Micro-Fabrication by ECM and Deposition

42
Microfabrication by Electrochemical Machining and Deposition Byung Jin Park Prof. Chong Nam Chu School of Mechanical and Aerospace Engineering Seoul National University, Korea September 9, 2004

Transcript of Micro-Fabrication by ECM and Deposition

Page 1: Micro-Fabrication by ECM and Deposition

8/8/2019 Micro-Fabrication by ECM and Deposition

http://slidepdf.com/reader/full/micro-fabrication-by-ecm-and-deposition 1/42

Microfabrication by ElectrochemicalMachining and Deposition

Byung Jin Park

Prof. Chong Nam ChuSchool of Mechanical and Aerospace Engineering

Seoul National University, Korea

September 9, 2004

Page 2: Micro-Fabrication by ECM and Deposition

8/8/2019 Micro-Fabrication by ECM and Deposition

http://slidepdf.com/reader/full/micro-fabrication-by-ecm-and-deposition 2/42

Characteristics of Micro-E

CM

No tool wear (vs. EDM, Micro end milling)

No mechanical stress (vs. Micro end milling)

No heat affected zone (vs. EDM, Laser beam machining)

Excellent surface quality

3D complex shape (vs. Lithography)

Versatility of materials: metal, conductive polymer, graphite,

semiconductor, etc. (vs. Lithography)

Low cost (vs. Lithography, Ion beam machining, LIGA) Good productivity (vs. AFM/STM manipulation, Ion beam machining)

Page 3: Micro-Fabrication by ECM and Deposition

8/8/2019 Micro-Fabrication by ECM and Deposition

http://slidepdf.com/reader/full/micro-fabrication-by-ecm-and-deposition 3/42

Research

Contents

Micro-tool fabrication

Electrochemical etching

Wire electrical discharge

machining

E lectrochemical machining 

Micro-hole

Micro-groove

Micro-mold

E lectrochemical deposition Micro-column

Micro-spring

Micro patterning

Page 4: Micro-Fabrication by ECM and Deposition

8/8/2019 Micro-Fabrication by ECM and Deposition

http://slidepdf.com/reader/full/micro-fabrication-by-ecm-and-deposition 4/42

Electrochemical Etching

H2SO4 solution

Z-stage

PMACcontroller 

Feedingdirection

Pt wire

Tungstencarbide

DC power supply

PC

S chematic diagram of the ECE system

Electrochemical etching of WC rod (high rigidity & high

hardness)

Electrolyte: 1.5 M H2SO4

solution

Shaft size, shape, and

surface quality according toelectrolyte concentration,

applied voltage, etching time,etc.

Page 5: Micro-Fabrication by ECM and Deposition

8/8/2019 Micro-Fabrication by ECM and Deposition

http://slidepdf.com/reader/full/micro-fabrication-by-ecm-and-deposition 5/42

Micro-tool Fabricated

by Electrochemical Etching

J 30 Qm

J 4 Qm

Page 6: Micro-Fabrication by ECM and Deposition

8/8/2019 Micro-Fabrication by ECM and Deposition

http://slidepdf.com/reader/full/micro-fabrication-by-ecm-and-deposition 6/42

Micro-tool Fabricated

by Wire Electrical Discharge Machining

W ire E lectrical Discharge Machining 

( W E DM)

Page 7: Micro-Fabrication by ECM and Deposition

8/8/2019 Micro-Fabrication by ECM and Deposition

http://slidepdf.com/reader/full/micro-fabrication-by-ecm-and-deposition 7/42

Principle of Electrochemical

Machining/Deposition

Workpiece

Tool

Machining: anodic dissolution

Deposition: cathodic reduction

Electric field localization at tool-end

region using ultra short pulses

Electrolyte

Page 8: Micro-Fabrication by ECM and Deposition

8/8/2019 Micro-Fabrication by ECM and Deposition

http://slidepdf.com/reader/full/micro-fabrication-by-ecm-and-deposition 8/42

Page 9: Micro-Fabrication by ECM and Deposition

8/8/2019 Micro-Fabrication by ECM and Deposition

http://slidepdf.com/reader/full/micro-fabrication-by-ecm-and-deposition 9/42

Principle of Electric Field

Localization Using Ultra ShortPu

lses

T ip-end of a tool : due to small electrolyte resistance (Rs_small),the time constant (X1) for double layer charging is small.

S ide of a tool : due to large electrolyte resistance (Rs_large

), thetime constant (X2) for double layer charging is large.

