Micro and Smart Systems

download Micro and Smart Systems

of 498

Transcript of Micro and Smart Systems

  • 8/11/2019 Micro and Smart Systems

    1/497

  • 8/11/2019 Micro and Smart Systems

    2/497

  • 8/11/2019 Micro and Smart Systems

    3/497

    Micro and Smart Systems

  • 8/11/2019 Micro and Smart Systems

    4/497

  • 8/11/2019 Micro and Smart Systems

    5/497

    Micro and Smart SystemsTechnology and Modeling

    G.K. ANANTHASURESH

    K.J. VINOY

    S. GOPALAKRISHNAN

    K.N. BHAT

    V.K. AATRE

    Indian Institute of Science

    Bangalore INDIA

  • 8/11/2019 Micro and Smart Systems

    6/497

    VP AND EXECUTIVE PUBLISHE R Don Fowley

    ASSISTANT PUBLISHER Daniel Sayr e

    SENIOR EDITORIAL ASSISTANT Katie Singleton

    EXECUTI VE MARKETING MANAGER Christopher Ruel

    MARKETI NG ASSISTANT Ashley Tomeck

    SENIOR PRODUCTION MANAGER Janis Soo

    ASSISTANT PRODUCTION EDITOR Elaine S. Chew

    EXECUTI VE MEDIA EDITOR Tom Kulesa

    MEDIA EDITOR Wendy Ashenberg

    MEDIA SPECIALIST Jennif er Mullin

    COVER DESIGNER Wendy Lai

    COVER I MAGE Sambuddha Khan

    T h i s b o o k w a s s e t i n T i m e s b y T h o m s o n D i g i t a l , N o i d a , I n d i a a n d p r i n t e d a n d b o u n d b y C o u r i e r W e s t f o r d , I n c .

    T h e c o v e r w a s p r i n t e d b y C o u r i e r W e s t f o r d , I n c .

    T h i s b o o k i s p r i n t e d o n a c i d f r e e p a p e r . 1

    F o u n d e d i n 1 8 0 7 , J o h n W i l e y & S o n s , I n c . h a s b e e n a v a l u e d s o u r c e o f k n o w l e d g e a n d u n d e r s t a n d i n g f o r m o r e t h a n2 0 0 y e a r s , h e l p i n g p e o p l e a r o u n d t h e w o r l d m e e t t h e i r n e e d s a n d f u l fi l l t h e i r a s p i r a t i o n s . O u r c o m p a n y i s b u i l t o n a

    f ounda t i on of pr i nc i pl e s t ha t i nc l ude r e s pons i bi l i t y t o t he c om m uni t i e s w e s e r ve a nd w he r e w e l i ve a nd w or k. I n

    2008, w e l a unc he d a C or por a t e C i t i z e ns hi p I ni t i a t i ve , a gl oba l e f f or t t o a ddr e s s t he e nvi r onm e nt a l , s oc i a l ,

    e c onom i c , a nd e t hi c a l c ha l l e nge s w e f a c e i n our bus i ne s s . A m ong t he i s s ue s w e a r e a ddr e s s i ng a r e c a r bon i m pa c t ,

    pa pe r s pe c i fi c a t i ons a nd pr oc ur e m e nt , e t hi c a l c onduc t w i t hi n our bus i ne s s a nd a m ong our ve ndor s , a nd c om m uni t y

    a nd c har i t a bl e s upport . F or m or e i nf orm a t ion, pl ea s e vi s it our w e bs i t e: www.wiley.com/go/citizenship.

    Copyright # 2 0 1 2 , J o h n W i l e y & S o n s , I n c . A l l r i g h t s r e s e r v e d . N o p a r t o f t h i s p u b l i c a t i o n m a y b e r e p r o d u c e d ,

    s t o r e d i n a r e t r i e v a l s y s t e m o r t r a n s m i t t e d i n a n y f o r m o r b y a n y m e a n s , e l e c t r o n i c , m e c h a n i c a l , p h o t o c o p y i n g ,

    r e c o r d i n g , s c a n n i n g o r o t h e r w i s e , e x c e p t a s p e r m i t t e d u n d e r S e c t i o n s 1 0 7 o r 1 0 8 o f t h e 1 9 7 6 U n i t e d S t a t e s

    C o p y r i g h t A c t , w i t h o u t e i t h e r t h e p r i o r w r i t t e n p e r m i s s i o n o f t h e P u b l i s h e r , o r a u t h o r i z a t i o n t h r o u g h p a y m e n t o f t h e a p p r o p r i a t e p e r - c o p y f e e t o t h e C o p y r i g h t C l e a r a n c e C e n t e r , I n c . 2 2 2 R o s e w o o d D r i v e , D a n v e r s , M A 0 1 9 2 3 ,

    website www.copyright.com . R e que st s t o t he P ubl i she r f or pe r mi s s i on s houl d be a ddr e ss e d t o t he P e r m i ss i ons

    D e p a r t m e n t , J o h n W i l e y & S o n s , I n c . , 1 1 1 R i v e r S t r e e t , H o b o k e n , N J 0 7 0 3 0 - 5 7 7 4 , ( 2 0 1 ) 7 4 8 - 6 0 1 1 , f a x ( 2 0 1 ) 7 4 8 -

    6008, website http://www.wiley.com/go/permissions.

