MIMO Capacities : Eigenvalue Computation through ...personal.psu.edu/dsr11/talks/mimo.pdf · MIMO...

48
MIMO capacities MIMO Capacities : Eigenvalue Computation through Representation Theory Jayanta Kumar Pal, Donald Richards SAMSI Multivariate distributions working group

Transcript of MIMO Capacities : Eigenvalue Computation through ...personal.psu.edu/dsr11/talks/mimo.pdf · MIMO...

Page 1: MIMO Capacities : Eigenvalue Computation through ...personal.psu.edu/dsr11/talks/mimo.pdf · MIMO capacities Introduction Outline 1 Introduction 2 MIMO working model 3 Eigenvalue

MIMO capacities

MIMO Capacities : Eigenvalue Computationthrough Representation Theory

Jayanta Kumar Pal, Donald Richards

SAMSIMultivariate distributions working group

Page 2: MIMO Capacities : Eigenvalue Computation through ...personal.psu.edu/dsr11/talks/mimo.pdf · MIMO capacities Introduction Outline 1 Introduction 2 MIMO working model 3 Eigenvalue

MIMO capacities

Outline

1 Introduction

2 MIMO working model

3 Eigenvalue computations

4 Representation theory of unitary groups

5 Computation of the m.g.f.

Page 3: MIMO Capacities : Eigenvalue Computation through ...personal.psu.edu/dsr11/talks/mimo.pdf · MIMO capacities Introduction Outline 1 Introduction 2 MIMO working model 3 Eigenvalue

MIMO capacities

Introduction

Outline

1 Introduction

2 MIMO working model

3 Eigenvalue computations

4 Representation theory of unitary groups

5 Computation of the m.g.f.

Page 4: MIMO Capacities : Eigenvalue Computation through ...personal.psu.edu/dsr11/talks/mimo.pdf · MIMO capacities Introduction Outline 1 Introduction 2 MIMO working model 3 Eigenvalue

MIMO capacities

Introduction

What is MIMO?

MIMO : Multiple-Input-Multiple-Output.

Multiple antennas used to transmit and receive signals inwireless communications.

Use of multiple antennas increase information throughputsubstantially.

Page 5: MIMO Capacities : Eigenvalue Computation through ...personal.psu.edu/dsr11/talks/mimo.pdf · MIMO capacities Introduction Outline 1 Introduction 2 MIMO working model 3 Eigenvalue

MIMO capacities

Introduction

What is MIMO?

MIMO : Multiple-Input-Multiple-Output.

Multiple antennas used to transmit and receive signals inwireless communications.

Use of multiple antennas increase information throughputsubstantially.

Page 6: MIMO Capacities : Eigenvalue Computation through ...personal.psu.edu/dsr11/talks/mimo.pdf · MIMO capacities Introduction Outline 1 Introduction 2 MIMO working model 3 Eigenvalue

MIMO capacities

Introduction

What is MIMO?

MIMO : Multiple-Input-Multiple-Output.

Multiple antennas used to transmit and receive signals inwireless communications.

Use of multiple antennas increase information throughputsubstantially.

Page 7: MIMO Capacities : Eigenvalue Computation through ...personal.psu.edu/dsr11/talks/mimo.pdf · MIMO capacities Introduction Outline 1 Introduction 2 MIMO working model 3 Eigenvalue

MIMO capacities

Introduction

Asymptotic ergodic capacity of the channels

Mutual information I averaged over channel realizations forlarge number of antennas.

We are interested in the moments of the capacity and theprobability of outage.

Here we discuss a method for computing the moment generatingfunction of I.

Use of representation theory to calculate the joint probabilitydistribution of eigenvalues.

Page 8: MIMO Capacities : Eigenvalue Computation through ...personal.psu.edu/dsr11/talks/mimo.pdf · MIMO capacities Introduction Outline 1 Introduction 2 MIMO working model 3 Eigenvalue

MIMO capacities

Introduction

Asymptotic ergodic capacity of the channels

Mutual information I averaged over channel realizations forlarge number of antennas.

