Mineralogy and geochemistry of indium-bearing polymetallic vein-type deposits: Implications for host...

31

Click here to load reader

Transcript of Mineralogy and geochemistry of indium-bearing polymetallic vein-type deposits: Implications for host...

Page 1: Mineralogy and geochemistry of indium-bearing polymetallic vein-type deposits: Implications for host minerals from the Freiberg district, Eastern Erzgebirge, Germany

www.elsevier.com/locate/oregeorev

Ore Geology Reviews

Mineralogy and geochemistry of indium-bearing polymetallic

vein-type deposits: Implications for host minerals from

the Freiberg district, Eastern Erzgebirge, Germany

Thomas Seifert *, Dirk Sandmann

Department of Economic Geology and Petrology, Institute of Mineralogy, TU Bergakademie Freiberg, Brennhausgasse 14,

D-09596 Freiberg, Germany

Received 1 April 2003; accepted 15 April 2005

Available online 27 October 2005

Abstract

Located at the northwestern border of the Bohemian Massif in the European Variscides, the Erzgebirge is one of the most

important Sn–W–Mo, Ag, Cu–Zn–Pb–In, U, and Bi–Co–Ni metallogenetic provinces in Europe. The ca. 1100 silver-base metal

veins in the Freiberg metamorphic core complex are characterized by two principal types of late-Variscan polymetallic vein-type

mineralization: (1) Quartz-bearing As(–Au)–Zn–Cu(–In–Cd)–Sn–Pb–Ag–Bi–Sb polymetallic sulphide association (dkbT ore-

type), and (2) Carbonate- or quartz-bearing Ag–Sb polymetallic sulphide association (debT and deqT ore-type). High indium

concentrations in the Freiberg silver-base metal vein district and other base metal and tin-polymetallic deposits suggest that the

Erzgebirge is among the largest In-enriched ore provinces known worldwide. The first modern geochemical bulk ore and

microprobe analyses addressing In distribution in the Freiberg district are presented in this paper and are compared with

published data.

Polymetallic veins in the Freiberg district show a wide range of In concentrations up to 0.15 wt.% with an average of 176 ppm

(n =82). The dkbT ore-type veins in the dFreibergT (up to 1560 ppm In, mean 253 ppm, n =36), dMuldenhuttenT (up to 785 ppm In,

mean 284 ppm, n =10), and dBrandT ore fields (up to 638 ppm In, mean 156 ppm, n =15) occur the highest In resources in the

Freiberg district. Two types of In concentration can be distinguished, based on microanalytical study. The first type was found in

sphalerites of the Zn–Sn–Cu sequence (as presented in one of the figures in this article) which show In contents up to 0.38 wt.%,

significant Cd up to 1.11 wt.%, and Ga contents up to 0.17 wt.%. Iron-rich sphalerites (mean 12.9 wt.% Fe, n =202) from a

representative Ag-base metal vein are characterized by In contents between 0.03 and 0.38 wt.% (mean 0.16 wt.% In, n =202). A

negative correlation exists between (Zn+Fe) and Cd, and (Zn+Fe) with In, reflecting structural substitution of In and Cd in

sphalerite. The second type of In enrichment was identified as microscopic Zn–Cu–Sn–In–S grains in pyrite of a Cu-rich dkbT vein.Quantitative electron images of these grains (up to 6 Am) shows high levels of Zn (5.6 to 52.8 wt.%), Cu (4.1 to 19.6 wt.%), Sn (0.3

to 17.2 wt.%), and In (1.3 to 2.9 wt.%). In the ternary (Cu+Ag)–(Sn+In)–(Zn+Fe) diagram, compositions of the Zn–Cu–Sn–In–S

phase in a representative Cu-rich dkbT ore-type sample fall along a linear compositional trend between Fe–Cu–In-rich sphalerite

(Zn0.76Fe0.11Cu0.06In0.01S) and the ideal fields of petrukite and sakuraiite (Cu0.29Zn0.08Fe0.32In0.02Sn0.13S). Both types of In

enrichment support that the In-mineralization is associated with the Zn–Sn–Cu sequence (dindium stageT) of the dkbT ore-typeassociation. Based on mineralogical, geochemical, isotopic, fluid inclusion, age relationships and structural data, the high In

concentrations in base metal veins in the Erzgebirge may indicate an influence of fluids expelled from magmas during

emplacement of post-collisional lamprophyric and rhyolitic dikes. The high In concentration of Cd- and Fe-rich sphalerites

0169-1368/$ - s

doi:10.1016/j.or

* Correspondi

E-mail addr

28 (2006) 1–31

ee front matter D 2005 Elsevier B.V. All rights reserved.

egeorev.2005.04.005

ng author.

ess: [email protected] (T. Seifert).

Page 2: Mineralogy and geochemistry of indium-bearing polymetallic vein-type deposits: Implications for host minerals from the Freiberg district, Eastern Erzgebirge, Germany

T. Seifert, D. Sandmann / Ore Geology Reviews 28 (2006) 1–312

from Ag-base metal and Sn-polymetallic deposits in the Erzgebirge is an additional argument for a genetic link between these

mineralization stages. Such evidence is significant for exploration of magma-affiliated In deposits in post-collisional settings.

D 2005 Elsevier B.V. All rights reserved.

Keywords: Freiberg; Erzgebirge; Germany; Indium; Ag-rich base metal veins; Sn greisen and veins; Late-Variscan; Post-collisional lamprophyric

and rhyolitic magmatism

1. Introduction

A wide variety of indium-bearing ore deposits is

described in the literature (cf. Schwarz-Schampera

and Herzig, 2002). Polymetallic base metal vein depos-

its and granite-related tin–tungsten-base metal deposits

(vein-, stockwork-, and greisen-type ore bodies) are

among the most important hosts for In-bearing miner-

alization. A world-class reference area for both deposit

types is the Erzgebirge–Krusne hory metallogenetic

province in the central part of the Saxo-Thuringian

zone of the Variscan orogen (Fig. 1).

The elements indium and germanium were discov-

ered in 1863 and 1886, respectively at the Bergakade-

mie Freiberg, from ores of the local Freiberg district

(eastern Erzgebirge, Saxony, Germany). Silver-rich

polymetallic vein-type deposits were mined from

about 1168 to 1969 in an area of approximately

35�20 km. During the study for the source of thallium

Fig. 1. The position of the Erzgebirge in the European Variscides (modified

Thuringian Zone; Tep-Barr = Tepla-Barrandian Zone.

in local ores of the Freiberg mining district, Reich and

Richter (1863a,b) observed an indigo-blue line with the

spectroscope which did not correspond to any known

element. They then isolated the new material as chlo-

ride, oxide hydrate, and metal. Because of this charac-

teristic colour, the new element was named indium.

According to Reich and Richter (1864), only the Frei-

berg sphalerite showed significant In contents of about

0.1 wt.%. Winkler (1865) measured an In content of

0.0448 wt.% in sphalerites from the polymetallic sul-

phide veins of the Freiberg district.

In 1885, an unknown mineral was found at the

Himmelsfurst mine in the southern part of the Freiberg

district. Weisbach (1886) named this new mineral

argyrodite (dArgyroditT). The discovery vein was

named therefore dArgyrodit SpatT. Clemens Winkler

in Weisbach (1886) inspected this mineral and found

75 wt.% Ag and 18 wt.% S, but 7 wt.% could not be

identified. After long and difficult analyses he discov-

from the compilation of McKerrow et al., 2000). Saxo-Thur = Saxo-

Page 3: Mineralogy and geochemistry of indium-bearing polymetallic vein-type deposits: Implications for host minerals from the Freiberg district, Eastern Erzgebirge, Germany

T. Seifert, D. Sandmann / Ore Geology Reviews 28 (2006) 1–31 3

ered the element germanium in 1886. This element had

already been predicted in 1872 by D. Mendelev as

dEkasiliziumT, when setting up his periodic system of

the elements. According to Winkler (1886), the Frei-

berg argyrodite (Ag8GeS6) has an average composition

of 74.72 wt.% Ag, 6.93 wt.% Ge, 17.13 wt.% S, 0.66

wt.% Fe, and 0.22 wt.% Zn.

Hydrothermal Ag-rich base metal vein-type deposits

(Fig. 2) were mined in the Eastern Erzgebirge (Freiberg

district), Central Erzgebirge (Marienberg, Annaberg,

and Hora Sv. Kateriny districts), and Western Erzge-

birge (Johanngeorgenstadt, and Schneeberg districts)

from the early Middle Ages to the 20th Century (cf.

Baumann et al., 2000). The Freiberg vein field was one

of the largest base metal districts in Europe with a

production of more than 5000 t of silver metal from

Fig. 2. Simplified geology of the Erzgebirge (Saxony, Germany; Bohemi

epizonal metamorphic rocks to non metamorphic Upper Carboniferous rock

the end of the 12th Century to the end of the 19th

Century, as well as small-scale mining of copper and

tin. Uranium exploration from the Russian mining

company dSAG WismutT was active from 1945 to

1950, and resulted in the production of about 10 t of

U metal mined from the southern part of the district

(Seifert et al., 1996a). From 1950 to 1969 about 95,000

t of Pb metal, 59,000 t of Zn metal, and 251 t of Ag

metal were produced. Germanium, In, Cd, Bi, Au, Tl,

and pyrite were concentrated as by-products (unpub-

lished material of the dVEB Bergbau-und Huttenkom-

binat Albert FunkT, Freiberg). Residues from Zn

smelting averaging 0.35 wt.% Cd, 0.1 wt.% In, 150

g/t Tl, and 28 g/t Ge were leached with sulphuric acid

for recovery of Cd and In. From 1965 to 1972 about

470 t of Cd metal and an unknown quantity of In metal

a, Czech Republic). Erzgebirge Northern Border Zone = Cambrian

s; CSL = Central Saxonian Lineament.

Page 4: Mineralogy and geochemistry of indium-bearing polymetallic vein-type deposits: Implications for host minerals from the Freiberg district, Eastern Erzgebirge, Germany

Table 1

Representative indium concentrations of late-Variscan silver-rich polymetallic veins and polymetallic vein- and greisen-type ores in the Erzgebirge and worldwide deposits for comparison

Deposit type District/deposit

(geological unit)

Ore-type Associated magmatic

rocks

Mining products Mineral/bulk ore n Range

[wt.%]

Average

[wt.%]

Ref.

Hydrothermal Ag-rich

base metal veins

Freiberg (Erzgebirge) kb A-type rhyolites and/or

mica-lamprophyres

Pb, Zn, Ag, Cu,

Sn, Ge, Cd, In, Au

Sphalerite (high-Fe) 212 0.02–0.5 0.1 1

" " kb " " Sphalerite (high-Fe) 37 0.001–0.5 0.1 2

" " kb " " Sphalerite (high-Fe) 141 0.001–0.5 0.1 3

" " kb " " Sphalerite (high-Fe) 12 0.03–0.3 0.09 4

" " eb " " Sphalerite (moderate

to high-Fe)

4 0.001–0.1 0.03 2

" " eb " " Sphalerite (moderate

to high-Fe)

8 0.03 3

Hydrothermal barite–

fluorite–sulfide veins

Freiberg (Erzgebirge) fba Unknown Pb, Zn, Ag Sphalerite (low-Fe,

dSchalenblendeT)7 V0.001 2

" " fba " " Sphalerite (low-Fe) 10 b0.0005–0.01 0.005 4

Hydrothermal Ag-rich

base metal veinsaMarienberg (Erzgebirge) Zn–Cu–As–

Sn–Pb–Ag (kb)

Mica-lamprophyres Ag, Cu, Zn, Sn Sphalerite (high-Fe) 25 0.01–0.8 0.3 5

Hydrothermal Ag-rich

base metal veins

Wolkenstein

(Erzgebirge)

As–Zn–Cu–Sn–Ag

(kb)

Mica-lamprophyres Sn, Ag Bulk-ore-samples 2 0.01–0.02 6

" Jachymov (Krusne hory,

Czech Republic)

Zn–Cu–Sn (kb) Mica-lamprophyres Ag, U, (Sn) Sphalerite (high-Fe) 0.2 7

" Turkank zone, Kutna

Hora (Bohemian massif,

Czech Republic)

Zn–Cu–As–

Sn–Pb–Ag

Mica-lamprophyres Ag, Pb, Zn Sphalerite (high-Fe) 23 0.02–0.13 0.1 8

" " " " " Stannite Up to 0.002 9

" " " " " Sphalerite (high-Fe) 4 0.1–0.2 0.14 10

Hydrothermal Ag-rich

base metal veins

Pohled, Havlıcklv

Brod (Bohemian massif,

Czech Republic)

Zn–Cu–As–

Sn–Pb–Ag

Lamprophyres (?) Ag, Pb, (Zn) Sphalerite 27 0.01–0.2 0.08 11

" Saint-Martin-la-Sauvete

(Loire, France)

Zn–Pb–Cu–

Ag–Bi

Unknown Zn, Pb, Ag Sphalerite 37 0.02–1.05 0.4 12

" Keno Hill

(Yukon, Canada)

Pb–Zn–Cu–Ag Lamprophyres and/or

quartz–feldspar–

porphyry-dikes

Ag, Pb, Zn, Cd Sphalerite

(low-to moderate-Fe)

11 b0.001–0.01 0.002 13

" Coeur d’Alene

(Idaho, USA)

Pb–Zn–Cu–Ag Lamprophyres (?) Ag, Pb, Zn, Cu, Au Sphalerite

(low-to moderate-Fe)

59 Up to 0.04 0.01 14, 15

" Fukoku (Honshu, Japan) Cu–Zn–Ag Granitic and ultramafic

intrusive rocks (?)

Cu, Zn, Ag Sphalerite 0.2–0.8 16

Hydrothermal Ag-rich

base metal veins

Omodani

(Honshu, Japan)

Cu–Zn–Pb–Ag Rhyolitic rocks Cu, Zn, Pb, Ag Sphalerite 0.2–0.8 16

" Toyoha

(Hokkaido, Japan)

Pb–Zn–Cu–

As–Sn–Ag

Rhyolite–dacite Zn, Pb, Cu, Ag, In Bulk-ore-samples 0.014 17, 18

" " " " " Sphalerite 0.04–8.8 2.5 17, 18

" " " " " Stannite 0.04–9.8 17, 18

" " " " " Kesterite 0.1–16.5 17, 18

T.Seifert,

D.Sandmann/Ore

GeologyReview

s28(2006)1–31

4

Page 5: Mineralogy and geochemistry of indium-bearing polymetallic vein-type deposits: Implications for host minerals from the Freiberg district, Eastern Erzgebirge, Germany

" Carguaicollu

(Andes, Bolivia)

Pb–Zn–Ag Dacite Pb, Zn, Ag, In Bulk-ore-samples 0.002 18

" Pulacayo (Uyuni

district, Bolivia)

Pb–Zn–Ag–Cu–Bi Dacites ? Cassiterite 0.04–0.06 19

Sn-polymetallic

sulfide skarn

Oelsnitz (Vogtland) Zn–Cu–Sn Granitoides Sn, Cu Sphalerite 0.4–1.0 20

Sn-polymetallic

sulfide skarn

Jachymov (Krusne

hory, Czech Republic)-

Plavno shaft

Sn–Zn–Cu Postkinematic granites/

rhyolites, lamprophyres

Sphalerite 0.2–0.3 21

" Pohla-Globenstein

(Erzgebirge)

Sn–W–Zn–Cu–Fe Lamprophyres Fe, Zn, (Sn, In) Bulk-ore-samples 0.004–0.01 (0.03 Cd) 22

Sn-polymetallic

sulfide vein-like

metasomatites

Annaberg

(Erzgebirge)-

dBriccius mineT

Zn–Cu–Sn–Ag Different types of

postkinematic granites,

mica-lamprophyres

Cu, Sn, Ag Sphalerite 1 1.0 5

" " " " " Bulk-ore-sample 1 0.3 6

Sn-polymetallic

greisen- and vein-type

Geyer (Erzgebirge)-

‘Rohrenbohrer’

exploration mine

Sn–Zn–Cu Different types of

postkinematic granites

and rhyolites

Sn, Cu Sphalerite (high-Fe) 19 0.04–1.2 0.4 23

" " " " " Cassiterite 52 0.0005–0.07 0.007 23

" Ehrenfriedersdorf

(Erzgebirge)-dWestfeldTSn-veins Different types of

postkinematic granites

Sn, W Cassiterite 68 0.003–0.007 0.005 24

" Ehrenfriedersdorf

(Erzgebirge)-dSaubergTSn-greisen Different types of

postkinematic granites

Sn, W Cassiterite 9 0.007 24

" Pobershau and Marienberg

(Erzgebirge)

Sn-polymetallic-veins Different types of

postkinematic granites

and rhyolites,

mica-lamprophyres

Sn, Cu, Ag Cassiterite 24 0.003–0.06 0.02 5

" Altenberg (Erzgebirge) Sn-greisen Granites with

A-type affinity

Sn Cassiterite 2 0.002–0.02 4

" " " " " Bulk-ore-samples 46 0.001–0.004 0.002 25

" Zeidelweide (Altenberg

district, Erzgebirge)

Sn-greisen Granites with

A-type affinity (?)

Sn Bulk-ore-samples 6 0.002–0.007 0.003 25

Sn-polymetallic

greisen- and vein-type

Lowenhainer greisen

zone (Altenberg district,

Erzgebirge)

Sn-greisen Granites with

A-type affinity (?)

