen activation.

The consideration of the features of metalporhyrin catalysts would be logically complet-ed with the comparison of their activities de-

pending on the nature of metal. This could beexpressed by the following order of conversionlevel values for α-pinene under the conditionsmentioned above [54]: TPPMn3+Cl > TPPCo3+Cl >TPPFe3+Cl > TPPCu2+ ≈ TPPNi2+ ≈ TPPZn2+ (TPPstanding for tetraphenylporphyrin).

The dependence presented is inherent in thefirst three members of the series and coincideswith that for the reactions of limonene epoxi-dation [55]. The authors of this paper have re-vealed the activation of limonene conversionwith the use t-BuOOH instead of NaOCl as anoxidizer and methylene chloride instead of ac-etonitrile and ethyl acetate as a solvent.

Manganese compounds are much more pref-erable than others also due to the cheapnessand non-toxicity of this metal.

A great many of works is devoted to metalporphyrins. Among several books a monograph[56] where one of the sections is devoted tothe epoxidation of alkenes (rather than terpe-nes) by some people metal porphyrins has a rel-evancy to the topic of the present review.

Another group of composite complex cata-lysts with transition metal as a central atom isformed by Mn- and Co-salen complexes (in thearticles for 2006�2007 they are referred to as�salophen complexes�). The mechanism of epoxi-dation by them is identical and similar to thatoccurring in the reaction of epoxidation by por-phyrins. To all appearance, during the oxidationa radical such as M�O�O

. is formed (it is demon-

strated by ESR method) to convert into an oxo-metallic intermediate species (salen) M=O whichtransfers oxygen to the double bond of olefin [57].

An epoxidizing agent depicted in the Schemeis typical alongside with PhIO4, NaIO4 and O2

for salen complexes (the use of hydrogen per-oxide is inefficient). Salen complex catalysts inthe reaction of epoxidation exhibit the follow-ing features:

1. Simultaneously with epoxidation the allyloxidation of terpenes and the formation ofalcohols and ketones are observed to occur.These processes are of free-radical nature.

Page 8: Modern Methods for the Epoxidation of - and -Pinenes, 3-Carene …sibran.ru/upload/iblock/9a2/9a27e672114e2cfd36ac56983048... · 2013-02-06 · Chemistry for Sustainable Development

640 O. V. BAKHVALOV et al.

2. The reductive activation of oxygen canbe realized with various carbonyl compounds.

3. The direction and results of the processare to a considerable extent depending on thestructure of a salen complex.

A number of immobilized salen complexeshave been obtained on Dowex MsCl [58], onmodified macroporous zeolites [59], on silica gel,polystyrene, MCM-41, montmorillonite (seeTables 3�6). In some of papers listed a com-parison of the results was carried out for theepoxidation with the use of immobilized salencatalysts and with the use of homogeneousmedia. The former variant resulted in improv-ing the manufacturability and selectivity of theprocess, as well as in growing the yield of ep-oxide, whereas the reaction rate and the pro-ductivity of catalyst decreased. The catalyst link-age with a support can be realized through imi-dazole or 1,4-phenylenediamine, as well as viathe incapsulation within the pores of zeolite.

Rather high activity in the epoxidation of someterpenes is exhibited by Mn complex with trim-ethyltriazacyclononane. The introduction of theoxalate buffer in the system prevents hydrogenperoxide from decomposition and allows one toepoxidize terminal double bonds successfully [11].

This catalyst can be immobilized onto silicagel [60]. The disadvantages of the catalystshould be considered to consist in its ability toinitiate the formation of diols, as well as cam-pholenic aldehyde (from α-pinene).

The selectivity of epoxidation for alkenes ofdifferent structure as well as mainly cyclic alk-enes and limonene as compared to α-pinene isinherent also in dioxomolibdenium complex cat-alysts, such as compounds 9�10à (Scheme 3).

In this case the reaction with α-pinene resultsin the formation of many by-products, too.

Several works were devoted to the combi-nation of Mo oxides with silicates. Worthy ofinterest is paper [61] whose authors combinedmesoporous silicates (MCM-41, SBA-15) andamorphous porous silicon dioxide with molyb-denum oxides in single-reactor synthesis andthen carried out comparative studies and testsof the samples obtained. All the varieties ofmolybdenum silicates almost equally catalyzethe reaction of limonene epoxidation with t-BuOOH, whereas in the case of using grindedgranules (especially precipitated silicon dioxide)the efficiency of catalysts grows in comparisonwith the mesoporous silicate samples.

Molybdenum carbonyl represents an interestingvariety of molybdenum catalysts. The compound isfixed on cross-linked polystyrene via an imidazoleor piperazine spacer (fragments 11 and 12).

Such catalysts demonstrate a high efficiencyunder repeated use. In this case the authors ofall the published works used t-BuOOH as anoxidizer (see Tables 3�6).

Binuclear Mn complex [LMnO3MnL](PF6)2 13described for the first time in 1988, to allappearance, is convenient in using for thetechnical purposes, for example, for bleachingspots; it is interesting from the theoreticalstandpoint due to an unprecedentedly small(2.296 Å) distance between Mn atoms inherentin this complex (to compare: the interatomicMn�Mn distance in the molecule Mn2(CO)10

amounts to 2.93Å).

Scheme 3.

Page 9: Modern Methods for the Epoxidation of - and -Pinenes, 3-Carene …sibran.ru/upload/iblock/9a2/9a27e672114e2cfd36ac56983048... · 2013-02-06 · Chemistry for Sustainable Development

MODERN METHODS FOR THE EPOXIDATION OF α- AND β-PINENES, 3-CARENE AND LIMONENE 641

TA

BLE 3

Mai

n c

onditio

ns

and r

esults

for

α-pin

ene

epox

idat

ion

No.

Epox

idiz

ing

Cat

alyst

Auxilia

ry re

agen

ts,

Ò,

î CR

eact

ion

Con

ver

sion

S

elec

tivity,

Yie

ld,

%Ref

.ag

ent

co-c

atal

yst

stim

e, h

leve

l, %

%

12

34

56

7

8

910

1

40%

M

eCO

OO

HPhas

e tr

ansf

erA

cid s

caven

ger

10�20

3�5

95

[79]

cata

lyst

2

35%

H

2O2

230

MTO

0.5

Pyri

din

e, 4

2 20

2.3

100

8

6 9

0[1

]

3

35%

H

2O2

200

[PW

4O24

](C

8H17

) 3N

CH

3 1.0

H2N

CH

2H2P

O3

2.0,

60

1 8

3 9

1 7

6[8

0]N

a 2W

O4

⋅2H

2O 3

.0,

NaO

H u

p t

o pH

4.2

4

50%

H

2O2

NaW

O4

QA

S10

0 94

94

[81]

5

30%

H

2O2

270

DCC 2

0, g

as� N

2 25

24

83

[82]

6

30%

H2O

2 12

0M

esop

orou

s hybri

d 55

5

up t

o 23

>99

~23

[83]

[(MeO

) 3SiC

H2]

2+ (M

e)4N

OH

+ N

aOH

+ H

2O2.7

mg p

er 1

mm

ol o

f ol

efin

7

1O

2M

e 2CH

CH

O 3

00 25

0.5

100

93

93[2

6]

2.0

8

O2

Pr

com

pou

nd, 1

mas

s %

MeC

H2C

HO

140

30�60

8 9

2 73

67

[84]

9

30% M

eCOOOH 1

10A

nhydro

us

MeC

OONa

154

25

2 8

2[8

5]

102

35%

H2O

2 20

00M

nSO

4 0.2

Me 4

NH

CO

3 10

0 25

3 5

3[6

9]

11

40 %

MeC

OOOH 1

0050

% N

aOH

up t

o pH

7 20

1.5

83

~100

~84

[86]

12

O2

Cu(O

H) 2 1

.0

25 1

710

0 84

84

[35]

300

13

O2

75

6 6

7[8

7]

1413

Co(

SM

eDPT)

2.0

Page 10: Modern Methods for the Epoxidation of - and -Pinenes, 3-Carene …sibran.ru/upload/iblock/9a2/9a27e672114e2cfd36ac56983048... · 2013-02-06 · Chemistry for Sustainable Development

642 O. V. BAKHVALOV et al.

TA

BLE 3

(Con

tinued

)

12

34

56

7

89

10

14

O2

4520

96

9793

[88]

4119

2.0

Zeo

lite

15

MeC

OO

OH

89[8

9]

16

O2

Me 2

CH

CH

O 2

0025

6 9

797

94[9

0, 9

1]

2.4

Co

173

5%

H2O

2 17

025

327

[92]

100

R1 �

R12

, H

, var

ious

gro

ups

R13�R

15,

H, al

kyl, a

ryl, h

eter

oary

l

18

O2

Me 3

CCH

O 4

0025

4 9

595

90[9

3]

19

t-B

uO

OH

100

CuCl 2

(n-B

u) 4N

Br

2514

18

7814

[73]

204

O2

CoB

r 2 0

.15

Pyri

din

e50

22~5

3[7

5]

21

O2

Ni(ac

ac) 2,

bou

nd w

ith P

BI

Me 2

CH

CH

O 3

0025

410

088

88[9

4]

pol

ym

er

1.0

Ni

Page 11: Modern Methods for the Epoxidation of - and -Pinenes, 3-Carene …sibran.ru/upload/iblock/9a2/9a27e672114e2cfd36ac56983048... · 2013-02-06 · Chemistry for Sustainable Development

MODERN METHODS FOR THE EPOXIDATION OF α- AND β-PINENES, 3-CARENE AND LIMONENE 643

TA

BLE 3

(Con

tinued

)

12

34

56

7

89

10

22

15%

H2O

2 20

0M

ixtu

re o

f R

33+(P

W12

O40

)3-,

Gas

� N

2 7

02

92

[95]

wher

e R

=πC

5H5N

(CH

2)15M

e+ P

h3S

iOEt + M

e 2N

CH

(OCH

2Ph) 2 0

.5

23

OK

CO

HK

2CO

3 87

0 2

50.1

>98

[96]

(2K

HSO

5 +

KH

SO

4

+ K

2SO

4) 2

10

50

24

NaO

Cl 96

Pyri

din

e 04

or

25

3 8

1[9

7]

4-te

rt-B

u-p

yri

din

e 0.2

Bu

4NCl 0.8

gas

� N

2

M =

Mn(I

II)C

l 0.4

255

O2

Co2+

sal

en inco

rpor

ated

Me 2

CH

CH

O 3

00 2

04

82

[98]

into

pol

yan

ilin

e,6

mg p

er 1

mm

ol o

f ol

efin

26

O2

Na 2

CO

310

00.7

30

[72]

Page 12: Modern Methods for the Epoxidation of - and -Pinenes, 3-Carene …sibran.ru/upload/iblock/9a2/9a27e672114e2cfd36ac56983048... · 2013-02-06 · Chemistry for Sustainable Development

644 O. V. BAKHVALOV et al.

TA

BLE 3

(C

ontinued

)

12

34

56

78

910

276

NaC

lOG

as �

N2 or

Ar

702

9050

45

[9

9]

M =

Mn,

R1 = N

O2,

R2 = R

3=H

,

X = A

cO,

0.00

95 m

g p

er 1

mm

ol o

f ol

efin

28

Mes

opor

ous

mat

eria

l s

uch

as

700.5

4984

41

[7

6]

MCM

-41w

ith f

orm

ula

of

708

60.5

51 3

1SiO

2⋅x

TiO

2⋅n

S;

x =

0.000

1�0.5,

150

S i

s an

org

anic

com

pou

nd

29

30%

H2O

2 52

0M

eCO

OH

100

251

~10

[2

2]

16

307

MnA

lPO

-5 7

.065

1 2

6[1

00]

Page 13: Modern Methods for the Epoxidation of - and -Pinenes, 3-Carene …sibran.ru/upload/iblock/9a2/9a27e672114e2cfd36ac56983048... · 2013-02-06 · Chemistry for Sustainable Development

MODERN METHODS FOR THE EPOXIDATION OF α- AND β-PINENES, 3-CARENE AND LIMONENE 645

TA

BLE 3

(Con

tinued

)

12

34

56

78

910

31

30%

H2O

2 40

00M

nSO

4 10

00CO

(NH

2)2 20

8025

9 91

93 8

5[1

01]

NaH

CO

3 30

32

O2

Irra

dia

tion

with lig

ht

4016

30�33

[102

]

at 3

80nm

<75

0nm

0.2

33

PhIO

Mn

3+sa

len Cl 1.0

Gas

� N

2 or

Ar

2516

50�60

~36

20

[103

]

34

t-B

uO

OH

30

Mes

opor

ous

Ti-

MCM

-41

55 5

11

100

11

[104

]

or 3

0%

H2O

2 12

02.7

mg p

er 1

mm

ol o

f ol

efin

55 5

6

100

6

35

30%

H2O

2 10

00M

nSO

4 10

0.2

M N

aHCO

3 so

l.,25

16 54

[105

]

pH

8

36

O2

Fe 2

O3

1.0

Ben

zald

ehyde

2517

.5 10

090

90

[106

]

378

30%

H2O

2 52

0W

O3

1.7

H3B

O3

1.0

1.0

70 4

19

[107

]

NaO

H 4

.0

(C8H

17) 3M

eNH

SO

4 1.0

38

30%

H2O

2 12

025

1.5

>98

100

>98

[3

6]

150

mg p

er 1

mm

ol o

f ol

efin

Page 14: Modern Methods for the Epoxidation of - and -Pinenes, 3-Carene …sibran.ru/upload/iblock/9a2/9a27e672114e2cfd36ac56983048... · 2013-02-06 · Chemistry for Sustainable Development

646 O. V. BAKHVALOV et al.

TA

BLE 3

(Con

tinued

)

12

34

56

78

910

39

O2

Me 2

CH

CH

O 3

0825

0.5

100

98

98

[2

7]

0.15

409

60%

H2O

2 20

0A

l 2O

3 su

bac

idic

49

(C4H

9)2O

10

~77

4 6

9 [2

8]

Gas

� N

2

41

30%

H2O

2 52

0 2

5 0.25

10

97

10

[108

]

0.02

42

30%

H2O

2 20

0H

PO

4W2O

2(µ-

O2)

2(O

2)2�

20

3 3

0 9

8 2

9[1

09]

(n-C

6H13

) 4N

+ 1

.0 b

y W

43

Gas

� A

r �5... 0

210

0~9

392

�95

[110

]

44

O2

Ni(ac

ac) 2,

impre

gnat

edM

e 2CH

CH

O 2

20 2

516

100

26

26

[111

]

into

cla

y K

-10

(Cla

ynia

c)10

mg p

er 1

mm

ol o

f ol

efin

45

H2O

2⋅C

O(N

H2) 2

230

(MeC

O) 2O

230

25

3 78

[6

2]

10

0

467,

830

% H

2O2

160

WO

3⋅H

2O 2

.0N

a 3PO

4⋅1

2H2O

1.3

70

4 8

0[1

12]

(C8H

17) 3N

+M

e H

SO

4- 1.0

70

96 9

7

Gas

� N

2

477

NaO

H 2

00 2

524

4

5[1

13]

+ H

2O2 10

0

48

30%

H2O

2 13

00K

HCO

3 20

0 2

5 83

[6

7]

DCC 2

00

Page 15: Modern Methods for the Epoxidation of - and -Pinenes, 3-Carene …sibran.ru/upload/iblock/9a2/9a27e672114e2cfd36ac56983048... · 2013-02-06 · Chemistry for Sustainable Development