We are interested in the moments of the capacity and theprobability of outage.

Here we discuss a method for computing the moment generatingfunction of I.

Use of representation theory to calculate the joint probabilitydistribution of eigenvalues.

Page 9: MIMO Capacities : Eigenvalue Computation through ...personal.psu.edu/dsr11/talks/mimo.pdf · MIMO capacities Introduction Outline 1 Introduction 2 MIMO working model 3 Eigenvalue

MIMO capacities

Introduction

Asymptotic ergodic capacity of the channels

Mutual information I averaged over channel realizations forlarge number of antennas.

We are interested in the moments of the capacity and theprobability of outage.

Here we discuss a method for computing the moment generatingfunction of I.

Use of representation theory to calculate the joint probabilitydistribution of eigenvalues.

Page 10: MIMO Capacities : Eigenvalue Computation through ...personal.psu.edu/dsr11/talks/mimo.pdf · MIMO capacities Introduction Outline 1 Introduction 2 MIMO working model 3 Eigenvalue

MIMO capacities

Introduction

Asymptotic ergodic capacity of the channels

Mutual information I averaged over channel realizations forlarge number of antennas.

We are interested in the moments of the capacity and theprobability of outage.

Here we discuss a method for computing the moment generatingfunction of I.

Use of representation theory to calculate the joint probabilitydistribution of eigenvalues.

Page 11: MIMO Capacities : Eigenvalue Computation through ...personal.psu.edu/dsr11/talks/mimo.pdf · MIMO capacities Introduction Outline 1 Introduction 2 MIMO working model 3 Eigenvalue

MIMO capacities

MIMO working model

Outline

1 Introduction

2 MIMO working model

3 Eigenvalue computations

4 Representation theory of unitary groups

5 Computation of the m.g.f.

Page 12: MIMO Capacities : Eigenvalue Computation through ...personal.psu.edu/dsr11/talks/mimo.pdf · MIMO capacities Introduction Outline 1 Introduction 2 MIMO working model 3 Eigenvalue

MIMO capacities

MIMO working model

System model

Signals are complex realizations of the form reiθ.

nt : # transmitter antennas.nr : # receiver antennas.x : transmitted signals.y : received signal.

y = Gx + z

G : Complex nr × nt matrix of Channel coefficients.i.e. Gij = channel coefficient : transmitter j to receiver i.

z : additive noise.

Page 13: MIMO Capacities : Eigenvalue Computation through ...personal.psu.edu/dsr11/talks/mimo.pdf · MIMO capacities Introduction Outline 1 Introduction 2 MIMO working model 3 Eigenvalue

MIMO capacities

MIMO working model

System model

Signals are complex realizations of the form reiθ.

nt : # transmitter antennas.nr : # receiver antennas.x : transmitted signals.y : received signal.

y = Gx + z

G : Complex nr × nt matrix of Channel coefficients.i.e. Gij = channel coefficient : transmitter j to receiver i.

z : additive noise.

Page 14: MIMO Capacities : Eigenvalue Computation through ...personal.psu.edu/dsr11/talks/mimo.pdf · MIMO capacities Introduction Outline 1 Introduction 2 MIMO working model 3 Eigenvalue

MIMO capacities

MIMO working model

System model

Signals are complex realizations of the form reiθ.

nt : # transmitter antennas.nr : # receiver antennas.x : transmitted signals.y : received signal.

y = Gx + z

G : Complex nr × nt matrix of Channel coefficients.i.e. Gij = channel coefficient : transmitter j to receiver i.

z : additive noise.

Page 15: MIMO Capacities : Eigenvalue Computation through ...personal.psu.edu/dsr11/talks/mimo.pdf · MIMO capacities Introduction Outline 1 Introduction 2 MIMO working model 3 Eigenvalue

MIMO capacities

MIMO working model

Model assumptions

x, z independent. Their elements are i.i.d.We assume mean 0, variance 1, Gaussian structure.Arbitrary covariances : easy extensions.

G is known to receiver, not transmitter.

