MIT ( O. de Weck , D. Simchi-Levi) JPL (R. Shishko), PSI (J. Parrish) May 4, 2007

31
MIT ( MIT ( O. de Weck O. de Weck , D. Simchi- , D. Simchi- Levi) Levi) JPL (R. Shishko), PSI (J. JPL (R. Shishko), PSI (J. Parrish) Parrish) May 4, 2007 May 4, 2007 Interplanetary Supply Chain Management and Logistics Architectures Interplanetary Supply Chain Management & L o g i s t i c s A r c h i t e c t u r e s 2005-2007 MIT J P L USA PSI SpaceNet: SpaceNet: Architecting Architecting The Interplanetary The Interplanetary Supply Chain Supply Chain LGO Webinar

description

SpaceNet: Architecting The Interplanetary Supply Chain. MIT. Chain Management &. Interplanetary Supply. USA. JPL. LGO Webinar. MIT ( O. de Weck , D. Simchi-Levi) JPL (R. Shishko), PSI (J. Parrish) May 4, 2007. Logistics Architectures. 2005-2007. PSI. - PowerPoint PPT Presentation

Transcript of MIT ( O. de Weck , D. Simchi-Levi) JPL (R. Shishko), PSI (J. Parrish) May 4, 2007

Page 1: MIT ( O. de Weck , D. Simchi-Levi) JPL (R. Shishko), PSI (J. Parrish) May 4, 2007

MIT (MIT (O. de WeckO. de Weck, D. Simchi-Levi), D. Simchi-Levi)JPL (R. Shishko), PSI (J. Parrish)JPL (R. Shishko), PSI (J. Parrish)

May 4, 2007May 4, 2007

Interplanetary Supply Chain Management and Logistics Architectures

Inte

rpla

neta

ry

Su

pp

ly

Chain Management &Log

istic

s A

rch

itectu

res 2005-2007

MIT

JPL

US

A

PSI

SpaceNet: Architecting SpaceNet: Architecting The Interplanetary The Interplanetary

Supply ChainSupply Chain

LGO Webinar

Page 2: MIT ( O. de Weck , D. Simchi-Levi) JPL (R. Shishko), PSI (J. Parrish) May 4, 2007

Interplanetary Supply Chain Management and Logistics Architectures 2

NASA’s Space Exploration Initiative• Presidential Announcement

– Jan 14, 2004 – New Vision for Space Exploration (post CAIB report)– Retirement of Space Shuttle by 2010– Complete ISS and sustain until at least 2016

• New Human Spaceflight System• Constellation Program

• CEV (Orion) 2014 to ISS – prime contract: Lockheed Martin (8/2006)

• CLV (Ares I) OFT1 in 2012 – design work underway

• Later: Lunar Missions (first sorties before 2020, then lunar outpost)

• Mars Missions (post 2020)

• How can this be achieved in a sustainable manner?

Page 3: MIT ( O. de Weck , D. Simchi-Levi) JPL (R. Shishko), PSI (J. Parrish) May 4, 2007

Interplanetary Supply Chain Management and Logistics Architectures 3

Simple Network Graphs

Apollo

11 12 14 15 16 17

KSC

ISS

RSA KSC

ISS VSE

LOPS1 S3

LLO

RSA ESA JAX KSC

MARS

ISS LEO

S2 S4

LAND

Page 4: MIT ( O. de Weck , D. Simchi-Levi) JPL (R. Shishko), PSI (J. Parrish) May 4, 2007

Interplanetary Supply Chain Management and Logistics Architectures 4

0.1% launched mass = 100% value

• Mass fractions (approx. )– Propellant 93%– Vehicle Dry Mass 6.9%– Everything Else 0.1%

• Crew, Consumables, Spares, Exploration Items, Other

• Direct exploration value is generated by 0.1% of launched mass– fixed crew & cargo capacity per launch,

vehicles are given (more or less)– What to launch? How often? – How do we tradeoff between consumables

(endurance), spares (robustness) and exploration items (value)?