Sn Bulk-ore-samples 23 0.001–0.005 0.002 25

" Cınovec (Krusne

hory, Czech Republic)

Sn-polymetallic-grei-

sen

Granites with

A-type affinity

Sn Sphalerite (high-Fe) 8 0.5–2.5 1.1 26

" " " " " Bulk-ore-samples 3 0.001–0.003 0.002 25

Sn-polymetallic greisen Muhlleithen (Erzgebirge) Sn–As–Cu Lamprophyres and

rhyolitic dikes with

A-type affinity

Sn Cassiterite 2 0.002–0.005 4

W vein-type Pechtelsgrun (Erzgebirge) W–Mo–Zn Granite W Sphalerite (high-Fe) 1 0.02 4

" " " " " Sphalerite (high-Fe) 4 0.05 4

(continued on next page)

T.Seifert,

D.Sandmann/Ore

GeologyReview

s28(2006)1–31

5

Page 6: Mineralogy and geochemistry of indium-bearing polymetallic vein-type deposits: Implications for host minerals from the Freiberg district, Eastern Erzgebirge, Germany

Table 1 (continued)

Deposit type District/deposit

(geological unit)

Ore-type Associated magmatic

rocks

Mining products Mineral/bulk ore n Range

[wt.%]

Average

[wt.%]

Ref.

n-polymetallic greisen Vaulry (Massif

Central, France)

Sn–W–As–Cu–Mo–

Ag

Leucogranite Sn, W Bulk-ore-samples 0.0005 27

n-polymetallic veins Charvier (Massif

Central, France)

Cu–Zn–Sn–Bi–Ag Granites Sn, Cu Sphalerite Up to 0.8 28

n-polymetallic vein-

and greisen-type

Mt. Pleasant (New

Brunswick, Canada)

W–Mo–Sn–Bi–Zn–

Cu–F

A-type granites Sn, W, Mo, Zn, Pb, Cu,

(In)

Sphalerite 126 b0.01–6.9 1.2 29

" " " " Stannite 20 0.07–2.2 0.64 29

" " " " Chalcopyrite 39 0.01–0.5 0.16 29

" " " " Cassiterite 0.004–0.009 29

" " " " Bulk-ore-samples 250 0.002–N0.02 0.013 30

n-polymetallic veins Pravouvmiyskoe

(Komsomolskoe district,

Russian Far East, Russsia)

Sn–As–Cu–Zn Granitoides Sn Sphalerite 4 0.16–1.0 0.36 31

" " " " Sphalerite Up to 2.4 32

" " " " Chalcopyrite 71 0.01–0.75 0.13 31

" " " " Cassiterite 82 0.0005–0.002 0.001 31

" " " " Bornite 18 0.003–0.36 0.02 31

n-polymetallic veins Lifudsin (Russian

Far East, Russsia)

Sn–Zn–Cu–W–Pb Unknown Sn, W Sphalerite 0.03 33

" " " " Chalcopyrite 0.05 33

" " " " Cassiterite 0.008 33

n–W-base metal

greisen-type

Deputaskoe (Russian

Far East, Russia)

Sn–As–W Alaskite porphyry,

diorite and rhyolite

dikes (?)

Sn, W Cassiterite 0.003 34

" Zn–Cu–As " " Sphalerite 0.2–0.3 34, 35

" Zn–Sn–Cu–Pb " " Sphalerite 0.02–0.04 34, 35

" " " " Stannite 0.08–0.09 34, 35

olymetallic-Sn veins Goka (Honshu, Japan) Cu–Zn–Sn–Pb–As Granodiorite

porphyry (?)

Sn Sphalerite Up to 1.9 36

" " " " Unknown Zn–Cu–Fe–

In–Sn–S mineral

Up to 20.2 36

Ikuno (Honshu, Japan) Zn–Cu–As–Sn–Pb–

Ag

Rhyolites and/or

andesites (?)

Cu, Zn, Pb, Sn, Ag, Au Sphalerite 0.04–1.6 16

Akenobe (Honshu, Japan) Cu–Zn–Sn–Ag Felsic volcanics Cu, Zn, Sn, Ag Sphalerite 0.3–0.5 37, 16

" " " " Roquesite-bearing

sphalerite

Up to 5 37, 16

Bolivar (Andes, Bolivia) Bi–Pb–Zn–Cu–Ag–

Sn

Dacite porphyry dome Pb, Sn, Ag, Zn, (Bi) Bulk-ore-samples 0.002 18

Huari Huari

(Potosi, Bolivia)

Zn–Ag–Sn–Sb Unknown Zn, Ag, (In) Sphalerite (high-Fe) 1.0 19

San Luis (Berenguela

district, Bolivia)

Zn–Cu–Sn Rhyolite, rhyodacite and

dacite domes and dikes

Zn, Ag, Pb, Cu Sphalerite Up to 0.4 38

" " " " Stannite Up to 0.4 38

T.Seifert,

D.Sandmann/Ore

GeologyReview

s28(2006)1–31

6

S

S

S

"

"

"

"

S

"

"

"

"

S

"

"

S

"

"

"

P

"

"

"

"

"

"

"

"

Page 7: Mineralogy and geochemistry of indium-bearing polymetallic vein-type deposits: Implications for host minerals from the Freiberg district, Eastern Erzgebirge, Germany

" Colquechaca

(Aiquile area, Bolivia)

Pb–Zn–Ag–

Sn–Bi

Volcanics Cassiterite 0.02–0.1 39

Cu–Mo-porphyry Bingham (Utah, USA) Pb–Zn–Cu–

Sb–Ag–Au replace-

ments of

limestone

Quartz-monzonite Cu, Mo Sphalerite 54 0.0005–0.04 0.006 40

" " " " " Chalcopyrite 28 0.0005–0.1 0.003 40

Cu-porphyry Central district

(New Mexico, USA)

Base metal

rich ores

Calc-alkaline

granodiorite to

quartz-monzonite

Cu Sphalerite 83 0.0005–0.12 0.007 40

Volcanic-hosted

massive sulfide

Kidd Creek

(Ontario, Canada)

Zn–Pb–Ag–

(Cu)

Felsic volcanics (?),

mafic–ultramafic flows

(?)

Cu, Zn, Pb, Ag, Sn Sphalerite 9 0.006–0.2 0.06 41, 42

" " " " " Chalcopyrite 5 0.001–0.04 0.02 41, 42

" " Cu–(Zn) " " Chalcopyrite 4 0.03–0.07 0.04 41, 42

" Neves Corvo (Iberian

Pyrite Belt, Portugal)

Cu–Zn–Sn Felsic volcanics (?),

granites (?)

Cu, Zn, Sn, Pb, Ag Cu–Sn-bulk ore Up to 0.065 43

" " " " " Cassiterite 0.005–0.015 43

" " " " " Sphalerite 0.09–0.3 43

" " " " " Tennantite 0.06–0.2 43

" " " " " Stannite 0.2–3.0 43

Epithermal Au–Ag veins Prasolov (Kuril Island

Arc, Russia)

Au-base metal Andesite–dacite–rhyolite

dome

Sphalerite 10 0.4–4.7 1.5 44

Active magmatic system Kudryavyi volcano

(Kuril Island Arc, Russia)

Zn-, Cd-, Cu-,

Ag-, Te-,

In-enriched high-

temperature

fumarolic system

(500–900 8C)

Basaltic andesite Sphalerite 12 1.8–14.9 5.9 44

Active magmatic system Merapi volcano

(Java, Indonesia)

Se-, Re-, Bi-, Cd-,

Au-, Cu-, In-, Pb-,

W-, Mo-, Cs-, Sn-,

Ag-, As-, Zn-,

F-enriched fumarolic

system (500–900 8C)

Andesite Sphalerite 10 0.005–0.03 0.02 45

n =number of analyses.

References:

1—Tolle (1955), 2—Baumann (1957), 3—Baumann (1964), 4—Hoang (1984), 5—Seifert (1994), 6—Th. Seifert (unpublished data, 2001), 7—Bernardova and Poubova (1965), 8—Novak and

Kvacek (1964), 9—Hak et al. (1964), 10—Hak et al. (1983), 11—Hak and Johan (1962), 12—Johan (1988), 13—Boyle (1965), 14—Fryklund and Flechtner (1956), 15—Leach et al. (1998), 16—

Shimizu and Kato (1991), 17—Kooiman and Ruitenberg (1992), 18—cf. Schwarz-Schampera and Herzig (2002), 19—Putzer (1976), 20—Doering et al. (1994), 21—Hak et al. (1979), 22—

Schuppan (1995), 23—Jung (1992), 24—Binde (1984), 25—W. Schilka (unpublished data, 1989), 26—Novak et al. (1991), 27—Bouladon (1989), 28—Picot and Pierrot (1963), 29—Sinclair et al.

(2005—this volume), 30—Irrinki and Kooiman (1995), 31—Gavrilenko and Pogrebs (1992), 32—Semenyak et al. (1994), 33—Zabarina et al. (1961), 34—Ivanov and Rozbianskaya (1961), 35—

Ivanov and Lizunov (1960), 36—Murao and Furuno (1990), 37—Murao and Furuno (1991), 38—Legendre (1994), 39—Fesser (1968), 40—Rose (1967), 41—Cabri et al. (1985), 42—Hannington

et al. (1999a,b), 43—Schwarz-Schampera (2000), 44—Kovalenker et al. (1993), 45—Kavalieris (1994).a Included Sn-polymetallic sulfide vein-like metasomatites (similar to the dBriccius mine,T Annaberg).

T.Seifert,

D.Sandmann/Ore

GeologyReview

s28(2006)1–31

7

Page 8: Mineralogy and geochemistry of indium-bearing polymetallic vein-type deposits: Implications for host minerals from the Freiberg district, Eastern Erzgebirge, Germany

Table 2

Late-Variscan magmatic events and mineralization in the Erzgebirge

(modified after Seifert, 1994, 1999 and Forster et al., 1998)

T. Seifert, D. Sandmann / Ore Geology Reviews 28 (2006) 1–318

were produced by the Freiberg mining and smelter

company. Since 1969, all base metal and Ag mining

activities were closed down. There are, however, still

ore reserves of about 4,868,500 t of ore (averaging

3.2 wt.% Pb, 4.5 wt.% Zn, 1.7 wt.% As, and 72 g/t

Ag) in the central and southern part of the Freiberg

district.

Indium, cadmium, and other trace metals in sphaler-

ites from different ore-types of the Freiberg district

have been analyzed in the past by optical emission

spectroscopy (e.g., Tolle, 1955; Baumann, 1957,

1964). This method is essentially semi-quantitative,

lacking accuracy and precision. However, most analyt-

ical data of In contents in tin and base metal ores from

the Erzgebirge and other mining districts have been

produced by this technique (Table 1). In this study,

we present the first modern and comprehensive geo-

chemical bulk and microprobe analyses of representa-

tive ore samples from the polymetallic sulphide veins in

the Freiberg district.

2. Regional geology

The Erzgebirge (Saxonian Erzgebirge and Bohemian

Krusne hory) is part of the metamorphic basement of

the internal Mid-European Variscides on the NW-bor-

der of the crystalline Bohemian Massif core complex

(Fig. 2). It represents an antiformal megastructure with

a large core composed of medium-to high-grade meta-

morphic mica schists and gneisses with intercalations of

eclogite (Schmadicke, 1994; Rotzler, 1995; Sebastian,

1995). The peak P–T conditions in the Gneiss–Eclogite

unit were dated by Willner et al. (1997) and Tichomir-

owa (2001) at 340 and 330 Ma, respectively. According

to these authors and age data of the post-kinematic

magmatism in the Erzgebirge (Seifert, in press), an

extremely fast tectonic exhumation of the Erzgebirge

complex between 340 and 330 Ma can be postulated.

The polymetallic sulphide veins of the base metal

deposits in the Erzgebirge are hosted by ortho-(Freiberg

district) and paragneisses (Marienberg, Annaberg, and

Hora Sv. Kateriny districts), mica schists (northern part

of the Freiberg district, Johanngeorgenstadt), and sub-

ordinately by postkinematic granites (Schneeberg and

eastern part of the Freiberg district, Fig. 2).

Late Variscan acidic and lamprophyric (sub)volca-

nics intruded into the Erzgebirge metamorphic core

complex and the older stage of postkinematic granite

intrusions. The evolution of the postkinematic magma-

tism is related to late- and post-collisional extension on

the NW-borderline of the Bohemian Massif. The post-

collisional magmatism is controlled by deep fracture

zones (cf. Seifert and Kempe, 1994) and is associated

with different types of tin and polymetallic sulphide

mineralization (Table 2). The intrusion of Permo–Car-

boniferous lamprophyric dikes in the Erzgebirge indi-

cates mantle-induced high-energy and fluid pulses

during the Late Variscan. It is important to realize

that the large base metal deposits and lamprophyric

dikes are affiliated and occur together at cross-cutting

deep fault zones (Freiberg, Marienberg, and Annaberg

districts; cf. Seifert, 1994, 1999).

3. Geology and mineralogy of polymetallic sulphide

veins in the Freiberg district

The polymetallic vein-type deposits in the Freiberg

district are subdivided into certain mining areas (ore

fields) including the North (Obergruna, Kleinvoigtsberg,

Mohorn), Central (Halsbrucke, Freiberg, Muldenhut-

ten), and South sub-district (Zug, Brand–Erbisdorf=

Brand). The Ag-base metal veins of the Central and

South sub-district are mainly hosted by orthogneisses

(dFreiberg gneissT and dBrand gneissT; Fig. 3). In the

southern part of the South sub-district (dHimmelsfurstTmine; Table 3), the ore veins crosscut garnet-bearing

mica-schists. South of this mica-schist zone, no ore

veins were identified (Gotte, 1956; Baumann, 1957).

In the North sub-district, the veins are mainly hosted

by mica-schists and paragneisses, partly with intercala-

tions of meta-black-shales (Muller, 1901; Baumann et

al., 2000). Minor occurrences of the Freiberg veins are

hosted by dred gneissesT, gabbros, and Permo–Carbon-

iferous granites, rhyolites and lamprophyres (Fig. 3).

Approximately 1100 polymetallic sulphide veins were

mined up to 800 m depth. According to Baumann and

Hofmann (1967), the Freiberg ore vein system is devel-

oped within the paracrystalline joint system. The so-

called dFreiberg vein networkT is characterized by two

(NNE–SSW to N–S and E–W to ENE–WSW) shear

Page 9: Mineralogy and geochemistry of indium-bearing polymetallic vein-type deposits: Implications for host minerals from the Freiberg district, Eastern Erzgebirge, Germany

Fig. 3. Schematic geological map of the Freiberg district and sample locations. Geology compiled by Baumann (1964), modified on the basis of data

from Seifert (1999) and Tichomirowa (2001). dFreiberg gneissT and dBrand gneissT are classified as orthogneisses. Sample locations are as follows

(numbers are explained in Table 3): a=4, 5; b=6, 7; c=8 to 10; d=11, 12; e=16, 17; f=21, 22; g=23 to 27; h=29, 30; i=31, 32; k=33 to 35;

m=38 to 40; n =44, 45; o=46 to 50; p =53, 54; q=60, 61; r =79, 80; s=81, 82.

T. Seifert, D. Sandmann / Ore Geology Reviews 28 (2006) 1–31 9

Page 10: Mineralogy and geochemistry of indium-bearing polymetallic vein-type deposits: Implications for host minerals from the Freiberg district, Eastern Erzgebirge, Germany

Table 3

Mineralogy of polymetallic sulfide ore samples

No. in

Fig. 3

Sample

no.

Ore fielda Location (mine, vein, level) Description

[Level 0=addit] Main ore minerals Gangue

minerals

Ore

type

1 52827 Obergruna Gesegnete Bergmannshoffnung, Helmrich, 1. sl, gn, py, asp, cp,

fg, pyrg, arg

qtz, ca eq

2 52853 Obergruna Gesegnete Bergmannshoffnung, Traugott, 0. gn, sl, cp, asp qtz eq

3 982 Kleinvoigtsberg Alte Hoffnung Gottes, Bestandigkeit, 5. sl, asp, gn, py, asp ca, qtz eq

4 1057 Kleinvoigtsberg Alte Hoffnung Gottes, Christliche Hilfe, 14. sl, gn, py, asp, cp qtz eq

5 1431 Kleinvoigtsberg Alte Hoffnung Gottes, Christliche Hilfe, 14. asp, py, sl, gn, cp, arg qtz, ca eq

6 1109 Kleinvoigtsberg Alte Hoffnung Gottes, Gottes Segen, 4. sl, py, gn, asp, cp qtz, ca eq

7 1397 Kleinvoigtsberg Alte Hoffnung Gottes, Gottes Segen, 6. sl, gn, py, asp, cp qtz, ca eq

8 1168 Kleinvoigtsberg Alte Hoffnung Gottes, Heinrich, 13. sl, py, asp, gn, fg, pyrg,

ag, can, stan, cp, cst

qtz eq

9 1173 Kleinvoigtsberg Alte Hoffnung Gottes, Heinrich, 13. py, sl, asp, gn, cp qtz eq

10 1175 Kleinvoigtsberg Alte Hoffnung Gottes, Heinrich, 14. py, sl, asp, gn, cp qtz eq

11 1279 Kleinvoigtsberg Alte Hoffnung Gottes, Peter, 10. py, sl, asp, gn, cp qtz, ca eq

12 1281 Kleinvoigtsberg Alte Hoffnung Gottes, Peter, 10. py, sl, gn, asp, cp, pyrg ca, qtz eq

13 53104 Mohorn Erzengel Michael, Unbenannt, 0. sl, gn, cp, stan, asp, fg,

pyrg, arg

ca, qtz eq

14 53089 Mohorn Erzengel Michael, Wolfgang, 0. py, gn, sl, fg, cp, stan, asp – eq

15 5404 Halsbrucke Beihilfe, Unbenannt, 350-m level. sl, gn, cp, asp ca kb

16 50171 Freiberg Himmelfahrt, Christian, 6. py, gn, sl, cst, cp, asp qtz, ca kb

17 8 Freiberg Himmelfahrt, Christian, 13. asp, sl, gn, cp, py qtz kb

18 258 Freiberg Himmelfahrt, Clemens, 2. sl, py, gn, stan, cp, asp qtz, ca kb

19 50071 Freiberg Himmelfahrt, David, 0. py, asp, sl, gn, cp qtz, ca kb, younger

debT veinlet20 3006 Freiberg Himmelfahrt, Dreifaltigkeit, 11. py, sl, gn, stan, cp, asp qtz kb

21 198 Freiberg Himmelfahrt, Friedrich, 8. asp, py, gn, sl, cp ca, qtz kb

22 208 Freiberg Himmelfahrt, Friedrich, 12. asp, py, sl, gn, cp qtz, ca kb

23 50100 Freiberg Himmelfahrt, Frisch Gluck, 5. asp, py, sl qtz, ca kb

24 50105 Freiberg Himmelfahrt, Frisch Gluck, 5. gn, clst, nm, asp, sl, cp ca eb

25 50106 Freiberg Himmelfahrt, Frisch Gluck, 5. asp, sl, py, gn, cst, stan, cp qtz kb