G has complex Gaussian entries.Covariance assumptions later.

Page 16: MIMO Capacities : Eigenvalue Computation through ...personal.psu.edu/dsr11/talks/mimo.pdf · MIMO capacities Introduction Outline 1 Introduction 2 MIMO working model 3 Eigenvalue

MIMO capacities

MIMO working model

Model assumptions

x, z independent. Their elements are i.i.d.We assume mean 0, variance 1, Gaussian structure.Arbitrary covariances : easy extensions.

G is known to receiver, not transmitter.

G has complex Gaussian entries.Covariance assumptions later.

Page 17: MIMO Capacities : Eigenvalue Computation through ...personal.psu.edu/dsr11/talks/mimo.pdf · MIMO capacities Introduction Outline 1 Introduction 2 MIMO working model 3 Eigenvalue

MIMO capacities

MIMO working model

Mutual information

CapacityI(y; x|G) = log det(I + G†G)

I expressed in nats.

Moment generating function :

g(z) = E[ezI] = EG[det(I + G†G)z]

Probability of outage :

Pout = EG[Θ(I − Iout)] =

∫g(iz)2πi

e−izIout

z− i0+dz

where Θ is the Heaviside function.

Page 18: MIMO Capacities : Eigenvalue Computation through ...personal.psu.edu/dsr11/talks/mimo.pdf · MIMO capacities Introduction Outline 1 Introduction 2 MIMO working model 3 Eigenvalue

MIMO capacities

MIMO working model

Mutual information

CapacityI(y; x|G) = log det(I + G†G)

I expressed in nats.

Moment generating function :

g(z) = E[ezI] = EG[det(I + G†G)z]

Probability of outage :

Pout = EG[Θ(I − Iout)] =

∫g(iz)2πi

e−izIout

z− i0+dz

where Θ is the Heaviside function.

Page 19: MIMO Capacities : Eigenvalue Computation through ...personal.psu.edu/dsr11/talks/mimo.pdf · MIMO capacities Introduction Outline 1 Introduction 2 MIMO working model 3 Eigenvalue

MIMO capacities

MIMO working model

Mutual information

CapacityI(y; x|G) = log det(I + G†G)

I expressed in nats.

Moment generating function :

g(z) = E[ezI] = EG[det(I + G†G)z]

Probability of outage :

Pout = EG[Θ(I − Iout)] =

∫g(iz)2πi

e−izIout

z− i0+dz

where Θ is the Heaviside function.

Page 20: MIMO Capacities : Eigenvalue Computation through ...personal.psu.edu/dsr11/talks/mimo.pdf · MIMO capacities Introduction Outline 1 Introduction 2 MIMO working model 3 Eigenvalue

MIMO capacities

Eigenvalue computations

Outline

1 Introduction

2 MIMO working model

3 Eigenvalue computations

4 Representation theory of unitary groups

5 Computation of the m.g.f.

Page 21: MIMO Capacities : Eigenvalue Computation through ...personal.psu.edu/dsr11/talks/mimo.pdf · MIMO capacities Introduction Outline 1 Introduction 2 MIMO working model 3 Eigenvalue

MIMO capacities

Eigenvalue computations

Eigenvalues of G†G

Clearly,

g(z) = E[ N∏

i=1

(1 + λi)z] =

∫ ∞

0. . .

∫ ∞

0

∏(1 + λi)

zp(λ)dλ

where λ = (λ1, . . . , λN) are the positive eigenvalues of G†G.

N = min(nt, nr). Also, let M = max(nt, nr)

Simple case : G i.i.d. with zero mean, i.e.

p(G) ∝ e−tr(G†G)

then,p(λ) = CM,N∆(λ)2

∏[λM−N

i e−λi ]

Page 22: MIMO Capacities : Eigenvalue Computation through ...personal.psu.edu/dsr11/talks/mimo.pdf · MIMO capacities Introduction Outline 1 Introduction 2 MIMO working model 3 Eigenvalue

MIMO capacities

Eigenvalue computations

Eigenvalues of G†G

Clearly,

g(z) = E[ N∏

i=1

(1 + λi)z] =

∫ ∞

0. . .

