MKT19001 LCテクノポスター A3 - Waters Corporation · Charged Surface Hybrid (CSH) Technology...

1
TO DOWNLOAD A COPY OF THIS POSTER, VISIT WWW.WATERS.COM/POSTERS ©2019 Waters Corporation MKT19001 એ崩嵋嵤崠崷崌崾嵒崫崱قCSHك崓嵑嵈峕岴岻峵 ਙ৲峘৳ ٳફર , ر , గඥ , Bonnie A. Alden 2 , Kerri M.Smith 2 , Paul D. Rainville 2 , Thomas H.Walter 2 , Martin Gilar 2 ম崎崑嵤崧嵤崢ઙভ, ŕ Waters Corporation 峙峂峫峕 એ崩嵋嵤崠崷崌崾嵒崫崱قCSHك崓嵑嵈峙ସীෲقMSك峑峘ীෲ峕 峁峉崌崒嵛ਘ২峘ਙৼ੯峕岴岻峵ව੦ਙ৲峘崼嵤崗ৌ ਙ岝嵕嵤崱峼ఒ峑岷峵峲岰峕ਝ岿島峐岮峵岞 岽島峳峘ਹਡ峙崐崩嵔嵛ଶ崷崌崾嵒崫崱崹嵤崮崋崗嵓قBEHك峕峘崿嵑 崡崩嵋嵤崠峼ఊ෪峃峵岽峒峕峲峴ৰਠ峃峵قFigure 1ك岞岽峘崿嵑崡崩嵋嵤崠峙崌 崒嵛৲峁峉৲峕ৌ峁峐ଞ峘ಗৼ崓嵑嵈峒峙౮峔峵৭උਙ峼峃岞 岽岽峑峙ীෲர峒峁峐৲峒ᅾව峼৷岮峐 CSH C 18 CSH Phenyl- HexylCSH Fluoro-PhenylقFigure 2Table 1ك崓嵑嵈峕岴岻峵ಯਗ਼ ৼ൩৷峕峎岮峐ਫ਼ୈ峁峉岞岽島峳峘 UV ลਙ峼峎૮ਃ৲峙岮 pH ೧峕峹峉峴峘ਗ਼峼થ峁峐岴峴岝ಗৼ崓嵑嵈峕ಯਗ਼ৼ൩৷峕峲峍峐峘峩 ৳岿島峵峘峑岝০峘ਫ਼ୈ峕峁峐岮峵岞S+ 峘ৼ峼ઞ৷峁峐 岽島峳峘৲峘৳峼નੳ峁峉岞 CSH 崓嵑嵈峕岴岻峵崌崒嵛ઐఌ峘ਙ峙ಗৼ崓嵑嵈峑৳岶ൠ岮ாਙ ਙ৲峘ী峕য়峎岞岽峘岽峒峼ਞਙে峘峔৻ප৽ଡ଼峑岬峵崰嵒崓 嵓嵄嵛قTCAك崝崌崗嵓峕ঢ়৴峃峵৲峼৷岮峐ৰ峁峉岞 References 1. P. C. Iraneta, K. D. Wyndham, D. R. McCabe, and T. H. Walter, “A Review of Waters Hybrid Particle Technology. Part 3. Charged Surface Hybrid (CSH) Technology and Its Use in Liquid Chromatography”, Waters white paper 720003929EN, June 2010 2. N. Lucie, V. Hana and P. Solich, Talanta 93 (2012), 99 3. U. Neue, P. Iraneta, F. Gritti and G. Guiochon, J. Chrom. A 1318 (2013), 72 4. F. Gritti and G. Guiochon, J. Chrom. A 1282 (2013), 46, 58 and 113 5. J. Fiori, E. Amadesi, F. Fanelli, C. V. Tropeano, M. Rugolo and R. Gotti, J. Pharm. Biomed. Analysis 150 (2018), 33 ৰୡ ৲峒ᅾව峘৳ ACQUITY UPLC 崟崡崮嵈峒 PDA ਫ਼লஓ峼৷岮峐৲峒ᅾව峘৳ 峼નੳ峁峉岞ৼ峙 10 mM 崖崊嵛嵊崳崎嵈قpH3-4ك峬峁岹峙ሌ 崊嵛嵊崳崎嵈岞ச 0.3 mL/min 峑岝崓嵑嵈ആ২峼 30٦峒峁峉岞崝嵛崿嵓 0.25 mg/mL 峘৲嵒崩崎嵈峬峁岹峙ᅾ崲崰嵒崎嵈峑ো峼 1 μL 峒峁峉岞 嵄崌崱嵆嵤崓嵤峕峙崩崒崎嵔崊岝峕峙 70/30 峘崊崣崰崳崰嵒嵓৷岮峉岞ਫ਼ল峙 220 nm 