MODERN METHODS FOR THE EPOXIDATION OF α- AND β-PINENES, 3-CARENE AND LIMONENE 647

TA

BLE 3

(Con

tinued

)

12

34

56

78

910

49

O2

Co,

CoC

l 2,

CrO

3, C

u c

omple

xes

65�90

4 5

4 [3

1]w

ith p

yri

din

e, b

enzp

yri

din

e,

pic

olin

e 1.0

50

O2

Me 2

CH

CH

O 3

00 25

4 9

3 9

286

[4

1]

1.0

51

O2

Alu

mop

hos

phat

es A

lPO-5

Ben

zald

ehyde

300

50

8 5

9 9

154

[114

]

and

AlP

O-3

6 w

ith subst

ituting

a par

t of

Al by M

n o

r Co

0.97

mg p

er 1

mm

ol o

f ol

efin

52

t-BuO

OH

150

55

24 6

3 13

8[1

15]

1.0

53

35%

H2O

2 15

0�10

1>

98~1

0098

[3

7]

1.0

54

O2

Co

on m

esop

orou

s SiO

2M

eCN

6024

3

18

0.5

[7

4]7.1

mg p

er 1

mm

ol o

f ol

efin

55

H2O

2 30

0Ti-

SB

A (

65)

� 5

73 m

esop

orou

s70

24~3

2~1

0035

[116

, 11

7]

SiO

2 (S

BA

-15)

gra

fted

with T

i10

mg p

er 1

mm

ol o

f ol

efin

Page 16: Modern Methods for the Epoxidation of - and -Pinenes, 3-Carene …sibran.ru/upload/iblock/9a2/9a27e672114e2cfd36ac56983048... · 2013-02-06 · Chemistry for Sustainable Development

648 O. V. BAKHVALOV et al.

TA

BLE 3

(C

ontinued

)

12

34

56

78

910

5610

t-B

uO

OH

160

Sam

e as

abov

e,80

24 9

110

091

[116

, 11

7]

14.3

mg p

er 1

mm

ol o

f ol

efin

57

H2O

2 10

0M

eCO

ON

H4

1325

24 5

2 7

137

[4

7]

built-

in t

o ze

olite

Y,

20 m

g p

er 1

mm

ol o

f ol

efin

581

1O

225

610

093

93

[8]

48

Me 3

CCH

O 2

49

LD

H-[

Mn(C

l)L]

Within

the

lam

inar

sol

id

such

as

hydro

talc

ite,

the

conte

nt

of M

n b

eing o

f 0.85

%,

27 m

g p

er 1

mm

ol o

f ol

efin

Page 17: Modern Methods for the Epoxidation of - and -Pinenes, 3-Carene …sibran.ru/upload/iblock/9a2/9a27e672114e2cfd36ac56983048... · 2013-02-06 · Chemistry for Sustainable Development

MODERN METHODS FOR THE EPOXIDATION OF α- AND β-PINENES, 3-CARENE AND LIMONENE 649

TA

BLE 3

(C

ontinued

)

12

34

56

78

910

59

NaI

O4

200

250.6

89

9383

[58]

on m

acro

por

ous

cation

ite

Dow

ex M

SC

l,M

n(s

alen

)Dow

ex 3

.8

60

O2

Co(

NO

3)2 2.0

Me 2

CH

CH

O 7

6024

5.5

99

9796

[4

2]

61

t-B

uO

OH

150

5530

�40

279.5

[118

]

Cat

alyst

im

mob

iliz

ed

onto

mes

opor

ous

mod

ifie

d

subst

rate

MCM

-41

1.0

62

Anhydro

us

Al 2O

3 neu

tral

, pH

790

4

7085

60 [3

9]

H2O

2 20

0

Page 18: Modern Methods for the Epoxidation of - and -Pinenes, 3-Carene …sibran.ru/upload/iblock/9a2/9a27e672114e2cfd36ac56983048... · 2013-02-06 · Chemistry for Sustainable Development

650 O. V. BAKHVALOV et al.

TA

BLE 3

(C

ontinued

)

12

34

56

78

910

637

NaO

H5�

102�

3 95

83

79

[6

8]

up t

o pH

7.0�8.5

+ H

2O2 22

0

6412

[119

]

657

NaO

H 1

50 2

5 1.5

~100

~70

~70

[120

]

+ H

2O2 15

0

66

C6H

5IO

25

8

91�92

[5

0]

TPPFeC

l, i

mm

obiliz

atio

n

onto

dex

trin

0.2 is

pos

sible

67

NO

3 ra

dic

al 2

5 ~6

0[1

21]

in a

n iner

t

gas

flo

w

68

100

% H

2O2

200

CF

3(CF

2)8C

O(C

F2)

6CF

3 5.0

Na 2

HPO

4 8

3 0.5

5

5[1

22]

Gas

� N

2

6912

MeC

OO

OH

[123

]

701

3O

2Ir

radi

ation

by a

mer

cury

- 2

5 8

~3

0[1

24]

disch

arge

lam

p

TPP is

tetr

aphen

yl-

por

phyri

nat

o 0.01

Page 19: Modern Methods for the Epoxidation of - and -Pinenes, 3-Carene …sibran.ru/upload/iblock/9a2/9a27e672114e2cfd36ac56983048... · 2013-02-06 · Chemistry for Sustainable Development

MODERN METHODS FOR THE EPOXIDATION OF α- AND β-PINENES, 3-CARENE AND LIMONENE 651

TA

BLE 3

(Con

tinued

)

12

34

56

78

910

71

NaC

lO 0

6 1

9[1

25]

1.0

72

t-B

uO

OH

150

5524

~25

15 4

[126

]

imm

obiliz

ed o

nto

mes

opor

ous

MCM

-41,

MCM

-48,

24 m

g p

er 1

mm

ol o

f ol

efin

73

30%

H2O

2M

nSO

4N

aHCO

325

52~7

9[1

27]

74

NaH

CO

3~9

0[1

28]

75

Na 2

CO

4(M

eCO

) 2O

, Q

AS,

US

[129

]

76

30%

H2O

2D

CC 2

0, K

HCO

3 20

2524

83

[130

]

77

NaO

Cl 11

025

100

88 8

8[1

31]

1.5

4-te

rt-B

u-p

yrid

ine

1.5

X =

NO

2, Y

= Z

= H

,

Mn(T

NPP)C

l 0.5

Page 20: Modern Methods for the Epoxidation of - and -Pinenes, 3-Carene …sibran.ru/upload/iblock/9a2/9a27e672114e2cfd36ac56983048... · 2013-02-06 · Chemistry for Sustainable Development

652 O. V. BAKHVALOV et al.

TA

BLE 3

(Con

tinued

)

12

34

56

78

910

78

KH

SO

5 17

5Q

AS 1

.5 2

510

096

96[1

32]

Mn(T

DCPP)C

l X

= Z

= C

l,

Y =

H 0

.5

79

t-B

uO

OH

100

124

[133

]

0.17

80

O2

HC

OO

Na,

pH

8 4

0[1

34]

2

.0

Cp=

η5 C5M

e 5

(PhCO

) 2O

100

3.3

MnTF

5PP 0

.03

81

O2

Cu(O

H) 2

2.0

25

1710

083

83[1

35]

300

Page 21: Modern Methods for the Epoxidation of - and -Pinenes, 3-Carene …sibran.ru/upload/iblock/9a2/9a27e672114e2cfd36ac56983048... · 2013-02-06 · Chemistry for Sustainable Development

MODERN METHODS FOR THE EPOXIDATION OF α- AND β-PINENES, 3-CARENE AND LIMONENE 653

TA

BLE 3

(Con

tinued

)

12

34

56

78

910

82

10%

H2O

2 25

00M

TO

1.0

25

2 7

0 5

0 3

5[1

36]

25

1 5

5 9

9 5

4

6.0

8314

O2

100

3 7

0~3

5 2

4[1

37]

Inca

psu

late

d into

zeo

lite

Y

1.4

mg p

er 1

mm

ol o

f ol

efin

84

O2

Co 4

(µ3-

O) 4

⋅(µ-

PhCO

2)4

⋅(4-

CN

py) 4

100

24 6

7~6

5

44[1

38]

com

ple

x w

ith c

ubic

str

uct

ure

0.32

85

t-BuO

OH

CpM

oO2C

l, ob

tain

ed i

n s

itu f

rom

55

6 4

2 2

0

8.5

[139

]CpM

o(CO

) 3Cl

and t

-BuO

OH

2.0

86

t-BuO

OH

Mo(

CO

) 5,

imm

obiliz

ed o

nto

76

910

010

010

0[1

40]

pol

yst

yre

ne

thro

ugh i

mid

azol

e sp

acer

,

40 m

g p

er 1

mm

ol o

f ol

efin

87

Air

25

8~2

6[1

41]

Phta

locy

anin

e co

mple

x 0

.7

88

t-BuO

OH

Mo(

CO

) 5,

imm

obiliz

ed o

nto

76

3 9

710

0 9

7[1

42]

pol

yst

yre

ne

thro

ugh p

iper

azin

e

spac

er 1

.1

89

O2

Mn p

hta

locy

anin

e co

mple

xM

e 2CH

CH

O[1

43]

Page 22: Modern Methods for the Epoxidation of - and -Pinenes, 3-Carene …sibran.ru/upload/iblock/9a2/9a27e672114e2cfd36ac56983048... · 2013-02-06 · Chemistry for Sustainable Development

654 O. V. BAKHVALOV et al.

TA

BLE 3

(Con

tinued

)

12

34

56

78

910

90

H2O

2Silan

ized

hig

h-d

isper

se[1

44]

MC

M-4

1 an

d M

CM

-48

with e

nhan

ced

cata

lytic

activity o

f N

b a

nd T

a

imm

obiliz

ed t

her

eon

91

O2

Me 2

CH

CH

O 2

00 2

510

�15

70

[2

9]

5.0

92

30%

H2O

2 20

0PhCO

OH

0.5

0

0.2

9874

73

[145

]

Mn(T

DCPP)C

l

X =

Z =

Cl,

Y =

H 0

.5

93

60%

H2O

2 25

0(H

4N) 6M

o 7O

24 �

(Bu

3Sn) 2

O 2

5 3

5997

57

[146

]

94

t-B

uO

OH

Oxom

olybden

um

81 [2

5]

inco

rpor

ated

into

cat

ionite

71

95

NaO

Cl

Mn

3+-t

etra

phen

ylp

orphyri

nPyri

din

e, 5

3[1

47]

conta

inin

g M

eCO

O g

roup

Page 23: Modern Methods for the Epoxidation of - and -Pinenes, 3-Carene …sibran.ru/upload/iblock/9a2/9a27e672114e2cfd36ac56983048... · 2013-02-06 · Chemistry for Sustainable Development

MODERN METHODS FOR THE EPOXIDATION OF α- AND β-PINENES, 3-CARENE AND LIMONENE 655

TA

BLE 3

(Con

tinued

)

12

34

56

78

910

96

30%

H2O

2 20

00.5

0

0.2

9874

73

[148

]

PhCO

OH

2.0

Mn(T

DCPP)C

l

X=

Z=

Cl,

Y =

H 0

.5

97

30%

MeC

OOOH

Na 2

CO

330

�35

1.5�

2 9

6[1

49]

98

15,1

6O

2

25 8

~50

[150

]

Lig

ht

with

λ >

350

nm

99

CO

(NH

2)2

⋅H2O

2 3

78

[6

2]

100

Air

Mn

3+(T

PP)

40

1

~53

[151

]

+R

h3+

(η5 -

C5M

e 5(b

ipy)C

l 2 1

.75

3.5

(C6H

5O) 2O

17

540

HCO

ON

a 35

Et 3

N u

p t

o pH

8.5

Page 24: Modern Methods for the Epoxidation of - and -Pinenes, 3-Carene …sibran.ru/upload/iblock/9a2/9a27e672114e2cfd36ac56983048... · 2013-02-06 · Chemistry for Sustainable Development

656 O. V. BAKHVALOV et al.

TA

BLE 3

(C

ontinued

)

12

34

56

78

910

101

10%

H2O

2 20

0M

TO

1.0

20 1

55

9854

[109

]

102

Air

Mn

3+(T

PP) w

ith 1

-met

hyl

imid

a-H

CO

ON

a40

8Epox

ide

[152

]

zole

as

an a

xia

l ligan

dco

nte

nt

in t

he

pro

duct

is e

qual to

100

%

10317

30%

H2O

2PhCO

ON

a up t

o pH

4.5

0 1

.3 9

592

87 [4

6]

~0.2

1041

830

% H

2O

2W

O3

⋅H2O

2.5

(C10

H22

) 3N

3.0

60 3

89[1

53]

or M

oO3, o

r H

2WO

4N

a 3PO

4⋅1

2H2O

1.6

Gas

� N

2

10519

O2

Me 3

CCH

O25

3 1

0096

96 [5

9]

Cat

alyst

is

inco

rpor

ated

into

mac

ropor

ous

zeol

ite,

Co

tota

l co

nte

nt

is 0

.29

%,

R1=

R2=

t-Bu, 13

.5 m

g p

er

1 m

mol

of

olef

in

106

O2

CoC

l 2 0

.5�1.0

60 4

48�55

3015

[154

]

107

H2O

2 22

0 0

20 26

4612

[6

0]

Mn-d

mta

cn

Page 25: Modern Methods for the Epoxidation of - and -Pinenes, 3-Carene …sibran.ru/upload/iblock/9a2/9a27e672114e2cfd36ac56983048... · 2013-02-06 · Chemistry for Sustainable Development

MODERN METHODS FOR THE EPOXIDATION OF α- AND β-PINENES, 3-CARENE AND LIMONENE 657

TA

BLE 3

(Con

tinued

)

12

34

56

78

910

108

t-B

uO

OH

150

SiO

2 co

nta

inin

g M

oCycl

ohex

ane

80

8

32 4

1

13[1

55]

in t

he

form

of iso

pro

pio

nat

e(C

4H9)

2O 2

5 8

0 2

4

44 3

4

15

Mo(

O-i

-Pr)

-SiO

2

109

20

298

�10

0[1

56]

12

0

110

O2 â

MeC

NM

e 2CH

CH

O 6

020

�80

[157

]

on c

onju

gat

ed

N-c

onta

inin

g p

olym

ers

111

Air

1M

Pa

Nan

osiz

ed TiO

2 7

0 3

5 4

1 14

[158

]

112

MeC

OO

OH

[159

]

113

Air

Mn a

nd F

e co

mple

xes

[5

1]

with t

etra

phen

ylp

oroh

yri

n

1142

0M

nA

lPO

-5H

2O 4

218

65

1 7

810

078

[160

, 161

]

9.3

mg p

er 1

mm

ol o

f ol

efin

pH

5.2

65

4 8

9 6

961

107

115

O2 â

MeC

NM

e 2CH

CH

O 2

00

65 1

59[1

62]

on c

onju

gat

ed

N-c

onta

inin

g p

olym

ers

1162

1H

2O2

in s

itu

MnSO

4CO

2, O

2, i

onic

5�20

3�5

75

83

62 [7

0]

liquid

Page 26: Modern Methods for the Epoxidation of - and -Pinenes, 3-Carene …sibran.ru/upload/iblock/9a2/9a27e672114e2cfd36ac56983048... · 2013-02-06 · Chemistry for Sustainable Development

658 O. V. BAKHVALOV et al.

TA

BLE 3

(Con

tinued

)