∫ ∞

0

∏(1 + λi)

zp(λ)dλ

where λ = (λ1, . . . , λN) are the positive eigenvalues of G†G.

N = min(nt, nr). Also, let M = max(nt, nr)

Simple case : G i.i.d. with zero mean, i.e.

p(G) ∝ e−tr(G†G)

then,p(λ) = CM,N∆(λ)2

∏[λM−N

i e−λi ]

Page 23: MIMO Capacities : Eigenvalue Computation through ...personal.psu.edu/dsr11/talks/mimo.pdf · MIMO capacities Introduction Outline 1 Introduction 2 MIMO working model 3 Eigenvalue

MIMO capacities

Eigenvalue computations

Channels with non-trivial distributionsSemi-correlated channels : non-zero correlation in thetransmitters (alternately receivers).

p(G) = c(T)e−trT−1G†G

for some T > 0.Non-zero means : G has mean G0

p(G) ∝ e−tr

(G−G0)†(G−G0)

Fully correlated channels : non-zero correlation in thetransmitters and the receivers.

p(G) = c(T, R)e−trT−1GR−1G†

Page 24: MIMO Capacities : Eigenvalue Computation through ...personal.psu.edu/dsr11/talks/mimo.pdf · MIMO capacities Introduction Outline 1 Introduction 2 MIMO working model 3 Eigenvalue

MIMO capacities

Eigenvalue computations

Channels with non-trivial distributionsSemi-correlated channels : non-zero correlation in thetransmitters (alternately receivers).

p(G) = c(T)e−trT−1G†G

for some T > 0.Non-zero means : G has mean G0

p(G) ∝ e−tr

(G−G0)†(G−G0)

Fully correlated channels : non-zero correlation in thetransmitters and the receivers.

p(G) = c(T, R)e−trT−1GR−1G†

Page 25: MIMO Capacities : Eigenvalue Computation through ...personal.psu.edu/dsr11/talks/mimo.pdf · MIMO capacities Introduction Outline 1 Introduction 2 MIMO working model 3 Eigenvalue

MIMO capacities

Eigenvalue computations

Channels with non-trivial distributionsSemi-correlated channels : non-zero correlation in thetransmitters (alternately receivers).

p(G) = c(T)e−trT−1G†G

for some T > 0.Non-zero means : G has mean G0

p(G) ∝ e−tr

(G−G0)†(G−G0)

Fully correlated channels : non-zero correlation in thetransmitters and the receivers.

p(G) = c(T, R)e−trT−1GR−1G†

Page 26: MIMO Capacities : Eigenvalue Computation through ...personal.psu.edu/dsr11/talks/mimo.pdf · MIMO capacities Introduction Outline 1 Introduction 2 MIMO working model 3 Eigenvalue

MIMO capacities

Eigenvalue computations

Singular Value Decomposition of G

The singular values of G

µi =√

λi

Let Ω = diag(µ1, . . . , µN)

U, V are unitary matrices,

G = UΩV†

Using normalized Haar measures,

p(λ) = CM,N∆(λ)2N∏

i=1

λM−Ni

∫ ∫p(UΩV†)dUdV,

integrating over the unitary groups of order nt and nr.

Page 27: MIMO Capacities : Eigenvalue Computation through ...personal.psu.edu/dsr11/talks/mimo.pdf · MIMO capacities Introduction Outline 1 Introduction 2 MIMO working model 3 Eigenvalue

MIMO capacities

Eigenvalue computations

Singular Value Decomposition of G

The singular values of G

µi =√

λi

Let Ω = diag(µ1, . . . , µN)

U, V are unitary matrices,

G = UΩV†

Using normalized Haar measures,

p(λ) = CM,N∆(λ)2N∏

i=1

λM−Ni

∫ ∫p(UΩV†)dUdV,

integrating over the unitary groups of order nt and nr.