– Need to focus on operations & logistics

CLV – Ares IESAS LV 13.1807 metric tons24.5mT to LEO

CaLV – Ares VESAS LV 27.32902 metric tons125mT to LEO54.6mT post-TLI

Page 5: MIT ( O. de Weck , D. Simchi-Levi) JPL (R. Shishko), PSI (J. Parrish) May 4, 2007

Interplanetary Supply Chain Management and Logistics Architectures 5

Ter

rest

rial

Aer

osp

ace

Past

ISCM&LAProject

Past Lessons

• Apollo• Shuttle• ISS

Current Exploration

• HMP

Terrestrial Analogies

• Military

• CommercialCurrent Technology

• RFID

Space Logistics Analysis

• Measures of Effectiveness

• SpaceNet• Scenario

Analysis

Outreach

• Space Logistics Workshop

• Publications• Academic

Coursework

Present Future

Page 6: MIT ( O. de Weck , D. Simchi-Levi) JPL (R. Shishko), PSI (J. Parrish) May 4, 2007

Interplanetary Supply Chain Management and Logistics Architectures 6

Supply Class Development

• ISS uses Cargo Category Allocation Rates Table (CCART)– 14 major categories– works, but inconsistent use of attributes for classification, varying levels of detail– incomplete for surface exploration (e.g. surface equipment)

• Military uses a functional class of supply system

1. CREW PROVISIONS 5. STATION SYSTEMS SUPPORT

1.1 Joint Crew Provisions 5.1 US Station Systems

clothing IVA tools: utility light, tape

hygiene maintenance spares: O-rings

care packages ECLSS: LiOH canisters

1.2 Crew Provisions/Food Extravehicular Robotics (EVR)

US food containers 5.2 Russian Station Systems

Russian food containers IVA tools

utensils maintenance spares

2. CREW DAILY OPERATIONS ECLSS: LiOH canisters

2.1 Joint Crew Dialy Operations dust Collector cartridge

office supplies 5.3 FGB Station Systems

2.2 US Crew Daily Operations FGB IVA tools

computers FGB Maintenance spares

vaccum cleaners 6. EVA

f ilm cassette 6.1 US EVA

batteries EVA suits and consumables

2.3 Russian Crew Daily Operations EVA tools

laptops 6.2 Russian EVA

dust collectors EVA Orlan suits and consumables

photo equipment/consumables EVA tools

electrical pow er system 7. USERS/PAYLOADS

3. INTEGRATED MEDICAL SYSTEM JAXA utilization

3.1 US ISS Medical Equipment ESA utilization

microbial air sampler 8. WASTE MANAGEMENT

blood pressure/electrocardiograph black polyliner bags

defibrillator resupply kit crumb bags

crew care packages solid w aste container

3.2 Russian ISS Medical Equipment 9. SDTO

medical f irst aid kits 10. INGRESS/DOCKING EQUIPMENT

dosimeter (radiation) 11. VISTING VEHICLES/CARRIES

cardiorecorder Accessory kit 11.1 Shuttle hardw are

4. WATER TRANSFER 11.2 Soyuz equipment

EDVs

CWCs

14. MULTIPLE CATEGORIES

+

CCART Military ISCM COS

Shull S., Gralla E., de Weck O., Siddiqi A., Shishko R., “The Future of Asset Management for Human Space Exploration”, AIAA-2006-7232, Space 2006, San Jose, California, Sept. 19-21, 2006

Page 7: MIT ( O. de Weck , D. Simchi-Levi) JPL (R. Shishko), PSI (J. Parrish) May 4, 2007

Interplanetary Supply Chain Management and Logistics Architectures 7

Commercial Supply Chain DesignSupply Chain Network Design: place warehouses, consider potential w/h and manufacturing plants optimally, given customer distribution

Can we create a similar planning environment for space logistics ?

