MICROSTRUCTURE AND MAGNETIC BEHAVIOUR OF …€¦ · MICROSTRUCTURE AND MAGNETIC BEHAVIOUR OF...
-
Upload
trinhtuong -
Category
Documents
-
view
229 -
download
0
Embed Size (px)
Transcript of MICROSTRUCTURE AND MAGNETIC BEHAVIOUR OF …€¦ · MICROSTRUCTURE AND MAGNETIC BEHAVIOUR OF...

Instituto de Ciencia de Materiales de Sevilla
MICROSTRUCTURE AND MAGNETIC MICROSTRUCTURE AND MAGNETIC
BEHAVIOUR OF ALKANETHIOLBEHAVIOUR OF ALKANETHIOL--CAPPED CAPPED
GOLD NANOPARTICLESGOLD NANOPARTICLES
• Nanostructured Materials - A. Fernández- T.C. Rojas- E. Guerrero- M. A. Muñoz-Márquez
• Instituto de Magnetismo aplicado(RENFE-UCM-CSIC)
- A. Hernando- P. Crespo- M. Multigner- M.A.García

Gold and Pd-Nanoparticles GoldGold andand PdPd--Nanoparticles Nanoparticles
electronicoptical
magneticMetallic NPs NOVEL
The Magnetism in Pd and Au cluster is not completely understood.Further experiments are needed. Applications in Nanobiotechnology, Nanomaterials design, Nanoelectronic are foreseen
MICROSTRUCTURE AND MAGNETIC BEHAVIOUR OF ALKANETHIOL-CAPED GOLD NANOPARTICLES
Ferromagnetic hysteresis at room temperature in 1.7nm gold NPs cappedby alkanethiol molecules (PRL 93, 087204 (2004))
Ferromagnetic order in alkylammonium and alkanethiol protected Pd NPs(PRL 91, 237203 (2003); PRB 73, 054404 (2006); Nanotechn. 17, 1449 (2006)
Theory: Orbital ferromagnetism and giant anisotropy (PRL 96. 057206 (2006)

Synthesis Gold-NPSSynthesisSynthesis GoldGold--NPSNPS
AuCl4-(toluene) + RSH → (-AuISR-)n(polymer)
Method of Brust et al. Two-step process:
1-
MICROSTRUCTURE AND MAGNETIC BEHAVIOUR OF ALKANETHIOL-CAPED GOLD NANOPARTICLES
In the first step Au(III) isreduced to Au(I) by oxidizingthe thiols to disulfides. In non polar solvents the AuI(SR) species aggregate forming a polymeric phase.We have isolated thisintermediate polymeric phase

Synthesis Gold-NPSSynthesisSynthesis GoldGold--NPSNPS
MICROSTRUCTURE AND MAGNETIC BEHAVIOUR OF ALKANETHIOL-CAPED GOLD NANOPARTICLES
Polym-aged Polymer e-irradiated
The polymeric phase evolves by aging at room temperature (even in dark) or by e-beam irradaition in the TEM microscope
This sample can also be isolated

Au/Thiol1:2 1:1
Synthesis Gold-NPSSynthesisSynthesis GoldGold--NPSNPS
(-AuISR-)n + BH4- → Aux(SR)y
S
S
S
S
S
S
S S
S
S
S S
S
S
S
S
1 nm.
S
S
S
S
S
S
S S
S
S
S S
S
S
S
SSS S S SS
SSS
SSS SS S
S
Second step: reduction of the polymeric phase by borohydride. Formationof typical gold NPs functionalised by alkanethiol molecules.
MICROSTRUCTURE AND MAGNETIC BEHAVIOUR OF ALKANETHIOL-CAPED GOLD NANOPARTICLES
2-

HREMHREM
CharacterizationCharacterizationCharacterization
MICROSTRUCTURE AND MAGNETIC BEHAVIOUR OF ALKANETHIOL-CAPED GOLD NANOPARTICLES
2.4 Å