12

34

56

78

910

117

NaI

O4

in a

queo

us

25 2

.510

0 9

292

[163

]

med

ium

200

8

.4

118

Air

, 3

MPa

Mn

0.04

Al 0

.96P

O4-

36Ben

zald

ehyde

300

50 8

59

9154

[161

]

0.97

mg p

er 1

mm

ol o

f ol

efin

119

NaI

O4

in a

queo

us

25 3

100

9090

[164

]

med

ium

200

8.4

120

NaI

O4

in a

queo

us

252.5

93

94.6

88[1

65]

med

ium

200

10.8

1212

2H

2O2

in s

itu

MnSO

4 0.06

mol

. %A

nol

yte

� 2

MH

2SO

4,25

1.5

23 [7

1]

Cat

hol

yte

� 1

M N

aHCO

3,te

rt-b

uta

nol

, O

2

Page 27: Modern Methods for the Epoxidation of - and -Pinenes, 3-Carene …sibran.ru/upload/iblock/9a2/9a27e672114e2cfd36ac56983048... · 2013-02-06 · Chemistry for Sustainable Development

MODERN METHODS FOR THE EPOXIDATION OF α- AND β-PINENES, 3-CARENE AND LIMONENE 659

TA

BLE 3

(Con

tinued

)

12

34

56

78

910

122

MeC

OO

OH

MeC

OO

H[1

66]

30%

H2O

2N

aHCO

3

NaO

H

123

NaI

O4

in a

queo

us

2510

92

9386

[167

]

med

ium

200

9.4

inca

psu

late

d

in z

eolite

Yw

ith n

anop

ores

124

NaC

lO in a

queo

us

Bu

4NCl 0.8

25 3

81 [4

5]

med

ium

100

Gas

� N

2

Pyri

din

e 0.4

M =

MnCl

0.4

Page 28: Modern Methods for the Epoxidation of - and -Pinenes, 3-Carene …sibran.ru/upload/iblock/9a2/9a27e672114e2cfd36ac56983048... · 2013-02-06 · Chemistry for Sustainable Development

660 O. V. BAKHVALOV et al.

TA

BLE 3

(End)

12

34

56

78

910

125

t-B

uO

OH

5524

1254

6.5

[168

]

(5.5

M in d

ecan

e) 1

54

1.0

126

O2

[Bu

4N] 4H

[PW

11Co(

H2O

)O39

]M

e 2CH

CH

O 4

0025

2.0

9694

90 [4

3]on

mes

opor

ous

silica

te

mat

rice

s 0.6

12723

Anhydro

us

24%

H2O

2A

l 2O

3, 5

mg p

er 1

mm

ol o

f te

rpen

e77

632

6220

[3

8](s

ol. i

n e

thyl ac

etat

e)

200

128

O2

Me 2

CH

CH

O 5

0035

670

4733

[169

]

1 A

n a

ctiv

ity s

erie

s fo

r Ñî,

Fe,

Ìn,

Ni ac

etyal

ceto

nat

es is

pre

sente

d;

elec

tron

don

atin

g s

ubst

ituen

ts in a

cety

lace

tonat

es r

aise

the

activity o

f t

he

cata

lyst

.2 A

n ion

ic liq

uid

was

use

d a

s a

solv

ent

whic

h c

an b

e use

d r

epea

tedly

.3

Chir

al e

pox

ide

with e

e up t

o 58

% is

form

ed w

ith t

he

use

of

chir

al M

n c

omple

x.

4 The

reac

tion

mix

ture

con

tain

ed 4

6 %

of

ver

ben

one

and 2

1 %

of

epox

ide.

5 D

ata

conce

rnin

g t

he

epox

idat

ion o

f dod

ecen

e-1.

6 A

n a

lter

nat

ive

cata

lyst

is

the

com

ple

x t

win

ned

thro

ugh o

xygen

.7

An e

pox

idiz

ing a

gen

t is f

orm

ed i

n s

itu.

8 D

ata

conce

rnin

g t

he

epox

idat

ion o

f 3-

care

ne.

9 Epox

idat

ion w

ith d

istillin

g w

ater

out

of t

he

reac

tion

mix

ture

.10

Etc

hin

g o

f th

e ca

taly

st is

obse

rved

.11

Epox

ide

with e

nan

tiom

eric

exce

ss o

f 9

8 %

is

form

ed d

ue

to c

hir

al lig

and.

12 T

her

e ar

e no

spec

ific

dat

a in

the

abst

ract

con

cern

ing t

he

exper

imen

t.13

A

n a

lter

nat

ive

cata

lyst

is

O=

MoT

PP(O

Me)

.14

Co

can b

e use

d inst

ead o

f R

u.

15 I

ron c

omple

x c

ould

be

use

d,

too.

Page 29: Modern Methods for the Epoxidation of - and -Pinenes, 3-Carene …sibran.ru/upload/iblock/9a2/9a27e672114e2cfd36ac56983048... · 2013-02-06 · Chemistry for Sustainable Development

MODERN METHODS FOR THE EPOXIDATION OF α- AND β-PINENES, 3-CARENE AND LIMONENE 661

16 E

pox

ide

obta

ined

con

tain

s an

exce

ss o

f S-i

som

er u

p t

o 67

%.

17 T

he

stru

cture

of

cata

lyst

can

var

y w

ith r

espec

t to

subst

ituen

ts in t

he

ben

zene

rings, r

egar

din

g a

xia

l ligan

ds, r

egar

din

g b

onds

bet

wee

n t

he

aryl gro

ups.

18 D

ata

conce

rnin

g t

he

epox

idat

ion o

f cy

cloo

cten

e.19

Epox

ide

obta

ined

con

tain

s an

exce

ss o

f S iso

mer

up t

o 91

%.

20 S

olid

epox

idiz

ing a

gen

t su

ch a

s ac

etylp

erox

ybor

ate

on M

nA

lPO

-5 r

eact

s w

ith w

ater

to

pro

duce

ace

tic

acid

and h

ydro

gen

per

oxid

e.21

Hydro

gen

per

oxid

e is f

orm

ed f

rom

the

alkal

ine

solu

tion

of

ionic

liq

uid

con

tain

ing o

xygen

.22

Hydro

gen

per

oxid

e is f

orm

ed f

rom

NaH

CO

s, s

olution

con

tain

ing o

xygen

.23

Alu

min

ium

oxid

e ob

tain

ed v

ia s

ol-g

el m

ethod

and c

alci

nat

ed a

t 40

0 o Ñ

was

use

d.

Not

es. 1. N

um

ber

s in

the

form

ula

s of

epox

idiz

ing a

gen

ts,

cata

lyst

s, a

uxilia

ry r

eagen

ts d

esig

nat

e th

e dos

age

of t

hes

e co

mpou

nds

in m

ol. %

with r

espec

t to

ter

pen

e ex

cept

asot

her

wise

not

ed. 2. T

he

resu

lts

epox

idat

ion

are

char

acte

rize

d b

y t

he

conver

sion

lev

el f

or t

erpen

e, s

elec

tivity w

ith r

espec

t to

epox

ide

and t

he

yie

ld o

f ep

oxid

e; i

f on

e of

the

thre

e par

amet

ers

is n

ot s

pec

ifie

d in t

he

refe

rence

, it w

as c

alcu

late

d a

ccor

din

g t

o under

the

form

ula

: se

lect

ivity =

yie

ld/c

onver

sion

lev

el [78

]. 3. F

rom

sev

eral

res

ults

obta

ined

in

the

sam

e w

ork u

nder

clo

se c

onditio

ns, t

he

Tab

le d

emon

stra

tes

the

bes

t on

e. 4

. Som

e not

es a

re c

ause

d b

y t

he

fact

that

ther

e is s

omet

imes

no

exam

ple

in a

pat

ent

for

the

epox

idat

ion o

f te

rpen

e w

hic

h t

he

Tab

le is

dev

oted

to;

in t

his c

ase

the

Tab

le d

ispla

ys

the

epox

idat

ion p

aram

eter

s fo

r an

other

ter

pen

e pre

sente

d in t

his p

aten

t.

Page 30: Modern Methods for the Epoxidation of - and -Pinenes, 3-Carene …sibran.ru/upload/iblock/9a2/9a27e672114e2cfd36ac56983048... · 2013-02-06 · Chemistry for Sustainable Development

662 O. V. BAKHVALOV et al.

TA

BLE 4

Mai

n c

onditio

ns

and r

esults

for

lim

onen

e ep

oxid

atio

n

No.

Epox

idiz

ing

Cat

alyst

Auxilia

ry r

eagen

ts,

Ò,

î CR

eact

ion

Con

ver

sion

S

elec

tivity, %

Yie

ld,

%R

ef.

agen

tco

-cat

alyst

stim

e, h

level

, %

12

34

56

7

8

910

1H

2O2

⋅CO(N

H2)

2CF

3CH

(OH

)CF

3 14

10 2

5 7

100

88

88

[170

]

300

2 2

512

82 o

r>90

[171

]

100

or 2

30

31

F2+

H2O

+M

eCN

NaH

CO

3�10

0.02

35

[172

]

Gas

� N

2 0

35

4H

2O2

50

4[1

73]

5t-BuOOH

160

Ti-

SBA

(65

)-57

3 8

024

97

100

97

[117

]

mes

opor

ous

SiO

2 SBA

-15

gra

fted

with T

i

6O

2N

i(ac

ac) 2

Me 2

CH

CH

O 3

00 2

5 2.5

100

81

81

[2

6]

7O

2M

e 2CH

CH

O 2

00 2

5 3

100

[5

2]

X =

Z =

H, Y

= O

Me

Co(

II)T

PP-O

Me

5.0

Page 31: Modern Methods for the Epoxidation of - and -Pinenes, 3-Carene …sibran.ru/upload/iblock/9a2/9a27e672114e2cfd36ac56983048... · 2013-02-06 · Chemistry for Sustainable Development

MODERN METHODS FOR THE EPOXIDATION OF α- AND β-PINENES, 3-CARENE AND LIMONENE 663

TA

BLE 4

(Con

tinued

)

12

34

56

78

910

8O

2Co2+

com

ple

x w

ith

Me 2

CH

CH

O 2

00

2512

�14

~100

[174

][3

.2.1

]cry

pta

nd

and p

icra

te [Co(

L)](p

icra

te) 2

5.0

92

20

2

~100

[156

]

20

2+

4

100

or 2

00

10

30%

H2O

2 15

0PhCN

150

25

48

86

[82]

KH

CO

3 10

0

11

t-B

uO

OH

100

MoO

3-4S

iO2 0.1

50

12

~85

~100

~85

[23]

(mol

ybdos

ilic

ate)

12

30%

H2O

2 15

0M

TO

0.5

Pyri

din

e 12

25

11

96

98

94

[175

]

13

50%

H2O

2 20

0A

mber

lite

IR

A-9

00 in t

he

form

38

24

84

93

78

[80]

of V

entu

rello

anio

n P

W4O

243�

14

MeC

OO

OH

[176

]

15

60%

H2O

2 20

0A

s(C

4H9)

2Ph 1

.0N

a 2H

PO

4 5.0

~100

1

.5 7

9[1

77]

Gas

� N

2

16

See

Tab

le 3

, line

No. 1

07 5

8 8

1 4

7[6

0]

17

See

Tab

le 3

, line

No. 1

08 6

5 8

9 5

8[1

55]

81

86

70

18

~10

14 8

6[1

78]

22

0

Page 32: Modern Methods for the Epoxidation of - and -Pinenes, 3-Carene …sibran.ru/upload/iblock/9a2/9a27e672114e2cfd36ac56983048... · 2013-02-06 · Chemistry for Sustainable Development

664 O. V. BAKHVALOV et al.

TA

BLE 4

(Con

tinued

)

12

34

56

78

910

193

Gas

� A

r�5

4 8

7~1

0010

0[1

10]

0 1

100

~100

100

200

or 1

00

20

0�20

~12

[179

]

220

214

See

Tab

le 3

, line

No. 4

0 8

3[2

8] 2

2See

Tab

le 3

, line

No. 9

1 5

4[2

9, 1

80]

23

30%

H2O

2 50

0M

eCO

OH

100

25

0.25

59

81

48

[108

]

0.1

245

See

Tab

le 3

, line

No. 3

9

25 1.5

90�10

0 9

1[2

7]

25

8

90�10

0 3

7

25

30%

H2O

2 20

0M

g6A

l 2(O

H) 1

6CO

3⋅4

H2O

Ultra

sound

70

3

61[1

81]

(hydro

calc

ite)

0.94

26

NaI

O4

200

24

3

98�10

088

[182

]

24

3.5

83

95

79

12

(C4H

9)4N

Br

12

X =

Y =

Z =

H o

r

X =

Y =

Z =

Me

X =

AcO

O

Page 33: Modern Methods for the Epoxidation of - and -Pinenes, 3-Carene …sibran.ru/upload/iblock/9a2/9a27e672114e2cfd36ac56983048... · 2013-02-06 · Chemistry for Sustainable Development

MODERN METHODS FOR THE EPOXIDATION OF α- AND β-PINENES, 3-CARENE AND LIMONENE 665

TA

BLE 4

(Con

tinued

)

12

34

56

78

910

276

30%

H2O

2 50

0M

eCO

OH

100

25

0.25

59

81

48[2

2]

16

28

t-B

uO

OH

150

55

4 8

2 9

578

[183

]

29

30%

H2O

2 40

0Ca 1

0(PO

4)6(O

H) 2 (hydro

calc

ite)

65�70

838

[184

]

8 m

g p

er 1

mm

ol o

f ol

efin

30

NaI

O4

200

25

2468

[185

]

43

4.0

on p

olyst

yre

ne

31

See

Tab

le 4

, line

No. 2

3 2

5 1

72[3

2]

32

35%

H2O

2 30

Ti-

conta

inin

g M

CM

-41

70

750

�60

[186

]

1.27

% T

i

9.3

mg p

er 1

mm

ol o

f ol

efin

33

30%

H2O

2(n

-Bu

4N) 2

HP

2W

2O14

,

20 4

100

95

95[1

87]

fixed

onto

res

in A

mber

lyst

or o

nto

por

ous

SiO

2

Page 34: Modern Methods for the Epoxidation of - and -Pinenes, 3-Carene …sibran.ru/upload/iblock/9a2/9a27e672114e2cfd36ac56983048... · 2013-02-06 · Chemistry for Sustainable Development

666 O. V. BAKHVALOV et al.

TA

BLE 4

(Con

tinued

)

12

34

56

78

910

34

30%

H2O

2 41

00�20

...+

20 2

78 8

5 6

6[1

88]

25

0

18-c

row

n-6

4.0

Gas

� N

2

357

30%

H2O

2 10

0[γ

-1,2

-H2S

iV2W

10O

40]4�

×

× [(n-C

4H9)

4N+] 4

2

024

89

[33]

pol

yox

ovan

adom

etal

late

TBA

-1 5.0

36

O2

Hydro

talc

ite

conta

inin

g 8

0 6

55[1

89]

Mg,

Al, C

u,

Pd

37

See

Tab

le 3

, line

No.

5985

100

85

[58]

38

NaI

O4

Mn(T

PyP) fixed

onto

Ultra

sound

[190

]ch

loro

met

hyla

ted

pol

yst

yre

ne

39

See

Tab

le 3

, line

No.