Supply Chain Analysis: optimize for transportation costs, availability, shipping times, inventory levels…

LogicNet (http://www.logic-tools.com)

Page 8: MIT ( O. de Weck , D. Simchi-Levi) JPL (R. Shishko), PSI (J. Parrish) May 4, 2007

Interplanetary Supply Chain Management and Logistics Architectures 8

Ter

rest

rial

Aer

osp

ace

Past

ISCM&LAProject

Past Lessons

• Apollo• Shuttle• ISS

Current Exploration

• HMP

Terrestrial Analogies

• Military

• CommercialCurrent Technology

• RFID

Space Logistics Analysis

• Measures of Effectiveness

• SpaceNet• Scenario

Analysis

Outreach

• Space Logistics Workshop

• Publications• Academic

Coursework

Present Future

Page 9: MIT ( O. de Weck , D. Simchi-Levi) JPL (R. Shishko), PSI (J. Parrish) May 4, 2007

Interplanetary Supply Chain Management and Logistics Architectures 9

HMP 2005HMP 2005

• Haughton-Mars ProjectHaughton-Mars Project– NASA/CSA field research station, high ArcticNASA/CSA field research station, high Arctic– Study the Haughton impact craterStudy the Haughton impact crater– Terrestrial analog of Mars terrain and scienceTerrestrial analog of Mars terrain and science

• Operational analog for Martian baseOperational analog for Martian base– Remote siteRemote site– Similar exploration goalsSimilar exploration goals– Complex logistics networkComplex logistics network

Page 10: MIT ( O. de Weck , D. Simchi-Levi) JPL (R. Shishko), PSI (J. Parrish) May 4, 2007

Interplanetary Supply Chain Management and Logistics Architectures 10

Mars on Earth

Mars (15S 175E): Gusev Crater, Spirit landing site

Earth (75N 90W): Devon Island, Haughton Crater

Page 11: MIT ( O. de Weck , D. Simchi-Levi) JPL (R. Shishko), PSI (J. Parrish) May 4, 2007

Interplanetary Supply Chain Management and Logistics Architectures 11

HMP Expedition 2005: Overview

• Research included geology, astrobiology, space suits, planetary drill, tele-medicine

• 56 researchers on-site, 683 crew days total

• All supplies brought in via Twin Otter flights

• Detailed Inventory ~ 2300 items (20,717 kg)

de Weck O.L., Simchi-Levi D. et al., “Haughton-Mars Project Expedition 2005”, Final Report, NASA/TP-2006-214196, January 2006

Page 12: MIT ( O. de Weck , D. Simchi-Levi) JPL (R. Shishko), PSI (J. Parrish) May 4, 2007

Interplanetary Supply Chain Management and Logistics Architectures 12

HMP: Inventory

Comparison by Supply Class(Full Data Set)

0 1 2 3 4 5 6 7 8 9 10

1. Propellants and Fuels

2. Crew Provisions

3. Crew Operations

4. Maintenance and Upkeep

5. Stowage and Restraint

6. Exploration and Research

7. Waste and Waste Disposal

8. Habitation and Infrastructure

9. Transportation and Carriers

10. Miscellaneous

Thousands

Total [kg]

Lunar Long Lunar Short .HMP Est HMP Actuals

• Inventoried 2300 items (20,717 kg)

• Developed inventory procedures

• Validated supply classes• Maintained inventory over

time (for use next season)

4153

2934

470

286

17617235471022

9305

102

1. Propellants and Fuels 2. Crew Provisions 3. Crew Operations

4. Maintenance and Upkeep 5. Stowage and Restraint 6. Exploration and Research

7. Waste and Waste Disposal 8. Habitation and Infrastructure 9. Transportation and Carriers

10. Miscellaneous

Total Mass Inventoried 20,717 [kg]Goals: Understand, Categorize Supplies on Base

- Classification of inventory

- Quantify inventory (total imported mass)

- Compare with prediction for a lunar base

Page 13: MIT ( O. de Weck , D. Simchi-Levi) JPL (R. Shishko), PSI (J. Parrish) May 4, 2007

Interplanetary Supply Chain Management and Logistics Architectures 13

HMP: Transportation Analysis

1.O

3. R5. H

6. F

6. F

6. F

Normal Trans.