26 222 Freiberg Himmelfahrt, Frisch Gluck, 6. sl, asp, py, gn, cp qtz kb

27 279 Freiberg Himmelfahrt, Frisch Gluck, 17. sl, py, gn, cp, asp qtz kb

28 2658 Freiberg Himmelfahrt, Gluckstern, 11. asp, sl, gn qtz kb

29 402 Freiberg Himmelfahrt, Gotthold, 14. sl, gn, cp, asp qtz kb

30 402 SL* Freiberg Himmelfahrt, Gotthold, 14. sl, gn, cp, asp – kb

31 352 Freiberg Himmelfahrt, Gottlob, 12. sl, py, asp, gn ca, qtz kb/eb

32 50005 Freiberg Himmelfahrt, Gottlob, unknown. py, sl, asp, gn, cp qtz, ca kb

33 410 Freiberg Himmelfahrt, Hauptstollngang, 1/2 10. sl, py, gn, cp qtz kb

34 420 Freiberg Himmelfahrt, Hauptstollngang, 14. py, gn, asp, cp, stan, sl qtz kb

35 422 Freiberg Himmelfahrt, Hauptstollngang, 14. sl, gn, py, cp qtz, ca kb

36 50023 Freiberg Himmelfahrt, Johann, 0. sl, asp, py, gn, cp qtz, ca kb

37 457 Freiberg Himmelfahrt, Jupiter, 6. sl, py, asp, gn, cst,

stan, cp

qtz kb

38 50042 Freiberg Himmelfahrt, Kirschbaum, 1/2 1. sl, py, gn, asp, cst,

stan, cp, arg

qtz, ca kb

39 50042 GL* Freiberg Himmelfahrt, Kirschbaum, 1/2 1. gn, sl, cp – kb

40 229 Freiberg Himmelfahrt, Kirschbaum, 13. sl, py, gn, cp ca, qtz kb

41 50032 Freiberg Himmelfahrt, Kirschzweig, 5. sl, gn, py, cp, asp qtz, ca kb

42 2461 Freiberg Himmelfahrt, Krieg und Frieden, 2. py, gn, asp, cp, sl qtz, ca kb

43 51052 Freiberg Himmelfahrt, Riemer, 8. sl, py, gn, cp, asp qtz kb

44 50083 Freiberg Himmelfahrt, Schwarzer Hirsch, unknown. sl, py, po, asp, gn, stan, cp qtz, ca kb/eb

45 50094 Freiberg Himmelfahrt, Schwarzer Hirsch, 8. sl, py, asp, gn, cp, cst qtz kb

46 P 1–4 SL* Freiberg Himmelfahrt, Wilhelm, 1. sl, gn qtz kb

47 P 1–7 GL* Freiberg Himmelfahrt, Wilhelm, 1. gn, sl – kb

48 P 1–10 Freiberg Himmelfahrt, Wilhelm, 1. py, sl, gn, cp, asp qtz, ca kb

49 P 3–4 GL* Freiberg Himmelfahrt, Wilhelm, 1. gn, asp, sl – kb

50 50160 Freiberg Himmelfahrt, Wilhelm, 2. py, sl, asp, gn, cp ca, qtz eb/kb

T. Seifert, D. Sandmann / Ore Geology Reviews 28 (2006) 1–3110

Page 11: Mineralogy and geochemistry of indium-bearing polymetallic vein-type deposits: Implications for host minerals from the Freiberg district, Eastern Erzgebirge, Germany

No. in

Fig. 3

Sample

no.

Ore fielda Location (mine, vein, level) Description

[Level 0=addit] Main ore minerals Gangue

minerals

Ore

type

51 50192 Freiberg Markgraf Otto, Otto, unknown. asp, sl, gn, cp qtz kb

52 50137 Freiberg Rudolph, Kunstschachtabteufen, 1. sl, gn, asp, cp ca, qtz kb

53 50330 Muldenhutten Morgenstern, Abendstern, unknown. asp, sl, gn, cp qtz kb

54 50378 Muldenhutten Morgenstern, Abendstern, 1. asp, sl, py, cp, gn qtz, ca kb (eb?)

55 50397 Muldenhutten Morgenstern, Laura, 5. sl, cp, gn, py, asp, spb, wf qtz, ca kb

56 50394 Muldenhutten Morgenstern, Ludwig, 5. sl, gn, asp, py, cp, fg, spb qtz kb

57 50423 Muldenhutten Wernerstolln, Unbenannt, 0. asp, cp, sl, py, gn, spb ca, qtz,

(bar)

kb

58 50451 Muldenhutten Friedrich, 3-Konige, 0. sl, gn, py, cp, asp, arg qtz kb

59 50473 Muldenhutten Friedrich, Hoffnung, 2. sl, cp, gn, stan, asp, spb, wf qtz kb

60 50441 Muldenhutten Schieferleite, Unbenannt, 0. sl, gn, asp, py, cp, stan, spb qtz kb

61 50450 Muldenhutten Schieferleite, Unbenannt, 0. gn, py, asp, cp, sl qtz kb

62 50437 Muldenhutten Schieferleite, Weißer Lowe, 0. cp, sl, py, gn, asp, wf,

cst, spb, mo

qtz kb

63 52289 Zug Alte Mordgrube, Braun, 0. sl, gn, py, asp, cp,

stan, fg, cst

ca, qtz kb/eb

64 50121 Zug Beschert Gluck, Carl, 4. py, gn, fg, sl, cp, asp,

stan, fg

ca, qtz eb

65 6001 Zug Beschert Gluck, Ludwig, 0. gn, sl, py, asp, pr,

pyrg, cp, stan

ca eb

66 52262 Zug Junge Hohe Birke, Jung Tobias, 2. sl, gn, py, stan, cp,

asp, fg, cst

qtz kb

67 52215 Zug Junge Hohe Birke, Junge Hohe Birke, 7. sl, py, gn, cp, asp qtz kb

68 1499 Brand Himmelsfurst, Alte Rose, 1/2 14. sl, py, asp, gn, cp qtz, ca kb

69 6004 Brand Himmelsfurst, Concordia, 8. sl, py, asp, gn, cp ca, qtz eb/kb

70 1530 Brand Himmelsfurst, Daniel, 1/2 14. py, sl, asp, gn, cp, mo qtz, ca kb

71 51540 Brand Himmelsfurst, Jupiter, 7. sl, gn, py, cp, asp, fg qtz, ca kb

72 1669 Brand Himmelsfurst, Lade des Bundes, 1/2 14. sl, gn, py, cp, asp qtz kb

73 1675 Brand Himmelsfurst, Leopold, 3. sl, gn, asp, cst, stan, cp ca eb

74 1715 Brand Himmelsfurst, Samuel, 1/2 14. sl, cp, gn, stan, asp, fg ca kb

75 1730 Brand Himmelsfurst, Schweinskopf, 12. gn, py, sl, asp, cp, fg qtz kb

76 51568 Brand Himmelsfurst, Seidenschwanz, 2. py, sl, gn, asp, stan, cp, fg qtz, ca kb with

younger debTcarbonate

veinlet

77 54256 Brand Himmelsfurst, Silberfund, 15. gn, asp, py, sl ca, qtz eb/kb

78 3886 Brand Reicher Bergsegen, Adler, 15. sl, gn, stan, cp ca kb with

younger

debT carbonateveinlet

79 51763 Brand Reicher Bergsegen, Simon Bogners Neuwerk, 0. sl, py, asp, gn, stan, cp qtz, ca kb/eb

80 4384 Brand Reicher Bergsegen, Simon Bogners Neuwerk, 12. sl, py, gn, cp, asp qtz, ca kb

81 4428 Brand Reicher Bergsegen, Sonne und Gottes Gabe, 15. py, sl, gn, cp, stan, asp qtz, ca kb

82 4428 GL* Brand Reicher Bergsegen, Sonne und Gottes Gabe, 15. gn, sl, stan, cp – kb

Notes: *—visually separated from gangue minerals.a Brand=Brand–Erbisdorf.

Minerals: ag—native silver; arg—argentite; asp—arsenopyrite; can—canfieldite; clst—clausthalite; cp—chalcopyrite; cst—cassiterite; fg—freiber-

gite; gn—galena; mo—molybdenite; nm—naumannite; po—pyrrhotite; pr—proustite; py—pyrite; pyrg—pyrargyrite; sl—sphalerite; spb—schap-

bachite; stan—stannite; wf—wolframite; qtz—quartz; ca—carbonate; bar—barite.

Ore types: eq—dedle QuarzformationT (noble quartz formation); kb—dkiesig-blendige BleierzformationT (pyritic lead formation); eb—dedleBraunspatformationT (noble carbonate formation).

Table 3 (continued)

T. Seifert, D. Sandmann / Ore Geology Reviews 28 (2006) 1–31 11

systems, and spatial associated fissure veins. The min-

eralized dcentral shear fault zoneT shows a NNE–SSW

striking distance of about 14 km. This steeply dipping

shear vein is characterized by ore lenses with a thickness

of up to 10 m (Baumann, 1957, 1960), and was mined in

the central and southern district. In the mining area of the

important dHimmelfahrtTmine (northeastern of the town

of Freiberg) it is called dHauptstollengang StehenderT

Page 12: Mineralogy and geochemistry of indium-bearing polymetallic vein-type deposits: Implications for host minerals from the Freiberg district, Eastern Erzgebirge, Germany

T. Seifert, D. Sandmann / Ore Geology Reviews 28 (2006) 1–3112

(Fig. 3, locality k: samples 33–35). The adjacent

dWilhelm StehenderT (NNW–SSE) is a typical fissure

vein with a thickness of up to 2 m and a 308 to 508dipping to West (Baumann, 1960; Fig. 4A; Fig. 3, local-

ity o: samples 46–50). To North (Obergruna, Klein-

voigtsberg, Mohorn; Fig. 3), brecciated Ag-rich

polymetallic-quartz shear veins with a thickness of up

to 2 m are common (Muller, 1850, 1901; Fig. 4B). In

the South sub-district (Brand-Erbisdorf; Fig. 3) Ag-rich

base metal veins with a thickness of up to 2 m were

mined up to 750 m depth (Muller, 1901; Baumann et

al., 2000).

The base metal veins of the Freiberg district are

characterized by two principal types of late-Variscan

polymetallic sulphide mineralization (Fig. 5):

(A) Quartz-bearing As(–Au)–Zn–Cu(–In–Cd)–Sn–Pb–

Ag–Bi–Sb polymetallic sulphide vein-type mi-

neralization [according to Muller (1850, 1901):

dkiesig-blendige BleierzformationT=pyritic lead

Page 13: Mineralogy and geochemistry of indium-bearing polymetallic vein-type deposits: Implications for host minerals from the Freiberg district, Eastern Erzgebirge, Germany

Fig. 5. Mineral sequences of the Freiberg and Marienberg districts (based on Muller, 1850, 1901; Oelsner, 1930; Baumann, 1964; Seifert, 1994).

dkbT ore-type= dkiesig-blendige BleierzformationT (pyritic lead formation); debT ore-type= dedle BraunspatformationT (noble carbonate formation);

duqkT ore-type=uranium–quartz–calcite formation; dhmbaT ore-type=hematite–barite sequence; dbaflT ore-type=barite–fluorite sequence.

T. Seifert, D. Sandmann / Ore Geology Reviews 28 (2006) 1–31 13

formation (dkbT ore-type)] with arsenopyrite, py-

rite/marcasite (minor native Au), pyrrhotite, most-

ly Fe-rich sphalerite, stannite, chalcopyrite,

cassiterite, tetrahedrite, bornite, and galena (Fig.

Fig. 4. A. Polymetallic sulphide vein (dkbT ore-type) hosted by Freiberg orthogmine, level 1, Freiberg ore field. Mineralogical characteristics of selected poly

sulphide vein (deqT ore-type); sphalerite-breccias (sl) are cemented by dmilkyTBergmanns HoffnungT mine, Obergruna, North subdistrict. C. Representativ

copyrite vein of the dkbT ore-type (sample 222; bulk analyses show 1030 ppm I

D. Photomicrograph of Fe-rich sphalerite (grey) with dchalcopyrite diseaseTdFriedrichTmine, dHoffnungT vein, level 2, Muldenhutten ore field; scale bar=

(stan), chalcopyrite (cp), and cassiterite (cst), and a galena microveinlet (gn). S

dBraunT vein, level 0, Zug, Brand ore field; scale bar=30 Am. F. Chalcopyrite

and calcite (ca); representative for polymetallic veins of the Cu-rich dkbT oremine, dAbendsternT vein, level 1, Muldenhutten ore field. G. Back-scattered el

in galena (gn). Sample 50473 (Cu-rich dkbT ore-type with significant Ag, Bi, Slow-In, high-Ag vein with sphalerite (sl), arsenopyrite (asp), pyrite (py) inter

dkbT and debT characteristics (sample 51763, bulk analyses show 1.1 ppm In

dReicher BergsegenT mine, dSimon Bogners NeuwerkT vein, level 0, Brandsphalerite (sl), chalcopyrite (cp), and carbonates (ca); debT ore-type sample 531

vein, level 0, Mohorn, North subdistrict; scale bar=50 Am. K. Polymetalli

sphalerite (sl), pyrite (py), rhodochrosite (rdc), and calcite (cal). dHimmelsfurst

by carbonate (ca); chalcopyrite (yellow grains) is the youngest ore mineral. Sam

dAdlerT vein, level 15, Brand ore field; scale bar=300 Am. M. Massive In-rich

chalcopyrite (dkbT ore-type) crosscut by an debT ore-type carbonate veinlet (c

4C, D, E). Quartz is the main gangue mineral, with

rare carbonate (calcite, dolomite, siderite, rhodo-

chrosite; Fig. 4F). High Ag contents of the poly-

metallic sulphide veins in the central and southern

neiss. dHimmelfahrtT vein (NNW–SSE strike direction), dReiche ZecheTmetallic veins in the Freiberg district (B–M): B. Brecciated polymetallic

quartz (qtz). dTraugottT vein (NNE–SSW strike direction), dGesegnetee In-rich sphalerite(sl)–arsenopyrite(asp)–pyrite(py)–galena(gn)–chal-

n). dHimmelfahrtTmine, dFrisch GluckT vein, level 6, Freiberg ore field.structures (yellow). Sample 50473 (bulk analyses show 667 ppm In),

30 Am. E. Photomicrograph of sphalerite (sl) with inclusions of stannite

ample 52289 (bulk analyses show 95 ppm In), dAlte MordgrubeTmine,

(cp), arsenopyrite (asp), and sphalerite (sl) intergrowth with quartz (qtz)

-type (sample 50378; bulk analyses show 236 ppm In). dMorgensternTectron image showing matildite/schapbachite (AgBiS2) inclusions (spb)

n, and In bulk ore contents; see Table 4, sample 59). H. Representative

growth with quartz (qtz) and carbonate (ca). Transitional ore-type with

). Typical miargyrite (AgSbS2) and argentite inclusions in sphalerite.

ore field. I. Freibergite (fg) and pyrargyrite (pyrg) intergrowth with

04 (bulk analyses show 0.5 ppm In). dErzengelMichaelTmine, unnamed

c debT-type vein hosted by mica-rich gneisses with typically Ag-rich

Tmine, Brand ore field. L. Brecciated Fe-rich sphalerite (sl) is cemented

ple 3886 (bulk analyses show 638 ppm In). dReicher BergsegenTmine,

sphalerite ore (sl) with microscopic inclusions of galena, stannite, and

a). dReicher BergsegenT mine, dAdlerT vein, level 15, Brand ore field.

Page 14: Mineralogy and geochemistry of indium-bearing polymetallic vein-type deposits: Implications for host minerals from the Freiberg district, Eastern Erzgebirge, Germany

Table 4

Geochemical bulk analyses of polymetallic sulfide ore samples

No. in

Fig. 3

Sample

no.

