ML with Tensorflow-new - GitHub Pages › ml › lec12.pdf · 2017-10-02 · Fei-Fei Li & Andrej...
Embed Size (px)
Transcript of ML with Tensorflow-new - GitHub Pages › ml › lec12.pdf · 2017-10-02 · Fei-Fei Li & Andrej...

Sequence data
• We don’t understand one word only
• We understand based on the previous words + this word. (time series)
• NN/CNN cannot do this

Sequence data
• We don’t understand one word only
• We understand based on the previous words + this word. (time series)
• NN/CNN cannot do this
http://colah.github.io/posts/2015-08-Understanding-LSTMs/

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Lecture 10 - 8 Feb 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 10 - 8 Feb 201613
Recurrent Neural Network
x
RNN

Lecture 10 - 8 Feb 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 10 - 8 Feb 201614
Recurrent Neural Network
x
RNN
yusually want to predict a vector at some time steps

Lecture 10 - 8 Feb 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 10 - 8 Feb 201615
Recurrent Neural Network
x
RNN
yWe can process a sequence of vectors x by applying a recurrence formula at every time step:
new state old state input vector at some time step
some functionwith parameters W

Lecture 10 - 8 Feb 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 10 - 8 Feb 201616
Recurrent Neural Network
x
RNN
yWe can process a sequence of vectors x by applying a recurrence formula at every time step:
Notice: the same function and the same set of parameters are used at every time step.

/HFWXUH����� ��)HE�����)HL�)HL�/L��$QGUHM�.DUSDWK\��-XVWLQ�-RKQVRQ)HL�)HL�/L��$QGUHM�.DUSDWK\��-XVWLQ�-RKQVRQ /HFWXUH����� ��)HE�������
�9DQLOOD��5HFXUUHQW�1HXUDO�1HWZRUN
[
511
\
7KH�VWDWH�FRQVLVWV�RI�D�VLQJOH�³KLGGHQ´�YHFWRU�K�

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Lecture 10 - 8 Feb 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 10 - 8 Feb 201618
Character-levellanguage modelexample
Vocabulary:[h,e,l,o]
Example trainingsequence:“hello”
x
RNN
y

Lecture 10 - 8 Feb 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 10 - 8 Feb 201619
Character-levellanguage modelexample
Vocabulary:[h,e,l,o]
Example trainingsequence:“hello”

Lecture 10 - 8 Feb 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 10 - 8 Feb 201620
Character-levellanguage modelexample
Vocabulary:[h,e,l,o]
Example trainingsequence:“hello”

Lecture 10 - 8 Feb 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 10 - 8 Feb 201620
Character-levellanguage modelexample
Vocabulary:[h,e,l,o]
Example trainingsequence:“hello”

Lecture 10 - 8 Feb 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 10 - 8 Feb 201620
Character-levellanguage modelexample
Vocabulary:[h,e,l,o]
Example trainingsequence:“hello”

Lecture 10 - 8 Feb 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 10 - 8 Feb 201620
Character-levellanguage modelexample
Vocabulary:[h,e,l,o]
Example trainingsequence:“hello”

Lecture 10 - 8 Feb 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 10 - 8 Feb 201621
Character-levellanguage modelexample
Vocabulary:[h,e,l,o]
Example trainingsequence:“hello”

Lecture 10 - 8 Feb 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 10 - 8 Feb 201621
Character-levellanguage modelexample
Vocabulary:[h,e,l,o]
Example trainingsequence:“hello”

RNN applications
• Language Modeling
• Speech Recognition
• Machine Translation
• Conversation Modeling/Question Answering
• Image/Video Captioning
• Image/Music/Dance Generation
http://jiwonkim.org/awesome-rnn/
https://github.com/TensorFlowKR/awesome_tensorflow_implementations

Lecture 10 - 8 Feb 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 10 - 8 Feb 20166
Recurrent Networks offer a lot of flexibility:
Vanilla Neural Networks

Lecture 10 - 8 Feb 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 10 - 8 Feb 20167
Recurrent Networks offer a lot of flexibility:
e.g. Image Captioningimage -> sequence of words

Lecture 10 - 8 Feb 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 10 - 8 Feb 20168
Recurrent Networks offer a lot of flexibility:
e.g. Sentiment Classificationsequence of words -> sentiment

Lecture 10 - 8 Feb 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 10 - 8 Feb 20169
Recurrent Networks offer a lot of flexibility:
e.g. Machine Translationseq of words -> seq of words

Lecture 10 - 8 Feb 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 10 - 8 Feb 201610
Recurrent Networks offer a lot of flexibility:
e.g. Video classification on frame level

Multi-Layer RNN

Training RNNs is challenging
• Several advanced models- Long Short Term Memory (LSTM)- GRU by Cho et al. 2014

Next
RNN in TensorFlow