0. Dep. Point for Each Team1. Ottawa2. Edmonton3. Resolute4. Moffet USMC St.5. HMP Base6. HMP Field7. Cambridge Bay Iqaluit Yellowknife

4. M

2. E

0.D 0.D

0. D

7. C

7. Y

7. I

Emergency Trans.

Cumulative Cargo Flow HMP 2005

0

10000

20000

30000

40000

50000

60000

0 2 4 6 8 10 12 14 16 18 19 21 23 25 27

Flight Number (according to log)

Car

go

/Cre

w M

ass

[lb

s]

cum in

cum out

cum at HMP

Cargo Mass Flow

Transportation Network Analysis for HMP• Mass inflow per season ~ 20-25 mt• Analysis highlights room for improvement:

– Plan for reverse logistics– Reduce asymmetric flight usage– Smooth personnel profile

• “Robustness” more important than optimality– due to weather, emergencies, aircraft availability

Number of People Staying in Devon

0

5

10

15

20

25

30

35

40

45

Days from 8 July

# o

f Peo

ple

30-Jun

10-Jul

21-Jul

31-Jul

7-Aug

BOXCAR

Personnel Profile

Page 14: MIT ( O. de Weck , D. Simchi-Levi) JPL (R. Shishko), PSI (J. Parrish) May 4, 2007

Interplanetary Supply Chain Management and Logistics Architectures 14

Ter

rest

rial

Aer

osp

ace

Past

ISCM&LAProject

Past Lessons

• Apollo• Shuttle• ISS

Current Exploration

• HMP

Terrestrial Analogies

• Military

• CommercialCurrent Technology

• RFID

Space Logistics Analysis

• SpaceNet• Measures of

Effectiveness• Scenario

Analysis

Outreach

• Space Logistics Workshop

• Publications• Academic

Coursework

Present Future

Page 15: MIT ( O. de Weck , D. Simchi-Levi) JPL (R. Shishko), PSI (J. Parrish) May 4, 2007

Interplanetary Supply Chain Management and Logistics Architectures 15

What is SpaceNet?

• Modeling space exploration from a logistics perspective• Discrete event simulation

– at the individual mission level (sortie, pre-deploy, re-supply,…)

– at the campaign (=set of missions) level

• Evaluation of manually generated exploration scenarios with respect to measures of effectiveness and feasibility

• Visualization of the flow of elements and supply items through the interplanetary supply chain

• Optimization of scenarios according to selected MOEs• Provide software tool for users (= logisticians, mission

architects) to support trade studies and architecture analyses.

A computational environment for

Page 16: MIT ( O. de Weck , D. Simchi-Levi) JPL (R. Shishko), PSI (J. Parrish) May 4, 2007

Interplanetary Supply Chain Management and Logistics Architectures 16

Building Blocks of SpaceNet

• Nodes– Surface, Orbital, Lagrangian

• Supplies– Classes of Supply– e.g. Crew, Consumables, etc.

• Elements– Propulsive, Non-Propulsive

• Network (Time-Expanded)– Time Discretization, Orbit Dynamics

• Processes– Waiting, Transporting, Transferring– Exploring, Proximity Ops

Building Blocks

Put themtogether…

Page 17: MIT ( O. de Weck , D. Simchi-Levi) JPL (R. Shishko), PSI (J. Parrish) May 4, 2007

Interplanetary Supply Chain Management and Logistics Architectures 17

SpaceNet – Network View

1

1 S-IC X X

1002

2 S-II X X

1003

3 S-IVB X X

1004

4 SLA X

05

5 CM X 3

3 06

6 SM X

1007

7 LM DS X

1008

8 LM AS X

100

Date: 07-Dec-1972

Day 3

Transportation from Node 1001 to Node 1501

Element(s): 1 2 3 4 5 6 7 8

Disposal

1001

1017

2009

1501

2507

Node Name Position1001 NASA KSC 29N 81W1017 Pacific Ocean 18S 166W2009 Apollo 17 Landin 20N 31E1501 LEO Parking Orbi P 296 A 296 I 292507 LLO inclined P 112 A 112 I 20