Page 28: MIMO Capacities : Eigenvalue Computation through ...personal.psu.edu/dsr11/talks/mimo.pdf · MIMO capacities Introduction Outline 1 Introduction 2 MIMO working model 3 Eigenvalue

MIMO capacities

Representation theory of unitary groups

Outline

1 Introduction

2 MIMO working model

3 Eigenvalue computations

4 Representation theory of unitary groups

5 Computation of the m.g.f.

Page 29: MIMO Capacities : Eigenvalue Computation through ...personal.psu.edu/dsr11/talks/mimo.pdf · MIMO capacities Introduction Outline 1 Introduction 2 MIMO working model 3 Eigenvalue

MIMO capacities

Representation theory of unitary groups

Representation theory: recap

ρ : G → V , a homomorphism from a group G to a group ofinvertible matrices V .

Example : GL(M)- complex M ×M invertible matrices,U(M)- its subgroup of unitary matrices.

ρ is irreducible if it has no non-trivial decomposition.

The irreducible polynomial representations of U(M) areparametrized by m = (m1, . . . , mM) with integersm1 ≥ . . . ≥ mN ≥ 0.

We denote by U(m) the corresponding irreduciblerepresentations.

Page 30: MIMO Capacities : Eigenvalue Computation through ...personal.psu.edu/dsr11/talks/mimo.pdf · MIMO capacities Introduction Outline 1 Introduction 2 MIMO working model 3 Eigenvalue

MIMO capacities

Representation theory of unitary groups

Representation theory: recap

ρ : G → V , a homomorphism from a group G to a group ofinvertible matrices V .

Example : GL(M)- complex M ×M invertible matrices,U(M)- its subgroup of unitary matrices.

ρ is irreducible if it has no non-trivial decomposition.

The irreducible polynomial representations of U(M) areparametrized by m = (m1, . . . , mM) with integersm1 ≥ . . . ≥ mN ≥ 0.

We denote by U(m) the corresponding irreduciblerepresentations.

Page 31: MIMO Capacities : Eigenvalue Computation through ...personal.psu.edu/dsr11/talks/mimo.pdf · MIMO capacities Introduction Outline 1 Introduction 2 MIMO working model 3 Eigenvalue

MIMO capacities

Representation theory of unitary groups

Dimension and orthogonality

Dimension of an irreducible representation : dimension of itsinvariant subspace. For U(M)

dm =[ M∏

i=1

1(M − i)!

](−1)M(M−1)/2∆(k)

where ki = mi − i + M.For irreducible representations U(m) and U(m′),∫

(U(m))ij(U(m′)†)kldU =δmm′δikδjl

dm

an orthogonality property we use later.Remember that we need to evaluate∫ ∫

p(UΩV†)dUdV

Page 32: MIMO Capacities : Eigenvalue Computation through ...personal.psu.edu/dsr11/talks/mimo.pdf · MIMO capacities Introduction Outline 1 Introduction 2 MIMO working model 3 Eigenvalue

MIMO capacities

Representation theory of unitary groups

Dimension and orthogonality

Dimension of an irreducible representation : dimension of itsinvariant subspace. For U(M)

dm =[ M∏

i=1

1(M − i)!

](−1)M(M−1)/2∆(k)

where ki = mi − i + M.For irreducible representations U(m) and U(m′),∫

(U(m))ij(U(m′)†)kldU =δmm′δikδjl

dm

an orthogonality property we use later.Remember that we need to evaluate∫ ∫

p(UΩV†)dUdV

Page 33: MIMO Capacities : Eigenvalue Computation through ...personal.psu.edu/dsr11/talks/mimo.pdf · MIMO capacities Introduction Outline 1 Introduction 2 MIMO working model 3 Eigenvalue

MIMO capacities

Representation theory of unitary groups

Dimension and orthogonality

Dimension of an irreducible representation : dimension of itsinvariant subspace. For U(M)

dm =[ M∏

i=1

1(M − i)!