Dissolution region can be localized under the condition of 

X1 <T<< X2 (T: pulse on-time)

X=  Vd C  DL

d : machinable distance

 V: specific electrolyte resistivity

C DL: specific double layer capacity (~10 QF/cm2)

X: time constant for DL charging

Rs_large

Rs_small

C

d

Tool

Workpiece

Rp

T

Page 10: Micro-Fabrication by ECM and Deposition

8/8/2019 Micro-Fabrication by ECM and Deposition

http://slidepdf.com/reader/full/micro-fabrication-by-ecm-and-deposition 10/42

TARBO 8551

Pulse Generator 

(50MHz)

TDS 3034Oscilloscope

(300MHz,Tektronix)

Experimental Equ

ipments

Tool

Workpiece

BalanceElectrode

Pulse Generator 

Oscilloscope

PMAC Controller 

S chematic diagram of pulsed EC M system

+-

Page 11: Micro-Fabrication by ECM and Deposition

8/8/2019 Micro-Fabrication by ECM and Deposition

http://slidepdf.com/reader/full/micro-fabrication-by-ecm-and-deposition 11/42

B

alance Electrode

+

Vwork

Vtool

surface covered with chromium oxide layer after machining without balance electrode

Because of very small contact area between thetool and the electrolyte, the voltage drop israther larger than the voltage drop betweenelectrolyte and substrate.

Cr passive layer (chromium oxide) is formed onthe hole surface.(Cr passivation region: -300 mV~1000 mV)

By implementing the balance electrode (Ptplate) connected to the cathode, we canmachine the holes in the transpassive region.- Minimize the bubble generation, boiling.

- Prevent the Cr oxide layer forming.

 ± 

Page 12: Micro-Fabrication by ECM and Deposition

8/8/2019 Micro-Fabrication by ECM and Deposition

http://slidepdf.com/reader/full/micro-fabrication-by-ecm-and-deposition 12/42

Experiments for Dissolu

tion Localization

Feeding 10 Qm into the workpiece

Machining for a specific time

Measuring the hole diameter atthe top surface

J 30 Qm

10 Qm

R 5 Qm

Electrolyte 0.1 M H2SO4

Tool WC J  30 Qm

Workpiece 304 SS

Pulse period 2 Qs

Page 13: Micro-Fabrication by ECM and Deposition

8/8/2019 Micro-Fabrication by ECM and Deposition

http://slidepdf.com/reader/full/micro-fabrication-by-ecm-and-deposition 13/42

0 10 20 30 40 50 60

30

40

50

60

70

80

     o   l

 

   i

   t  r   (     Q

   )

c i i Ti ( i )

  

¡ 

-ti¢ £ 

 20 ¡ 

s 40 ¡ 

s

 60 ¡ 

s 80 ¡ 

s

C 3.5V 5.0 V, 2 Qs p riod

6.0 V, 2 Qs p riod 6.0 V, 40 s on-ti

Localization According toPu

lse On/Off-time and Applied Voltage

0 30 60 90 1200

200

400

600

800

1000

1200

      H  o

   l  e   D   i  a  m  e   t  e  r   (     Q  m   )

Machining Time (min)

0 10 20 30 40 50 60

30

40

50

60

70

80

      H  o   l  e   D   i  a  m  e   t  e  r

   (     Q  m   )

Machining Time (min)

On-time

20 ns 40 ns

60 ns 80 ns

0 10 20 30 40 50 60

30

40

50

60

70

80

      H  o   l  e   D   i  a  m  e   t  e  r

   (     Q  m   )

Machining Time (min)

Period

2 Qs 1 Qs

500 ns 200 ns

Page 14: Micro-Fabrication by ECM and Deposition

8/8/2019 Micro-Fabrication by ECM and Deposition

http://slidepdf.com/reader/full/micro-fabrication-by-ecm-and-deposition 14/42

(a) 200 ns period 

J 30 Qm tool, 6.0 V,40 ns on-time,

30 min. machining time,55 Qm diameter.

(b) 5 00 ns period 

J 30 Qm tool, 6.0 V,40 ns on-time,

30 min. machining time,49 Qm diameter.

(c) 2 Qs period 

J 30 Qm tool, 6.0 V,40 ns on-time,

30 min. machining time,47 Qm diameter.