Ore type Zn Pb Cu As Au Hg Tl Se Te Ag Sb Bi Sn Mo W Sc In Cd Ge Ga Mn

wt.% wt.% wt.% wt.% ppb ppb ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm

1 52827 eq 21.6 4.0 0.2 0.7 835 10191 1.47 b3 0.1 5950 3220 9 b700 b1 b1 2.7 0.6 1031 2.7 11.0 3467

2 52853 eq 1.9 5.3 b0.1 b0.1 300 669 2.29 b5 b0.1 6220 4790 6 b500 b1 b1 0.6 0.4 155 0.6 0.7 214

3 982 eq 10.2 0.8 0.1 1.1 b15 198 0.39 b3 b0.1 1730 982 4 b400 b1 1 1.7 30 472 0.8 4.9 14920

4 1057 eq 13.0 4.3 0.2 1.8 142 78 1.90 b3 b0.1 364 237 b2 b300 b1 b1 4.0 6 1148 1.3 10.9 2737

5 1431 eq 11.2 1.2 0.2 11.7 9040 62 0.75 b3 0.2 869 1440 10 b400 b1 b1 2.1 2 813 7.2 9.2 2024

6 1109 eq 8.4 4.6 0.1 2.4 468 172 0.70 b3 b0.1 1020 634 3 b300 b1 b1 0.7 19 547 1.4 4.1 2606

7 1397 eq 13.1 4.3 0.1 3.4 275 538 1.19 b3 0.3 559 322 8 b300 b1 b1 2.0 1 593 2.2 7.0 1245

8 1168 eq 10.1 1.9 0.2 4.7 4800 156 0.40 24 0.1 10200 1000 b2 2800 b1 b128 0.6 0.9 699 4.1 6.1 1311

9 1173 eq 8.3 0.2 b0.1 2.9 441 176 0.55 b3 b0.1 632 371 2 b200 b1 b1 2.4 3 721 1.7 5.0 1272

10 1175 eq 5.9 0.1 0.1 2.5 400 98 0.25 b3 b0.1 1250 644 b2 b300 b1 b1 1.2 b0.1 481 2.4 3.6 1820

11 1279 eq 6.3 2.3 0.1 3.6 429 46 0.63 b3 b0.1 230 145 3 b200 b1 b1 2.3 0.3 422 0.7 5.2 1454

12 1281 eq 4.4 1.2 0.1 0.6 192 118 5.21 b3 0.4 218 288 4 b100 7 b1 0.4 0.5 281 0.6 3.5 1313

13 53104 eq 18.7 1.6 0.4 b0.1 4740 1079 1.05 b5 0.2 6080 5170 5 b1000 b1 b1 3.5 0.5 1492 1.3 11.5 467

14 53089 eq 2.6 3.6 1.4 0.3 4270 16436 1.44 115 0.2 19000 21400 12 b3400 b1 b15 b0.4 0.7 209 0.6 2.6 117

15 5404+) kb 35.2 3.1 0.2 b0.1 186 b1000 0.50 4 b0.2 96 25 44 b100 b1 b1 0.3 1560 3451 0.3 n.a. 6734

16 50171 kb 3.0 4.9 0.1 0.4 5 494 7.78 b3 b0.1 240 127 4 8700 7 10 0.8 12 271 0.6 2.8 1030

17 8 kb 4.0 4.0 1.7 12.8 b90 72 1.85 51 1.4 1430 168 1306 b300 b1 b1 0.6 76 374 5.5 2.5 553

18 258 kb 20.5 2.4 1.3 0.1 b2 143 1.76 b3 0.1 188 41 92 13000 b1 22 0.2 400 2537 0.4 13.1 2519

19 50071 kb, younger

debT veinlet5.1 3.8 0.1 9.2 853 625 1.56 28 0.5 257 357 21 b300 b1 b1 1.3 143 447 4.6 4.5 4264

20 3006 kb 0.5 0.3 0.2 b0.1 24 34 0.52 9 0.2 41 6 32 1200 b1 4 0.4 9 51 0.2 12.4 2100

21 198 kb 0.8 4.0 0.1 22.8 b21 27 2.02 18 0.3 134 320 70 b400 4 b1 2.8 4 135 6.4 7.3 1713

22 208 kb 6.8 3.1 0.1 12.7 b100 56 1.83 b3 0.8 88 705 110 b40 7 b1 0.8 39 568 4.2 5.3 1733

23 50100 kb 0.9 b0.1 b0.1 34.1 b250 24 0.12 b4 b0.1 b5 1370 b2 b800 b1 b40 b0.1 13 83 12.4 1.8 219

24 50105 eb 0.1 2.2 0.1 0.1 258 1139 0.19 9960 b0.1 3750 9 41 b200 9 b1 0.1 8 10 44.9 b0.1 8505

25 50106 kb 3.4 3.3 0.2 16.1 b120 268 1.61 b3 0.1 328 1140 4 3400 b1 b1 0.3 61 374 5.9 3.6 1506

26 222 kb 36.4 0.5 0.3 3.5 b37 192 0.73 55 0.2 101 30 31 b600 b1 b1 b0.2 1030 3548 1.3 5.6 1771

27 279 kb 32.7 2.5 1.2 0.1 b2 279 0.33 b3 0.2 204 16 126 b500 b1 b1 0.7 397 3976 0.3 7.1 1621

28 2658 kb 0.7 b0.1 b0.1 21.9 b19 97 0.23 6 0.6 b5 238 b2 b400 b1 b1 0.3 13 109 10.8 1.7 193

29 402 kb 25.5 4.2 0.8 0.2 b2 96 3.12 42 2.7 1420 11 1896 b400 b1 b1 1.7 301 3657 0.6 9.1 973

30 402 SL+) kb 42.2 7.2 0.6 0.3 b13 3000 2.62 58 6.8 1320 11 3310 b500 b2 b5 b0.1 453 4919 0.2 n.a. 1080

31 352 kb/eb 22.8 0.1 b0.1 0.7 77 136 0.96 b3 0.1 126 83 6 b300 b1 b1 0.8 1 1929 0.5 5.9 20175

32 50005 kb 9.2 1.2 0.1 1.5 39 435 1.43 11 0.4 71 107 5 b200 56 b1 0.9 26 573 1.2 4.0 2595

33 410 kb 23.6 3.7 0.4 b0.1 b2 77 0.30 47 0.6 206 64 36 b300 b1 12 5.6 473 2453 0.6 19.5 2918

34 420 kb b0.1 3.5 0.6 2.3 2300 216 1.86 48 1.0 531 375 403 1600 6 b1 0.4 20 5 1.6 6.4 60

35 422 kb 5.2 3.6 0.1 b0.1 b2 95 0.69 8 0.2 40 21 19 b100 b1 b1 0.9 36 633 0.2 4.0 1902

36 50023 kb 10.9 3.9 0.1 6.1 b31 1189 3.60 12 b0.1 111 332 b2 b300 b1 b1 4.3 527 860 2.9 16.0 1843

37 457 kb 32.9 2.5 0.5 2.5 b20 263 0.80 b3 0.2 222 128 14 7900 b1 b1 1.0 40 2139 0.9 9.9 2015

38 50042 kb 14.5 3.9 0.2 0.8 149 182 2.51 b3 0.2 88 83 7 5900 1 11 2.0 52 1052 0.7 12.4 1864

39 50042GL+) kb 0.7 6.0 b0.1 b0.1 b9 2000 0.47 1 1.0 839 998 4 3400 b2 b1 0.2 3 165 b0.1 n.a. 153

40 229 kb 42.1 0.2 0.3 b0.1 36 933 1.69 b3 b0.1 55 15 13 b500 b1 b1 2.2 403 4322 0.4 22.0 1313

41 50032 kb 37.4 1.3 0.4 0.2 b2 1229 0.92 b3 0.2 76 21 5 b500 b1 b1 2.4 286 2922 0.4 14.2 1631

T.Seifert,

D.Sandmann/Ore

GeologyReview

s28(2006)1–31

14

Page 15: Mineralogy and geochemistry of indium-bearing polymetallic vein-type deposits: Implications for host minerals from the Freiberg district, Eastern Erzgebirge, Germany

42 2461 kb b0.1 5.5 0.1 1.1 b21 229 2.66 b3 2.8 3070 1880 5 b400 8 b1 0.2 0.2 8 0.9 0.9 2996

43 51052 kb 32.4 2.4 0.3 b0.1 100 2172 0.67 23 b0.1 54 17 23 b300 b1 b1 0.8 724 3879 0.4 11.4 1992

44 50083 kb/eb 30.0 2.0 0.5 4.5 102 1028 0.40 b3 0.5 200 268 48 3000 b1 b1 b0.1 833 3854 1.6 7.6 2807

45 50094 kb 17.5 1.9 0.2 2.1 542 241 0.36 b3 0.1 48 210 45 b300 b1 b1 b0.1 329 2468 1.2 9.4 1053

46 P 1–4 SL+) kb 46.2 0.5 0.8 b0.1 734 b1000 0.30 9 0.2 386 24 b600 b2 5 b1 0.8 195 3459 b0.1 n.a. 8295

47 P 1–7 GL+) kb 1.1 6.0 b0.1 b0.1 b7 b1000 3.73 1 1.2 1000 1040 14 b300 b2 b1 0.2 b0.2 106 b0.1 n.a. 176

48 P 1–10+) kb 3.9 3.0 0.2 b0.1 b2 b1000 0.30 1 0.1 95 51 0.5 b100 b2 b1 0.2 6 337 0.4 n.a. 2739

49 P 3–4 GL+) kb 0.4 5.8 b0.1 1.8 b23 b1000 4.44 1 1.0 2590 2530 17 b1200 b2 b1 b0.1 0.2 57 b0.1 n.a. 560

50 50160 eb/kb 8.6 0.4 0.2 2.5 88 645 1.33 b3 0.1 b5 121 b2 b200 b1 b1 1.7 40 792 1.6 5.0 9447

51 50192 kb 3.5 4.6 0.1 10.9 b21 166 1.53 b3 b0.1 319 713 b2 b300 b1 b1 1.9 2 297 7.1 5.7 1599

52 50137+) kb 14.3 3.7 0.1 2.2 90 b1000 0.50 4 1.0 187 173 53 181 b1 b1 1.6 654 1413 0.3 n.a. 3210

53 50330 kb 4.1 0.3 0.3 7.2 1930 672 0.31 b3 0.3 43 273 26 b300 b1 b1 0.4 117 451 3.6 1.7 877

54 50378 kb/eb 5.8 0.7 2.1 10.0 1700 531 1.22 9 0.2 118 222 105 b300 b1 b1 2.5 236 861 4.8 7.1 1166

55 50397 kb 20.3 2.1 7.1 0.1 b2 864 1.94 23 0.4 601 38 506 b200 b1 288 0.6 785 2915 0.5 4.0 1915

56 50394 kb 9.7 4.9 1.7 4.7 669 280 4.12 43 2.9 886 485 657 b300 20 b1 0.7 77 950 3.3 4.7 580

57 50423 kb 5.2 3.2 6.0 10.4 1770 512 4.75 80 0.7 2440 360 3073 b400 3 b1 2.2 482 890 5.6 4.1 2232

58 50451 kb 10.9 4.4 3.5 0.4 84 1619 0.29 5 0.2 424 100 14 b200 b1 b1 0.2 3 862 0.3 3.5 773

59 50473 kb 26.2 4.1 5.9 0.3 190 1223 2.34 41 3.1 1145 27 1919 6200 4 672 0.4 667 4004 0.5 5.1 809

60 50441 kb 13.6 4.6 0.9 4.3 2370 587 4.31 153 36.5 4670 126 8201 2000 b1 b1 2.0 272 1826 3.8 6.3 1461

61 50450 kb 0.3 5.7 0.3 0.6 94 679 0.23 b3 b0.1 671 750 b2 b200 1 b1 0.5 0.5 110 0.5 0.5 216

62 50437+) kb 5.4 4.4 6.6 0.2 1340 2000 2.70 62 33.3 2850 101 5530 1500 113 5210 1.8 197 484 0.3 n.a. 965

63 52289 kb/eb 18.1 4.0 0.2 1.1 b22 376 2.01 b3 0.2 1000 1140 8 b300 b1 b1 0.7 95 1662 0.8 8.1 989

64 50121 eb 1.8 3.2 0.7 0.4 b121 293 1.75 34 b0.1 16900 1300 5 b1800 b1 b4 1.5 0.4 120 0.8 4.3 29630

65 6001 eb 1.8 4.4 0.2 1.2 253 39 3.09 b4 b0.1 9300 3930 b2 b800 b1 b1 3.6 b0.1 101 0.8 6.4 53180

66 52262 kb 15.2 3.7 0.7 b0.1 b18 113 0.96 b3 b0.1 874 717 13 5900 b1 b1 0.2 167 1495 0.3 10.7 2555

67 52215 kb 20.5 4.9 0.9 0.3 b5 288 1.04 15 0.1 909 720 194 b300 b1 b1 0.6 303 2227 0.5 7.1 1304

68 1499 kb 11.1 0.9 0.1 3.3 767 152 0.66 b3 0.1 185 358 b2 b300 b1 b1 1.3 101 1024 1.4 25.5 2063

69 6004 eb/kb 6.0 0.3 0.1 4.9 1700 547 0.51 b3 b0.1 5700 1460 b2 b400 b1 b1 0.6 0.9 254 0.8 3.0 26592

70 1530 kb 18.0 0.7 0.1 5.4 b20 164 3.57 b3 0.3 63 125 8 b300 122 b5 1.0 54 1259 2.2 9.0 1346

71 51540 kb 7.3 4.4 0.2 0.1 893 543 2.21 b3 b0.1 3060 1350 b2 b300 b1 b1 0.8 15 673 0.3 4.6 1240

72 1669 kb 30.1 4.3 0.8 0.6 87 107 0.64 b3 0.4 408 36 315 b500 b1 b1 b0.1 277 3682 0.5 5.0 1246

73 1675+) eb 6.3 3.5 b0.1 0.1 b2 b1000 1.40 2 0.4 1550 1510 3 1200 b1 b1 0.5 8 633 0.2 n.a. 5631

74 1715 kb 8.3 3.9 6.1 0.1 b5 69 1.21 b3 b0.1 1350 1060 11 2600 b1 b1 b0.1 443 1459 0.7 5.4 2823

75 1730 kb 2.0 5.9 0.1 0.2 b5 51 2.27 b3 b0.1 1710 1590 223 b300 b1 b1 b0.1 16 256 0.4 3.2 1647

76 51568 kb with younger debTcarbonate veinlet

25.9 4.4 0.5 0.8 863 166 2.11 b3 b0.1 1560 1190 8 5200 b1 b1 0.6 b0.1 1541 0.6 9.0 2994

77 54256 eb/kb 1.4 4.3 b0.1 2.1 b24 99 2.80 b3 0.6 2230 2520 9 b400 b1 b1 0.3 4 119 0.7 1.5 670

78 3886 kb with younger

debT carbonate veinlet

36.6 0.4 0.3 b0.1 b30 225 0.52 b3 0.1 64 b0.8 18 2300 b1 5 0.2 638 3384 0.4 6.0 3613

79 51763 kb 21.5 2.3 0.3 6.3 b28 408 1.09 b3 b0.1 2410 1040 11 2700 b1 b5 0.3 1 971 4.3 8.0 4625

80 4384 kb 28.6 4.1 0.2 0.1 b5 188 1.27 b3 0.1 221 99 31 b300 b1 b1 b0.1 161 2282 0.3 5.6 1463

81 4428 kb 6.9 4.1 1.1 0.2 b17 207 4.30 b3 0.3 1110 948 345 3800 b1 b1 b0.1 66 1180 0.7 3.3 1600

82 4428 GL+) kb 0.6 5.9 0.1 b0.1 b10 b1000 5.89 1 1.2 1880 2060 699 2200 b2 b2 b0.1 6 186 0.1 n.a. 523

Methods: Zn, As, Au, Se, Ag, Sb, Sn, W, Sc by INAA; Pb, Cu, Bi, Mo, Cd, Mn by ICP-OES; Tl, Te, In, Ge, Ga by ICP-MS; Hg by cold vapor FIMS.+) Deviation: Hg by INAA; Se and Bi by ICP-MS.

n.a. — not analyzed.

T.Seifert,

D.Sandmann/Ore

GeologyReview

s28(2006)1–31

15

Page 16: Mineralogy and geochemistry of indium-bearing polymetallic vein-type deposits: Implications for host minerals from the Freiberg district, Eastern Erzgebirge, Germany

T. Seifert, D. Sandmann / Ore Geology Reviews 28 (2006) 1–3116

part of the Freiberg district are often associated

with matildite-(AgBiS2) inclusions in galena (Fig.

4G). The transitional ore-type between dkbT anddebT ore-type characteristics (Fig. 4H) shows mi-

croscopic inclusions of miargyrite (AgSbS2) and

argentite (Ag2S) in sphalerite.

(B) Carbonate- and quartz-bearing Ag–Sb polymetal-

lic sulphide vein-type mineralization [according to

Muller (1850, 1901): dedle Braunspatforma-

tionT=noble carbonate formation (debT ore-type),and dedle QuarzformationT=noble quartz forma-

tion (deqT ore-type)] with arsenopyrite, pyrite/mar-

casite, low- and high-Fe sphalerite, chalcopyrite,

galena, freibergite, jamesonite, boulangerite, stib-

nite, freieslebenite, miargyrite, pyrargyrite, ste-

phanite, polybasite, argentite, and native silver

(Fig. 4I). Silver-rich carbonate- and quartz-bearing

polymetallic veins occur in the South and North

sub-district (Fig. 3). The base metal sulphides and

Ag-minerals of the deqT ore-type (North district)

show a dense to fine-grained intergrowth with

milky quartz. The South sub-district is typical for

carbonate-bearing Ag-rich polymetallic sulphide

veins of the debT ore-type. These ores are charac-terized by a frequent occurrence of Ag-minerals,

and Ag-rich sphalerite (Muller, 1901) which is

cemented by rhodochrosite and calcite (Fig. 4K,

L). The high Ag contents within sphalerite ores are

related to argentite- andmiargyrite-inclusions. The

dkbT ore-type veins are crosscut by debT ore-typemineralization (Fig. 4M).

In the Freiberg district, gneisses, mica-schists, and

amphibolites are rarely significant altered in a distance

of more as 2 m from the ore veins. The wall rock

alteration zone of the dkbT veins is characterized by

silification, sericitization, and more or less occurrence

of disseminated sulphides (mostly pyrite and arsenopy-

rite; Rosler and Kuhne, 1970). The zone of propylitic

alteration appears at a greater distance from the veins.

The alteration zones of the debT veins typically show

muscovitization and carbonatization (Rosler and

Kuhne, 1970).

4. Sampling and analyses

4.1. Sample site and data sets

Mineralogical description of 82 representative vein-

type samples (dkbT, deqT, and debT ore-type) from the

Freiberg district is included in Table 3. The samples

were taken in the last two mining periods at the end of

the 19th, and the middle of the 20th Century by mine

geologists; localities of all samples are unambiguous.

Excluding the samples from the dWilhelm veinT (Table3) which were collected during mapping by the

authors, the samples are from the ore deposit collection

of the TU Bergakademie Freiberg and the ore vein

collection of the VEB Bergbau-und Huttenkombinat

dAlbert FunkT Freiberg. Typical base metal veins

were analyzed from the North (Obergruna, Kleinvoigts-

berg, Mohorn), Central (Halsbrucke, Freiberg, Mulden-

hutten), and South sub-districts (Zug, Brand; Fig. 3).

The samples BED 1-4 (debT ore-type with Fe-rich

sphalerite) from the dHimmelsfurstT mine in the

Brand ore field, Zinnw 1-5 (cassiterite–sulphide ore)

from the Sn–Li deposit Zinnwald/Cınovec in the east-

ern Erzgebirge, and Pecht 2-1 (wolframite–sulphide

ore) from the W vein-type deposit Pechtelsgrun in the

western Erzgebirge are included for purposes of com-

parison (Fig. 2). Published and unpublished data from

the Freiberg district, and from Sn-polymetallic vein-

and greisen-type ores from the Marienberg–Wolken-

stein, Annaberg, Ehrenfriedersdorf–Geyer, and Muhl-

leithen districts, and Sn deposits in the southern part of

the eastern Erzgebirge (e.g., Altenberg, Zinnwald) are

also included to cover deposits from the Erzgebirge

metallogenetic province.

4.2. Geochemical bulk analyses

Representative slabs of bulk ore samples from typ-

ical Ag-base metal veins of the study area (Table 3;

Fig. 3) were carried out commercially, at Actlabs Ltd.