5697

100

97

[116

, 117

]

40

35%

H2O

2 20

0K

5.5Na 1

.5[PW

10O

38Cu 4

(H2O

) 2]⋅

13H

2O ,

2

40[1

91]

mai

n p

has

e

[K10 (P

W9O

34) 2Cu

4(H

2O) 2]⋅

20H

2O ,

min

or p

has

e 0.1

41

35%

H2O

2 13

0M

TO

Pyri

din

e 20

or

20

6~9

0[1

]3-

cyan

opyri

din

e 20

42

See

Tab

le 3

, line

No. 4

492

82

75

[111

]

43

See

Tab

le 3

, line

No. 4

5 9

5[6

2]

44

60%

H2O

2 20

0N

a 2H

PO

4 5.0

~8

0 3

81

[24]

Gas

� N

2

45

See

Tab

le 3

, line

No. 4

8 8

5[6

7]

46

See

Tab

le 3

, line

No. 1

917

26

4

.5[7

3]

Page 35: Modern Methods for the Epoxidation of - and -Pinenes, 3-Carene …sibran.ru/upload/iblock/9a2/9a27e672114e2cfd36ac56983048... · 2013-02-06 · Chemistry for Sustainable Development

MODERN METHODS FOR THE EPOXIDATION OF α- AND β-PINENES, 3-CARENE AND LIMONENE 667

TA

BLE 4

(Con

tinued

)

12

34

56

78

910

478

O2

Me 3

CCH

O 3

1125

24 8

1[1

92]

N-m

ethylim

idaz

ole

51

in m

esop

ores

of

zeol

ite

X

13.5 m

g p

er 1

mm

ol o

f ol

efin

489

O2

Co-

sale

n w

ith a

chir

al lig

and

Me 3

CCH

O[1

93]

in m

esop

orou

s ze

olite

N-m

ethylim

idaz

ole

4910

See

Tab

le 3

, line

No. 5

2 9

0 71

for

R(+

)64

[115

]

83

for

S(�

)75

50

OK

CO

HN

aHCO

3 60

025

4.5

90

79

71[1

94]

ED

TA

~0.06

511

1H

ClO

2545

[195

]

from

TCIC

A

~

40

KO

H ~

110

52

See

Tab

le 3

, line

No. 5

7 2

110

021

[47]

53

See

Tab

le 3

, line

No. 5

460

24 3

0[7

4]

54

See

Tab

le 3

, line

No. 5

9 8

510

085

[58]

551

2See

Tab

le 3

, line

No. 5

8 9

5 9

388

[8]

56

See

Tab

le 3

, line

No. 6

2 7

0 9

063

[39]

57

[196

]

58

Anhydro

us

Al 2O

3 neu

tral

obta

ined

76 9

~95

[197

]H

2O2 20

0using s

ol-g

el m

ethod

59

See

Tab

le 3

, line

No. 1

06 4

3 4

318

.5[1

54]

Page 36: Modern Methods for the Epoxidation of - and -Pinenes, 3-Carene …sibran.ru/upload/iblock/9a2/9a27e672114e2cfd36ac56983048... · 2013-02-06 · Chemistry for Sustainable Development

668 O. V. BAKHVALOV et al.

TA

BLE 4

(Con

tinued

)

12

34

56

78

910

60

O2

Me 3

CCH

O 2

.525

2490

�95

55�60

~52

[59]

136

mg p

er 1

mm

ol o

f ol

efin

6113

See

Tab

le 3

, line

No. 6

150

�55

97

51

[118

]

62

PhIO

Mn(I

II)s

alen

Cl 1.0

Gas

� N

2 or

Ar

2525

47

26

[57]

63

H2O

2⋅C

O(N

H2)

2 22

0M

TO

20 0.4

52

[198

]

20 0.7

99

64

35%

H2O

2 12

025

1.5

79

[36]

MTO

in p

olyvin

ylp

ypri

din

e

with 2

5 %

lin

kag

e

65

See

Tab

le 3

, line

No. 4

220

0.5

>99

98

97

[109

]

66

See

Tab

le 3

, line

No. 8

2 4

1

92 9

3 85

.5

[105

, 136

]

4 2

98

86

84

67

See

Tab

le 3

, line

No. 9

3

82[2

5]

Page 37: Modern Methods for the Epoxidation of - and -Pinenes, 3-Carene …sibran.ru/upload/iblock/9a2/9a27e672114e2cfd36ac56983048... · 2013-02-06 · Chemistry for Sustainable Development

MODERN METHODS FOR THE EPOXIDATION OF α- AND β-PINENES, 3-CARENE AND LIMONENE 669

TA

BLE 4

(Con

tinued

)

12

34

56

78

910

6811

See

Tab

le 3

, line

No. 4

7[1

13]

69

See

Tab

le 3

, line

No. 5

0

77

93.5

72

[41]

7014

See

Tab

le 3

, line

No. 8

5 10

0

20

20[1

39]

71

See

Tab

le 3

, line

No. 6

8

72[1

22]

7215

See

Tab

le 3

, line

No. 2

193

�99

61�74

[94]

73

See

Tab

le 3

, line

No. 7

6 8

5[1

30]

74

See

Tab

le 3

, line

No. 5

42�

2.5

96�98

~100

9

8[3

7]

75

See

Tab

le 3

, line

No. 2

9 7

2[2

2]

761

6See

Tab

le 3

, line

No. 5

8 95

93

8

8[1

31]

77

See

Tab

le 3

, line

No. 7

9

100

[133

]

78

50%

H2O

2 15

0Phen

ol

40 2

2 86

92

7

9[1

99]

MeC

OO

Na

1.0

79

O2

Pr

com

pou

nd, 1

mas

s %

MeC

H2C

HO

150

30�60

4.5

94

81

76

[84]

80

See

Tab

le 3

, line

No. 1

10[1

57]

81

30%

NaO

Cl â

H2O

Com

ple

xes

of

Fe,

Mn,

Co

3

0 4

80

[200

]

t-B

uO

OH

100

with tet

raphen

ylp

orphyri

ne

(FeT

PP)C

l, (

MnTPP)C

l,

CoT

PP 0

.1

82[2

01]

Dim

ethylsulp

hon

ium

met

hylide

83

See

Tab

le 3

, line

No. 1

14 9

4 61

57

[16

0, 161

]

84

See

Tab

le 3

, line

No.

115

2

86

[162

]

85

See

Tab

le 3

, line

No.

117

92

71

65

[163

]

86

See

Tab

le 3

, line

No.

119

92

98

90

[164

]

87

See

Tab

le 3

, line

No.

123

89

10

0

89[1

67]

Page 38: Modern Methods for the Epoxidation of - and -Pinenes, 3-Carene …sibran.ru/upload/iblock/9a2/9a27e672114e2cfd36ac56983048... · 2013-02-06 · Chemistry for Sustainable Development

670 O. V. BAKHVALOV et al.

TA

BLE 4

(Con

tinued

)

12

34

56

78

910

88

t-BuO

OH

(5.5

Ì55

2434

84

28.5

[168

]

in d

ecan

e) 1

54

Bn =

C6H

5CH

2

1.0

89

See

Tab

le 3

, line

No. 1

2740

80

32[3

8]

90

See

Tab

le 3

, line

No. 1

2095

100

95[1

65]

9117

2546

94[2

02]

150

2.0

92

H2O

2[γ

-SiW

10O

34(H

2O) 2

]4�[2

03]

pol

yox

omet

alla

te

93

Hal

ogen

atio

n o

f lim

onen

e54

[204

]

by m

eans

of N

-bro

mos

ucc

inim

ide

with f

urt

her

tre

atm

ent

of b

rom

ohydri

nes

form

ed b

y t

he

mix

ture

of

Na 2

CO

3 � E

tOH

� H

2O

yie

lds

tran

s-1,

2-ep

oxylim

onen

e

941

830

% H

2O2

100

[γ-H

2SiV

2W10

O40

]4- (B

u4N

+) 4 5

.020

2495

9590

[65,

66]

9519

O2

Et 2

CH

CH

O 2

0030

2482

[205

]

93

R1 =

Me,

R2 =

4-m

ethox

yphen

yl,

Co(

II)c

alyx(4

)pyrr

ol 1

.0

Page 39: Modern Methods for the Epoxidation of - and -Pinenes, 3-Carene …sibran.ru/upload/iblock/9a2/9a27e672114e2cfd36ac56983048... · 2013-02-06 · Chemistry for Sustainable Development

MODERN METHODS FOR THE EPOXIDATION OF α- AND β-PINENES, 3-CARENE AND LIMONENE 671

TA

BLE 4

(Con

tinued

)

12

34

56

78

910

962

0t-

BuO

OH

25

4647

[206

]

or

150

2.0

97

Anhydro

us

Bas

ic A

l 2O

3 0.25

60

831

9730

[40]

H2O

2 (ð

-ð â

ÝÀ

)

200

982

1t-

BuO

OH

Me 2

-men

thyl-

Sn

2MoO

4(H

2O) 3

.5 1

.0 5

524

8589

76[2

07]

(5.5 Ì

in d

ecan

e)97

6866

150

99

O2

Mn c

omple

x w

ith m

eso-

Me 2

CH

CH

O 5

00

25 5

9299

91[2

08]

tetr

aphen

ylp

orphyri

n (

MnTPP)

100

t-B

uO

OH

110

Ti-

MCM

-41

(MCM

-41

2477

8162

[209

]

with g

raft

ed T

i (I

V)) 0

.002

% T

i

101

See

Tab

le 3

, line

No. 4

091

[210

]

102

NaI

O4

in H

2O 2

00

25 4

8710

087

[211

]

340

on m

ontm

orillo

nite

12.6

103

30%

H2O

2N

a 2W

O4

⋅2H

2O 2

.0(n

-C8H

17) 3N

+M

e25

�70

2.2

9864

63[2

12]

in p

hos

phat

e(

� 4H

SO

) 1.0

buff

er 1

500.1

M H

3PO

4

0.1

M N

aH2P

O4

Na 2

SO

4 5.0

104

t-B

uO

OH

9024

8690

77[2

13]

(3.2 M

in tol

uen

e)

120

4,4�

-met

hyle

ne-

bis(N

,N-d

igly

ci-

dyla

nilin

e; T

GM

DA

-Mo(

OEt)

5

50 m

g p

er 1

mm

ol o

f te

rpen

e

Page 40: Modern Methods for the Epoxidation of - and -Pinenes, 3-Carene …sibran.ru/upload/iblock/9a2/9a27e672114e2cfd36ac56983048... · 2013-02-06 · Chemistry for Sustainable Development

672 O. V. BAKHVALOV et al.

TA

BLE 4

(Con

tinued

)

12

34

56

78

910

105

3%

t-B

uOOH

V2O

5/TiO

2, 3

.4 m

g p

er 1

mm

ol60

1623

3.7

[214

]

in a

ceto

ne

800

of t

erpen

e

106

H2O

2 31

6[A

sO4{W

2O2(µ

-O2)

2(O2) 2

} 2][(n

-C6H

13) 4N] 3

Phas

e25

698

8886

[215

]tr

ansf

er

cata

lyst

Gàç

� N

2

107

Det

aile

d i

nves

tigat

ion o

f[2

16]

epox

idat

ion k

inet

ics

under

the

action

of

H2O

2 in

the

pres

ence

of P

W-a

mber

lite

10822

30%

H2O

2 10

020

2480

[217

]

[γ-1

,2-H

2SiV

2W10

O40]4

�,

imm

obiliz

ed o

n S

iO2

using 0

.005

% p

olyox

omet

alla

te

as a

bin

din

g a

gen

t10

970

% t

-BuO

OH

Mn c

omple

x w

ithte

trap

hen

yl-

30 4

80[5

5]

in H

2O 2

00por

phyri

n a

nd c

hlo

rine

as a

n a

xia

l ligan

dM

n(T

PP)C

l 0.1

Page 41: Modern Methods for the Epoxidation of - and -Pinenes, 3-Carene …sibran.ru/upload/iblock/9a2/9a27e672114e2cfd36ac56983048... · 2013-02-06 · Chemistry for Sustainable Development

MODERN METHODS FOR THE EPOXIDATION OF α- AND β-PINENES, 3-CARENE AND LIMONENE 673

TA

BLE 4

(Con

tinued

)

12

34

56

78

910

110

~4

% N

aIO

425

0.34

9494

88

[48]

in H

2O 2

00

20

Ultra

sound

0

.02

Tet

ra-(

4-pyri

dyl)por

phyri

n

imm

obiliz

ed o

nto

chlo

ro-

met

hyla

ted p

olyst

yre

ne

111

Air

MeC

HO

300

2514

100

[218

]

10

112

t-BuOOH

MoO

x,

inco

rpor

ated

2524

9493

87

[61]

(~6

M in

dec

ane)

into

gri

nded

SiO

2, 0

.62

% M

o

Page 42: Modern Methods for the Epoxidation of - and -Pinenes, 3-Carene …sibran.ru/upload/iblock/9a2/9a27e672114e2cfd36ac56983048... · 2013-02-06 · Chemistry for Sustainable Development

674 O. V. BAKHVALOV et al.

TA

BLE 4

(Con

tinued

)

12

34

56

78

910

113

Air

Me 2

CH

CH

O 2

4025

1260

9054

[219

]

45

Mn(s

alen

) im

mob

iliz

ed

onto

zeo

lite

SBA

-15

mod

ifie

d w

ith

sulp

huri

c ac

id

(SB

A-1

5-pr-

Mn(s

alen

))

27 m

g p

er 1

mm

ol o

f ol

efin

114

Anhydro

us

H2O

222

2286

8170

[220

]

in t

-BuO

H 4

28

× [H

PO

4{W

2O2(

µ-O

2)2(O

2)2}

]2� 8

.5 W

Pol

yox

omet

alla

teco

mple

x o

n m

odifie

d S

iO2

115

35%

H2O

2 20

0K

5.5N

a 1.5[P

W10O

38Cu 2

(H2O

) 2]⋅

13H

2O 0.2

240

96[2

21]

116

O2 blo

w-t

hro

ugh d

uri

ng 6

h[2

22]

at 8

0 o C

thro

ugh o

range

oil

conta

inin

g 0

.1 %

of

Pd o

n h

ydro

talc

ite

res

ults

in lim

onen

e co

nver

sion

lev

elof

abou

t 40

% w

ith t

he

sele

ctiv

ity

at a

bou

t 40

% w

ith r

espec

t to

epox

ides

117

(H2N

) 2CO

⋅H2O

225

0.08

75[2

23]

400

13

3

Hph

ox =

2-(2′

-hydro

xyphen

yl)ox

azol

ine

Mn(p

hox

) 2(C

H3O

H) 2ClO

4 6.7

Page 43: Modern Methods for the Epoxidation of - and -Pinenes, 3-Carene …sibran.ru/upload/iblock/9a2/9a27e672114e2cfd36ac56983048... · 2013-02-06 · Chemistry for Sustainable Development

MODERN METHODS FOR THE EPOXIDATION OF α- AND β-PINENES, 3-CARENE AND LIMONENE 675

TA

BLE 4

(End)

12

34

56

78

910

118

MeC

OO

OH

576

251.0

~80

~100

82[2

24]

Bin

ucl

ear

com

ple

x o

f M

n(I

V)

with 1

,4,7

-tri

met

hyl-

1,4,

7-tr

iaza

-cy

clon

onan

e (L

)

[Mn

2L2O

3](P

F6)

2 0.04

1192

330

% H

2O2

134

WO

3⋅H

2O/H

2O2�

H2O

�H

3O+ 1

.7M

eN+(n

-C8H

17) 3H

2PO

421

2 9

5 5

855

[225

]

12024

35%

H2O

2 27

Ti-

MCM

-41

sila

niz

ed w

ith

707

81

65

[226

]

hex

amet

hyld

isilaz

ane

11.6 m

g p

er 1

mm

ol o

f ol

efin

1 At

an e

levat

ed t

emper

ature

die

pox

ides

are

for

med

.2 A

n e

quim

olar

am

ount

of t

he

epox

idiz

ing a

gen

t re

sults

in t

he

form

atio

n o

f 1

,2-m

onoe

pox

ide,

wher

eas

dou

ble

am

ount

of t

he

epox

idiz

ing a

gen

t an

d t

riple

expos

itio

n is

stat

ed (

with n

o in

dic

atio

n o

f quan

tita

tive

par

amet

ers)

to

resu

lt in t

he

form

atio

n o

f die

pox

ides

.3 T

he

ratio

bet

wee

n m

ono-

and d

iepox

ides

dep

ends

to a

con

sider

able

exte

nt

on t

he

conditio

ns

and t

he

qual

ity o

f so

urc

e ep

oxid

e.4

Epox

idat

ion w

ith d

istillin

g w

ater

out

of t

he

reac

tion

mix

ture

.5

Ther

e is

also

a des

crip

tion

of o

ther

mod

ific

atio

ns

of t

he

cata

lyst

with t

he

char

acte

rist

ics

diffe

rent

from

the

pre

sente

d.