Hole Size & Shape

According toPu

lse Off-time

Page 15: Micro-Fabrication by ECM and Deposition

8/8/2019 Micro-Fabrication by ECM and Deposition

http://slidepdf.com/reader/full/micro-fabrication-by-ecm-and-deposition 15/42

Two Step Condition

Step 1: J30 Qm tool

6.5 V, 120 ns/2 Qs

40 min machining time

85 Qm depth

84 Qm diameter 

Step 2: J30 Qm tool

5.0 V, 30 ns/2 Qs

20 min machining time

15 Qm depth

28 Qm diameter 

T his process can be applied to fabricate the micro-punching dies and nozzles

Front Back

StepH

ole

Page 16: Micro-Fabrication by ECM and Deposition

8/8/2019 Micro-Fabrication by ECM and Deposition

http://slidepdf.com/reader/full/micro-fabrication-by-ecm-and-deposition 16/42

20 Qm depth

De: 106 Qm, Db: 52 QmTaper: 53Û

50 Qm depth

De: 126 Qm , Db: 66 QmTaper: 31Û

70 Qm depth

De: 132 Qm , Db: 72 QmTaper: 23Û

100 Qm depth (Through hole)

De: 140 Qm , Db: 108 QmTaper: 9Û

Over-cut generation Large taper 

Gradual decrease in taper angledue to increased machined depth

Sudden reductionin taper just after 

perforation

J 50 Qm tool, 7.5 V, 300 ns / 2 Qs, without balance electrode

The Sequence of Taper 

Generation

Page 17: Micro-Fabrication by ECM and Deposition

8/8/2019 Micro-Fabrication by ECM and Deposition

http://slidepdf.com/reader/full/micro-fabrication-by-ecm-and-deposition 17/42

Mac ining Ti

   H     o   l 

   i      a .

  1> 2

Entr anc

Bottom

Mac ining start E1

Mac ining start B1

T_f d T_dw ll

E2

B2

TVoltage up

On-time up

  1   2

Tfeed Tdwell

T

 D1

 D2

B1

B2

E1

E2

T

Ehigh : Entrance, High Condition

Elow : Entrance, Low Condition

Bhigh : Bottom, High Condition

Blow : Bottom, Low Condition

Taper ReductionT

echniqu

e inB

lindH

ole Machining

Localization

Curve

Page 18: Micro-Fabrication by ECM and Deposition

8/8/2019 Micro-Fabrication by ECM and Deposition

http://slidepdf.com/reader/full/micro-fabrication-by-ecm-and-deposition 18/42

J 20 Qm tool, 100 Qm thickness 304 SS

(a) Continuous condition :6.0 V, 80 ns on-time, 2 Qs period, 20 minmachining time

60 Qm depth, 49 Qm diameter and 12.7Û taper 

angle.

(b) Two-step condition :1st step: 6.0 V, 80 ns on-time, 2 Qs period, 30min machining time

2nd step: 7.0 V, 100 ns on-time, 2 Qs period, 5min machining time

60 Qm depth, 52 Qm diameter and 4.8Û taper 

angle.

Taper Reductionby the Proposed Method

Page 19: Micro-Fabrication by ECM and Deposition

8/8/2019 Micro-Fabrication by ECM and Deposition

http://slidepdf.com/reader/full/micro-fabrication-by-ecm-and-deposition 19/42

(a) Entrance: 13.6 Qm in diameter (b) Exit: 10.5 Qm in diameter 

Two step condition :

1st step: 4.8 V, 32 ns/2 Qs, 50 min machining time.

2nd step: 5.2 V, 32 ns/2 Qs, 10 min machining time.

t 100 304 SS, 0.1 M H2SO4, J 4 Qm tool

J 13.6 Qm / J 10.5 Qm, 0.9Û taper angle,

 A/R 8.3

Micro-hole (1)

Page 20: Micro-Fabrication by ECM and Deposition

8/8/2019 Micro-Fabrication by ECM and Deposition

http://slidepdf.com/reader/full/micro-fabrication-by-ecm-and-deposition 20/42

t 100 Qm 304 SS, 0.1 M H2SO4, J 4 Qm tool

(a) Entrance: 20.3 Qm in diameter (b) Exit: 18.1 Qm in diameter 

Two step condition :

1st step: 5 V, 30 ns/2 Qs, 25 min machining time.

2nd step: 5.5 V, 30 ns/2Qs, 10 min machining time.