(Ontario, Canada) by instrumental neutron activation

analyses (INAA), inductively coupled plasma-optical

emission spectroscopy (ICP-OES), inductively coupled

plasma-mass spectrometry (ICP-MS), and cold vapor

flow-injection mercury system (FIMS). The major

(Zn, Pb, Cu, As), and trace element contents (Au,

Hg, Tl, Se, Te, Ag, Sb, Bi, Sn, Sc, In, Cd, Ge, Ga)

are listed in Table 4. The bulk In contents were

measured by the ICP-MS method. This method greatly

improved the accuracy of In determinations including

low detection limits (V50 ppb) and good precisions

(e.g., Hannington et al., 1999a; Schwarz-Schampera

and Herzig, 2002). The used standards, measurement

conditions, and detection limits are described in the

certificated analytical reports 17843 and 20668 pro-

duced by Actlabs Ltd.

The studied samples are typically ores from dkbT,debT, and deqT veins (Table 3). The weight of the sam-

ples ranges between about 0.2 and 2 kg. From each ore

sample two representative slabs were cut by a saw to

Page 17: Mineralogy and geochemistry of indium-bearing polymetallic vein-type deposits: Implications for host minerals from the Freiberg district, Eastern Erzgebirge, Germany

T. Seifert, D. Sandmann / Ore Geology Reviews 28 (2006) 1–31 17

prepare polished sections and bulk ore sub-samples.

The slabs for the geochemical analyses (10 to 40 g in

weight) were crushed and milled at Actlabs Ltd.

4.3. Electron probe microanalyses

Mineral identification and relative age relationships

were obtained from the examination of polished thick

and thin sections in reflected and/or transmitted light.

Based on bulk geochemistry, In-rich samples were

selected for detailed mineralogical and electron-micro-

probe analyses. Electron-microprobe analyses were

carried out on a JEOL JXA 8900 electron microprobe

at the TU Bergakademie Freiberg under conditions of

20 kV and 25 nA, and a beam diameter of 2 to 4 Am.

Reproducibility of the results is better than 2%. Nat-

ural minerals, and synthetic mineral equivalents were

used as standards (e.g., the dIn2Se3_CanMetT standardfor In, and the dCdS_MACT standard for Cd). The

detection limit of the electron-microprobe was about

0.07 wt.% In.

5. Bulk ore geochemistry

The first modern geochemical bulk ore analyses of

the Freiberg district are presented in this paper (Table

4). Average base metal concentrations of the polyme-

tallic sulphide samples (n =82) are 13.2 wt.% Zn, 7.2

wt.% Pb, 0.8 wt.% Cu, and 3.4 wt.% As, with maxi-

mum values reaching 46.2 wt.% Zn, 7.2 wt.% Pb, 7.1

wt.% Cu, and 34.1 wt.% As (Table 5). The highest

concentration of silver occurs in the deqT (mean 3880

ppm Ag, n =14), and debT ore-type samples (mean 5634

ppm, n =7). The dkbT ore-type suite shows moderate Ag

contents (mean 768 ppm Ag, n =61) and a significant

correlation of Pb–Ag ratios (r =0.51; Fig. 6A). In the

deqT and debT veins, Ag concentrations correlate strong-

ly with Sb (r =0.69; Fig. 6B). Silver occurs mainly in

galena, which contains microscopic inclusions of miar-

gyrite and pyrargyrite (Ag3SbS3), and in sphalerite with

inclusions of argentite. Silver concentration is also

associated with stephanite, polybasite, freibergite, and

native silver (Fig. 4I, K). The highest Bi contents (up to

8200 ppm Bi) are typically associated with high Ag-

concentrations in dkbT veins of the Muldenhutten ore

field (r =0.98, n =10), and partly of the Freiberg ore

field (Table 5; Fig. 6C). The strong positive correlation

of Ag–Bi values is related to matildite/schapbachite-

inclusions (AgBiS2) in galena of the dkbT ore-type

samples (Fig. 4G). Additionally this correlation is

almost certainly due to partial solid solution between

PbS and AgBiS2 with a coupled substitution Ag++

Bi3+f2Pb2+ (cf. Boyle, 1968). Bismuth occurs also

in microscopic grains of aikinite (CuPbBiS3) (Fig. 7)

which can indicate high-temperature conditions (see

Section 7). For comparison, aikinite was also detected

by microprobe-analyses in a cassiterite-sulphide sample

of the Sn–Li deposit Zinnwald/Cınovec (sample Zinnw

1-5). Low Bi concentrations are typical for the low-In

deqT and debT veins (range from 2 to 41 ppm Bi, n =21;

Table 5). The Cu-rich dkbT ore-type veins of the Mul-

denhutten ore field show a strong positive Ag–Se

(r =0.96) and Ag–Te (r =0.87) correlation. The dkbTores are also characterized by a significant positive

correlation of Bi–Se (r =0.87), Bi–Te (r=0.91), and

Se–Te (r =0.72).

The highest In concentration occurs in the dkbT ore-type veins of the Freiberg (up to 1560 ppm In, mean

253 ppm; n=36), Muldenhutten (up to 785 ppm In,

mean 284 ppm; n =10), and Brand ore fields (up to 638

ppm In, mean 156 ppm; n =15). The In concentrations

of the dkbT ore-type samples (n =61) correlate strongly

positively with Zn (r =0.58) and Cd (r =0.69), and only

moderately with Cu (r =0.26) (Fig. 6F–H). This is in

agreement with the microprobe analyses of sphalerites

(Table 6). Low In contents were measured from deqT(up to 30 ppm In, mean 5 ppm; n =14), and debT ore-type samples (up to 40 ppm In, mean 9 ppm; n =7).

These samples (n =21) show no correlation of In con-

tents with Zn (r =0.06), Cd (r =0.11), and Cu

(r =�0.17).

On average, sphalerite-bearing polymetallic ores

from the Freiberg district are enriched in Cd (Fig.

6D). High Cd concentrations are associated with Fe-

rich (11 to 13 wt.% Fe) sphalerite of the deqT (up to

1492 ppm Cd, mean 648 ppm; n =14) and dkbT veins(up to 4919 ppm Cd, mean 1542 ppm; n =61). Con-

centrations of Ga (up to 25.5 ppm Ga, mean 6.8 ppm;

n =82) correlate positive with Zn-values (Fig. 6E). In

contrast, Ge values show no distinct geochemical

affiliation to Zn ores (r =�0.24, n =82) or sphalerite

(e.g., debT sample 50105 with 44.9 ppm Ge; Table 4).

The high Sn concentration of dkbT veins in the Frei-

berg (up to 1.3 wt.% Sn, mean 0.15 wt.%; n =36),

Muldenhutten (up to 0.62 wt.% Sn, mean 0.12 wt.%;

n =10), and Brand ore fields (up to 0.59 wt.% Sn,

mean 0.18 wt.%; n =15) is related to hydrothermal

cassiterite and stannite. Moderate Sn contents (up to

0.18 wt.% Sn) were determined from debT ore-type

samples (Table 5). The dkbT veins, especially samples

from the Muldenhutten ore field, show slight enrich-

ments in Mo (up to 113 ppm) and W (up to 5210

ppm) which indicate molybdenite and wolframite

mineralization.

Page 18: Mineralogy and geochemistry of indium-bearing polymetallic vein-type deposits: Implications for host minerals from the Freiberg district, Eastern Erzgebirge, Germany

Table 5

Summary of bulk geochemistry analyses of polymetallic sulfide vein-type ores from the Freiberg district

Locality (ore-type) Sample no. Zn Pb Cu As Au* Hg Tl Se* Te* Ag Sb Bi Sn* Mo* W* Sc In Cd Ge Ga Mn

wt.% wt.% wt.% wt.% ppb ppb ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm

North subdistrict Average 9.7 2.5 0.2 2.6 1882 2144 1.30 13 0.2 3880 2903 5 779 1 11 1.8 5 648 2.0 6.1 2498

(deqT) Minimum 1.9 0.1 0.1 0.1 15 46 0.25 3 0.1 218 145 2 100 1 1 0.4 0.1 155 0.6 0.7 117

n =14 Maximum 21.6 5.3 1.4 11.7 9040 16436 5.21 115 0.4 19000 21400 12 3400 7 128 4.0 30 1492 7.2 11.5 14920

Freiberg ore field Average 15.7 3.0 0.3 4.8 168 611 1.57 13 0.7 449 380 213 1519 4 4 1.0 253 1595 2.1 8.1 2497

(dkbT) Minimum 0.1 0.1 0.1 0.1 2 24 0.12 1 0.1 5 6 1 41 1 1 0.1 0.2 5 0.1 0.9 60

n =36 Maximum 46.2 7.2 1.7 34.1 2300 3000 7.78 58 6.8 3070 2530 3310 13000 56 40 5.6 1560 4919 12.4 22.0 20175

Muldenhutten Average 10.1 3.5 3.4 3.8 1015 897 2.22 42 7.8 1385 248 2003 1160 15 618 1.1 284 1335 2.3 4.1 1099

Ore field Minimum 0.3 0.3 0.3 0.1 2 280 0.23 3 0.1 43 27 2 200 1 1 0.2 0.5 110 0.3 0.5 216

n =10 Maximum 26.2 5.7 7.1 10.4 2370 2000 4.75 153 36.5 4670 750 8201 6200 113 5210 2.5 785 4004 5.6 7.1 2232

Brand ore field Average 16.7 3.6 0.8 1.3 185 270 1.98 4 0.2 1120 829 126 1763 9 2 0.4 156 1552 0.9 7.9 2002

(dkbT) Minimum 0.6 0.4 0.1 0.1 5 51 0.52 1 0.1 63 1 2 300 1 1 0.1 0.1 186 0.1 3.2 523

n =15 Maximum 36.6 5.9 6.1 6.3 893 1000 5.89 15 1.2 3060 2060 699 5900 122 5 1.3 638 3682 4.3 25.5 4625

Freiberg ore field Minimum 0.1 0.4 0.1 0.1 88 645 0.19 3 0.1 5 9 2 200 1 1 0.1 8.3 10 1.6 0.1 8505

(debT) n =2 Maximum 8.6 2.2 0.2 2.5 258 1139 1.33 9960 0.1 3750 121 41 200 9 1 1.7 40 792 44.9 5.0 9447

Brand ore field Average 3.5 3.2 0.2 1.7 420 396 1.91 9 0.3 7136 2144 4 920 1 2 1.3 3 246 0.7 3.8 23141

(debT) Minimum 1.4 0.3 0.1 0.1 2 39 0.51 2 0.1 1550 1300 2 400 1 1 0.3 0.1 101 0.2 1.5 670

n =5 Maximum 6.3 4.4 0.7 4.9 1700 1000 3.09 34 0.6 16900 3930 9 1800 1 4 3.6 8 633 0.8 6.4 53180

Average 13.2 3.1 0.8 3.4 582 839 1.68 136 1.3 1714 977 363 1325 5 79 1.1 176 1282 2.3 6.8 3653

Total Minimum 0.1 0.1 0.1 0.1 2 24 0.12 1 0.1 5 1 1 41 1 1 0.1 0.1 5 0.1 0.1 60

n =82 Maximum 46.2 7.2 7.1 34.1 9040 16436 7.78 9960 36.5 19000 21400 8201 13000 122 5210 5.6 1560 4919 44.9 25.5 53180

Note: * Detection limit is used as minimum value.

n =number of analyses.

T.Seifert,

D.Sandmann/Ore

GeologyReview

s28(2006)1–31

18

Page 19: Mineralogy and geochemistry of indium-bearing polymetallic vein-type deposits: Implications for host minerals from the Freiberg district, Eastern Erzgebirge, Germany

Fig. 6. (A–H) Selected binary variation bulk geochemistry diagrams for polymetallic sulphide ores (n =82) of the Freiberg district. Sample

descriptions and locations see Table 3.

T. Seifert, D. Sandmann / Ore Geology Reviews 28 (2006) 1–31 19

Page 20: Mineralogy and geochemistry of indium-bearing polymetallic vein-type deposits: Implications for host minerals from the Freiberg district, Eastern Erzgebirge, Germany

Fig. 7. Aikinite-(CuPbBiS3) inclusion (aik) in galena (gn) revealed by BSE imaging. Galena intergrowth with chalcopyrite (cp); py = pyrite. Sample

50473 (see Fig. 4G).

T. Seifert, D. Sandmann / Ore Geology Reviews 28 (2006) 1–3120

The highest average Au contents were analyzed

from samples of the deqT ore-type (up to 9 ppm Au,

mean 1.9 ppm; n =14). The dkbT ore-type veins show

also significant Au concentrations (up to 2.37 ppm Au,

mean 0.31 ppm; n =61). The highest average Au values

of the dkbT ore-type samples (1 ppm Au, n =10) are

Table 6

Electron microprobe analyses of sphalerites from the Freiberg district

Sample 222 50437-1

Sphalerite type High-Fe Low-Fe High-Fe

n= 202 5 25

wt.%

Zn 51.14 62.55 53.92

Fe 12.89 1.59 11.34

Cu 0.19 0.42 0.17

In 0.16 n.d. 0.09

Cd 0.50 1.03 0.38

Ga 0.07 0.09 0.10*

Mn 0.20 0.06 0.17

S 33.03 33.07 34.19

Total 98.26 99.46 100.41

For comparison samples from the Sn–Li-deposit Zinnwald, eastern Erzgeb

analyzed.

Notes: * n =16.

n.a. — not analyzed, n.d. — not detected.

n =number of analyses.

dkbT ore-type samples 222 and 50437-1 from the Freiberg district, see Tabl

Sample BED 1-4 from dHimmelsfurstT mine, Brand–Erbisdorf.

Sample Zinnw 1-5 (cassiterite–sulphide ore from the Sn–Li-deposit Zinnwa

Sample Pecht 2-1 (wolframite–sulphide ore from the W-deposit Pechtelsgru

For locations see Figs. 2 and 3.

related to the Cu-rich dkbT veins in the Muldenhutten

ore field (Table 5). Elevated Au concentrations were

also determined from the debT samples (up to 1.70 ppm,

mean 0.35 ppm; n =7). The deqT ores from the North

district are characterized by notable Hg (up to 16 ppm,

mean 2.1 ppm; n =14) and Sb concentration (up to 2.14

BED 1-4 Zinnw 1-5 Pecht 2-1

Low-Fe High-Fe Low-Fe High-Fe

1 27 19 4

62.18 52.03 61.51 50.34

2.27 12.32 3.29 11.20

0.62 0.32 0.22 0.37

n.d. 0.10 0.07 0.05

1.11 0.68 0.48 0.48

n.a. n.a. n.a. n.a.

n.d. 0.23 0.21 1.64

34.01 34.06 33.62 34.16

100.67 99.92 99.51 98.34

irge and from the W-deposit Pechtelsgrun, western Erzgebirge were

e 3.

ld, eastern Erzgebirge).

n, western Erzgebirge).

Page 21: Mineralogy and geochemistry of indium-bearing polymetallic vein-type deposits: Implications for host minerals from the Freiberg district, Eastern Erzgebirge, Germany

Fig. 8. Frequency diagram of indium contents in Fe-rich sphalerite in sample 222 (see Fig. 4C). Electron microprobe measurements n =202 (see

Table 6).

T. Seifert, D. Sandmann / Ore Geology Reviews 28 (2006) 1–31 21

wt.%, mean 2900 ppm; n=14). Elevated Hg contents

are associated with the fahlore-bearing samples (52827

with 10.2 ppm Hg; 53089 with 16.4 ppm Hg). The

polymetallic veins in the Central and South sub-districts

show moderate to low Hg contents (dkbT ore-type: up to

3 ppm Hg, mean 0.6 ppm, n =61; debT ore-type: up to

1.1 ppm Hg, mean 0.5 ppm, n =7).

Fig. 9. Binary diagrams of Zn+Fe–Cd, Zn+Fe–In, Cu–In, and Cd–In com

measurements n =202 (see Table 6).

6. Electron microprobe analyses

Two types of In concentration can be distinguished,

based on microanalytical study. The first type is char-

acterized by microprobe analyses of representative

sphalerites (222, 50437-1) which show an In average

of 0.16 wt.% (Table 6). For comparison, sphalerites

positions of Fe-rich sphalerite in sample 222. Electron microprobe

Page 22: Mineralogy and geochemistry of indium-bearing polymetallic vein-type deposits: Implications for host minerals from the Freiberg district, Eastern Erzgebirge, Germany

Fig. 10. A. Representative quartz(qtz)-bearing chalcopyrite(cp)–sphalerite(sl)–arsenopyrite(asp)–pyrite–stannite–galena(gn) sample (Cu-rich dkbTore-type). Sample 50437, bulk analyses show 197 ppm In. dSchieferleiteT mine, dWeisser LoweT vein, level 0, Muldenhutten ore field. B. Polished

section 50437-1 with pyrite (py), marcasite (mr), galena (gn), chalcopyrite (cp), and quartz relicts (qtz); scale bar=300 Am. Location of quantitative

electron microprobe study is highlighted. C. Quantitative electron microprobe images of microscopic Zn–Cu–Sn–In–S grains in pyrite surrounded

by a galena rim (see Fig. 10B) showing high levels of In (1.3 to 2.9 wt.%), Zn (5.6 to 52.8 wt.%), Cu (4.1 to 19.6 wt.%), Sn (0.3 to 17.2 wt.%), Pb

(up to 7.15 wt.%), and Fe (4.6 to 26.6 wt.%). Representative colour photographs of quantitative electron microprobe images showing zonal

enrichments of high In, Cu, Sn, Pb, and Zn levels (red and yellow colour) of grain #9 (see Table 7).

T. Seifert, D. Sandmann / Ore Geology Reviews 28 (2006) 1–3122

Page 23: Mineralogy and geochemistry of indium-bearing polymetallic vein-type deposits: Implications for host minerals from the Freiberg district, Eastern Erzgebirge, Germany

Fig. 11. Ternary Cu+Ag–Sn+In–Zn+Fe plot of indium-rich grains

hosted by pyrite of sample 50437 (see Fig. 10 and Table 7), in

comparison with literature data compiled by Schwarz-Schampera

and Herzig (1999).