EL# EL Name TRA ACT DIS CRW

MOE

Crew Surface Days (CSD) 0 [man-day]

Expl. Mass Delivered (EMD) 0 [kg]

Exploration Capability (EC) 0 [man-d-kg]

Rel. Expl. Capability (REC)0.00 [n.d.]

Total Launch Mass (TLM)2928 [MT]

Rel. Scenario Cost (RSC)1.18 [n.d.]

Tot. Scenario Risk (TSR)0.004 [n.d.]

Up-Mass Capa. Util. (UCU)0.931 [n.d.]

1. Earth and Earth Orbit

2. Moon and Lunar Orbit

3. Node/Arc

5. Process 6. Date

7. Node Information 8. Element Information

4. Element

9. Disposal

3. Node/Arc

3. Node/Arc 3. Node/Arc

10. MOE

Page 18: MIT ( O. de Weck , D. Simchi-Levi) JPL (R. Shishko), PSI (J. Parrish) May 4, 2007

Interplanetary Supply Chain Management and Logistics Architectures 18

Element Type

Elements

• Notion of “vehicles” is ill-defined

• Elements are indivisible physical objects that travel through the network and can– hold other supply items

(fuel=COS1, cargo (COS2-10))– be propulsive or non-propulsive– hold crew or not– always launched from Earth first– be reused, refueled, disposed of

(staged), pre-deployed– “docked” with other elements to

form a (temporary) stack on an arc

• Major end-items– e.g. Habitat, Rover, CEV

Attributes

crewcargopropellant

Page 19: MIT ( O. de Weck , D. Simchi-Levi) JPL (R. Shishko), PSI (J. Parrish) May 4, 2007

Interplanetary Supply Chain Management and Logistics Architectures 19

305

306

307

308

309

312

321

332333

349

366

368

400

411

310

313

314

330

331

335

352355367

370

405

4123031

10

100

1000

10000

100000

1 10 100 1000 10000 100000

Maximum Delta V (m/s)

Ma

xim

um

Pa

ylo

ad

Ca

pa

cit

y (

kg

)

Library of Elements

Carriers“Vehicles”

PropulsionStages

LSAM DS

STS-Orbiter

Progress

CM

LSAM Cargo Carrier

Lunar CEV CM

Lunar CEV SM SIVB

Page 20: MIT ( O. de Weck , D. Simchi-Levi) JPL (R. Shishko), PSI (J. Parrish) May 4, 2007

Interplanetary Supply Chain Management and Logistics Architectures 20

Transport

Processes• Waiting

– Remain at same node

• Transporting– Move to new node

• Transferring– Transfer crew/supplies to

different element

• Exploring– exploring a node

• Proximity Operating– rendezvous,

docking/undocking

Wait

Transfer

Can model flow of supplies, elements, crew through network

Page 21: MIT ( O. de Weck , D. Simchi-Levi) JPL (R. Shishko), PSI (J. Parrish) May 4, 2007

Interplanetary Supply Chain Management and Logistics Architectures 21

Network Characteristics: Time Varying Arcs• Moon

– V1=3106-3110 m/s, V2=840-870 m/s

– TOF: 3.3-3.7 days

– 28 day cycle

• Mars– Type 1,2 trajectories, TOF

between 150-360 days

– 25 ½ month cycle

– V depends on aerobraking

-0.2 0 0.2 0.4 0.6 0.8 1 1.2

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Units (Earth-Moon Distance)

Uni

ts (

Ear

th-M

oon

Dis

tanc

e)

LEO - LLO1 Trajectory

Moon

EarthEM-L1

0 20 40 60 80 100 120150

200

250

300

350

400

450

500

Dparture Date (days After 1 Aug. 2007)

Trip

Tim

e (d

ays) 13

15

15

15

15 19

19

19

19

19

19

19

21

21

21

21

21

21

21

21

23

23

23

23

23

23

23

23

23

25

25

25

25

25

25

25

25

25

27

27

27

27

27

27

27

27

27

29

29

29

29

29

29

29

29

29

31

31

31

31

31

31

31

31

31

31

How to capture the time-dependent nature of the arcs in the network?