](−1)M(M−1)/2∆(k)

where ki = mi − i + M.For irreducible representations U(m) and U(m′),∫

(U(m))ij(U(m′)†)kldU =δmm′δikδjl

dm

an orthogonality property we use later.Remember that we need to evaluate∫ ∫

p(UΩV†)dUdV

Page 34: MIMO Capacities : Eigenvalue Computation through ...personal.psu.edu/dsr11/talks/mimo.pdf · MIMO capacities Introduction Outline 1 Introduction 2 MIMO working model 3 Eigenvalue

MIMO capacities

Representation theory of unitary groups

Character of representation

Character : trace of the representation,χ(g) = tr(ρ(g)).A(m) is the m representation of A, a dm dimensional matrix.Character of irreducible representations :

χm(A) = tr[A(m)] =det

(amj+M−j

i

)∆(a1, . . . , am)

where ai are the eigenvalues of A.Character expansion of exponential :

exp(t tr(A)) =∑

mαm(t)χm(A)

αm(t)- coefficient of each character in the expansion.

Page 35: MIMO Capacities : Eigenvalue Computation through ...personal.psu.edu/dsr11/talks/mimo.pdf · MIMO capacities Introduction Outline 1 Introduction 2 MIMO working model 3 Eigenvalue

MIMO capacities

Representation theory of unitary groups

Character of representation

Character : trace of the representation,χ(g) = tr(ρ(g)).A(m) is the m representation of A, a dm dimensional matrix.Character of irreducible representations :

χm(A) = tr[A(m)] =det

(amj+M−j

i

)∆(a1, . . . , am)

where ai are the eigenvalues of A.Character expansion of exponential :

exp(t tr(A)) =∑

mαm(t)χm(A)

αm(t)- coefficient of each character in the expansion.

Page 36: MIMO Capacities : Eigenvalue Computation through ...personal.psu.edu/dsr11/talks/mimo.pdf · MIMO capacities Introduction Outline 1 Introduction 2 MIMO working model 3 Eigenvalue

MIMO capacities

Representation theory of unitary groups

Character of representation

Character : trace of the representation,χ(g) = tr(ρ(g)).A(m) is the m representation of A, a dm dimensional matrix.Character of irreducible representations :

χm(A) = tr[A(m)] =det

(amj+M−j

i

)∆(a1, . . . , am)

where ai are the eigenvalues of A.Character expansion of exponential :

exp(t tr(A)) =∑

mαm(t)χm(A)

αm(t)- coefficient of each character in the expansion.

Page 37: MIMO Capacities : Eigenvalue Computation through ...personal.psu.edu/dsr11/talks/mimo.pdf · MIMO capacities Introduction Outline 1 Introduction 2 MIMO working model 3 Eigenvalue

MIMO capacities

Representation theory of unitary groups

Character of representation

Character : trace of the representation,χ(g) = tr(ρ(g)).A(m) is the m representation of A, a dm dimensional matrix.Character of irreducible representations :

χm(A) = tr[A(m)] =det

(amj+M−j

i

)∆(a1, . . . , am)

where ai are the eigenvalues of A.Character expansion of exponential :

exp(t tr(A)) =∑

mαm(t)χm(A)

αm(t)- coefficient of each character in the expansion.

Page 38: MIMO Capacities : Eigenvalue Computation through ...personal.psu.edu/dsr11/talks/mimo.pdf · MIMO capacities Introduction Outline 1 Introduction 2 MIMO working model 3 Eigenvalue

MIMO capacities

Computation of the m.g.f.

Outline

1 Introduction

2 MIMO working model

3 Eigenvalue computations

4 Representation theory of unitary groups

5 Computation of the m.g.f.

Page 39: MIMO Capacities : Eigenvalue Computation through ...personal.psu.edu/dsr11/talks/mimo.pdf · MIMO capacities Introduction Outline 1 Introduction 2 MIMO working model 3 Eigenvalue

MIMO capacities

Computation of the m.g.f.