6 W

ith v

aryin

g t

he

conce

ntr

atio

n o

f hydro

gen

per

oxid

e fr

om 1

00 t

o 30

% t

he

conte

nt

die

pox

ides

dec

reas

es f

rom

47

to 2

2 %

.7

Only

8,9

-epox

ide

is f

orm

ed.

8 The

enan

tiom

eric

exce

ss o

f e

pox

ide

is 3

7 %

.9

The

cata

lyst

it

is u

sed f

or s

tere

osel

ective

oxid

atio

n.

10 T

he

sele

ctiv

ity f

or t

he

epox

idat

ion o

f R

-(+

)-isom

er is

71 %

, w

her

eas

for

the

epox

idat

ion o

f S-(

�)-

isom

er t

his v

alue

is e

qual

to

83 %

, w

hic

h, pro

bab

ly, co

uld

be

connec

ted w

ith d

iffe

rent

puri

ty o

f th

e re

agen

ts.

11 A

n e

pox

idiz

ing a

gen

t is f

orm

ed i

n s

itu.

12 T

he

dia

ster

eom

eric

exce

ss f

or o

ne

of t

he

isom

ers

of t

he

epox

ide

is e

qual

to

43 %

.

Page 44: Modern Methods for the Epoxidation of - and -Pinenes, 3-Carene …sibran.ru/upload/iblock/9a2/9a27e672114e2cfd36ac56983048... · 2013-02-06 · Chemistry for Sustainable Development

676 O. V. BAKHVALOV et al.

13 F

or a

non

-silan

ized

cat

alyst

just

the

sam

e re

sult is

obta

ined

as

for

a sila

niz

ed c

atal

yst

.14

An e

pox

idiz

ing a

gen

t is f

orm

ed i

n s

itu f

rom

CpM

o(CO

) 3Cl an

d t

-BuO

OH

.15

The

resu

lt d

epen

ds

on m

etal

and p

olym

er u

sed.

16 E

pox

ide

with t

he

dia

stre

omer

ic e

xce

ss o

f 43

% is

form

ed d

ue

to c

hir

al lig

and.

17 T

he

dia

ster

eom

eric

exce

ss o

f ep

oxid

e is e

qual

to

66 %

.18

99

% o

f th

e m

ixtu

re o

f ep

oxid

es is

pre

sente

d b

y 8

,9-i

som

er.

19 F

or R

-(+

) isom

er t

he

yie

ld is

less

, th

an f

or S

-(�)

isom

er.

20 T

he

dia

ster

eom

eric

exce

ss o

f ep

oxid

e is 3

3 %

.21

Top

lin

e: t

he

conver

sion

lev

el, se

lect

ivity, yie

ld f

or R

(+)-

l-m

onen

e; b

otto

m l

ine:

thos

e val

ues

for

S-(

�)-

lim

onen

e an

d t

he

val

ues

of

dia

ster

eom

eric

exce

ss o

f ep

oxid

es 5

-722

97

.5 %

of

the

mix

ture

of

epox

ides

is

pre

sente

d b

y 8

,9-e

pox

ylim

onen

e.23

The

conver

sion

of

olef

in o

ccurs

in a

tw

o-phas

e ca

taly

tic

syst

em w

ith t

he

key

rol

e of

WO

3.24

Epox

idat

ion c

arri

ed o

ut

in t

he

exce

ss o

f ol

efin

to

pre

ven

t tita

niu

m f

rom

was

hin

g a

way

. Sililat

ion k

eeps

the

sele

ctiv

ity w

ith a

n incr

ease

in t

he

conver

sion

lev

el.

Page 45: Modern Methods for the Epoxidation of - and -Pinenes, 3-Carene …sibran.ru/upload/iblock/9a2/9a27e672114e2cfd36ac56983048... · 2013-02-06 · Chemistry for Sustainable Development

MODERN METHODS FOR THE EPOXIDATION OF α- AND β-PINENES, 3-CARENE AND LIMONENE 677

TA

BLE 5

Mai

n c

onditio

ns

and r

esults

for

3-ca

rene

epox

idat

ion

No.

Epox

idiz

ing

Cat

alyst

Auxilia

ry r

eagen

ts,

Ò,

î CR

eact

ion

Con

ver

sion

S

elec

tivity, %

Yie

ld,

%R

ef.

agen

tco

-cat

alyst

stim

e, h

level

, %

12

3 4

5 6

7

8

910

150

% H

2O

2, 1

00K

2CO

3 30

0 �

512

�0

80

[227

]

150

2See

Tab

le 3

, line

No. 46

[112

]

31

,2See

Tab

le 3

, line

No. 1

04[1

53]

43

See

Tab

le 3

, line

No. 40

87

[28]

530

% H

2O2

160

WO

3⋅H

2O 2

00N

a 3PO

4 3.0

25

96

97

[228

]

QA

S ~

1.0

H2S

O4

up t

o pH

2.5

6See

Tab

le 3

, line

No. 5

3[3

7]

750

% H

2O2

150

Zn(

NO

3)2

⋅6H

2O60

�65

8

.5~1

00~7

8 7

8[2

29]

+ N

a 2W

O4

⋅2H

2O 6

30 4

40

8See

Tab

le 3

, line

No. 42

20

2

97

99

96

[109

]

950

% H

2O2

250

MeC

N 6

20

60 1

8 9

2[2

30]

Na 2

HPO

4 0.01

2

NaO

H ~

26

Gas

� N

2

1038.4

%

Na 2

CO

3 94

20

24

[231

]M

eCO

OO

H 1

10M

eCO

OO

H

NaO

H ~

26

Gas

� N

2

1150

% H

2O2

250

MeC

N 6

20

60 2

4[2

31]

Na 2

HPO

4 0.01

2

NaO

H ~

26

Gas

� N

2

Page 46: Modern Methods for the Epoxidation of - and -Pinenes, 3-Carene …sibran.ru/upload/iblock/9a2/9a27e672114e2cfd36ac56983048... · 2013-02-06 · Chemistry for Sustainable Development

678 O. V. BAKHVALOV et al.

TA

BLE 5

(Con

tinued

)

12

34

56

78

910

12t-

BuO

OH

(NH

4)2M

oO4

~0.08

NaO

H 5

0097

6~9

3[2

31]

Gas

� N

2

13See

Tab

le 3

, line

No. 9

1 4

8[2

9]

14See

Tab

le 3

, line

No. 3

770

5[1

07]

1560

% H

2O2

200

CF

3CO

CF

3 5.0

20 1

80

[232

]

Na 2

HPO

4 5

.020

21

>99

16See

Tab

le 3

, line

No. 4

925

22

70

25

17.5

[31]

20 9

79

18

14

17

80[1

45]

18See

Tab

le 3

, line

No. 7

20 5

97

90

87

[26]

19G

as �

Ar

�5

1

~100

[110

]

20See

Tab

le 3

, line

No. 3

920

1.5

[27]

21See

Tab

le 3

, line

No. 3

60 4

9

7 97

94

[80]

224

60%

H2O

2 20

0N

a 2H

PO

4 5.0,

20 2

1 8

1[2

4]

gas

� N

2

231

See

Tab

le 3

, line

No. 6

3 6

2 ~

55[6

8]

24O

2CoN

aYM

e 2CH

CH

O 7

6024

2.5

10

0 9

9

99[4

2]

Co(

NO

3)2 2

.024

3.0

2550

% H

2O2

150

PhO

H 1

000

MeC

OO

Na

1.0

60 1

2 9

6 9

5 91

[199

]

265

30%

H2O

2(T

BA

) 6[M

n(H

2O)B

W11

O39

]82

2�6

75�76

62�65

44�47

[234

]60

0�70

0(T

BA

) 5[B

W12

O40

]

Page 47: Modern Methods for the Epoxidation of - and -Pinenes, 3-Carene …sibran.ru/upload/iblock/9a2/9a27e672114e2cfd36ac56983048... · 2013-02-06 · Chemistry for Sustainable Development

MODERN METHODS FOR THE EPOXIDATION OF α- AND β-PINENES, 3-CARENE AND LIMONENE 679

TA

BLE 5

(Con

tinued

)

12

34

56

78

910

2730

% H

2O2

300

MeC

OO

NH

4 66

601.5

6857

39[2

35]

X =

Z =

Cl

[MnClT

DCPPyPH

]H2[PW

12O

40]×

× 4H

2O⋅3

MeO

H

28M

eCO

OO

HM

eCO

ON

a25

298

[236

]

2930

% H

2O

223

2493

.5[2

37]

301

See

Tab

le 3

, line

No. 4

722

[113

]

3110

% H

2O2

200

22 1

9892

90[2

38]

Fe(

TPFPP)C

l0.2

Page 48: Modern Methods for the Epoxidation of - and -Pinenes, 3-Carene …sibran.ru/upload/iblock/9a2/9a27e672114e2cfd36ac56983048... · 2013-02-06 · Chemistry for Sustainable Development

680 O. V. BAKHVALOV et al.

TA

BLE 5

(C

ontinued

)

12

34

56

78

910

3230

% H

2O2

420

MeC

OO

NH

4 23

25

3.5

100

6060

[239

]

Mn(T

F5P

P)C

l1.7

3350

% H

2O2

200

PW

4O24 o

n A

mber

lite

IRA

-900

38

24 5

597

53[8

0]

20 m

g p

er 1

mm

ol o

f te

rpen

e

34O

2Pr

com

pou

nd, 1

mas

s %

MeC

H2C

HO

150

30�60

4

95

8278

[84]

35A

nhydro

us

25

3035

[180

]

MeC

N

~5.0

366

30%

H2O

2 41

00�20

227

[188

]

150

8-cr

own-6

4.0

gas

� N

2

372

30%

H2O

2 53

0W

O3

⋅H2O

250

or

MoO

2 24

0 6

0 2

77[2

40]

85

2.4

H3P

O4

1.6

Page 49: Modern Methods for the Epoxidation of - and -Pinenes, 3-Carene …sibran.ru/upload/iblock/9a2/9a27e672114e2cfd36ac56983048... · 2013-02-06 · Chemistry for Sustainable Development

MODERN METHODS FOR THE EPOXIDATION OF α- AND β-PINENES, 3-CARENE AND LIMONENE 681

TA

BLE 5

(End)

12

34

56

78

910

3830

% H

2O2

Na 2

WO

4⋅2

H2O

2.0

MeN

+(í

-C8H

17) 3

25�70

4.0

9395

88[2

41]

in p

hos

phat

e� 4

HSO

1.0

buff

er0.1

M H

3PO

4

0.1

M N

aH2P

O4

Na 2

SO

4 5.0

3935

% H

2O

2M

eCO

ON

H4 4

0

2027

6542

27[4

9]

5,10

,15,

20-t

etra

kis(2

,6-d

i-

chlo

rophen

yl)-p

orphyri

nat

o-M

n(I

II)

[Mn(T

DCPP)C

l]10

3 m

g p

er 1

mm

ol o

f ol

efin

407

30%

H2O

2 13

4W

O3

⋅H2O

/ H

2O2�

H2O

�H

3O+1.

7M

eN+(n

-C8H

17) 3

21

385

100

85[2

25]

24

HPO

2.5

1 A

n e

pox

idiz

ing a

gen

t is f

orm

ed i

n s

itu.

2 Q

uan

tita

tive

dat

a ar

e pre

sente

d f

or t

he

epox

idat

ion o

f cy

cloo

cten

e.3

Epox

idat

ion w

ith d

istillin

g w

ater

out

of t

he

reac

tion

mix

ture

4 The

yie

ld is

pre

sente

d f

or p

uri

fied

epox

ide

in s

mal

l-sc

ale

exper

imen

t.5

The

reac

tion

dura

tion

dep

ends

on t

he

exce

ss o

f hydro

gen

per

oxid

e.6

70 %

of

initia

l te

rpen

e re

mai

n n

on-r

eact

ed.

7 The

conver

sion

of

olef

in o

ccurs

in a

tw

o-phas

e ca

taly

tic

syst

em w

ith t

he

key

rol

e of

WO

3.

Page 50: Modern Methods for the Epoxidation of - and -Pinenes, 3-Carene …sibran.ru/upload/iblock/9a2/9a27e672114e2cfd36ac56983048... · 2013-02-06 · Chemistry for Sustainable Development

682 O. V. BAKHVALOV et al.

TA

BLE 6

Mai

n c

onditio

ns

and r

esults

for

β-pin

ene

epox

idat

ion

No.

Epox

idiz

ing

Cat

alyst

Auxilia

ry r

eagen

ts,

Ò,

î CR

eact

ion

Con

ver

sion

S

elec

tivity, %

Yie

ld,

%R

efer

ence

agen

tco

-cat

alyst

stim

e, h

level

, %

12

3 4

5 6

7

8

910

11

See

Tab

le 3

, line

No. 3

7[1

07]

2See

Tab

le 3

, line

No. 1

84[7

9]

3(M

eCO

O) 4Pb

[242

]

4PhCN

KH

CO

3 49

20�25

120

74[2

43]

+ 5

0%

H2O

2 ~1

:1

5See

Tab

le 3

, line

No. 5

91[8

2]

6See

Tab

le 3

, line

No. 2

0 1

.298

83.5

82[1

]

7See

Tab

le 3

, line

No. 4

84[8

1]

8See

Tab

le 3

, line

No. 1

09[1

56]

9See

Tab

le 3

, line

No. 1

04[1

53]

10See

Tab

le 3

, line

No. 4

8 2

491

[67]

11See

Tab

le 3

, line

No. 5

027

8523

[41]

12See

Tab

le 3

, line

No. 9

472

[25]

69

13See

Tab

le 3

, line

No. 9

549

[147

]

141,

2See

Tab

le 3

, line

No. 4

6 70

4

80[1

12]

1535

% H

2O2

1000

MnSO

4 2.0

20

3

9778

76[2

44]

163

See

Tab

le 3

, line

No. 4

495

10.5

10[1

11]

174

See

Tab

le 3

, line

No. 6

390

5247

[68]

18A

nhydro

us

MeC

OO

H 1

00 25

0

.25

1470

10

[108

, 32]

H2O

2 52

0

0.1�0.2

Page 51: Modern Methods for the Epoxidation of - and -Pinenes, 3-Carene …sibran.ru/upload/iblock/9a2/9a27e672114e2cfd36ac56983048... · 2013-02-06 · Chemistry for Sustainable Development

MODERN METHODS FOR THE EPOXIDATION OF α- AND β-PINENES, 3-CARENE AND LIMONENE 683

TA

BLE 6

(End)

12

34

56

78

910

195

See

Tab

le 3

, line

No. 7

691

[130

]

20PhIO

100

Gas

� N

2 2

54

55[1

03]

5.0

21See

Tab

le 3

, line

No. 8

2 0

560

9054

[136

]

22See

Tab

le 3

, line

No. 8

30�60

583

4840

[84]

23See

Tab

le 3

, line

No. 1

2896

.763

.962

[169

]

24Epox

idat

ion o

f β-

pin

ene

[245

]at

the

1st

stag

e of

the

synth

esis

of p

erry

lic

aldeh

yde

1 D

ata

conce

rnin

g t

he

epox

idat

ion o

f 3-

care

ne.