T. Seifert, D. Sandmann / Ore Geology Reviews 28 (2006) 1–31 23

from a cassiterite-sulphide greisen of the Sn–Li deposit

Zinnwald (mean 0.07 wt.% In, n =19), and a wolfram-

ite–sulphide ore from the W deposit Pechtelsgrun

(mean 0.05 wt.% In, n =4) were analyzed. The studied

sphalerites show Cd contents of up to 1.11 wt.%, and

significant Ga contents in the range between 0.03 and

0.17 wt.% (Table 6). Iron-rich sphalerites (mean 12.89

wt.% Fe, n =202) from a representative dkbT vein in the

Freiberg ore field (sample 222) are characterized by In

contents between 0.03 and 0.38 wt.% (mean 0.16 wt.%

In, n =202; Fig. 8). A negative correlation exists be-

tween Zn+Fe and Cd (r =�0.28), and Zn+Fe with In

(r =�0.49; Fig. 9A, B), reflecting the structural substi-

tution of Zn, In, and Cd in sphalerite. The In concen-

tration of sphalerite in sample 222 correlate positively

with Cu (r=0.36) and Cd (r=0.51) (Fig. 9C, D).

The second type of In concentration is related to

microscopic Zn–Cu–Sn–In–S grains in pyrite of a dkbTore-type sample (Fig. 10A) from a Cu- and Sn-rich base

metal vein in the Muldenhutten ore field. Quantitative

electron microprobe image of twenty Zn–Cu–Sn–In–S

grains (up to 6 Am) which are located in the highlighted

area of sample 50437 (Fig. 10B) show high levels of In

(1.3 to 2.8 wt.%), Cu (4.1 to 19.6 wt.%), Sn (0.3 to 17.2

wt.%), and Zn (5.6 to 52.8 wt.%) (Table 7). The highest

In content correlates with the highest Sn content. Rep-

resentative colour photographs of electron microprobe

images indicate the spatial distribution of elevated In,

Cu, Sn, and Zn concentrations of grain #9 (Fig. 10C).

The geochemical composition of these grains (Table 7)

suggests a complex solid solution in the system sphal-

Table 7

Selected data of quantitative electron microprobe images of submi-

croscopic Zn–Cu–Sn–In–S grains. Polished section 50437-1 from Cu-

rich dkbT ore-type sample 50437

Grain #8 #9 #12 #14 #15 #16 #17 #18

wt.%

Zn 39.29 37.85 52.84 5.62 25.87 46.31 12.46 24.25

Fe 4.63 5.39 6.42 19.19 16.80 9.20 26.64 17.85

Cu 14.35 14.18 4.08 19.61 10.47 6.10 9.63 11.16

Sn 2.54 5.80 0.30 17.21 6.59 2.08 7.12 6.83

Pb 7.15 2.33 0.29 n.d. 0.80 0.23 n.d. n.d.

Ag 0.46 0.28 n.d. 0.21 n.d. n.d. n.d. n.d.

In 1.27 1.72 1.29 2.85 1.51 1.44 1.75 1.58

Cd 0.28 0.24 0.37 0.07 0.17 0.27 0.05 0.11

Ga 0.06 0.08 0.09 n.d. 0.08 0.12 n.d. 0.04

Mn 0.02 n.d. n.d. n.d. n.d. n.d. n.d. 0.01

S 31.17 30.28 34.31 34.48 37.97 35.08 41.74 37.37

Total 101.44 98.33 100.13 99.35 100.41 101.00 99.54 99.26

Grain # = analysis point.

n.d. — not detected.

For the location of quantitative electron microprobe analyses see

Fig. 10.

erite–petrukite/sakuraiite (Fig. 11). No microscopic in-

tergrowth of sphalerite, chalcopyrite, and cassiterite

was found around the spot analyses. We cannot exclude

that Zn–Cu–Sn–In–S grains occur in ore minerals of the

Zn–Sn–Cu sequence (e.g., sphalerite, chalcopyrite).

However, pyrite and arsenopyrite represent the early

mineralization stage of the dkbT ore-type, which is over-

printed by the In-bearing Zn–Sn–Cu sequence (Fig. 5).

7. Discussion

Indium concentrations in the polymetallic veins in

the Freiberg district show a wide range (0.1 to 1560

ppm In, mean 176 ppm, n=82; Table 4). Based on

correlation coefficients of bulk ore geochemistry, sig-

nificant In (up to 1560 ppm) and Cd concentrations

(up to 4920 ppm) are associated with the Zn–Cu–Sn

mineralization sequence (dindium stageT; Fig. 5), repre-sented by the dkbT ore-type of the Freiberg, Mulden-

hutten, and Brand ore fields (Fig. 6G). This is in

accordance with literature data (Table 1), which show

an average of about 0.1 wt.% In. The highest average In

values occur in samples from the Cu-rich dkbT ore-typein the former Sn ore field Muldenhutten, which show

Page 24: Mineralogy and geochemistry of indium-bearing polymetallic vein-type deposits: Implications for host minerals from the Freiberg district, Eastern Erzgebirge, Germany

T. Seifert, D. Sandmann / Ore Geology Reviews 28 (2006) 1–3124

close similarities with samples from the Freiberg ore

field (Table 5). Samples of the dkbT ore-type from the

Brand ore field show a slightly lower enrichment of In

concentration. Much lower In contents are reported

from the deqT, debT, and barite–fluorite–sulphide

(dfbaT) ore-types (Tables 1, 4, 5). Significant Cd con-

centrations are closely associated with Fe-rich sphaler-

ite (Fig. 6D) which confirmed literature data of

sphalerites from different late-Variscan ore-types of

the Erzgebirge (cf. Jung and Seifert, 1996).

Statistical evaluations of In concentrations in poly-

metallic Sn-base metal deposits have shown that chal-

copyrite-rich sphalerite ores generally contain the

highest In concentrations (cf. Schwarz-Schampera and

Herzig, 2002). This can be explained by solid solution of

CuInS2 in ZnS which is forming Zn2�2xCuxInxS2, sim-

ilar to that of Cu2FeSnS4 (stannite) in ZnS (cf. Schwarz-

Schampera and Herzig, 2002). There is evidence that

secondary replacement processes, such as those associ-

ated with the formation of dchalcopyrite diseaseT (Bartonand Bethke, 1987; Eldridge et al., 1988), are responsible

for the formation of roquesite (CuInS2) in solid solution.

The In concentrations of the dkbT ore-type samples

correlate moderately with Cu (Figs. 6H and 9C). Re-

placement processes like dchalcopyrite diseaseT are typ-ical for Fe-rich sphalerites of the dkbT ore-type (Fig. 4D).In contrast, the deqT and debT veins with relatively high

chalcopyrite contents show no correlation of In contents

with Cu (Fig. 6H). In this context it is important to note

that the In-rich dkbT veins in the Freiberg, Muldenhutten,

and Brand ore fields show significant high Sn concen-

trations (Table 5) which indicate a genetic link between

Sn- and In-bearing fluids. This is supported by notable

Mo and W contents in dkbT ore-type samples. In sum-

mary, the geochemical and mineralogical signature of

the dkbT veins show similarities to the Sn–W-base metal

mineralization stage.

Indium concentrations are also related to microscop-

ic Zn–Cu–Sn–In–S grains in sulphides (e.g., pyrite; Fig.

10). In the ternary (Cu+Ag)–(Sn+In)–(Zn+Fe) dia-

gram (Fig. 11), the compositions of the Zn–Cu–Sn–

In–S grains of sample 50437 fall along a linear com-

positional trend between a Fe–Cu–In-rich sphalerite

(analysis #12, Zn0.76Fe0.11Cu0.06In0.01S) and the ideal

fields of petrukite and sakuraiite (analysis #14,

Cu0.29Zn0.08Fe0.32In0.02Sn0.13S; see Table 7). The min-

eral sakuraiite was originally described by Kato (1965)

from one of the polymetallic Cu–Zn–Pb–Sn–W(–Au–

Ag) veins of the Ikuno mine, central Japan. The sakur-

aiite formula (Cu, Zn, Fe, In, Sn)S is approved by the

International Mineralogical Association (IMA). Petru-

kite was found in tin-polymetallic vein deposits which

are associated with granitic intrusions (e.g., Mount

Pleasant mine, New Brunswick; Petruk, 1973). The

general formula is (Cu, Fe, Zn)3(Sn, In)S4, where

CuNFeNZnNAg and SnN In. This composition is

somewhat variable and can be related to a coupled

substitution Cu+Sn =In+Zn (cf. Schwarz-Schampera

and Herzig, 2002). The complex mineralogical siting

of In attests to the In mineralogy of the Erzgebirge

metallogenetic province is dominated by variable re-

placement processes and/or solid solution in the system

sphalerite–chalcopyrite–stannite. In summary, both

types of In concentration support that the In minerali-

zation is associated with the Zn–Sn–Cu sequence

(dindium stageT) of the dkbT ore-type (Fig. 5).

Hydrothermal Ag-rich Sn-bearing base metal veins

and vein-like metasomatites of other districts in the

Erzgebirge (Marienberg, Wolkenstein, Jachymov) and

the Moldanubian terrane (Kutna Hora, Havlıcklv Brod)

are comparable to the dkbT ore-type of the Freiberg

district (Seifert et al., 2001). Iron-rich sphalerites from

these veins show significant In concentrations of up to

0.2 wt.% (Table 1). High In concentrations of Sn-bear-

ing base metal veins are also reported from the Massif

Central, France, and base metal vein-type deposits in

Japan (Table 1). In contrast, sphalerites from Ag-rich

base metal veins of the Keno Hill deposit (Yukon

Territory), and the Coeur d’Alene district (Idaho)

have significantly lower In concentrations between

b0.001 and 0.04 wt.% (Fryklund and Flechtner, 1956;

Boyle, 1965; Leach et al., 1998; Table 1). In contrast to

the dkbT veins and similar base metal deposits, the

paragenesis of the Keno Hill and Coeur d’Alene veins

show absent to minor cassiterite and stannite mineral-

ization. This facts support the genetic link between Sn-

and In-rich fluids in Ag-base metal vein-type mineral-

ization with a notable In potential.

Significant In mineralization is reported from Sn-

polymetallic vein- and greisen-type deposits worldwide

(France, Japan, Bolivia, Russia, Canada; cf. Table 1).

The granite-related Mount Pleasant deposit contains

approximately 25% of the known world In reserves

(Kooiman and Ruitenberg, 1992; Sinclair et al., 2005—

this volume). It is important to note that this economic In

enrichment is related to Sn-polymetallic ores which

show similarities to Sn deposits in the Erzgebirge (cf.

Seifert et al., 1996b). High In concentrations are

reported from Sn-polymetallic greisen and vein-type

deposits in the Erzgebirge (Table 1; Fig. 2). Sphalerite

from the Sn-polymetallic vein-like metasomatites of the

dBriccius mineT in the Annaberg district shows In con-

centrations up to 1 wt.% (Seifert, 1994). A representa-

tive sphalerite–chalcopyrite–stannite–chlorite bulk ore

Page 25: Mineralogy and geochemistry of indium-bearing polymetallic vein-type deposits: Implications for host minerals from the Freiberg district, Eastern Erzgebirge, Germany

T. Seifert, D. Sandmann / Ore Geology Reviews 28 (2006) 1–31 25

sample from the dBriccius mineT has an In content of 0.3wt.%. Significant In concentrations are also reported

from the dRohrenbohrerT exploration mine in the

Geyer Sn district (Jung, 1992). Iron-rich sphalerites of

cassiterite–sphalerite greisen samples show In concen-

trations of up to 1.2 wt.% (mean 0.4 wt.% In, n =19).

Sphalerites from Sn-polymetallic greisen ores of the

Cınovec/Zinnwald deposit are characterized by In con-

centrations of up to 2.5 wt.% (Novak et al., 1991).

Significant In contents are also reported from sphalerites

in Sn-polymetallic skarn ores of the Oelsnitz deposit

(0.4 to 1.0 wt.% In; Doering et al., 1994), and the Plavno

shaft located in the Jachymov district (0.2 to 0.3 wt.%

In; Hak et al., 1979). Cassiterites from greisen- and vein-

type deposits in the Geyer–Ehrenfriedersdorf, Marien-

berg–Pobershau, and Altenberg–Zinnwald/Cınovec dis-

tricts show In averages from 5 to 600 ppm (cf. Table 1).

Tin-greisen bulk ore samples from the Altenberg district

(Altenberg, Zeidelweide, Lowenhain deposits) have In

concentrations between 10 and 70 ppm (W. Schilka,

unpublished data, 1989). Significant In contents (up to

250 ppm) are also reported from cassiterites of the F-rich

rare metal granite-hosted Sn deposits in the French

Massif Central (e.g., Echassieres; Raimbault et al.,

1999).

High In contents were measured from sphalerites

(up to 4.7 wt.% In) of the volcanic-hosted epithermal

Au–Ag-base metal vein-type deposit Prasolov, Kuril

Island Arc, Russia (Kovalenker et al., 1993). Base

metal-rich ores from the Cu(–Mo) porphyry deposits

Bingham and Central district include sphalerites with

In contents of up to 0.12 wt.%, and chalcopyrite with

up to 0.1 wt.% In (Rose, 1967). High In concentra-

tions are reported from the Kidd Creek (Canada) and

Neves Corvo (Portugal) volcanic-hosted massive sul-

phide deposits (cf. Table 1). Indium contents of up to

3.0 wt.% in stannite and 0.3 wt.% in sphalerite from

the Neves Corvo Cu–Zn–Sn deposit, and sphalerites

with up to 0.2 wt.% In from the Kidd Creek Cu–Zn–

Pb–Ag–Sn deposit show the high In potential of these

VMS deposits (cf. Schwarz-Schampera and Herzig,

2002). The Kidd Creek ores are enriched in Sn, Sb,

As, Ag (lower temperature Zn–Pb ore) and Bi, Se, and

In (higher temperature Cu-rich ore; Hannington et al.,

1999a).

High-temperature (up to 940 8C) gases (e.g., HCl,

HF) of active magmatic systems (e.g., Kudryavyi and

Merapi volcanoes) are transporting In and elements

such as Zn, As, B, Tl, Pb, Sn, Mo, W, Cd, Cu, Ag,

Te, Au, As, and Se (Kovalenker et al., 1993; Kavalieris,

1994; Wahrenberger et al., 2002; see Table 1). For

volatile In transport in high temperature gases from

Kudryavyi volcano gaseous species such as InCl,

InCl3, and InBr are important phases (Wahrenberger

et al., 2002). Recent sphalerite mineralization of the

Kudryavyi volcano (Kuril Island Arc, Russia) show In

concentrations of up to 14.9 wt.% (Kovalenker et al.,

1993). Magmatic In degassing may be related to its

high volatility and incompatible geochemical behavior

(cf. Schwarz-Schampera and Herzig, 2002). This is

confirmed by the present-day Cu, Zn, Pb, Mo, Sn,

As, Sb, Ag, and Au fluxes of degassing volcanoes

that have been estimated from aerosol and fumarole

data (cf. Hedenquist, 1995).

Obvious correlations with magma-affiliated Sn-poly-

metallic, hydrothermal Ag-rich base metal, epithermal

Au–Ag-base metal, Cu(–Mo) porphyry and VMS depos-

its, and the occurrence in fumaroles in active volcanic

systems may suggest the magmatic origin of In in these

ore deposit types (Table 1). The magmatic influence is

also indicated by d34SCDT-values from In-rich minerals

of Sn-polymetallic and base metal deposits in the range

from - 3x to + 3x (e.g., Akenobe and Fukoku, Japan;

Erzgebirge, Germany; cf. Schwarz-Schampera and Her-

zig, 2002; Jung and Seifert, 1996; Seifert, 1999).

Magmatic volatiles may be responsible for unusual

trace element compositions of ore deposits containing

In, Sn, Se, and Bi, perhaps also because of high con-

centrations of potential metal ligands (i.e., fluorine,

chlorine). In hydrothermal solutions, In(III)chloride

complexes such as InCl4� and hydrolyzed species

such as InClOH+ will be important in the transport of

In (Seward et al., 2000). According to these authors

increasing temperature leads to an increase in the num-

ber of chloride ligands bound to the In3+ ions. The

highest InCl4� concentrations were detected in hydro-

thermal solutions with temperatures between 300 and

350 8C. In this context, it is important to note that

lamprophyric melts show elevated concentrations of

Cl as well as F, S, CO2, H2O+, P, and extreme LILE

and HFSE enrichment which may indicate the metallo-

genetic potential of this magmatism (cf. Rock, 1991;

Seifert, 1999, 2004, in press). Strongly mineralized

central shear fault zones up to 15 km in length are a

prominent feature in polymetallic districts of the Erz-

gebirge. These mineralized central shear fault zones

largely control the polymetallic vein-type deposits,

and show a strong spatial and probably temporal affin-

ity to lamprophyres and F-rich post-collisional (anoro-

genic) rhyolitic/granitic magmatites (Seifert and

Baumann, 1994; Seifert, 2004, in press). Based on the

above data, the high In concentrations of base metal

veins in the Erzgebirge (e.g., Freiberg, Marienberg)

may indicate an influence of fluids expelled from mag-

Page 26: Mineralogy and geochemistry of indium-bearing polymetallic vein-type deposits: Implications for host minerals from the Freiberg district, Eastern Erzgebirge, Germany

T. Seifert, D. Sandmann / Ore Geology Reviews 28 (2006) 1–3126

mas during the emplacement of post-collisional lam-

prophyric and rhyolitic dikes.

The following mineralogical, geochemical, isotopic,

fluid inclusion, age relationship, and structural features

indicate a genetic link to a magmatic-(mantle-) related

source of late-Variscan Ag-base metal mineralization

stages:

(a) Typically for dkbT ore-type veins are quartzes

with low-salinity (up to 9 wt.% NaCl equivalent)

primary fluid inclusions which show homogeni-

zation temperatures between 250 and 410 8C into

liquid and minor into vapor state (Thomas, 1979;

Seifert et al., 1992; Seifert, 1994; Drechsel et al.,

2003). Quartzes from debT ore-type veins have

lower homogenization temperatures between

120 and 300 8C into liquid state (M. Drechsel

and Th. Seifert, unpublished data, 2002). The

fluid inclusions in dkbT ore-type vein quartz can

be grouped into two types on the basis of their

phase relationships at room temperature (Drech-

sel et al., 2003). Type 1 inclusions contain an

aqueous phase of low salinity (up to 8.6 wt.%

NaCl equivalent) and vapor phase. In a few cases

in type 1 inclusions low concentrations of CO2

were detected by melting of clathrates between

+1 and +5 8C. Type 2 inclusions contain at room

temperature one gaseous phase of pure CO2

detected by the melting point at �56.6 8C.Above this temperature the solid CO2 changed

into the gaseous phase by sublimation. In sum-

mary, the high temperatures of ore-forming pro-

cesses and CO2-bearing fluids indicate a

magmatic source for the Ag-base metal hydro-

thermal systems. In confirmation to the d13C

values of debT ore-type carbonates, which indicate

a mantle source for carbon (see below), the CO2-

bearing fluid inclusions in quartzes of the dkbTore-type suggest a genetic link to CO2-rich lam-

prophyric magmas (Seifert, in press).