Page 22: MIT ( O. de Weck , D. Simchi-Levi) JPL (R. Shishko), PSI (J. Parrish) May 4, 2007

Interplanetary Supply Chain Management and Logistics Architectures 22

Time-Expanded Network: Example• Define three static nodes

– = LEO

– = EML1

– = LLO

• Define the static arcs• Define time horizon,

discretization• Define allowable transport

interval for each pair [tmin, tmax] from astrodynamics

LEO

EML1

LLO

[3, 3.7]

[3.3, 3.8]

[1.8, 2.5]

LEOEML1

LLO

• generate waiting arcs• generate feasible transport arcs• time horizon = 5 days• time discretization t = 1 day

Page 23: MIT ( O. de Weck , D. Simchi-Levi) JPL (R. Shishko), PSI (J. Parrish) May 4, 2007

Interplanetary Supply Chain Management and Logistics Architectures 23

Exploration Capability MoEs

• Exploration Capability [kg • crew-days]Dot product of crew surface days and exploration mass

(exploration items + surface infrastructure) over all surface nodes for entire scenario

• Relative Exploration Capability [0, ∞)– exploration productivity relative to Apollo 17

kaCOSk

bCOSk

atot

btot

bk

m

m

ECECREC

17

17/ bkakk 17

2

1

Apollo 17 Normalization

, , 6, , 8, ,1 1

(1 ) [ ]T S

tot ij crew i j COS i j COS i ji j

EC T N m m

Divisia Indexωb

k = mass fraction for class of supply k in scenario (campaign) b

Page 24: MIT ( O. de Weck , D. Simchi-Levi) JPL (R. Shishko), PSI (J. Parrish) May 4, 2007

Interplanetary Supply Chain Management and Logistics Architectures 24

Scenarios• With this framework, we have modeled…

– Single ‘sortie’ missions• Constellation sortie

• Apollo 17

• LEO refueling in Constellation

• ISRU on lunar surface

– Entire campaigns• Constellation lunar base build-up

• ISS assembly and re-supply

Page 25: MIT ( O. de Weck , D. Simchi-Levi) JPL (R. Shishko), PSI (J. Parrish) May 4, 2007

Interplanetary Supply Chain Management and Logistics Architectures 25

100

1000

10000

100000

1000000

10000000

0 5000 10000 15000 20000 25000 30000 35000

TLM

EC

ConstellationLunar

Outpost

ConstellationSortie 1

Apollo 17

Apollo 11

ConstellationCampaign(4 Sorties)

ApolloCampaign

(6 Landings)

Total Launch Mass TLM [MT]

Exp

lora

tion

Ca

pab

ility

EC

[ma

n-d

ay-

kg]

Single Sortie

Missions

Campaignof Sortie Missions

OutpostCampaign

REC=1

REC=0.2

REC=10

REC=200

Space Logistics Trade Space Results

Page 26: MIT ( O. de Weck , D. Simchi-Levi) JPL (R. Shishko), PSI (J. Parrish) May 4, 2007

Interplanetary Supply Chain Management and Logistics Architectures 26

Baseline Lunar Cargo Manifest• Use SpaceNet v1.3 to generate demand for cargo• Propellant baseline: LH2/MMH/MMH, 4 crew, 7 surface days, 95% LSAM availability• Total Lunar Surface Cargo: 2,752 kg (1,003 kg non-exploration mass)