峘ణশ峑ৰ岞崓嵑嵈崝崌崢峙 2.1×50 mm 峼৷岮峉岞 TCA 崝崌崗嵓৻ප峘৳ ACQUITY UPLC I-Class Xevo TQ-S ସীෲ峼৷岮峐 TCA 崝崌崗嵓 ৻ප峘৳峼નੳ峁峉岞ৼ峙 A = 0.1%崖岝B = 0.1%崊崣崰崳崰嵒嵓峑 B 3 0%岵峳 30%峘嵒崳崊崘嵑崠崐嵛崰岞峇峘 B95% 1 嵃嵤嵓崱峼ষ岮岝7 ગཀྵ৲峼ষ峍峉岞ச 0.4 mL/min 峑岝崓嵑嵈 ആ২峙 50٦峒峁峉岞崝嵛崿嵓峒峁峐 100 μM 峘峼 3 μL ো峁峉岞৲ Multiple Reaction MonitoringقMRMك峘崵崔崮崋崾嵊嵤崱峑ਫ਼ল岞崕嵋崼嵑 嵒嵤ਗ਼ಓ峙 2 kV岝ᄘആ২峙 600٦岞ᄘ崔崡峘峙 1000 L/hr 峒峁 峉岞崓嵑嵈崝崌崢峙 ¼ PP 峼৷岮峉岞 ટ峒અ ৲峒ᅾව峘৳ 3 ரథ峘 CSH 崙嵇崡崰嵒嵤峒崛嵛崰嵕嵤嵓峒峁峐 BEH 崹嵤崮崋崗嵓قએ崩嵋嵤崠 ૮峁岝C 18 ഡ২ 2.4 μmol/m 2 岝崐嵛崱崕嵋崫崼嵛崘岬峴ك峕峲峴৲峒ᅾව 峘৳બਯ峼ৠ峁峉岞௺ৼ峘 pH ೧峙 3 - 8.5 峑ৰ峁峉岞Figure 3 峙ᅾව峘৳બਯ峼峁峐岴峴岝2 ரథ峘৲峙峘ൊ峼峁峉岞崛 嵛崰嵕嵤嵓峑岬峵 %(+ 崓嵑嵈峙ᅾව峼峥峒峽峓৳峅峄岝3 ரథ峘 CSH 崓嵑嵈 峑峙ৈ岮৳岶੭峳島岝CSH C 18 CSH Phenyl-HexylCSH Fluoro-Phenyl 峘ದ峑৳岶ੜਸ峁峉岞3 ரథ峘 CSH 崓嵑嵈峙੦౫峘એ崩嵋嵤崠岶峂峔峘 峑岝৲岝ᅾව峘એ崩嵋嵤崠峢峘峏岷峮峃岿峙ৼ峘୶峼岰岻峵岞峃 峣峐峘 CSH 崓嵑嵈峕岴岮峐৳બਯ峙 pH 3 峘ৎ峕ਈপ峑岝pH 岶ಊ峃峵峒 峁岝pH 6 ਰ峑峙৳岶ଷ峹島峉岞岽島峙၄એ峘崿嵑崡崩嵋嵤崠峼峬峉峳峃 ව੦ਙ崘嵓嵤崿峘 pKa 岶岴峲峇 5 峑岬峵峉峫峒峑岷峵岞CSH Fluoro-Phenyl 崓嵑嵈峙 pH 6 ਰ峑岽島峳峘ਙ৲峼ൾ峃峵岞岽島峙崐嵛崱崕嵋崫崼嵛崘岶 岿島峐岮峔岮ৼ峕岴岮峐၄એ峘崟嵑崶嵤嵓੦岶崌崒嵛৲峁岝pH 6 峑၄峘એਗ਼岶෩峁岹峕ൊ岮峉峉峫峒અ岲峳島峵岞 CSH崓嵑嵈峙pH 5ਰ峘੯峑ਙ৲峘ર島峉৳峼ม峁岝pH岶岹 峔峵峕జ岮৳岶ੜਸ峃峵岞 嵣ਙ৲峘ৼৌ৳峙CSH C 18 CSH Phenyl-HexylCSH Fluoro- Phenyl峘ದ峑ੜਸ峁峉岞 CSH崓嵑嵈峘ਙ৲峼৳峃峵ਙ峙TCA崝崌崗嵓৻ප峘峲岰峕ாਙ岶 岮ਙ৲峘ী峕য়峎岞 TCA崝崌崗嵓৻ප峘৳ TCA崝崌崗嵓৻ප峙ாਙ岶ৈ岹岝峇峘岹岶2峎峬峁岹峙3峎峘崓嵓嵄崕崟嵓੦峼அ 峽峑岮峵قFigure 4ك岞岽島峳峘৲峘ਙী峘pKa峙岴峲峇2.8 - 3.8峑岬 峵岞岽島峳峙ಹ峔ಗৼ崓嵑嵈峕峥峒峽峓৳峁峔岮岞0.1%崖峼அ峪ৼ峼 ৷岮峐岽島峳峘৲峘CSH崓嵑嵈峕岴岻峵৳峼નੳ峁峉岞ਈ峬ଐ峔ટ峙 ACQUITY CSH Phenyl-Hexyl 1.7μm 2.1×100 mm 崓嵑嵈峑੭峳島峉岞 قFigure 5ك岞岽島峳峘৲峕岴岮峐CSH Phenyl-Hexyl崓嵑嵈峙ર島峉৳ 峼峁峉岶岝岮岹峎岵峘崼嵤崗峘峕峙岶峳島峉岞 ચ੦ഡ২ ¡PROP 崐嵛崱崕嵋崫崼嵛崘 % C pH CSH C 18 2.3 yes 15.5 1 - 11 CSH Phenyl-Hexyl 2.3 yes 13.5 1 - 11 CSH Fluoro-Phenyl 2.3 no 10.2 1 - 8 Figure 3 pH峒ᅾව峘৳બਯ峘ঢ়બ Figure 4: TCA 崝崌崗嵓৻ප峘ଡୗ Figure 5: BEH C 18 CSH C18CSH Phenyl-Hexyl崓嵑嵈ق1.7μm2.1×100 mmك峼৷岮峉TCA崝崌崗嵓৻ප峘ী Figure 1: CSHৼ峘ਛقಅணடর كTable 1: CSHৼ峘ਙ Figure 2: CSHৼ峘ଡୗ