(b) High-temperature hydrothermal systems are also

indicated by the occurrence of dchalcopyrite dis-

easesT in Fe-rich sphalerites with significant In

concentrations (Bortnikov et al., 1991; Schwarz-

Schampera and Herzig, 1997, 2002), similar to

the In-rich sphalerites of the dkbT ore-type.(c) Another possible indication for high-temperature

fluids is the occurrence of Bi-minerals (e.g., aiki-

nite; see Fig. 7). Aikinite was proven in high-

temperature Sn–Li greisen-type (e.g., Zinnwald,

Fig. 2) and gold–quartz vein-type mineralization

(e.g., Ural Mts., Russia; Ramdohr, 1975).

(d) Using a temperature of 370 8C for dkbT ore-typequartzes, and 250 8C for debT ore-type carbo-

nates, the means of calculated d18O fluid com-

position are +4.6x and +9.5x, respectively

(Seifert, in press). These data indicate a magmat-

ic source for the hydrothermal fluids. The mag-

matic origin of Ag-base metal hydrothermal

fluids is also apparent from carbonates of the

debT ore-type which show the following d13Cmeans and ranges (Harzer, 1970; Seifert, 1999):

rhodochrosite (�9.0x,�7.9x to�11.0x;n =9),

siderite (�6.8x,�3.0x to�10.7x; n=30), and

calcite (�6.9x, �1.6x to �10.1x; n =37).

These d13C values are similar to the carbon isotope

composition of primary carbonates in lampro-

phyres of the Erzgebirge (Seifert, in press). In

summary, the d13C values of carbonates in debTore-type veins and lamprophyres partly overlap

the carbon isotope compositions of magmatic car-

bon from the mantle (d13C=�3x to �7x;

Ohmoto and Rye, 1979). However, fluid-mixing

with meteoric water and wall rock leaching con-

tamination of the original magmatic fluids is indi-

cated by low salinities of primary fluid inclusions

(Thomas, 1979; Seifert, 1994; Drechsel et al.,

2003), and wide-ranging d18OSMOW values of car-

bonates (+9.6x to +25.2x) and quartzes (+6.1xto +15.6x) (Seifert, in press).

(e) At the Freiberg district all Ag-base metal sulphide

d34S values cluster at 0x, indicating a single

dominant, magmatic sulphur source for this

stage of hydrothermal activity. This signature is

similar to the S isotopic composition of high-

temperature sulphides of post-magmatic W and

Sn mineralization in the Erzgebirge (cf. Seifert,

1994; Jung and Seifert, 1996).

(f) The major group of Pb isotope ratios of galena-

bearing ores and galena-separates from Ag-base

metal and Sn–W–Mo–Bi–Cu–Li–F mineralization

stages in the Erzgebirge form a distinct cluster

(206Pb / 204Pb=17.890 to 18.586, n =112; 207Pb /204Pb=15.490 to 15.590, n =97; 208Pb / 204Pb=

37.890 to 38.750, n =114; Seifert, in press). This

Pb isotope composition is interpreted as the

dprimary Pb isotope signatureT of late-Variscan

Ag-base metal and Sn mineralization (Seifert et

al., 2001) which is overlapped by low-radiogenic,

primary Pb isotope ratios of lamprophyre dikes

(Seifert, in press). The close similarity in Pb iso-

tope compositions between lamprophyric rocks,

and galena-bearing Sn- and Ag-base metal ore-

types, especially from dkbT veins, implies a genetic

Page 27: Mineralogy and geochemistry of indium-bearing polymetallic vein-type deposits: Implications for host minerals from the Freiberg district, Eastern Erzgebirge, Germany

T. Seifert, D. Sandmann / Ore Geology Reviews 28 (2006) 1–31 27

relationship between mineralized veins and the

intrusion of lamprophyric dikes.

(g) Relatively and absolutely age and spatial relation-

ships suggest a genetic link between Ag-base

metal veins and lamprophyric magmatism in the

Erzgebirge (Seifert, 1999, 2004).

(h) The similar paragenetic, geochemical, isotopic,

and fluid inclusion characteristics of the dkbT min-

eralization stage in the Freiberg district and those

in the Kutna Hora and Havlıcklv Brod districts

(Moldanubian Terrane/central Bohemian Massif)

attest to limited wall rock control on the mineral-

izing processes (Seifert et al., 2001). Therefore, it

is likely that the formation of the In-rich base

metal veins was not significantly influenced by

wall rock leaching. In this context, the close spa-

tial–time relationship of Ag-rich, Sn-bearing base

metal veins in the Erzgebirge and In-enriched Zn–

Cu–As–Sn–Pb–Ag veins in the Moldanubian Ter-

rane to post-collisional lamprophyric and granitic

magmatic activity is interpreted as an argument in

favour for a deep-seated source of base metal-rich

hydrothermal fluids (Seifert, 1999, in press). In-

dium-enriched Sn-polymetallic ore which is asso-

ciated with A-type granite intrusions in the Mount

Pleasant district (Taylor et al., 1985; Murao et al.,

1995) could be interpreted as an additional argu-

ment for a deep-seated source of In-enriched Sn-

polymetallic mineralization.

(i) Based on temporal, mineralogical, geochemical,

fluid inclusion, as well as S and Pb isotope data, a

genetic link between Sn-polymetallic and Ag-base

metal ore deposits in the Erzgebirge is postulated

(Seifert, in press). The significant In concentration

of Cd–Fe-rich sphalerites of both deposit types

(Tables 1 and 4) is an additional argument for the

genetic relationship between these late-Variscan

postmagmatic mineralization stages.

The deqT veins in the North sub-district show min-

eralogical (e.g., pyrite, chalcopyrite, galena, arsenopy-

rite, electrum?) and geochemical (Ag, Au, Zn, Pb, Cu,

Sb, As, Hg) similarities to low-sulphidation epithermal-

style Ag–Au mineralization (cf. Simmons and Albin-

son, 1995; Hedenquist and Arribas, 1999). Low-In deqTore-type samples are characterized by significant high

concentrations of Au (up to 9 ppm), Hg (up to 16 ppm),

and Sb (up to 2.1 wt.%). In this context, the comparison

with Mexican Ag–Au and Ag–Pb–Zn epithermal

deposits is of special interest (cf. Simmons and Albin-

son, 1995). In particular, the Fresnillo district shows

base metal-rich ore bodies in the centre. Fluid inclu-

sions indicate that this mineralization formed at 270 to

355 8C. In contrast, Ag-rich ore veins occur towards the

periphery of the district, and contain sulphosalts and

sulphides with quartz and calcite, similar to the deqT anddebT ore-type in the Freiberg district. Isotope data (S, H,

He) strongly suggest that hydrothermal fluids of Ag-

rich base metal mineralization in the Fresnillo district

derived from a magmatic source (cf. Simmons and

Albinson, 1995).

8. Conclusions

(1) The Freiberg base metal vein district and other

late-Variscan base metal and Sn-polymetallic grei-

sen-, vein- and skarn-type deposits (e.g., Zinn-

wald/Cınovec, Ehrenfriedersdorf–Geyer, Pohla)

show that the Erzgebirge is among the largest

In-enriched provinces worldwide.

(2) The economic In potential is indicated by bulk

ore concentrations of up to 3000 ppm In in the

Freiberg, Marienberg and Annaberg districts.

(3) Sphalerite from the Zn–Sn–Cu sequence of the

dkbT ore-type is the most important host mineral

for In in the Freiberg district. Indium concentra-

tions are also related to microscopic Zn–Cu–Sn–

In–S grains in sulphides of the Cu- and Sn-rich

dkbT ore-type.(4) The significant In concentrations in sphalerite

from Ag-rich base metal (vein-type) and Sn-poly-

metallic (vein-, greisen, and skarn-type) deposits

in the Erzgebirge indicates a genetic relationship

between these late-Variscan mineralization stages.

Both deposit types are potential In hosts in the

Erzgebirge, and may account for several hundred

tonnes of In metal.

(5) Indium-rich base metal veins in the Erzgebirge

(e.g., Freiberg, Marienberg) and the Moldanubian

Terrane (e.g., Kutna Hora), and In-rich Sn-poly-

metallic mineralization in the Erzgebirge show

spatial-time relationships to lamprophyric and

A-type granitic intrusions. This close relationship

may be interpreted in the way of mantle-derived

magmatic origin of In-rich fluids.

(6) The Erzgebirge may represent a key district for the

identification of mantle-derived In mineralizing

processes in the geological past. Lamprophyric

and/or anorogenic granitic intrusions could be

significant for the exploration of high-temperature

In-enriched polymetallic sulphide ore deposits.

(7) Highest concentrations of Au (up to 9 ppm), Sb

(up to 2.14 wt.%), and Hg (up to 16.4 ppm) occur

in the low-indium deqT ore-type samples which

Page 28: Mineralogy and geochemistry of indium-bearing polymetallic vein-type deposits: Implications for host minerals from the Freiberg district, Eastern Erzgebirge, Germany

T. Seifert, D. Sandmann / Ore Geology Reviews 28 (2006) 1–3128

show mineralogical and geochemical similarities

to epithermal-style Ag–Au mineralization.

Acknowledgements

We express our gratitude to U. Schwarz-Schampera

for fruitful discussions and constructive comments to

the manuscript. We gratefully acknowledge K. Rank for

providing sample material from the ore deposit collec-

tion of the TU Bergakademie Freiberg, M. Drechsel for

technical support and friendly comments, and P.M.

Herzig for organizational support. We are very grateful

to M. Stemprok and Ch. Gauert for their detailed

reviews and valuable constructive comments that im-

proved the manuscript. The authors thank the editor

N.J. Cook for his helpful and friendly comments. This

work has been financially supported by the Bergbau-

Berufsgenossenschaft Bochum and Gera through a

grant to TS and the Leibniz program by the DFG

through a grant to P.M. Herzig and his working group.

References

Barton, P.A., Bethke, P.M., 1987. Chalcopyrite disease in sphaler-

ite: pathology and epidemiology. American Mineralogist 72,

451–467.

Baumann, L., 1957. Tektonik und Genesis der Erzlagerstatte von

Freiberg (Zentralteil). Unpublished Dissertation, Bergakademie

Freiberg, Germany. 295 pp.

Baumann, L., 1960. Gangarchiv des Freiberger Lagerstattenbezirkes

(Zentralteil). Freiberger Forschungshefte. C 79, 202–214.

Baumann, L., 1964. Die Erzlagerstatten der Freiberger Randgebiete.

Unpublished Habilitation, Bergakademie Freiberg, Germany.

281 pp.

Baumann, L., Hofmann, J., 1967. Die Beziehung zwischen Petrotek-

tonik und Gangtektonik im Freiberger Lagerstattenbezirk. Frei-

berger Forschungshefte. C 215, 117–135.

Baumann, L., Kuschka, E., Seifert, Th., 2000. Lagerstatten des Erz-

gebirges. Enke im Georg Thieme Verlag, Stuttgart, New York.

300 pp.

Bernardova, E., Poubova, M., 1965. Occurrence of iron-rich sphaler-

ite in the Jachymov ore district. Casopis Pro Mineralogii a Geo-

logii 10, 403–411 (in Czech with German abstract).

Binde, G., 1984. Beitrag zur Mineralogie, Geochemie und Genese des

Kassiterits. Unpublished Dissertation, Bergakademie Freiberg,

Germany. 91 pp.

Bouladon, J., 1989. France and Luxembourg. In: Dunning, F.W.,

Garrard, P., Haslam, A.W., Ixer, R.A. (Eds.), Mineral Deposits

of Europe. The Institution of Mining and Metallurgy and The

Mineralogical Society, Oxford, vol. 4, pp. 37–104.

Bortnikov, N.S., Genkin, A.D., Dobrovolskaya, M.G., Muravitskaya,

G.N., Filimonova, A.A., 1991. The nature of chalcopyrite inclu-

sions in sphalerite: exsolution, coprecipitation, or bdiseaseQ? Eco-nomic Geology 86, 1070–1082.

Boyle, R.W., 1965. Geology, geochemistry, and origin of the lead–

zinc–silver deposits of the Keno Hill area, Yukon Territory. Geo-

logical Survey of Canada, Department of Mines and Technical

Surveys, Bulletin 111. 302 pp.

Boyle, R.W., 1968. The geochemistry of silver and its deposits, with

notes on geochemical prospecting for the element. Geological

Survey of Canada Bulletin 160 (264 pp.).

Cabri, L.J., Campbell, J.L., Laflamme, J.H.G., Leigh, R.G., Maxwell,

J.A., Scott, J.D., 1985. Proton microprobe analysis of trace ele-

ments in sulphides from massive sulphide deposits. Canadian

Mineralogist 23, 133–148.

Doering, Th., Kampf, H., Bente, K., 1994. Disease phenomena in In-

bearing sphalerite from Oelsnitz/Vogtland, a comparison of natu-

ral and experimental textures and their application to ore mineral

genesis. In: Seltmann, R., Kampf, H., Moller, P. (Eds.), Metallo-

geny of Collisional Orogens. Czech Geological Survey, Prague,

pp. 103–109.

Drechsel, M., Seifert, Th., Gotze, J., 2003. Comparison of quartz-

types from the polymetallic sulphide veins of the Freiberg district

based on cathodoluminescence investigations. In: Eliopoulos,

D.G., et al., (Eds.), Mineral Exploration and Sustainable Devel-

opment. Millpress, Rotterdam, pp. 763–765.

Eldridge, C.S., Bourcier, W.L., Ohmoto, H., Barnes, H.L., 1988.

Hydrothermal inoculation and incubation of the chalcopyrite dis-

ease in sphalerite. Economic Geology 83, 978–989.

Fesser, H., 1968. Spurenelemente in bolivianischen Zinnsteinen.

Geologisches Jahrbuch 85, 605–610.

Forster, H.J., Tischendorf, G., Seltmann, R., Gottesmann, B., 1998.

Die variszischen Granite des Erzgebirges: neue Aspekte aus

stofflicher Sicht. Zeitschrift fur Geologische Wissenschaften 26,

31–60.

Fryklund, V.C., Flechtner, J.D., 1956. Geochemistry of sphalerite

from Star mine, Ceour d’ Alene district, Idaho. Economic Geol-

ogy 51, 223–247.

Gavrilenko, B.B., Pogrebs, N.A., 1992. Indium in deposits of the

cassiterite–quartz-formation. Proceedings of the Russian Mineral-

ogical Society 121, 41–47.

Gotte, W., 1956. Ein Beitrag zur Kenntnis der Freiberger

Gneiskuppel. In: Lotze, F. (Ed.), Geotektonisches Symposium

zu Ehren von Hans Stille. Deutsche Geologische Gesellschaft,

Geologische Vereinigung und Palaontologische Gesellschaft,

Stuttgart, pp. 371–378.

Hak, J., Johan, Z., 1962. Mineralogical–geochemical investiga-

tion of the indium anomaly Pohled near Havlıcklv Brod.

Sbornık Geologickych Ved 2, 77–109 (in Czech with English

Abstract).

Hak, J., Trdlicka, Z., Litomisky, J., 1964. Chemism of the sphalerite

from the Rejsy zone near Kutna Hora. Sbornık Geologickych Ved

4, 37–61 (in Czech with English Abstract).

Hak, J., Kvacek, M., Watkinson, D.H., 1979. Chemistry of some

sulphides from the polymetallic skarn deposit at Plavno in the

Krusne hory Mts., Czechoslovakia. Vestnık Ustrednıho Ustavu

Geologickeho 54, 321–326.

Hak, J., Kvacek, M., Watkinson, D.H., 1983. Indium content of

sphalerite from Turkank zone in the Kutna Hora base metal

deposit (Bohemia). Casopis Pro Mineralogii a Geologii 28,

65–68 (in English with Czech Abstract).

Hannington, M.D., Bleeker, W., Kjarsgaard, I., 1999a. Sulfide min-

eralogy, geochemistry, and ore genesis of Kidd Creek deposit: part

I. North, Central, and South orebodies. In: Hannington, M.D.,

Barrie, C.T. (Eds.), The Giant Kidd Creek Volcanogenic Massive

Sulfide Deposit, Western Abitibi Subprovince, Canada, Economic

Geology Monograph, vol. 10, pp. 163–224.

Page 29: Mineralogy and geochemistry of indium-bearing polymetallic vein-type deposits: Implications for host minerals from the Freiberg district, Eastern Erzgebirge, Germany

T. Seifert, D. Sandmann / Ore Geology Reviews 28 (2006) 1–31 29

Hannington, M.D., Bleeker, W., Kjarsgaard, I., 1999b. Sulfide min-

eralogy, geochemistry, and ore genesis of Kidd Creek deposit: part

II. The bornite zone. In: Hannington, M.D., Burrie, C.T. (Eds.),

The Giant Kidd Creek Volcanogenic Massive Sulfide Deposit,

Western Abitibi Subprovince, Canada, Economic Geology Mono-

graph, vol. 10, pp. 225–266.

Harzer, D., 1970. Isotopengeochemische Untersuchungen (18O und13C) an Mineralen aus hydrothermalen Ganglagerstatten der DDR.

Freiberger Forschungshefte. C 247 (132 pp.).

Hedenquist, J.W., 1995. The ascent of magmatic fluids: discharge

versus mineralization. In: Thompson, J.F.H. (Ed.), Magmas,

Fluids, and Ore Deposits, Mineralogical Association of Canada

Short Course Series, vol. 23, pp. 263–289.

Hedenquist, J.W., Arribas Jr., A., 1999. Epithermal gold deposits: I.

Hydrothermal processes in intrusion-related systems, and II Char-

acteristics, examples and origin of epithermal gold deposits. In:

Molnar , F., Lexa, J., Hedenquist, J.W. (Eds.), Epithermal miner-

alization of the western Carpathians, Guidebook Series, vol. 31.

Society of Economic Geologists, pp. 13–63.