J 20.3 Qm / J 18.1 Qm, 0.6Û taper angle,

 A/R 5.2

Micro-hole (2)

Page 21: Micro-Fabrication by ECM and Deposition

8/8/2019 Micro-Fabrication by ECM and Deposition

http://slidepdf.com/reader/full/micro-fabrication-by-ecm-and-deposition 21/42

(a) Entrance: 8.0Qm in diameter (b) Exit: 7.3 Qm in diameter 

t 20 Qm 304 SS, 0.1 M H2SO4, J 6 Qm tool

J 8.0 Qm / J 7.3 Qm, 1.0 º taper angle and A/R 2.3

Micro-hole (3)

4.2 V, 21 ns/2 Qs, 30 min machining time.

Page 22: Micro-Fabrication by ECM and Deposition

8/8/2019 Micro-Fabrication by ECM and Deposition

http://slidepdf.com/reader/full/micro-fabrication-by-ecm-and-deposition 22/42

Micro-mold Fabrication byElectrochemical Milling

Material: Stainless steel (304 SS)

Mold size:

150 mm x 100 mm x 60 mm

Column size:

30 mm x 20 mm x 60 mm

Page 23: Micro-Fabrication by ECM and Deposition

8/8/2019 Micro-Fabrication by ECM and Deposition

http://slidepdf.com/reader/full/micro-fabrication-by-ecm-and-deposition 23/42

Layer-by-layer Machining

 Advantage ± Electrolyte flushing for ion

supply

 ± Short machining time

Machining gap according tomachining time

Page 24: Micro-Fabrication by ECM and Deposition

8/8/2019 Micro-Fabrication by ECM and Deposition

http://slidepdf.com/reader/full/micro-fabrication-by-ecm-and-deposition 24/42

Micro-mold Fabricatedby Cylindrical Tool

6 V, 60 ns pulse on-time, 1 Qs period

Page 25: Micro-Fabrication by ECM and Deposition

8/8/2019 Micro-Fabrication by ECM and Deposition

http://slidepdf.com/reader/full/micro-fabrication-by-ecm-and-deposition 25/42

Machining Gap According to Tool Shape

Cylindrical tool

Disk-type tool

6 V, 60 ns/ 1 Qs

?

Page 26: Micro-Fabrication by ECM and Deposition

8/8/2019 Micro-Fabrication by ECM and Deposition

http://slidepdf.com/reader/full/micro-fabrication-by-ecm-and-deposition 26/42

Disk-type Electrode

Disk-type electrode Material: WC

Disk diameter: 70 Qm

Neck diameter: 20 Qm

100 V, 400 pF

Page 27: Micro-Fabrication by ECM and Deposition

8/8/2019 Micro-Fabrication by ECM and Deposition

http://slidepdf.com/reader/full/micro-fabrication-by-ecm-and-deposition 27/42

Micro-mold with a Vertical Column

Micro-mold (304 SS)

6 V, 60 ns / 1 Qs

Column size

 ± Width: 30 Qm

 ± Height: 60 Qm

10Qm

Page 28: Micro-Fabrication by ECM and Deposition

8/8/2019 Micro-Fabrication by ECM and Deposition

http://slidepdf.com/reader/full/micro-fabrication-by-ecm-and-deposition 28/42

Machining GapAccording to Tool Shape

Cylindrical tool

Disk-type tool 6 V, 60 ns/ 1 Qs

Page 29: Micro-Fabrication by ECM and Deposition

8/8/2019 Micro-Fabrication by ECM and Deposition

http://slidepdf.com/reader/full/micro-fabrication-by-ecm-and-deposition 29/42

Micro-mold Fabricated by Disk-typeTool

Micro-mold (304 SS)

6 V, 60 ns pulse on-time, 1 Qs

period Column size

 ± Width: 84 Qm

 ± Height: 80 Qm

Page 30: Micro-Fabrication by ECM and Deposition

8/8/2019 Micro-Fabrication by ECM and Deposition

http://slidepdf.com/reader/full/micro-fabrication-by-ecm-and-deposition 30/42

Electrochemical Milling

Material: SS304

Electrolyte: 0.1 M H2SO4

Pulse: 6.0 V, 60 ns / 1 Qs

Page 31: Micro-Fabrication by ECM and Deposition

8/8/2019 Micro-Fabrication by ECM and Deposition

http://slidepdf.com/reader/full/micro-fabrication-by-ecm-and-deposition 31/42

Micro-groove

Micro-groove (304 SS)