Sample AuWt%
FeWt%
Swt%
CWt%
HWt%
Au/S(at. Ratio)
Dm(nm)
TotalNr
% Nr
Au-SR1 70.5 0.018 3.7 23.6 4.1 3.0 2.2 249 162
Au-SR2 50.3 0.007 4.1 24.3 4.4 1.7 2.0 177 122
Au(I)-SR2-Polym
49.5 0.012 7.8 36.4 6.2 1.0 ¿ ?
CharacterizationCharacterizationCharacterization
MICROSTRUCTURE AND MAGNETIC BEHAVIOUR OF ALKANETHIOL-CAPED GOLD NANOPARTICLES
SizeSize andand chemicalchemical compositioncomposition
The polymeric phase is minimising the Au:S atomic ratio

CharacterizationCharacterizationCharacterizationXANESXANES
MICROSTRUCTURE AND MAGNETIC BEHAVIOUR OF ALKANETHIOL-CAPED GOLD NANOPARTICLES
White line
Unoccupieddensities of d
states
-10 0 10 20 30 40
-10 0 10 20 30 40
Inte
nsity
(a.u
.)
E - E0
Au Foil Au(I)-SR2- Polym Au(I) Sulfide
Au Foil Au-SR1 Au-SR2
E - E0
Au LII- edge
Charge transferfrom Au to S

CharacterizationCharacterizationCharacterizationEXAFS EXAFS Modulus of the Fourier Transform of EXAFS oscillations
at the Au L3-edge
1 2 3 4 5
IT.F
I
R(Å)
Au-SR1 Au-SR2 Au Foil
MICROSTRUCTURE AND MAGNETIC BEHAVIOUR OF ALKANETHIOL-CAPED GOLD NANOPARTICLES
1 2 3 4 5
IT.F
I
R(Å)
Au(I)-SR2- Polym Au(I) Sulfide Au Foil
Au-S
Au-Au
Au-Au
Au-S

CharacterizationCharacterizationCharacterizationEXAFSEXAFS Best fitting of the Au L3– edge EXAFS oscillations
0 1 2 3 4
IF.T
I
R (Å)
Au(I)-SR2-Polym
0 1 2 3 4
Au-SR1
0 1 2 3 4
Au-SR2Au-SR1 Au-SR2
Au(I)-SR2-polym
2 4 6 8 10 12 14
Au-SR2
Au-SR1
X2 xK
K (Å-1)
Au(I)-SR2-PolymAu(I)-SR2-polym
Au-SR1
Au-SR2
MICROSTRUCTURE AND MAGNETIC BEHAVIOUR OF ALKANETHIOL-CAPED GOLD NANOPARTICLES

SampleCoordination number
R: bondlength.
σ: Debye-Waller factors.
Δσ2x10-3
(Å2)ΔE0(eV)
Au Foil (Au-Au)m 12 2.850 0.073
Au-SR1 (Au-S)(Au-Au)m
0.458.8
2.3002.802
0.090.094
3.5 4.3
Au-SR2 (Au-S)(Au-Au)m
0.716.8
2.2892.772
0.0910.099
4.5 6.5
Au(I)-SR2-
Polym
(Au-S) 1.3 2.280 0.036
Au(I) Sulfide
(Au-S) 1.7 2.307 0.063
MICROSTRUCTURE AND MAGNETIC BEHAVIOUR OF ALKANETHIOL-CAPED GOLD NANOPARTICLES
CharacterizationCharacterizationCharacterization
EXAFSEXAFS Best fitting parameters of the Au L3– edge EXAFS oscillations

CharacterizationCharacterizationCharacterization
XPSXPS
MICROSTRUCTURE AND MAGNETIC BEHAVIOUR OF ALKANETHIOL-CAPED GOLD NANOPARTICLES
80 82 84 86 88 90 920,0
0,2
0,4
0,6
0,8
1,0 Energy shift (eV)Au 4f
norm
alis
ed in
tens
ity (a
rb. u
nits
)
binding energy (eV)
Au-SR1 Au-SR2 Au2S Polymer
0.00- 0.03+0.51+0.57
80 82 84 86 88 90 920,0
0,2
0,4
0,6
0,8
1,0
norm
alis
ed in
tens
ity (a
rb. u
nits
)shifted binding energy (eV)
Au Foil Au-SR1 Au-SR2 Au2S Polymer
Au 4f Peak width (eV)1.141.261.361.461.84
The Au(I)-SR polymeric sample is the one maximazing the chargetransfer from Au to S and the number of gold atoms bonded to sulfur