Transcript of MKT19001 LCテクノポスター A3 - Waters Corporation · Charged Surface Hybrid (CSH) Technology...

Page 1: MKT19001 LCテクノポスター A3 - Waters Corporation · Charged Surface Hybrid (CSH) Technology and Its Use in Liquid Chromatography”, Waters white paper 720003929EN, June 2010

TO DOWNLOAD A COPY OF THIS POSTER, VISIT WWW.WATERS.COM/POSTERS ©2019 Waters Corporation MKT19001

CSH

, , , Bonnie A. Alden2, Kerri M.Smith2, Paul D. Rainville2, Thomas H.Walter2, Martin Gilar2

, Waters Corporation

CSH MS

BEHFigure 1

CSH C18 CSH Phenyl-Hexyl CSH Fluoro-Phenyl Figure 2 Table 1

UV pH

CSH

TCA

References 1. P. C. Iraneta, K. D. Wyndham, D. R. McCabe, and T. H. Walter, “A Review of Waters Hybrid Particle Technology. Part 3.

Charged Surface Hybrid (CSH) Technology and Its Use in Liquid Chromatography”, Waters white paper 720003929EN, June 2010 2. N. Lucie, V. Hana and P. Solich, Talanta 93 (2012), 99 3. U. Neue, P. Iraneta, F. Gritti and G. Guiochon, J. Chrom. A 1318 (2013), 72 4. F. Gritti and G. Guiochon, J. Chrom. A 1282 (2013), 46, 58 and 113 5. J. Fiori, E. Amadesi, F. Fanelli, C. V. Tropeano, M. Rugolo and R. Gotti, J. Pharm. Biomed. Analysis 150 (2018), 33

ACQUITY UPLC PDA10 mM pH3-4

0.3 mL/min 300.25 mg/mL

1 μL 70/30220 nm 2.1×50 mm

TCAACQUITY UPLC I-Class Xevo TQ-S TCA

A = 0.1% B = 0.1%B 3 0% 30% B95%

1 7 0.4 mL/min50 100 μM 3 μL

Multiple Reaction Monitoring MRM2 kV 600 1000 L/hr

3 CSH BEHC18 2.4 μmol/m2

pH 3 - 8.5 Figure 3 2

3 CSHCSH C18 CSH Phenyl-Hexyl CSH Fluoro-Phenyl3 CSH

CSH pH 3 pHpH 6

pKa 5 CSH Fluoro-PhenylpH 6

pH 6

CSH pH 5 pH

CSH C18 CSH Phenyl-Hexyl CSH Fluoro- PhenylCSH TCA

TCATCA 2 3

Figure 4 pKa 2.8 - 3.80.1%

CSHACQUITY CSH Phenyl-Hexyl 1.7μm 2.1×100 mm

Figure 5 CSH Phenyl-Hexyl

% C pH CSH C18 2.3 yes 15.5 1 - 11

CSH Phenyl-Hexyl 2.3 yes 13.5 1 - 11 CSH Fluoro-Phenyl 2.3 no 10.2 1 - 8

Figure 3 pH

Figure 4: TCA

Figure 5: BEH C18 CSH C18 CSH Phenyl-Hexyl 1.7μm 2.1×100 mm TCA

Figure 1: CSH

Table 1: CSH

Figure 2: CSH