Semi-correlated channels

Recall that, p(G) = c(T)etr(−T−1G†G).Define Λ = diag(λ) = Ω2. Therefore,∫ ∫

p(UΩV†)dUdV

=

∫etr(−ΛU†T−1U)dU

=

∫ ∑m

αm(−1)χm(ΛU†T−1U)dU

=

∫ ∑m

αm(−1)tr(Λ(m)Um†(T(m))−1U(m))dU

=∑

m

αm(−1)

dmχm(T−1)χm(Λ)

Page 40: MIMO Capacities : Eigenvalue Computation through ...personal.psu.edu/dsr11/talks/mimo.pdf · MIMO capacities Introduction Outline 1 Introduction 2 MIMO working model 3 Eigenvalue

MIMO capacities

Computation of the m.g.f.

Semi-correlated channels

Recall that, p(G) = c(T)etr(−T−1G†G).Define Λ = diag(λ) = Ω2. Therefore,∫ ∫

p(UΩV†)dUdV

=

∫etr(−ΛU†T−1U)dU

=

∫ ∑m

αm(−1)χm(ΛU†T−1U)dU

=

∫ ∑m

αm(−1)tr(Λ(m)Um†(T(m))−1U(m))dU

=∑

m

αm(−1)

dmχm(T−1)χm(Λ)

Page 41: MIMO Capacities : Eigenvalue Computation through ...personal.psu.edu/dsr11/talks/mimo.pdf · MIMO capacities Introduction Outline 1 Introduction 2 MIMO working model 3 Eigenvalue

MIMO capacities

Computation of the m.g.f.

Semi-correlated channels

Recall that, p(G) = c(T)etr(−T−1G†G).Define Λ = diag(λ) = Ω2. Therefore,∫ ∫

p(UΩV†)dUdV

=

∫etr(−ΛU†T−1U)dU

=

∫ ∑m

αm(−1)χm(ΛU†T−1U)dU

=

∫ ∑m

αm(−1)tr(Λ(m)Um†(T(m))−1U(m))dU

=∑

m

αm(−1)

dmχm(T−1)χm(Λ)

Page 42: MIMO Capacities : Eigenvalue Computation through ...personal.psu.edu/dsr11/talks/mimo.pdf · MIMO capacities Introduction Outline 1 Introduction 2 MIMO working model 3 Eigenvalue

MIMO capacities

Computation of the m.g.f.

Cauchy-Binet summation

Let Υ = diag(τ), the eigenvalues of T−1.

∑m

[ nt∏i=1

(−1)mi

(mi − i + nt)!

]det(τmj−j+nti ) det(λmj−j+nt

i )

∆(τ)∆(λ)

∝∑

k1>...knt≥0

[ nt∏i=1

(−1)ki

ki!

]det(τ kji ) det(λkj

i )

∆(τ)∆(λ), (ki = mi − i + nt)

=[ nt∏

i=1

τ nri

]det(e−τiλj)

∆(τ)∆(λ)

Recall the Cauchy-Binet formula :∑k1>...knt≥0

det(akji ) det(bkj

i )∏

w(ki) = det(W(aibj))

where W(z) =∑∞

i=0 w(i)zi.

Page 43: MIMO Capacities : Eigenvalue Computation through ...personal.psu.edu/dsr11/talks/mimo.pdf · MIMO capacities Introduction Outline 1 Introduction 2 MIMO working model 3 Eigenvalue

MIMO capacities

Computation of the m.g.f.

Cauchy-Binet summation

Let Υ = diag(τ), the eigenvalues of T−1.

∑m

[ nt∏i=1

(−1)mi

(mi − i + nt)!

]det(τmj−j+nti ) det(λmj−j+nt

i )

∆(τ)∆(λ)

∝∑

k1>...knt≥0

[ nt∏i=1

(−1)ki

ki!

]det(τ kji ) det(λkj

i )

∆(τ)∆(λ), (ki = mi − i + nt)

=[ nt∏

i=1

τ nri

]det(e−τiλj)

∆(τ)∆(λ)

Recall the Cauchy-Binet formula :∑k1>...knt≥0

det(akji ) det(bkj

i )∏

w(ki) = det(W(aibj))

where W(z) =∑∞

i=0 w(i)zi.