    E v a l u a t i o n c o p i e s a r e p r o v i d e d t o q u a l i fi e d a c a d e m i c s a n d p r o f e s s i o n a l s f o r r e v i e w p u r p o s e s o n l y , f o r u s e i n t h e i r

    c o u r s e s d u r i n g t h e n e x t a c a d e m i c y e a r . T h e s e c o p i e s a r e l i c e n s e d a n d m a y n o t b e s o l d o r t r a n s f e r r e d t o a t h i r d

    p a r t y . U p o n c o m p l e t i o n o f t h e r e v i e w p e r i o d , p l e a s e r e t u r n t h e e v a l u a t i o n c o p y t o W i l e y . R e t u r n i n s t r u c t i o n s a n d

    a f re e o f c ha r ge r et u rn m a il in g la b el a re a va il ab l e a t www.wiley.com/go/returnlabel . I f you ha ve c hos e n to a dopt

    t h i s t e x t b o o k f o r u s e i n y o u r c o u r s e , p l e a s e a c c e p t t h i s b o o k a s y o u r c o m p l i m e n t a r y d e s k c o p y . O u t s i d e o f t h e

    U ni t e d S t a t e s , pl e a s e c ont a c t your l oc a l s a l e s r e pr e s e nt a t i ve .

    Library of Congress Cataloging-in-Publication Data

    M ic ro a nd s ma rt s ys te ms / G .K . A n a nt ha su re sh . . . [ et a l. ].

    p . c m .

    I nc l ude s bi bl i ogr a phi c a l r e f e r e nc e s a nd i nde x.

    I S B N 978- 0- 470- 91939- 2 ( a c i d- f r e e pa pe r )

    1 . M i cr o el e ct r om e ch a n ic a l s ys t em s D e si g n a nd c o n st r u ct i on . 2 . I n te l li g en t c o nt r ol s y s te m s D es i gn a n d

    c o ns tr u ct io n . I . A na nt ha su re sh , G. K .

    T K 7875. M 524 2012

    621.381dc23

    2011029301

    P r i n t e d i n t h e U n i t e d S t a t e s o f A m e r i c a

    10 9 8 7 6 5 4 3 2 1

    http://www.wiley.com/go/citizenshiphttp://www.copyright.com/http://www.wiley.com/go/permissionshttp://www.wiley.com/go/returnlabelhttp://www.wiley.com/go/returnlabelhttp://www.wiley.com/go/returnlabelhttp://www.wiley.com/go/permissionshttp://www.copyright.com/http://www.wiley.com/go/citizenship
  • 8/11/2019 Micro and Smart Systems

    7/497

    Dedicated to

    The Institute of Smart Structures and Systems (ISSS)without whose initiative and support this book would not have materialized

  • 8/11/2019 Micro and Smart Systems

    8/497

  • 8/11/2019 Micro and Smart Systems

    9/497

    cPrefaceIf we trace the history of electronics technology over the last six decades, we see that the

    discovery of the transistor and the development of the integrated circuit (IC) are the key

    milestones. However, it is miniaturization and the ensuing very-large-scale-integration

    (VLSI) technologies that really created the electronics and computer revolutions. It is only

    more recently, within the last couple of decades, that the technology of miniaturization has

    been extended to mechanical devices and systems; we now have the microelectromechan-

    ical system (MEMS) revolution. Complemented by the advances in smart materials, this

    has led to highly application-oriented microsystems and smart systems.

    A microsystem is a system that integrates, on a chip or in a package, one or more of

    many microdevices: sensors, actuators, electronics, computation, communication, control,power generation, chemical processing, biological reactions, etc. It is now clear that the

    functionality of such an integrated system will not only be far superior to any other

    engineered system that we know at the macroscale but will also be able to achieve things

    well beyond what macroscale integrated systems can do. Smart microelectromechanical

    systems are collections of microsensors and actuators that can sense their environment and

    can respond intelligently to changes in that environment by using microcircuit controls.