6 V, 60 ns/ 1 Qs45 Qm width, 100 Qm depth, 300 Qm length

300Qm

Page 32: Micro-Fabrication by ECM and Deposition

8/8/2019 Micro-Fabrication by ECM and Deposition

http://slidepdf.com/reader/full/micro-fabrication-by-ecm-and-deposition 32/42

Micro-wall

Micro-wall

304 SS, 6 V, 60 ns/ 1 Qs

4 Qm width

15 Qm height

Page 33: Micro-Fabrication by ECM and Deposition

8/8/2019 Micro-Fabrication by ECM and Deposition

http://slidepdf.com/reader/full/micro-fabrication-by-ecm-and-deposition 33/42

Electrochemical Wire Grooving

Material: SS304

Wire: Pt wire 10 Qm

Electrolyte: 0.1 M H2SO4

Pulse: 8.0 V, 400 ns / 1 ns

Groove with 28 Qm width, 20 Qm depth

Page 34: Micro-Fabrication by ECM and Deposition

8/8/2019 Micro-Fabrication by ECM and Deposition

http://slidepdf.com/reader/full/micro-fabrication-by-ecm-and-deposition 34/42

Electrochemical Wire Grooving

Page 35: Micro-Fabrication by ECM and Deposition

8/8/2019 Micro-Fabrication by ECM and Deposition

http://slidepdf.com/reader/full/micro-fabrication-by-ecm-and-deposition 35/42

Electrochemical Deposition

0.5 M CuSO4

0.5 M H2SO4

Cu substrate

Pt-Ir tip

Pulse generator 

Oscilloscope

PMAC controller 

Electrochemical deposition of 

Cu on Cu substrate

Electrolyte: 0.5 M CuSO4 + 0.5M H2SO4 solution

Deposition size, shape, and

structure according to appliedvoltage, and pulse duration

Electrochemical writing

Cathode: Cu2+ + 2e ± Cu

 Anode: 2H2O 4H+ + 4e ± + O2

Ex  perimental set-up for 

electrochemical deposition

+ -

Page 36: Micro-Fabrication by ECM and Deposition

8/8/2019 Micro-Fabrication by ECM and Deposition

http://slidepdf.com/reader/full/micro-fabrication-by-ecm-and-deposition 36/42

Effects of Applied Voltage& Pulse On-time on Deposition

2.5 3.0 3.5 4.0 4.5 5.0

6

8

10

12

14

16

18

20

On-time: 400 ns

Pulse period: 1 Qs

   C  o   l  u  m  n   D   i  a  m  e   t  e  r   (

     Q  m   )

Voltage (V)

Deposited column diameter 

decreases as applied voltageincreases since the growing rate is

high under high voltage condition

Dendritic structure is formed withshort pulse on-time (< 250 ns /1 Qs)

Column diameter according to

applied voltage

 Applied voltage: 3.0 ~ 3.5 V

Pulse: 350 ~ 450 ns / 1 Qs

R ecommended condition

Page 37: Micro-Fabrication by ECM and Deposition

8/8/2019 Micro-Fabrication by ECM and Deposition

http://slidepdf.com/reader/full/micro-fabrication-by-ecm-and-deposition 37/42

Column Deposition

3.5 V, 450 ns/1 Qs, J 7 Qm dia., 24 Qm

height

4.0 V, 450 ns/1 Qs, J 7 Qm dia., 15 Qm

height

Page 38: Micro-Fabrication by ECM and Deposition

8/8/2019 Micro-Fabrication by ECM and Deposition

http://slidepdf.com/reader/full/micro-fabrication-by-ecm-and-deposition 38/42

Column Array

3.5 V, 350 ns/1 Qs, 70 Qm height

Page 39: Micro-Fabrication by ECM and Deposition

8/8/2019 Micro-Fabrication by ECM and Deposition

http://slidepdf.com/reader/full/micro-fabrication-by-ecm-and-deposition 39/42

Micro-spring

2.5 V, 450 ns/1 Qs, 100 Qm spring radius, 350 Qm pitch

Page 40: Micro-Fabrication by ECM and Deposition

8/8/2019 Micro-Fabrication by ECM and Deposition

http://slidepdf.com/reader/full/micro-fabrication-by-ecm-and-deposition 40/42

Micro Patterning (1)

10 Qm line width, 2.5 V, 400 ns/1 Qs

Cu substrate

Pt-Ir tip

Page 41: Micro-Fabrication by ECM and Deposition

8/8/2019 Micro-Fabrication by ECM and Deposition

http://slidepdf.com/reader/full/micro-fabrication-by-ecm-and-deposition 41/42

Micro Patterning (2)

10 Qm line width, 2.5 V, 450 ns/1 QsSpiral, line width 15 Qm, pitch 60 Qm,

2.0 V, 450 ns/1 Qs,

Page 42: Micro-Fabrication by ECM and Deposition

8/8/2019 Micro-Fabrication by ECM and Deposition

http://slidepdf.com/reader/full/micro-fabrication-by-ecm-and-deposition 42/42

Conclusions

Micro-tool Fabrication

Electrochemical Etching Wire Electrical Discharge Machining

Localization of Electrochemical

Reaction

Region, Using UltraShort Pulses

Machining Gap Modeling, Tool Shape Design

Electrochemical Machining

Micro-hole

Micro-groove

Micro-mold Electrochemical Deposition

Micro-column Micro-spring

Micro patterning