Hoang, N., 1984. Ein Beitrag zur Geochemie des Silbers. Unpub-

lished Dissertation, Bergakademie Freiberg, Germany. 96 pp.

Irrinki, R.R., Kooiman, G.J.A., 1995. Prospectus—Mount Pleasant

deposit, Charlotte County, New Brunswick, Canada. Open File

Report, vol. 95-16. New Brunswick Department of Natural

Resources and Energy, Minerals and Energy Division. 30 pp.

Ivanov, V.V., Lizunov, N.V., 1960. Indium in some tin deposits

of Yakutiya. Geochemistry 4, 53–65 (in Russian with English

Abstract).

Ivanov, V.V., Rozbianskaya, A.A., 1961. Geochemistry of indium in

cassiterite–silicate–sulphide ores. Geochemistry 1, 71–83 (in

Russian with English Abstract).

Johan, Z., 1988. Indium and germanium in the structure of sphalerite:

an example of coupled substitution with copper. Mineralogy and

Petrology 39, 211–229.

Jung, D., 1992. Lagerstattentektonisch-paragenetische Bearbeitung

und metallogenetische Charakteristik des Erzreviers Greifen-

steine-Rohrenbohrer bei Ehrenfriedersdorf. Unpublished Disserta-

tion, Bergakademie Freiberg, Germany. 105 pp.

Jung, D., Seifert, Th., 1996. On the metallogeny of the late Hercynian

tin deposit dRohrenbohrer fieldT/Greifenstein area, Sn–W district

Ehrenfriedersdorf–Geyer, Erzgebirge, Germany. Freiberger For-

schungshefte. C 467, 131–150.

Kato, A., 1965. Sakuraiite, a new mineral. Chingaku Kenkyu, Sakurai

Volume, pp. 1–5 (in Japanese).

Kavalieris, I., 1994. High Au, Ag, Mo, Pb, V and W content of

fumarolic deposits at Merapi volcano, central Java, Indonesia.

Journal of Geochemical Exploration 50, 479–491.

Kooiman, G.J.A., Ruitenberg, A.A., 1992. Indium deposits and their

economic potential: report on a mission to Japan. Geoscience

Report, vol. 92-3. New Brunswick Department of Natural

Resources and Energy, Mineral Resources. 62 pp.

Kovalenker, V.A., Laputina, I.P., Znamenskii, V.S., Zotov, I.A., 1993.

Indium mineralization of the Great Kuril Island Arc. Geology of

Ore Deposits 35, 491–495.

Leach, D.L., Hofstra, A.H., Church, S.E., Snee, L.W., Vaughn, R.B.,

Zartmann, R.E., 1998. Evidence for Proterozoic and Late-Creta-

ceous–Early Tertiary ore-forming events in the Ceour d’ Alene

district, Idaho and Montana. Economic Geology 93, 347–359.

Legendre, O., 1994. Indium in base metal sulphides from various

occurrences: new data. Abstracts for the Plenary Lectures, Sym-

posia, and Special Sessions, 16th General Meeting of the Inter-

national Mineralogical Association, Pisa, p. 237.

McKerrow, W.S., Mac Niocaill, C., Ahlberg, P.E., Clayton, G., Cleal,

C.J., Eagar, R.M.C., 2000. The Late Palaeozoic relations between

Gondwana and Laurussia. In: Franke, W., Haak, V., Oncken, O.,

Tanner, D. (Eds.), Orogenic Processes: Quantification and Mod-

elling in the Variscan Belt. Geological Society Special Publica-

tion, vol. 179, pp. 9–20.

Muller, H., 1850. Die Erzlagerstatten nordlich und nordwestlich von

Freiberg. Cottas Gangstudien, vol. 1. Verlag Engelhardt, Freiberg,

Germany, pp. 101–304.

Muller, H., 1901. Die Erzgange des Freiberger Bergrevieres. In:

Credner, H. (Ed.), Erlauterungen zur geologischen Specialkarte

des Konigreiches Sachsen. Verlag W. Engelmann, Leipzig, Ger-

many, pp. 1–350.

Murao, S., Furuno, M., 1990. Indium-bearing ore from the Goka Mine,

Naegi district, Southwestern Japan. Mining Geology 40, 35–42.

Murao, S., Furuno, M., 1991. Roquesite from the Akenobe tin-poly-

metallic deposits, Southwest Japan. Bulletin Geological Survey of

Japan 42 (1), 1–10.

Murao, S., Sie, S.H., Takagi, T., Seetharam, R., Naito, K., 1995.

Comparative proton and electron probe study of two representa-

tive indium-bearing deposits. In: Mauk, J.L., St. George, J.D.

(Eds.), Proceedings of the 1995 PACRIM Congress Auckland,

New Zealand, The Australasian Institute of Mining and Metallur-

gy, Publication Series, vol. 9/95. Carlton, Australia, pp. 417–422.

Novak, F., Kvacek, M., 1964. Geochemie des Sphalerits vom Tur-

kank-Gangzug im Kutna Hora-Erzrevier. Sbornık Geologickych

Ved 4, 7–35 (in Czech with German Abstract).

Novak, F., Jansa, J., David, J., 1991. Roquesite from the Sn–W

deposit of Cınovec in the Krusne Hory Mountains (Czecho-

slovakia). Vestnık Ustrednıho Ustavu Geologickeho 66 (3),

173–181.

Oelsner, O., 1930. Beitrage zur Kenntnis der kiesigen Bleierzforma-

tion Freibergs. Jahrbuch fur das Berg- und Huttenwesen in Sach-

sen, vol. 104, pp. A3–A50.

Ohmoto, H., Rye, R.O., 1979. Isotopes of sulphur and carbon. In:

Barnes, H.L. (Ed.), Geochemistry of Hydrothermal Ore Deposits.

John Wiley and Sons, New York, pp. 509–567.

Petruk, W., 1973. Tin sulphides from the deposit of Brunswick Tin

Mines Limited. Canadian Mineralogist 12, 46–54.

Picot, P., Pierrot, R., 1963. La roquesite, premier mineral dindium,

CuInS (sub 2). Bulletin de la Societe Francaise de Mineralogie et

de Cristallographie 86, 7–14.

Putzer, H., 1976. Metallogenetische Provinzen in Sudamerika.

Schweizerbart, Stuttgart. 316 pp.

Raimbault, L., Alexandrov, P., Nong, L.X., 1999. Behaviour of

indium and gallium in hydrothermal cassiterites. In: Stanley,

C.J., et al., (Eds.), Mineral Deposits: Processes to Processing.

A.A. Balkema, Rotterdam, Netherlands, pp. 421–424.

Ramdohr, P., 1975. Die Erzmineralien und ihre Verwachsungen.

Akademie-Verlag, Berlin. 1277 pp.

Reich, F., Richter, Th., 1863a. Vorlaufige Notiz uber ein neues Metall.

Journal fur Praktische Chemie 89, 441–442.

Reich, F., Richter, Th., 1863b. Ueber das Indium. Journal fur Prak-

tische Chemie 90, 172–176.

Reich, F., Richter, Th., 1864. Ueber das Indium in dem aus Freiberger

blendigen Erzen destillierten Zink. Journal fur Praktische Chemie

92, 480–485.

Rock, N.M.S., 1991. Lamprophyres. Blackie Van Nostrand Reinhold,

Glasgow, New York. 285 pp.

Rose, A.W., 1967. Trace elements in sulphide minerals from the

Central district, New Mexico and the Bingham district, Utah.

Geochimica et Cosmochimica Acta 31, 547–585.

Page 30: Mineralogy and geochemistry of indium-bearing polymetallic vein-type deposits: Implications for host minerals from the Freiberg district, Eastern Erzgebirge, Germany

T. Seifert, D. Sandmann / Ore Geology Reviews 28 (2006) 1–3130

Rosler, H.J., Kuhne, R., 1970. Regularities in the hydrothermal

change of wall-rocks of some Erzgebirge deposits and their

genetic significance. In: Pouba, Z., Stemprok, M. (Eds.), Problems

of Hydrothermal Ore Deposition: The Origin, Evolution and

Control of Ore-forming Fluids, International Union of Geological

Sciences, Series A, vol. 2. E. Schweizerbart’sche Verlagsbuch-

handlung (Nagele und Obermiller), Stuttgart, pp. 304–311.

Rotzler, K., 1995. Die PT-Entwicklung der Metamorphite im Mittel-

und Westerzgebirge. Scientific Technical Report, GeoForschungs-

Zentrum Potsdam, STR95/14 220 pp.

Schmadicke, E., 1994. Die Eklogite des Erzgebirges. Freiberger For-

schungshefte. C 456, 1–138.

Schuppan, W., 1995. Geologische Verhaltnisse des Erzfeldes Pohla-

Tellerhauser im Westerzgebirge. Zeitschrift fur Geologische Wis-

senschaften 23, 589–597.

Schwarz-Schampera, U., 2000. Indium–tin association in volcano-

genic massive sulphide deposits: evidences from active seafloor

hydrothermal systems and ancient massive sulphide deposits on

land. Unpublished Dissertation, TU Bergakademie Freiberg, Ger-

many. 488 pp.

Schwarz-Schampera, U., Herzig, P., 1997. Geochemistry of indi-

um in VMS deposits: implications from active hydrothermal

vents in the Southern Lau Basin (SW-Pacific). In: Papunen,

H. (Ed.), Mineral Deposits: Research and Exploration Where

do They Meet? A.A. Balkema, Rotterdam, Netherlands,

pp. 379–382.

Schwarz-Schampera, U., Herzig, P.M., 1999. Indium: geology, min-

eralogy, and economics—a review. Berichte zur Lagerstatten-

forschung, vol. 35. Bundesanstalt fur Geowissenschaften und

Rohstoffe. 194 pp.

Schwarz-Schampera, U., Herzig, P.M., 2002. Indium: Geology, Min-

eralogy, and Economics. Springer-Verlag, Berlin. 257 pp.

Sebastian, U., 1995. Die Strukturentwicklung des spatorogenen Erz-

gebirgsaufstiegs in der Flohazone. Freiberger Forschungshefte. C

461, 1–114.

Seifert, Th., 1994. Zur Metallogenie des Lagerstattendistriktes Marien-

berg (Ostteil des Mittelerzgebirgischen Antiklinalbereiches). Dis-

sertation, TU Bergakademie Freiberg, Germany, 174 pp.

(published in microfiche format by Verlag Hansel-Hohenhausen,

Frankfurt, 1996).

Seifert, Th., 1999. Relationship between late Variscan lamprophyres

and hydrothermal vein mineralization in the Erzgebirge. In: Stan-

ley, C.J., et al., (Eds.), Mineral Deposits: Processes to Processing.

A.A. Balkema, Rotterdam, Netherlands, pp. 429–432.

Seifert, Th., 2004. Post-collisional bimodal magmatism and related

Sn–W–Mo and Ag-rich base metal deposits at the northern border

of the Bohemian massif, central Europe. In: Khanchuk, A.I.,

Gonevschuk, G.A., Mitrokhin, A.N., Simanenko, L.F., Cook,

N.J., Seltmann, R. (Eds.), Metallogeny of the Pacific Northwest:

Tectonics, Magmatism and Metallogeny of Active Continental

Margins. Proceedings of the 2004 Interim IAGOD Conference.

Far East Geological Institute Vladivostok, Russia, pp. 373–375.

Vladivostok Dalnauka.

Seifert, Th., in press. Genesis and metallogenetic potential of Permo–

Carboniferous lamprophyric intrusions in the Saxo-Thuringian

terrane of the Mid-European Variscides. Millpress Science Pub-

lishers, Rotterdam, Netherlands.

Seifert, Th., Baumann, L., 1994. On the Metallogeny of the Central

Erzgebirge Anticlinal Area (Marienberg District), Saxony, Ger-

many. In: von Gehlen, K., Klemm, D.D. (Eds.), Mineral Deposits

of the Erzgebirge/Krusne Hory (Germany/Czech Republic):

Reviews and Results of Recent Investigations, Monograph Series

on Mineral Deposits, vol. 31. Gebruder Borntraeger, Berlin,

Stuttgart, pp. 169–190.

Seifert, Th., Kempe, U., 1994. Zinn-Wolfram-Lagerstatten und spat-

variszische Magmatite des Erzgebirges. European Journal of Min-

eralogy Beihefte 6, 125–172.

Seifert, Th., Baumann, L., Jung, D., 1992. On the problem of the

relationship between Sn(–W) and quartz-polymetal mineraliza-

tions in the Marienberg deposit district. Zeitschrift fur Geolo-

gische Wissenschaften 20, 371–392.

Seifert, Th., Reinisch, A., Linkert, K.-H., Meyer, H., Lehmann, F.,

1996a. Geologische und lagerstattenwirtschaftliche Ausgangsda-

ten zur Einschatzung gesundheitlicher Belastungen von Berg-

leuten im Uran-Bergbau der DDR fur den Zeitraum 1945–1965.

Unpublished final report, TU Bergakademie Freiberg, Bergbau-

Berufsgenossenschaft Bochum, Gera. 1492 pp.

Seifert, Th., Schwarz-Schampera, U., Herzig, P., Wagner, R., 1996b.

Trace Elements in Greisen and Vein Mineralization in the Central

Erzgebirge (Germany) and the Mt. Pleasant District (Canada).

European Journal of Mineralogy Beihefte 8, 259.

Seifert, Th., Niederschlag, E., Pernicka, E., Fiedler, F., 2001. Lead

isotope pilot study from ore deposits in the Erzgebirge, Germany,

and surrounded areas by multiple-collector inductively coupled

plasma mass spectrometry (MC-ICP-MS). In: Piestrzynski, A., et

al., (Eds.), Mineral Deposits at the Beginning of the 21st Century.

Balkema, Rotterdam, pp. 1095–1098.

Semenyak, B.I., Nedashkovskii, A.P., Nikulin, N.N., 1994. Indium

minerals in ores of the Pravourmiiskoe deposit (Russian Far

East). Geologiia Rudnykh Mestorozhdenii 36 (3), 230–236 (in

Russian).

Seward, T.M., Henderson, C.M.B., Charnock, J.M., 2000. Indium

(III) chloride complexing and solvation in hydrothermal solutions

to 350 8C: an EXAFS study. Chemical Geology 167, 117–127.

Shimizu, M., Kato, A., 1991. Roquesite-bearing tin ores from the

Omodani, Akenobe, Fukoku, and Ikuno polymetallic vein-type

deposits in the inner zone of Southwestern Japan. Canadian

Mineralogist 29, 207–215.

Simmons, S.F., Albinson, T., 1995. Mexican Ag–Au and Ag–Pb–Zn

epithermal deposits: Hydrothermal products of a magmatic (?)

heritage. In: Mauk, J.L., St. George, J.D. (Eds.), Proceedings,

1995 PACRIM Congress, The Australasian Institute of Mining

and Metallurgy, Publication Series No., vol. 9/95. Carlton, Aus-

tralia, pp. 539–544.

Sinclair, W.D., Kooiman, G.J.A., Martin, D.A., Kjarsgaard,

I.M., 2005. Geology, geochemistry and mineralogy of indium

resources at Mount Pleasant, New Brunswick, Canada. Ore

Geology Reviews 28, 123–145. doi:10.1016/j.oregeorev.2003.

03.001 (this volume).

Taylor, R.P., Sinclair, W.D., Lutes, G., 1985. Geochemical and isoto-

pic characterization of granites related to W–Sn–Mo mineraliza-

tion in the Mount Pleasant area, New Brunswick. Granite-related

mineral deposits: Geology, Petrogenesis, and Tectonic Setting,

Extended Abstracts. Canadian Institute of Mining, Metallurgy

and Petroleum, Halifax, pp. 265–273.

Thomas, R., 1979. Untersuchungen von Einschlussen zur thermody-

namischen und physikochemischen Charakteristik lagerstattenbil-

dender Losungen und Prozesse im magmatischen und

postmagmatischen Bereich. Unpublished Dissertation, Bergaka-

demie Freiberg, Germany. 245 pp.

Tichomirowa, M., 2001. Die Gneise des Erzgebirges-hochmeta-

morphe Aquivalente von neoproterozoisch-fruhpalaozoischen

Grauwacken und Granitoiden der Cadomiden. Unpublished Ha-

bilitation, TU Bergakademie Freiberg, Germany. 208 pp.

Page 31: Mineralogy and geochemistry of indium-bearing polymetallic vein-type deposits: Implications for host minerals from the Freiberg district, Eastern Erzgebirge, Germany

T. Seifert, D. Sandmann / Ore Geology Reviews 28 (2006) 1–31 31

Tolle, H., 1955. Lagerstattengenetische und geochemische Untersu-

chungen der schwarzen Zinkblende der Grube Himmelfahrt,

Freiberg. Unpublished Diplomarbeit, Bergakademie Freiberg,

Germany. 88 pp.

Wahrenberger, C., Seward, T.M., Dietrich, V., 2002. Volatile trace-

element transport in high-temperature gases from Kudriavy vol-

cano (Iturup, Kurile Islands, Russia). In: Hellmann, R., Wood,

A.W. (Eds.), Water–Rock Interactions, Ore Deposits, and Envi-

ronmental Geochemistry: A Tribute to David A. Crerar. The

Geochemical Society Special Publication, vol. 7, pp. 307–327.

Weisbach, A., 1886. Mineralogische Mitteilungen. Jahrbuch fur

das Berg- und Huttenwesen im Konigreiche Sachsen, Freiberg,

pp. 86–92.

Willner, A.P., Rotzler, K., Maresch, W.V., 1997. Pressure-temperature

and fluid evolution of quartzo-feldspathic metamorphic rocks

with a relict high-pressure, granulite-facies history from the Cen-

tral Erzgebirge (Saxony, Germany). Journal of Petrology 38,

307–336.

Winkler, Cl., 1865. Beitrage zur Kenntnis des Indiums. Journal fur

Praktische Chemie 94, 1–9.

Winkler, Cl., 1886. Mitteilungen uber das neue Element

dGermaniumT. Jahrbuch fur das Berg- und Huttenwesen im Konig-

reiche Sachsen, Freiberg, pp. 163–166.

Zabarina, T.V., Lapina, V.V., Minaeva, N.A., 1961. The indium

distribution of cassiterite, sphalerite, and chalcopyrite in the tin-

ore deposit of Lifudsin. Geokhimiya 2, 157–161 (in Russian, with

English abstract).