2 A

n e

pox

idiz

ing a

gen

t is f

orm

ed in s

itu.

3 The

epox

idiz

ing a

gen

t is a

ir u

nder

a p

ress

ure

of

3 Ì

Pa.

4 The

conte

nt

of t

he

mai

n s

ubst

ance

in t

he

pro

duct

is

hig

her

than

99

%.

5 M

ethan

ol is

use

d a

s a

solv

ent

inst

ead o

f et

han

ol.

Page 52: Modern Methods for the Epoxidation of - and -Pinenes, 3-Carene …sibran.ru/upload/iblock/9a2/9a27e672114e2cfd36ac56983048... · 2013-02-06 · Chemistry for Sustainable Development

684 O. V. BAKHVALOV et al.

Thus, acetonitrile and PhCN could be con-sidered to represent solvents, activators.

Some fluoroorganic solvents such as hexaflu-oropropanol-2, trifluoroethanol, hexafluoroace-tone, fluorinated alkanes, amines, fluorinatedethers could be related to this kind of com-pounds, too. Such compounds are able to ep-oxidize terpenes either without additives, orwith small amounts of nonmetallic additives (seeTables 3�6). The authors of these publicationsexplain the �effect of fluorine� by physical fea-tures of fluorinated compounds, first of all bythe ability to form associates and hydrogenbonds, which results in the stabilization of in-termediate species responsible for the processof epoxidation as well as in the lowering ofenergy barriers of the reactions.

Phenol is proposed to be a solvent (activator),too [64]:

The ability of phenol molecules for aggrega-tion, from the standpoint of the authors of [64]determines the stabilization of the transition state.

The increasing attention of researchers isattracted by such a group of catalysts as poly-oxometallates. Their composition varies, but thepermanent components of the anionic parts of

Scheme 4.

The complex 13 exhibits weak catalyticproperties in the processes of oxidation-epoxi-dation. Nevertheless, the mechanism of epoxi-dation by this reagent has been studied in [22].Scheme 4 demonstrates the stages of epoxida-tion, beginning from operation (0) � the for-mation of proper catalyst. It turns out that com-pound 13 represents only a precursor of thecatalyst. The following conclusions are alsodrawn from the investigation [22]:

1. The most efficient method for using hy-drogen peroxide in the epoxidation process con-sists in a batching entering of the reagent intothe reaction medium.

2. Epoxidation proceeds according to themechanism that, as against the process of al-kanes oxidation by t-BuOOH, occurs withoutthe formation of radicals.

3. Epoxidation is the first-order reaction withrespect to the concentration of substance 13.

4. The epoxidation of alkene and the paral-lel oxidation of alkane proceed through differ-ent intermediate species.

The most widespread solvent used in thereaction of epoxidation is acetonitrile whichreacts with hydrogen peroxide to form peroxy-acetimidic acid. The latter can transfer the oxy-gen to the double bond. PhCN operates in a sim-ilar manner [62, 63].

Page 53: Modern Methods for the Epoxidation of - and -Pinenes, 3-Carene …sibran.ru/upload/iblock/9a2/9a27e672114e2cfd36ac56983048... · 2013-02-06 · Chemistry for Sustainable Development

MODERN METHODS FOR THE EPOXIDATION OF α- AND β-PINENES, 3-CARENE AND LIMONENE 685

A group of Chinese authors has proposeda modification of this method whereby the epoxi-dation is carried out within the cathodic cell of anelectrolyser generating hydrogen peroxide [70, 71]:

O2 + e� → �2O•

� �2 2 2 2 22O 2H O O H O + 2OH• + +����

����

� �2 2 2 2O 2H O 2 H O + 2OHe+ + ����

����

Using different catholyte compositions where-to oxygen was fed the researchers epoxidized anumber of compounds including α-pinene:

The authors consider the possibility of con-trollable dosing hydrogen peroxide fed into thereaction mixture to be the advantage of themethod. Unfortunately, the data presented in

the molecule are presented by tungsten, sili-con, hydrogen at a high content of oxygen.Tetabutylammonium cation is used as a counter-ion. It is established that polyoxometallates withthe mentioned set of chemical elements canprovide at 70 îÑ high yields of epoxides of var-ious olefins already with a double excess of15 % hydrogen peroxide solution. In case thatthe structure of polyoxometallate includes va-nadium the diastereoselectivity, stereospecific-ity and regioselectivity become unique [65]. Forexample, in the process of limonene epoxida-tion by polyoxometallate {[γ-SiW10O34(H2O)2]

4�}containing no vanadium the content of 8,9-ep-oxide amounts to 37 % only. In the beginningof the studies on V-containing polyoxometal-lates their active nucleus was considered to rep-resent VO�(µ-OH)2�VO [33, 65]. The authorsof the latest work described the structure ofthe active centre of the catalyst and have of-fered a cyclic mechanism for the epoxidationincluding five elementary processes [66].

Below one can see schematic diagrams forthe interaction between the main epoxidizingagent such as hydrogen peroxide and specialreagents (activators) those form in the reactionmedium a more effective generators of theactive oxygen, which active oxygen mainlycauses the reaction to proceed (Scheme 5).

Scheme 5.

Activator is carbodiimide [67].

The activator is presented by arylsulphonylic peracid, astronger epoxidizing agent as compared to perbenzoic acid [68].

The activators are manganese sulphate and salicylic acid[12]. The formation of �

4HCO (peroxomonocarbonate) is

proved using 13Ñ NMR technique [69].

Page 54: Modern Methods for the Epoxidation of - and -Pinenes, 3-Carene …sibran.ru/upload/iblock/9a2/9a27e672114e2cfd36ac56983048... · 2013-02-06 · Chemistry for Sustainable Development

686 O. V. BAKHVALOV et al.

the works mentioned do not allow one to esti-mate technological parameters of this scheme.

Two very efficient epoxidizing agents areknown such as dimethyldioxirane 14 and 5-hy-droperoxycarbonylphtalimide 16. Their action isdemonstrated in Schemes presented below. Inthe first case intermediate species 15 is pre-sented at the instant of limonene attack bycompound 14.

Judging from small number of publications,a wide application of compounds 14 and 16 isprevented by the complications in the synthe-sis of these epoxidizing agents.

Some authors studied parallel reactions of ter-penes epoxidation and their oxidation with the con-servation of the cyclohexane fragment. Regard-ing publications the latter direction was the mainone [72�74]. In this case researchers varied the con-ditions to aim at achieving the maximal yield ofverbenone [75] or campholenic aldehyde [76].

Let us consider in brief the publications de-voted to the biochemical epoxidation. In publi-cations [14, 15] the source of active oxygen ispresented by percarbonic acid or its ester ob-tained in situ from dimethylcarbonate in thepresence of hydrogen peroxide and immobi-lized lipase. Good yields of epoxides of α- andβ-pinene were achieved amounting to 85 and77 % at the temperature of 20 and 40 oC, re-spectively. However, the reactions of dimeth-ylcarbonate and lipase obtaining represent rath-

er complicated processes, whereas for the ep-oxidation a great amount of enzyme and a five-fold excess of 60 % hydrogen peroxide solutionsare used. The switching to immobilized lipase(Novozyme 435) and to hydrogen peroxide com-plex with urea [20] has allowed the researchersto lower essentially the consumption of the re-agents mentioned with achieving 95 % yield of2,3-epoxypinane. The authors of [16] carried outthe oxidation of R-(+)-α-pinene and S-(+)-li-monene using preparations based on cytochromeR 450cam. The selectivity of the processes andthe yield of epoxides was very low, and onecould consider a high (>95 %) diastereoselectivi-ty of the process to be the only achievement.

The authors of [17] investigated the syn-thesis of isonovalol:

From the authors� standpoint, compound 17 isof interest for the manufacture of fragrancecompounds. The biomass of Pseudomonas rho-desiae PF1 (biocatalyst) is cultivated on a nu-trient medium containing α-pinene. The enzyme-catalyzed stage of isonovalol 17 formation fol-lows after the synthesis of epoxide.

In the works [18, 19] the epoxidizing agentis presented by peroxyoctanoic acid which isformed in situ from an approximately equimo-lar amount of octanoic acid and hydrogen per-oxide in the presence of immobilized lipase.Toluene and water were used as solvents. Asmuch as ~65 % of terpene was consumed inthe presence of 7�8 mass % of the catalyst,150 mol. % (with respect to α-pinene) of 35 %hydrogen peroxide in the mixture during 3 hat a room temperature. The influence of manyfactors was investigated: the origin of lipase,its charge, the concentration of hydrogen per-oxide and the rate of its feeding into the reac-tion medium, the concentration of source oc-tanoic acid, and the temperature. The methoddescribed did not provide stable results; it ischaracterized by authors only as an alterna-tive one. Nevertheless, it is obvious that thedevelopment of biochemical methods for ep-oxidation is rather promising, since the syn-

Page 55: Modern Methods for the Epoxidation of - and -Pinenes, 3-Carene …sibran.ru/upload/iblock/9a2/9a27e672114e2cfd36ac56983048... · 2013-02-06 · Chemistry for Sustainable Development

MODERN METHODS FOR THE EPOXIDATION OF α- AND β-PINENES, 3-CARENE AND LIMONENE 687

thesis of many bioactive substances in the wild-life occurs through epoxide intermediate species.

In summary attention should be drawn toan original synthesis of two-layer membranes,those allow separating the racemic mixture ofchiral epoxides with a simultaneous formationof enantiomerically pure diols [77].

Particular conditions and results of the ep-oxidation reactions are presented in Tables 3�6.

CONCLUSION

The review of the literature concerning themethods for the epoxidation of terpenes indi-cates that there is unrelenting, but selectiveresearchers� interest in this reaction. So, if sixarticles and patents per year are on the aver-age devoted to the formation of the oxiranering in α-pinene and limonen, one or two pub-lications a year are devoted to similar modify-ing of β-pinene and 3-carene.

The overwhelming majority of the meth-ods for the epoxidation of the terpenes underconsideration are catalytic ones, which reflectsthe general tendency of chemical technologydevelopment. As main epoxidizing agents oneuses to apply hydrogen peroxide and oxygenthose yield for the most part environmentallycompatible by-products.

Despite of the abundance of methods forthe synthesis of epoxides, only few among themcould be considered to be a basis for the orga-nization of the process for the manufacture ofterpenoids. The present review elucidates thefollowing two reasons of such circumstances.First, the efficient catalysts are either inacces-sible due to scarcity (for example, methyltri-oxorhenium), or are complicated with respectto the structure and the methods of obtaining(for example, polyoxometallates). Second, thereare no rational flow sheets for the processingof epoxidation reaction mixtures presented inthe literature with the isolation of target prod-ucts and recycling of by-products. In this con-nection the published data allow only prelimi-nary planning of promising systems in orderto obtain either epoxide. To what extent couldthe reaction pathways chosen result in a tech-nological, economical, low-waste, environmen-tally compatible process one might found outonly in the studies concerning �tail� operations.

According to our opinion, the following sys-tems could be assigned to a number of promis-ing ones for use in the epoxidation of terpenes:

1. A number of combinations based on me-thyltrioxorhenium activated by any aromaticnitrogen-containing compound (pyridine, imi-dazole, etc.). With the use of this system theconversion level for different terpenes and theyield of epoxides amounts to 89�98 % in ho-mogeneous, immobilized and incapsulated formsunder the action of a small excess of 30�35 %hydrogen peroxide solution.

2. A system able to epoxidize a number ofterpenes in an aqueous organic solution of so-dium bicarbonate activated with catalyticamounts of manganese sulphate and salicylicacid. Polar solvents containing no halogens areused as an organic component of the medium.Such a system is cheap, readily available, com-patible with the environment, however it re-quires for a multiple excess of 30�35 % H2O2

solution as well as recycling of spent solutions.3. A system based on V2O3, which is attrac-

tive due to the simplicity of epoxidation pro-cedure and the availability of reagents. Thereaction occurs with a small excess of 30 %hydrogen peroxide solution in the presence ofsmall amounts of simple salts (mainly phos-phates and QAS), with moderate yields of ep-oxides. The universality of this system is notquite clear; the use for many terpenes is underpatenting, however, the examples are present-ed only for 3-carene and limonene.

4. The synthesis of α-pinene and limoneneepoxides with the yields of 90�98 % could becarried out with the help of Mn porphyrin cat-alysts activated with alkylimidazole or isobutylaldehyde. In this case the porphyrin cycle shouldcontain benzene or pyridine substituents. Sim-ple epoxidizing agents (such as water, hydro-gen peroxide, oxygen) are used. The main prob-lem arising in the use of this system consists inthe obtaining of a catalyst.

5. Unique positive results are produced withthe use of some catalytic systems based on poly-oxometallates. One could offer the examples ofα-pinene epoxidation catalyzed by polyoxomet-allate without vanadium, nevertheless withactivators (amines, silane derivatives, diben-zyl) and immobilized polyoxometallate contain-ing cobalt (the activator representing isobutyl

Page 56: Modern Methods for the Epoxidation of - and -Pinenes, 3-Carene …sibran.ru/upload/iblock/9a2/9a27e672114e2cfd36ac56983048... · 2013-02-06 · Chemistry for Sustainable Development

688 O. V. BAKHVALOV et al.

aldehyde). In both cases under very soft condi-tions the technological parameters amounted to90�96 %. The system under discussion was suc-cessfully used for 3-carene, too.

One should pay attention to the epoxidationin fluorinated solvents without catalysts. Suchterpene as α-pinene in perfluorohexane medi-um in the presence of iso-aliphatic aldehydereacts to result in the formation of an epoxidederivative with technological parameters of 90�95 % during 4 h at a room temperature in theflow of oxygen. Much better results underequally soft conditions were obtained for theepoxidation of limonene and 3-carene. Howev-er, the source of active oxygen in the first caseis presented urea complex with hydrogen per-oxide, whereas in the second case 60 % solu-tion of the latter is used.

Acknowledgements

Authors express sincere gratitude to theresearchers of the Novosibirsk Institute of OrganicChemistry, SB RAS, L. S. Filatova, N. N. Kud-ryavtseva and V. I. Bolshakova for great help insearching and gathering the literature.

LIST OF ABBREVIATIONS

QAS � quaternary ammonium saltDCC � dicyclohexyl carbodiimideRM � reaction mixtureÌÒÎ � methyltrioxorheniumUS � ultrasoundTCICA � trichloroisocyanuric acidMn(TPyP) � Mn tetrapyridineporphyrin

complexEDTA � ethylenediaminetetraacetic acidTBA � tetrabutylamineEA � ethyl acetate

REFERENCES

1 Aida L. Villa de P., Dirk E. de Vos, Consuelo Montesde C. et al., Tetrahedron Lett., 39 (1998) 8521.

2 J. W. Schwesinger, T. Bauer, Stereoselective Synthesis,in G. Helmchen and R. W. Hoffman (Eds.), Houben WeylThieme, New York, 1995, pp. 4599�4648.