Masses shown in [kg]676 kg in LSAM-AS2076 kg in LSAM-DS

Crew Consumables per Crew Member per day: 8.325 kg

Crew Operations assumes on EVA per day (for a team of 2): 16.4 kg

Spares Mass computed with LMI Model for LSAM only, assuming 95%, availability, 17 days, no redundancy, full duty cycle: 340 kg

Baseline Lunar Sortie Manifest (LH2/MMH/MMH)

251.2, 9%

323.4, 12%

340.0, 12%

21.1, 1%

78.5, 3%

1737.8, 63%

Crew Provisions

Crew Operations

Spares

Waste

Stowage

Exploration

Page 27: MIT ( O. de Weck , D. Simchi-Levi) JPL (R. Shishko), PSI (J. Parrish) May 4, 2007

Interplanetary Supply Chain Management and Logistics Architectures 27

Stochastic Demand Modeling

Factor

A: ECLSS Closure B: H2O+Food Consumption C: MTBF for Habitat Spares

A1: 0% B1: 6 kg/person/day C1: Nominal 2

A2: 25% B2: 5.5 kg/person/day C2: Nominal 1.5

A3: Nominal: 42% B3: Nominal: 5.2 kg/person/day

C3: Nominal

A4: 75% B4: 4.5 kg/person/day C4: Nominal 1.5

A5: 100% B5: 4 kg/person/day C5: Nominal 2Stochastic Demand Sensitivity Results

0100002000030000400005000060000700008000090000

Baselin

e 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Test Case

Ma

ss

(k

g)

Crew Prov SparesA1-B1-C1A5-B2-C1

ESAS Lunar Sustainment Phase

Page 28: MIT ( O. de Weck , D. Simchi-Levi) JPL (R. Shishko), PSI (J. Parrish) May 4, 2007

Interplanetary Supply Chain Management and Logistics Architectures 28

SpaceNet Users and Goals

• Diverse user base– Mission/system architects– Mission planners and logisticians– Operations personnel

• Support short and long-term architecture and operational decisions– What effect will vehicle (element) design decisions

have on future NASA operations and lifecycle?– Should a staging area or depot be constructed? In

LEO? At LOP?– Are in-space refueling and ISRU helpful in

improving performance?

• Status– SpaceNet 1.3 released to NASA March 2007– SpaceNet 2 (web version) under development– NASA VV&A – May 3, 2007– Credibility Assessment NASA-STD-(I)-7009 In-Space Refueling

Staging Location

Page 29: MIT ( O. de Weck , D. Simchi-Levi) JPL (R. Shishko), PSI (J. Parrish) May 4, 2007

Interplanetary Supply Chain Management and Logistics Architectures 29

Closing Thoughts

• To meet the research objectives we:– Studied analogies from Earth and Space– Developed a modeling environment and

software tool (SpaceNet)– Fostered the space logistics community

• Impact/Outreach– Academic Contributions

• Generic Space Logistics modeling framework– 5 processes

• Time-expanded networks• Measures of effectiveness• Sparing demand w/commonality

– NASA• SpaceNet selected as logistics/operations model for NASA’s Integrated Program Model• Validated with representative NASA missions and campaigns (Apollo, ISS, ESAS)• Supported trade studies for Constellation Program (IDAC2, IDAC3)• Integrated real-world experience from an analog exploration site (Haughton Mars)

– Energized a very dedicated and capable group of students and researchers (~25) – a new generation of space logisticians

Page 30: MIT ( O. de Weck , D. Simchi-Levi) JPL (R. Shishko), PSI (J. Parrish) May 4, 2007

Interplanetary Supply Chain Management and Logistics Architectures 30

Additional Information

• Interplanetary Space Logistics– http://spacelogistics.mit.edu

• Strategic Engineering– http://strategic.mit.edu

Page 31: MIT ( O. de Weck , D. Simchi-Levi) JPL (R. Shishko), PSI (J. Parrish) May 4, 2007

Interplanetary Supply Chain Management and Logistics Architectures 31

Questions?