Page 44: MIMO Capacities : Eigenvalue Computation through ...personal.psu.edu/dsr11/talks/mimo.pdf · MIMO capacities Introduction Outline 1 Introduction 2 MIMO working model 3 Eigenvalue

MIMO capacities

Computation of the m.g.f.

Cauchy-Binet summation

Let Υ = diag(τ), the eigenvalues of T−1.

∑m

[ nt∏i=1

(−1)mi

(mi − i + nt)!

]det(τmj−j+nti ) det(λmj−j+nt

i )

∆(τ)∆(λ)

∝∑

k1>...knt≥0

[ nt∏i=1

(−1)ki

ki!

]det(τ kji ) det(λkj

i )

∆(τ)∆(λ), (ki = mi − i + nt)

=[ nt∏

i=1

τ nri

]det(e−τiλj)

∆(τ)∆(λ)

Recall the Cauchy-Binet formula :∑k1>...knt≥0

det(akji ) det(bkj

i )∏

w(ki) = det(W(aibj))

where W(z) =∑∞

i=0 w(i)zi.

Page 45: MIMO Capacities : Eigenvalue Computation through ...personal.psu.edu/dsr11/talks/mimo.pdf · MIMO capacities Introduction Outline 1 Introduction 2 MIMO working model 3 Eigenvalue

MIMO capacities

Computation of the m.g.f.

Continuation

Computation of m.g.f. :

g(z) ∝∫

. . .

∫ ∏[(1 + λi)

zλM−Ni ]

∆(λ)

∆(τ)

∏τ nr

i det(e−τiλj)

= (−1)nt(nt−1)/2nt∏

j=1

τ nrj

det Lz

∆(τ)

where Lz,ij is a confluent hypergeometric function of τi’s.

The case of non-zero mean, uncorrelated channels followssimilarly.

Difficulty arises with fully correlated channels.

Page 46: MIMO Capacities : Eigenvalue Computation through ...personal.psu.edu/dsr11/talks/mimo.pdf · MIMO capacities Introduction Outline 1 Introduction 2 MIMO working model 3 Eigenvalue

MIMO capacities

Computation of the m.g.f.

Continuation

Computation of m.g.f. :

g(z) ∝∫

. . .

∫ ∏[(1 + λi)

zλM−Ni ]

∆(λ)

∆(τ)

∏τ nr

i det(e−τiλj)

= (−1)nt(nt−1)/2nt∏

j=1

τ nrj

det Lz

∆(τ)

where Lz,ij is a confluent hypergeometric function of τi’s.

The case of non-zero mean, uncorrelated channels followssimilarly.

Difficulty arises with fully correlated channels.

Page 47: MIMO Capacities : Eigenvalue Computation through ...personal.psu.edu/dsr11/talks/mimo.pdf · MIMO capacities Introduction Outline 1 Introduction 2 MIMO working model 3 Eigenvalue

MIMO capacities

Computation of the m.g.f.

Continuation

Computation of m.g.f. :

g(z) ∝∫

. . .

∫ ∏[(1 + λi)

zλM−Ni ]

∆(λ)

∆(τ)

∏τ nr

i det(e−τiλj)

= (−1)nt(nt−1)/2nt∏

j=1

τ nrj

det Lz

∆(τ)

where Lz,ij is a confluent hypergeometric function of τi’s.

The case of non-zero mean, uncorrelated channels followssimilarly.

Difficulty arises with fully correlated channels.

Page 48: MIMO Capacities : Eigenvalue Computation through ...personal.psu.edu/dsr11/talks/mimo.pdf · MIMO capacities Introduction Outline 1 Introduction 2 MIMO working model 3 Eigenvalue

MIMO capacities

Computation of the m.g.f.

Real matrices and orthogonal groups

Remember we had the nice result∫etr(−ΛU†T−1U)dU =

∑m

αm(−1)

dmχm(T−1)χm(Λ)

Do we have analogous results for the orthogonal matrices?