    Such microsystems include, in addition to the conventional microelectronics, packaging,

    integrated antenna structures for command signals, and microelectromechanical structures

    for desired sensing and actuating functions.

    However, micromachined actuators may not be powerful enough to respond to the

    environment. Using macroscale actuators would defeat the purpose of miniaturization,

    cost-effective batch-processing, etc. Hence, there is a need to integrate smart material-

    based actuators with microsystems. This trend is currently being witnessed as this field

    moves beyond microsensors, which have been the main emphasis in microsystems so far.

    Microsystems and smart system technologies have immense application potential in

    many fields, and in the coming decades, scientists and engineers will be required to design

    and develop such systems for a variety of applications. It is essential, then, that graduating

    engineers be exposed to the underlying science and technology of microsystems and smart

    systems. There are numerous books that cover both microsystems and smart systems

    separately and a few that cover both. Many of them are suitable for practicing professionals

    or for advanced-level courses. However, they assume certain fundamentals in various topicsof this multidisciplinary field and thus serve the function of a reference book rather than a

    primary textbook. Many do not emphasize modeling at the fundamental level necessary to be

    useful at the undergraduate level or for self-study by a reader with background in other

    disciplines.

    This book essentially deals with the basics of microsystem technology and is intended

    principally as a textbook at the undergraduate level; it can also be used as a background

    book at the postgraduate level. The book provides an introduction to smart materials and

    systems. We have tried to present the material without assuming much prior disciplinary

    background. The aim of this book is to present adequate modeling details so that readers

    can appreciate the analysis involved in microsystems (and to some extent, smart systems),

    thereby giving them an in-depth understanding about simulation and design. Therefore, the

    book will also be useful to practicing researchers in all branches of science and engineering

    vii

  • 8/11/2019 Micro and Smart Systems

    10/497

    who are interested in applications where they can use this technology. The book presents

    adequate details on modeling of microsystems and also addresses their fabrication and

    integration. The engineering of practical applications of microsystems provides areas for

    multidisciplinary research, already laden with myriad technological issues, and books

    presently available do not address many of these aspects in sufficient depth. We believe

    that this book gives a unified treatment of the necessary concepts under a single title.Anticipating the need for such a technology, the Institute of Smart Structures and

    Systems (ISSS), an organization dedicated to promoting smart materials and micro-

    systems, was established. This Institute was instrumental not only in mounting a national

    program and triggering R&D activities in this field in India, but also in creating the

    required human resources through training courses and workshops. Furthermore, ISSS also

    initiated a dialogue with Visvesveraya Technological University (VTU), Belgaum,

    Karnataka, a conglomerate of over 170 Karnataka engineering colleges, to introduce

    an undergraduate-level course in microsystems and MEMS and to set in motion the

    creation of a potential syllabus for this course. The culmination of this dialogue is the

    present book. The material for this book has been taken from several advanced workshops

    and short courses conducted by the authors over last few years for faculty and students of

    VTU. A preliminary version of book was used at VTU colleges, where a course on

    microsystems was first introduced in 2009, and very helpful feedback was received from

    teachers of this course, who patiently used the draft to teach about 500 students at various

    colleges. In a sense this book has been class- and student-tested and is a substantially

    enhanced version of the original draft.

    This book has ten chapters covering various topics in microsystems and smart systems

    including sensors and actuators, microfabrication, modeling, finite-element analysis,

    modeling and analysis of coupled systems (of great importance in microsystems),

    electronics and control for microsystems, integration and packaging, and scaling effects

    in microsystems. The book also includes case studies on a few microsensor systems toillustrate the applications aspects.

    In the authors opinion, the material of the book can be covered in a standard

    undergraduate one-semester course. The content of Chapters 5 and 6 may be considered

    optional. The entire book can be covered in a single-semester postgraduate course or a

    two-semester undergraduate course supplemented by a design and case-study oriented

    laboratory.

    viii c Preface

  • 8/11/2019 Micro and Smart Systems

    11/497

    cAcknowledgmentsAny project like writing a book depends on the help, advice, and consent of a large number

    of people. The authors have received such help from many people and it is a pleasure to

    acknowledge all of them. The trigger for the book was provided by the initiative taken by

    the Institute of Smart Structures and Systems. The authors acknowledge their indebtedness

    to ISSS and its presidents, and indeed dedicate the book to ISSS. The authors would like to

    specially thank Prof. S. Mohan of Indian Institute of Science and Dr. A.R. Upadhya,

    Director, National Aerospace Laboratories, for their support and encouragement.