400 500 600 700 800
Abs
orba
nce
Wavelength (nm)
Au-SR1 Au-SR2 Au(I)-SR2-Polym Au(I)-SR2-Polym-aged
CharacterizationCharacterizationCharacterization
UVUV--VISVIS
MICROSTRUCTURE AND MAGNETIC BEHAVIOUR OF ALKANETHIOL-CAPED GOLD NANOPARTICLES
Three samples have been obtained withdifferent microstructures at the nanoscale:
Gold nanoparticles (NPs) of 2.2 nm average diameter capped through Au-S bonds by alkanethiol molecules
Gold nanoparticles (NPs) of 2.0 nm average diameter capped through Au-S bonds by alkanethiol molecules
A polymeric Au(I)-SR phase containingAu atoms fully dispersed in an alkane-thiol matrix with 100% of the gold atomsbonded to sulfur

5 K 300 KSample Ms (emu/gr Au) Hc(Oe) Ms (emu/gr Au) Hc (Oe) Au-SR1 0.0045 (3050 Oe) 115 0,0034 (2023 Oe) 55 Au-SR2 0,094 (10000 Oe) 180 0,049 (10000 Oe) 20
Magnetic behaviourMagneticMagnetic behaviourbehaviour
MICROSTRUCTURE AND MAGNETIC BEHAVIOUR OF ALKANETHIOL-CAPED GOLD NANOPARTICLES
-10000 -5000 0 5000 10000-0,010
-0,005
0,000
0,005
0,010
-10000 -5000 0 5000 10000
-0,10
-0,05
0,00
0,05
0,10a)Au-SR1 T = 5K T = 300K
M (e
mu/
g Au
)
H (Oe)
b)Au-SR2 T = 5 K T = 300K
M (e
mu/
g Au
)
H (Oe)
-200 -100 0 100 200-0,010
-0,005
0,000
0,005
0,010
M (e
mu/
g A
u)
H (Oe)
Au-SR2Au-SR1
Factors improving the ferromagnetic order:Smaller particle size, smaller Au:S atomic ratios, charge transfer from Au to S

Magnetic behaviourMagneticMagnetic behaviourbehaviour
-10000 -5000 0 5000 10000-0,010
-0,005
0,000
0,005
0,010
-10000 -5000 0 5000 10000-0,010
-0,005
0,000
0,005
0,010 T = 5K T = 300K
M (e
mu/
g Au
)
H (Oe)
T = 5K T = 300K
M (e
mu/
g Au
)
H (Oe)
Au(I)-SR2-Poym Au(I)-SR2-Poym-Aged
MICROSTRUCTURE AND MAGNETIC BEHAVIOUR OF ALKANETHIOL-CAPED GOLD NANOPARTICLES
The polymeric phase is the one maximizing charge transfer from gold to sulfur andmaximizing the number of Au atoms bonded to S.However the simultaneous presence of Au-S and Au-Au bonds is necessary to detectthe ferromagnetic like behaviour.Orbital ferromagnetism: Orbital states associated to a certain cluster of gold atoms

ConclusionsConclusionsConclusionsThree samples have been studied containing gold atoms functionalised with alkane-thiol molecules (-SR), having three different microstructures at the nanoscale:
Gold NPs of 2.2 nm average particle size. Capped through Au-S bonds by alkanethiol molecules. Au:S at. ratio=3.0
Gold NPs of 2.0 nm average particle size. Capped through Au-S bonds by alkane-thiol molecules. Au:S at. ratio=1.7
Polymeric Au(I)-SR phase containing 100% of Au atoms bonded to S in the alkanethiol molecules. Total dispersion of gold. Au:S at.ratio=1.0
It has been experimentally demonstrated that the presence of a ferromagnetic likebehaviour is associated with the simultaneous presence of Au-Au and Au-S bonds.
The presence of metallic or condunting clusters or surfaces are necessary to produce orbital moments induced in atomic like localized states.
These crucial experiments point out the orbital contribution to the observedmagnetic behaviour.