3 W. Adam, C. R. Saha-Moller, P. A. Ganeshpure, Chem.Rev., 101 (2001) 3499.

4 K. Sato, M. Aoki, T. Ogawa et al., J. Org. Chem., 61(1996) 8310.

5 J. Rudolf, K. L. Reddy, J. P. Chiang et al., J. Am.Chem. Soc., 119 (1997) 6189.

6 G. Franz, R. A. Sheldon, Ullmann′s Encyclopedia of Industrial Chemistry, vol. A 18, 5th Ed., VCH, Weinheim, 1991, pp. 261�311.

7 J. T. Lutz, Encyclopedia of Chemical Technology, vol. 9, 3rd Ed., Wiley, New York, 1980, p. 251.

8 S. Bhattacharrjee, J. A. Anderson, Catal. Lett., 95, 3�4 (2004) 119.

9 US Pat. 7074947, IC7 ÑÎ7D 301/12. 10 V. G. Dryuk, V. G. Kartsev, M. A. Dryuk, Peroxide

Epoxidation of the Alkenes, Simferopol � Moscow,2001, 249 pp.

11 G. Grigoropoulou, J. H. Clark, J. A. Elings, GreenChem., 5 (2003) 1.12 B. S. Lane, K. Burgess, Chem. Rev., 103, 7 (2003) 2457.13 R. A. Sheldon, H. van Bekkum, Fine Chemicals throughHeterogeneous Catalysis, Wiley-VCH, 2001, p. 4.14 M. K. Ruesch, S. Warwel, Proc. DGMK Conf. �SelectiveOxidations in Petrochemistry�, 1998, pp. 233�239.15 M. R. Klaas, S. Warwel, Org. Lett., 1, 7 (1999) 1025.16 S. G. Bell, R. J. Sowden, L. L. Wong, Chem. Commun.,7 (2001) 635.17 P. Fontanille, A. Le Fleche, C. Larroche, Biocatal.Biotransform., 20, 6 (2002) 413.18 V. Skouridou, H. Stamatis, F. N. Kolisis, J. Mol. Catal.B: Enzym., 21, 1�2 (2003) 67.19 V. Skouridou, H. Stamatis, F. N. Kolisis, Biocatal.Biotransform., 21, 6 (2003) 285.20 E. G. Ankudey, H. P. Olivo, T. L. Peeples, Green Chem.,8, 10 (2006) 923.21 R. V. Kucher, V. I. Timokhin, I. P. Shevchuk, Ya. M. Va-syutin, Zhidkofaznoye Okisleniye NepredelnykhSoyedineniy v Okisi Olefinov, Naukova Dumka, Kiev,1986, p. 226.22 C. B. Woitiski, Yu. N. Kozlov, D. Mandelli et al.,The Chemistry Preprint Server (http://www.chemweb.com) ChemWeb Com� The World Wide Clude forthe Chemical Community Article CPS, Munich, 2004.

23 D. Juwiler, J. Blum, R. Neumann, Chem. Commun.,10 (1998) 1123.24 Michiel C. A.van Vliet, Isabel W. C. E. Arends, RogerA. Sheldon, Synlett, 2 (2001) 248.25 Huang Qingyun, Xu Ruiqiu, Beijing Daxue Xuebao,Ziran Kexueban, 25, 4 (1989) 427.

26 F. Naima, R. Abderrahmane, A. Smail et al., J. Mol.Catal., 108 (1996) 15.27 F. Naima, Y. A. I. My, A. A. Mustapha et al., Tetra-hedron Lett., 43 (2002) 8769.

28 Michiel C. A. van Vliet, D. Mandelli, Isabel W. C. E.Arends et al., Green Chem., 3, 5 (2001) 243.

29 M. M. Reddy, T. Punniyamurthy, J. Iqbal, TetrahedronLett., 36, 1 (1995) 159.30 US Pat. 5808115, IC6 CO7D 301/12.

31 G. Rothenberg, Y. Yatziv, Y. Sasson, Tetrahedron,54 (1998) 593.32 C. B. Woitiski, Y. N. Kozlov, D. Mandelli et al., J. Mol.Catal. A: Chem., 222, 1�2 (2004) 103.33 Y. Nakagawa, K. Kamata, M. Kotani et al., Angew.Chem. Int. Ed., 44, 32 (2005) 5136.34 A. H. Haines, Methods for the Oxidation of OrganicCompounds. Alkanes, Alkenes, Alkynes, and Arenes,Academic Press, NY, 1985.35 S. Murahashi, Y. Oda, T. Naota et al., J. Chem. Soc.,Chem. Commun., (1993) 139.36 R. Saladino, V. Neri, A. R. Peliccia et al., Tetrahedron,59, 37 (2003) 7403.

Page 57: Modern Methods for the Epoxidation of - and -Pinenes, 3-Carene …sibran.ru/upload/iblock/9a2/9a27e672114e2cfd36ac56983048... · 2013-02-06 · Chemistry for Sustainable Development

MODERN METHODS FOR THE EPOXIDATION OF α- AND β-PINENES, 3-CARENE AND LIMONENE 689

37 R. Saladino, A. Andreoni, V. Neri et al., Ibid., 61, 5 v (2005) 1069. 38 J. M. de S. Silva, F. S. Vinhado, D. Mandelli et al.,

J. Mol. Catal. A: Chem., 252, 1�2 (2006) 186. 39 D. Mandelli, Michiel C. A. van Vliet, Roger A. Sheldon

et al., Appl. Catal. A: Gen., 219 (2001) 209. 40 M. A. Uguina, J. A. Delgado, A. Rodriguez et al.,

J. Mol. Catal. A: Chem., 256, 1�2 (2006) 208. 41 B. B. Wentrel, P. A. Gosling, M. C. Feiters et al.,

J. Chem. Soc., (1998) 2241. 42 O. A. Kholdeeva, I. V. Khavrutskii, V. N. Romannikov et al., Proc. 3rd World Congress on Oxidation Catalysis, 1997, pp. 947�955. 43 N. V. Maksimchuk, M. S. Melgunov, Yu. A. Chesalov

et al., J. Catal., 246, 2 (2007) 241. 44 P. A. Gosling, J. H. van Esch, M. A. Hoffmann et al.,

J. Chem. Soc., Chem. Commun., (1993) 472. 45 J. A. A. W. Elemans, E. J. A. Bijsterveld, A. E. Rowan

et al., Eur. J. Org. Chem., 5 (2007) 751. 46 P. L. Anelli, S. Banfi, F. Legramandi et al., J. Chem. Soc. Perkin Trans. 1, 12 (1993) 1345. 47 F. C. Skrobot, A. A. Valente, G. Neves et al., J. Mol. Catal. A: Chem., 201 (2003) 211. 48 S. Tangestaninejad, M. Moghadam, V. Mirkhani et al., Ultrasonics Sonochem., 13, 1 (2006) 32. 49 S. L. H. Rebelo, A. R. Goncalves, M. M. Pereira et al.,

J. Mol. Catal. A: Chem., 256, 1�2 (2006) 321. 50 L. Weber, R. Hommel, J. Behling et al., J. Am. Chem. Soc., 116 (1994) 2400. 51 Yang Wei-Jun, Guo Can-Cheng, Mao Yan-Li et al., Gaodeng Xuexiao Huaxue Xuebao, 26, 9 (2005) 1695. 52 A. K. Mandal, V. Khanna, J. Iqbal, Tetrahedron Lett., 37, 21 (1996) 3769. 53 A. K. Mandal, J. Iqbal, Tetrahedron, 53, 22 (1997) 7641.

54 J. Weijun, G. C. M. Yanli, L. Guocheng, Cuihua Xuebao, 26, 5 (2005) 360.

55 M. H. N. Olsen, G. C. Salomao, C. Fernandes et al., Acta Scientiarum Technol., 26, 1 (2004) 1.

56 Metalloporhyrins Catalyzed Oxidation, in F. Montanari, L. Casella (Eds.), Kluwer Acad. Publ., Dordrecht, 1994, 351 pp. 57 M. de Fatima, T. Gomes, O. A. C. Antunes, Catal. Lett., 38 (1996) 133. 58 B. Bahramian, V. Mirkhani, M. Moghadam et al., Appl. Catal. A: Gen., 301, 2 (2006) 169. 59 C. Schuster, W. F. Holderich, Catal. Today, 60, 3�4 (2000) 193. 60 B. F. Sels, A. L. Villa, D. E. De Vos et al., Topics in Catalysis, 13 (2000) 223. 61 B. P. Celestin, E. Briot, L. Salles et al., Appl. Catal. A: Gen., 300, 2 (2006) 91. 62 A. M. d′A. Rocha Gonsalves, R. A. W. Johnstone,

M. M. Pereira et al., J. Chem. Res. (S), (1991) 208. 63 L. E. Nikitina, S. A. Dieva, V. V. Plemenkov et al.,

Zh. Org. Khim., 71, 8 (2001) 1233. 64 E. De Vos J. W. Dirk, P. A. Jacobs, Organ. Lett., 5, 10 (2003) 1777. 65 N. Mizuno, Y. Nakagawa, K. Yamaguchi, J. Mol. Catal. A: Chem., 251, 1�2 (2006) 286. 66 Y. Nakagawa, N. Mizuno, Inorg. Chem., 46, 5 (2007)

1727. 67 G. Majetich, R. Hicks, Synlett, (1996) 649.

68 R. Kluge, M. Schlulz, S. Liebsch, Tetrahedron, 52, 8(1996) 2957.

69 Tong Kit-Ho, Wong Kwok-Yin, Chan Tak Hang,Organ. Lett., 5, 19 (2003) 3423.

70 Ho Kam-Piu, Wong Kwok-Yin, Chan Tak Hang, Tetrahedron, 62, 28 (2006) 6650.71 Ho Kam-Piu, Chan Tak Hang, Wong Kwok-Yin,

Green Chem., 8, 10 (2006) 900. 72 RU Pat. No. 2235712. 73 G. Rothenberg, L. Feldberg, H. Wiener et al., J. Chem. Soc. Perkin Trans. 2, 11 (1998) 2429. 74 P. A. Robles-Dutenhefner, M. J. da Silva, L. S. Sales

et al., J. Mol. Catal. A: Chem., 217, 1�2 (2004) 139. 75 M. K. Lajunen, T. Maunula, A. M. P. Koskinen, Tetrahedron, 56, 41 (2000) 8167. 76 EU Pat. 1172142, IC7 BO1J29/89. 77 Choi Sung-Dae, Kim Geon-Joong, Catal. Lett., 92, 1�2 (2004) 35.78 A. M. Kutepov, T. I. Bondareva, M. G. Berengarten,

Obshchaya Khimicheskaya Tekhnologiya, Vysshaya Shkola, Moscow, 1985.79 Zhong Xudong, Cheng Zhi, Linchan Huaxue Yu

Gongye, 13, 3 (1993) 177. 80 Aida L. Villa de P., Bert F. Sels, Dirk E. De Vos et al., J. Org. Chem., 64, 19 (1999) 7267. 81 Zhang Jian-Feng, Hu Yue-Hua, Li Xiao-Ru et al., Zhongnan Gongye Daxue Xuebao, Ziran Kehueban, 32, 1 (2001) 50. 82 G. Majetich, R. Hicks, Guang-Ri Sun et al., J. Org. Chem., 63, 8 (1998) 2564. 83 M. P. Kapoor, A. Bhaumik, S. Inagaki et al., J. Mat. Chem., 12 (2002) 3078. 84 US Pat. 4721798, IC4 CO7D 301/06. 85 J. M. Castro, P. J. Linares-Palomino, S. Salido et al., Tetrahedron, 61 (2005) 11192.86 DE Pat. No. 3723843.87 T. Takai, E. Hata, K. Yorozu et al., Chem. Lett., (1992)

2077.88 T. Mukaiyama, K. Yorozu, T. Takai et al., Ibid., (1993) 439.89 CN Pat. No. 1105658.90 Wang Tie-Jun, Ma Zhao-Hui, Yan Yuan-Yong et al.,

Polym. Adv. Technol., 7, 7 (1996) 609.91 Wang Tie Jun, Yan Yuan-Yong, Huang Mei-Yu et al.,

React. Funct. Polym., 29 (1996) 145.92 DE Pat. No. 19523890.93 G. Pozzi, F. Montanari, M. T. Rispens, Synt. Commun.,

27, 3 (1997) 447.94 B. B. Wentzel, S.-M. Leinonen, S. Thomson et al.,

J. Chem. Soc. Perkin Trans. 1, (2000) 3428.95 T. Sakamoto, Ch. Pac, Tetrahedron Lett., 41 (2000) 10009.

96 E. S. Choong, S. L. Jin, Chang Kim Su et al., Chem. Commun., (2000) 2415. 97 J. A. A. W. Elemans, E. J. A. Bijsterveld, A. E. Roman et al., Ibid., (2000) 2443.98 G. Kowalski, J. Pielichowski, Synlett, 12 (2002) 2107.99 FR Pat. Appl. No. 2862302.

100 WO Pat No. 2006/043075.101 US Pat. 2005/0222440, IC7 CO7D301/12.102 L. Weber, J. Behling, G. Haufe et al., J. pract. Chemie

Chemiker Zeitung, 334 (1992) 265.103 M. de Fatima, T. Gomes, O. A. C. Antines, Catal. Lett.,

42 (1996) 213.104 T. D. On, M. P. Kapoor, P. N. Joshi et al., Ibid., 44

(1997) 171.105 B. S. Lane, K. Burgess, J. Am. Chem. Soc., 123 (2001) 2933.106 EU Pat. 540009, IC5 CO7D301/06.107 JP Pat. 2003 231680, IC CO7D301/12.108 D. Mandelli, K. B. Woitisky, U. Shuhart et al., Khim.

Prirod. Soyed., 3 (2002) 203.

Page 58: Modern Methods for the Epoxidation of - and -Pinenes, 3-Carene …sibran.ru/upload/iblock/9a2/9a27e672114e2cfd36ac56983048... · 2013-02-06 · Chemistry for Sustainable Development

690 O. V. BAKHVALOV et al.

109 L. Salles, J.-M. Bregeault, R. Thouvenot, C. R. Acad.Sci. Paris. Serie IIc. Chimie/Chemistry, 3 (2000) 183.

110 A. Asouti, L. P. Hadjiarapoglou, Synlett., 12 (2001) 1847.111 E. Bouhlel, P. Laszlo, M. Levart et al., Tetrahedron

Lett., 34, 7 (1993) 1123.112 JP Pat. 2003-238544, IC CO7D301/12.113 M. Schulz, R. Kluge, M. Lipke, Synlett, 12 (1993) 915.114 R. Raja, G. Sankar, J. M. Thomas, Chem. Commun.,

9 (1999) 829.115 A. A. Valente, I. S. Goncalves, A. D. Lopes et al., New

J. Chem., 25 (2001) 959.116 F. Chiker, F. Launay, J. P. Nogier et al., Green Chem.,

5, 3 (2003) 318.117 F. Chiker, F. Launay, J. P. Nogier et al., Env. Chem.

Lett., 1, 2 (2003) 117.118 S. M. Bruno, J. A. Fernandes, L. S. Martins et al., Catal.

Today, 114, 2�3 (2006) 263.119 W. Xinmin, X. Ruiqiu, Beijing Daxue Xuebao Ziran

Kexueban, 31, 6 (1995) 639.120 R. Kluge, M. Schulz, S. Liebsch, Tetrahedron, 52, 16

(1996) 5773.121 B. Torsten, B. Olaf, J. Chem. Soc. Faraday Trans., 93,

17 (1997) 3021.122 Michiel C. A. van Vliet, Isabel W. C. E. Arends, Roger

A. Sheldon, Chem. Commun., 3 (1999) 263.123 Liu Yanqing, Wang Hongwu, Feng Changgen, Huaxue

Shiji, 24, 2 (2002) 120.124 L. Weber, G. Haufe, D. Rehorek et al., J. Mol. Catal.

A: Chem., 60, 2 (1990) 267.125 J. Skarzewski, A. Gupta, A. Vogt, Ibid., 103, 2 (1995) L63.126 C. D. Nunes, M. Pillinger, A. A. Valente et al., Eur. J.

Inorg. Chem., 21 (2003) 3870.127 CN Pat. 1438222, IC CO7D301/12.128 R. Lakshmi, T. D. Bateman, M. C. Melntosh, J. Org.

Chem., 70, 13 (2005) 5313.129 CN Pat. 1422853, IC CO7D301/14.130 US Pat. 5808115, IC CO7D301/12.131 S. Bhattacharjee, J. T. Dines, J. A. Anderson, J. Catal.,

225 (2004) 398.132 V. Maraval, J.-E. Ancel, B. Meunier, Ibid., 206 (2002) 349.133 W. R. Thiel, M. Angste, N. Hansen, J. Mol. Catal. A:

Chem., 103, 1 (1995) 5.134 P. A. Gosling, R. J. M. Nolte, Ibid., 113, 1�2 (1996) 257.135 N. Komiya, T. Naota, J. Oda et al., Ibid., 117, 1�3

(1997) 21.136 H. Rudler, J. R. Gregorio, B. Denise et al., Ibid., 133, 3

(1998) 255.137 J. Trissa, P. S. Dhanashree, C. S. Gopinath et al., Ibid.,

184, 1�2 (2002) 289.138 R. Chakrabarty, B. K. Das, Ibid., 223, 1�2 (2004) 39.139 A. A. Valente, J. D. Seixas, I. S. Concalves et al., Catal.

Lett., 101, 1�2 (2005) 127.140 G. Grivani, S. Tangestaninejad, M. H. Habibi et al.,

Catal. Commun., 6, 6 (2005) 375.141 L. Weber, M. Grosche, H. Henning, J. Mol. Catal. A:

Chem., 78, 1 (1993) L9.142 G. Grivani, S. Tangestaninejad, M. H. Habibi et al.,

Appl. Catal. A: Gen., 299 (2006) 131.143 T. V. Rao, B. Sain, P. S. N. Murthy et al., Stud. Surf.

Sci. Catal., 113 (1998) 921.144 M. P. Kapoor, A. Raj, Ibid., 129 (2000) 327.145 P. L. Anelli, S. Banfi, F. Montinari, J. Chem. Soc. Chem.

Commun., 12 (1989) 779.146 T. Kamiyama, M. Inoue, S. Enomoto, Chem. Lett.,

7 (1989) 1129.

147 Zhu Xiaoxiang, Xu Ruiqiu, Beijing Daxue Xuebao,Ziran Kehueban, 25, 4 (1989) 507.

148 S. Banfi, A. Maiocchi, F. Montanari et al., GazettaChimica Italiana, 120, 2 (1990) 123.

149 Huang Wenbang, Li Weidong, Kong Hongwen,Huaxue Shijie, 33, 2 (1992) 68.

150 L. Weber, I. Imiolczyk, G. Haufe et al., J. Chem. Soc.Chem. Commun., 4 (1992) 301.

151 P. A. Gosling, J. H. van Esch, M. A. M. Hoffman et al.,Ibid., 5 (1993) 472.

152 H. Henng, J. Behling, R. Meusinger et al., Chem. Ber.,128 (1995) 229.

153 WO Pat. Appl. No. 0366615.154 M. J. da Silva, P. Robles-Detenhefner, L. Menini

et al., J. Mol. Catal. A: Chem., 201, 1�2 (2003) 71.155 U. Arnold, R. S. Da Cruz, D. Mandelli, Ibid., 165, 1�2

(2001) 149.156 A. P. James, A. W. Johnstone, M. McCarron et al.,

Chem. Commun., (1998) 429.157 J. Pielichowski, E. Blaz, Przemysl Chemiczny, 85,

8�9, 1 (2006) 644.158 Yang Weijun, Li Ziyang, Tao Nengye et al., Cuihua

Xuebao, 27, 5 (2006) 454.159 CN Pat. 1730459, 2005.160 R. Raja, J. M. Thomas, M. Xu et al., Chem. Commun.,

4 (2006) 448.161 R. Raja, J. M. Thomas, Z. anorg. allgem. Chem., 631,

13�14 (2005) 2942.162 E. Blaz, J. Pielichowski, Molecules, 11, 1 (2006) 115.163 V. Mirkhani, M. Moghadam, S. Tangestaninejad et al.,

Appl. Catal. A: Gen., 311 (2006) 43.164 V. Mirkhani, M. Moghadam, S. Tangestaninejad et al.,

Ibid., 313, 2 (2006) 122.165 V. Mirkhani, M. Moghadam, S. Tangestaninejad et al.,

Polyhedron, 25, 15 (2006) 2904.166 C. Chapuis, M. Barthe, C. Cantatore et al., Helv. Chim.

Acta, 89, 11 (2006) 2638.167 V. Mirkhani, M. Moghadam, S. Tangestaninejad et al.,

Appl. Catal. A: Gen., 321, 1 (2007) 49.168 Z. Petrovski, A. A. Valente, M. Pillinger et al., J. Mol.

Catal. A: Chem., 249, 1�2 (2006) 166.169 Xiong Donglu, Fu Zaihui, Zhong Sheng et al., Catal.

Lett., 113, 3�4 (2007) 155.170 J. Legros, B. Crousse, D. Bonnet-Delpon et al., Eur. J.

Org. Chem., 19 (2002) 3290.171 R. M. Carman, K. D. Klika, Austr. J. Chem., 44 (1991) 1803.172 S. Rozen, M. Kol, J. Org. Chem., 55, 17 (1990) 5155.173 Nguyen Van Dau, Phan Tong Son, Tap Chi Hoa Hoc.,

29, 1 (1991) 18.174 D. K. Chand, P. K. Bharadwaj, Inorg. Chem., 36, 24

(1997) 5658.175 Appl. PCT Int. 98/33786.176 J. V. Crivello, B. Yang, J. Polym. Sci., Part A: Polym.

Chem., 33, 11 (1995) 1881.177 M. C. A. van Vliet, I. W. C. E. Arends, R. A. Sheldon,

Tetrahedron Lett., 40 (1999) 5239.178 WO Pat. Appl. No. 0174798.179 E. M. Elgendy, Boll. Chim. Farm., 136, 8 (1997) 532.180 T. Punniyamurthy, B. Bhatia, M. M. Reddy et al.,

Tetrahedron, 53, 22 (1997) 7649.181 R. P. Unnikrishnan, S.-D. Endalkachew, S. V. Rajender,

Synt. Commun., 33, 12 (2003) 2017.182 R. Tayebee, Ind. J. Chem., 41B (2002) 2190.183 A. A. Valente, J. Moreira, A. D. Lopes et al., New J.

Chem., 28, 2 (2004) 308.

Page 59: Modern Methods for the Epoxidation of - and -Pinenes, 3-Carene …sibran.ru/upload/iblock/9a2/9a27e672114e2cfd36ac56983048... · 2013-02-06 · Chemistry for Sustainable Development

MODERN METHODS FOR THE EPOXIDATION OF α- AND β-PINENES, 3-CARENE AND LIMONENE 691

184 R. P. Unnikrishnan, S.-D. Endalkachew, Appl. Catal.A: Gen., 261, 1 (2004) 69.

185 E. Brule, J. R. de Miguel, K. K. Hii, Tetrahedron, 60,28 (2004) 5913.

186 M. V. Cagnoli, S. G. Casuscelli, A. M. Alvarez et al.,Appl. Catal. A: Gen., 287, 2 (2005) 227.

187 Y.-M. Bregeault, R. Thouvenot, S. Zoughebi et al., NewDevelopments in Selective Oxidation, in V. C. Corberan,S. VicBellon (Eds.), Amsterdam etc., 1994, pp. 571�581.

188 J. Rodriguez, J. P. Dulcere, J. Org. Chem., 56, 1 (1991) 469.189 J. Bussi, A. Lopez, F. Pena et al., Appl. Catal. A: Gen.,

253, 1 (2003) 177.190 S. Tangestaninejad, M. Moghadam, V. Mirkhani et al.,

Ultrasonics Sonochem., 13, 1 (2006) 32.191 S. Casuscelli, E. Herrero, M. Crivello et al., Catal. Today,

107�108 (2005) 230.192 DE Pat. Appl. No. 19913395.193 DE Pat. Appl. No. 19913396.194 J. Legros, B. Crousse, J. Bourdon et al., Tetrahedron

Lett., 42, 26 (2001) 4463.195 M. Wengert, A. M. Sanseverino, M. C. S. de Mattos,

J. Braz. Chem. Soc., 13, 5 (2002) 700.196 Wo Shankang, Li Lijuan, Zhang Zhongwu et al.,

Reguxing Shuzhi, 14, 1 (1999) 43.197 R. G. Cesquini, J. M. de S. de Silva, C. B. Woitiski

et al., Adv. Synt. Catal., 344, 8 (2002) 911.198 T. R. Boehlow, C. D. Spilling, Tetrahedron Lett., 37, 16

(1996) 2717.199 J. Wahlen, Dirk E. de Vos, P. A. Jacobs, Org. Lett.,

5, 10 (2003) 1777.200 M. H. N. Olsen, G. C. Salomao, C. Fernandes et al.,

Acta Sci. Technol., 26, 1 (2004) 1.201 Yang Shigang, Gong Xueli, Zhang Xinwei, Huaxue

Tongbao, 69, 11 (2006) 857.202 A. U. Barlan, A. Basak, H. Yamamoto, Angew. Chem.

Int. Ed., 45, 35 (2006) 5849.203 K. Kamata, M. Kotani, K. Yamaguchi et al., Chemistry,

13, 2 (2007) 639.204 M. C. S. de Mattos, R. B. Bernini, Heterocyclic Commun.,

12, 6 (2006) 411.205 P. Buranaprasertsuk, Y. Tangsakol, W. Chavasiri, Catal.

Commun., 8, 3 (2007) 310.206 A. U. Barlan, W. Zhang, H. Yamamoto, Tetrahedron,

63, 27 (2007) 6075.207 M. Abrantes, A. A. Valente, M. Pillinger et al., Catal.

Lett., 114, 1�2 (2007) 103.208 Zhou Xian-Tai, Ji Hong-Bing, Xu Jian-Chang et al.,

Tetrahedron Lett., 48, 15 (2007) 2691.209 E. Gianotti, C. M. L. Bisio, M. Guidotti et al., J. Phys.

Chem., 111, 13 (2007) 5083.210 H. Ziyat, M. Y. A. Itto, M. A. Ali et al., ARKIVOC, 12

(2006) 152.211 B. Bahramian, V. Mirkhani, M. Moghadam et al., Catal.

Commun., 7, 5 (2006) 289.212 G. Grigoropoulou, J. H. Clark, Tetrahedron Lett., 47,

26 (2006) 4461.213 U. Arnold, F. Fan, W. Habicht et al., J. Catal., 245,

1 (2006) 55.

214 P. Oliveira, M. L. Rojas-Cervantes, A. M. Ramos et al.,Catal. Today, 118, 3�4 (2006) 307.

215 J.-Y. Piquemal, L. Salles, G. Chottard et al., Eur. J.Inorgan. Chem., 5 (2006) 939.

216 R. B. Zapata, A. L. Villa, C. Montes de Correa, Ind. &Eng. Chem. Res., 45, 13 (2006) 4589.

217 J. Kasai, Y. Nakagawa, S. Uchida et al., Chemistry,12, 15 (2006) 4176.

218 F. Minisci, C. Gambarotti, M. Pierini et al., TetrahedronLett., 47, 9 (2006) 1421.

219 L. Saikia, D. Srinivas, P. Ratnasamy, Appl. Catal. A:Gen., 309, 1 (2006) 144.

220 T. Kovalchuk, H. Sfihi, V. Zaitsev et al., J. Catal.,249, 1 (2007) 1.

221 S. Casuscelli, E. Herrero, M. Crivello et al., Catal. Today,107�108 (2005) 230.

222 B. Arizaga, A. de Leon, N. Burgueno et al., J. Chem.Technol. Biotechnol., 82, 6 (2007) 532.

223 M. Bagherzadeh, R. Latifi, L. Tahsini, J. Mol. Catal.A: Chem., 260, 1�2 (2006) 163.

224 D. Mandelli, Y. N. Kozlov, C. C. Golfeto et al., Catal.Lett., 118, 1�2 (2007) 22.

225 Y. Mahha, L. Salles, J.-Y. Piquemal et al., J. Catal.,249, 2 (2007) 338.

226 M. V. Cagnoli, S. G. Casuscelli, A. M. Alvarez et al.,Catal. Today, 107�108 (2005) 397.

227 A. S. Kende, P. Delair, B. E. Blass, Tetrahedron Lett.,35, 44 (1994) 8123.

228 JP Appl. No. 59573, 2004.229 P. T. Witte, P. L. Alsters, W. Jary et al., Org. Proc.

Res. Dev., 8, 3 (2004) 524.230 US Pat. No. 5608088.231 EU Pat. No. 700887.232 M. C. A. van Vliet, I. W. C. E. Arends, R. A. Sheldon,

Synlett, 8 (2001) 1305.233 S. N. Joshi, S. V. Malhotra, Tetrahedron Asymmetry,

14, 13 (2003) 1763.234 I. C. M. S. Santos, M. M. Q. Simoes, M. M. M. S. Pereira

et al., J. Mol. Catal. A: Chem., 195, 1�2 (2003) 253.235 I. C. M. S. Santos, S. L. H. Rebelo, M. S. S. Balula et al.,

Ibid., 231, 1 (2005) 35.236 JP Appl. No. 1077274.237 E. Kolehmainen, K. Laihia, M. Heinanen et al., J. Chem.

Soc., Perkin Trans. 2, 4 (1993) 641.238 S. L. H. Rebelo, M. M. Pereira, M. M. Q. Simoes et al.,

J. Catal., 234, 1 (2005) 76.239 R. R. L. Martins, M. G. P. M. S. Neves, A. J. D. Silvestre

et al., J. Mol. Catal. A: Chem., 172, 1�2 (2001) 33.240 WO Pat. Appl. No. 2005/0020841.241 G. Grigoropoulou, J. H. Clark, Tetrahedron Lett., 47,

26 (2006) 4461.242 Cai Zhihui, Cheng Zhi, Yuan Youzhu, Linchan Huaxue

Yu Gongye, 14, 2 (1994) 60.243 L. E. Nikitina, S. A. Dieva, V. V. Plemenkov et al.,

Zh. Org. Khim., 71, 8 (2001) 1233.244 Appl. No. 2005 140845/04.245 Li Qian-he, Feng Zhen-zhen, Li Xue-hui et al.,

Hecheng Huaxue, 14, 3 (2006) 287.