    While ISSS initiated the writing of the book, it was the support and enthusiasm of the

    Visvesvaraya Technological University (VTU) that sustained its writing. The authors

    gratefully acknowledge this support, especially from the former vice-chancellors, Prof. K.Balaveer Reddy and Prof. H.P. Khincha.

    A number of VTU faculty and students who attended the workshops based on the

    preliminary versions of the book provided the all-important feedback necessary to finalize

    the book. While thanking them all, the authors would like to mention in particular Prof.

    Premila Manohar (MSR Institute of Technology, Bangalore) and Prof. K. Venkatesh

    (presently at Jain University, Bangalore). In addition, the significant contributions of Prof.

    N.G. Kurahatti (presently at East Point College of Engineering and Technology,

    Bangalore), who compiled part of the contents of Chapter 3 during the initial stages of

    manuscript preparation, are gratefully acknowledged. The writing of the book would not

    have been possible without the work put in by several of our post-graduate students.

    Contributions of P.V, Aman, Santosh Bhargav, A.V. Harikrishnan, Shyamsananth

    Madhavan, Ipe Mathew, Rizuwana Parveen, Pakeeruraju Podugu, and Jayaprakash Reddy,

    who collected much of the information presented in Chapter 2, are gratefully appreciated.

    Also acknowledged for their help are: Subhajit Banerjee, Varun Bollapragada, Vivek

    Jayabalan, Shymasananth Madhavan, Fatih Mert Ozkeskin, Krishna Pavan, Sudhanshu

    Shekhar, and Puneet Singh who ran simulations and provided material for Chapter 10.

    Assistance given by M. S. Deepika and R. Manoj Kumar in creating some of the

    illustrations is also gratefully acknowledged. The authors thank all their students who

    read the early manuscripts of this book and provided useful feedback. The credit for the

    cover image goes to Sambuddha Khan. The image shows a part of the bulk-micromachined

    accelerometer with a mechanical amplifier developed by him as part of his PhDdissertation.

    ix

  • 8/11/2019 Micro and Smart Systems

    12/497

  • 8/11/2019 Micro and Smart Systems

    13/497

    cA N o t e t o t h e R e a d e rMost chapters include worked-out examples, problems given within the text, and end-of-

    the-chapter exercises.

    Some chapters also include exploratory questions marked as Your Turn. They urge

    the reader to think beyond the scope of the book. They are intended to stimulate the interest

    of the reader.

    Acronyms and notation used in the book are included in separate lists at the beginning

    of the book. Additionally, a glossary of important terms appears at the end of the book.

    An Appendix that appears at the end of the book provides supplementary material for

    the convenience of the reader.

    Typographical oversights, technical mistakes, or any other discrepancies may pleasebe broughtto the attentionof the authors by sendinge-mail to: [email protected].

    xi

  • 8/11/2019 Micro and Smart Systems

    14/497

  • 8/11/2019 Micro and Smart Systems

    15/497

    cAcronymsmBGA Microball-grid array

    mCP Microcontact printing

    mTM Microtransfer molding

    mTAS Micro-total analysis system

    1D One-dimensional

    2D Two-dimensional

    3D Three-dimensional

    ADC or A/D Analog-to-digital converterAFM Atomic force microscopy

    APCVD Atmospheric pressure chemical vapor

    deposition

    ASIC Application-specific integrated circuits

    ASIC Application-specific-integrated circuit

    BEM Boundary element method

    BGA Ball-grid array

    BiCMOS Bipolar CMOS

    bio-MEMS bio-microelectromechanical systems

    BJT Bipolar junction transistor

    BSG Borosilicate glass

    BST Barium strontium titanate

    BW Bandwidth

    CMOS Complementary metal-oxide-

    semiconductor

    CMP Chemicalmechanical planarization

    CMRR Common-mode rejection ratio

    COC Cyclic olefin copolymer

    COF Chip-on-flex

    CPD Critical point drying

    CRT Cathode ray tube

    CTE Coefficient of thermal expansion

    CVD Chemical vapor deposition

    DAC or D/A Digital-to-analog converter

    DFT Discrete Fourier transform

    DLC Diamond-like carbon

    DLP Digital light processor

    DMD Digital Mirror Device

    DoD Drop-on-demand

    DOF Degree of freedom

    DRIE Deep reactive-ion etching

    DSP Digital signal processing

    EDP Ethylene diamine pyrocatechol

    EDM Electrical discharge machining

    EEPROM Erasable programmable read-onlymemory

    EGS Electronic grade silicon

    EMI Electromagnetic interference

    ER Electrorheological

    ETC Electro-thermal-compliant

    ER Electro rheological

    FBG Fiber Bragg grating

    FCC Face-centered cubic

    FCP Few-chip package

    FDM Finite difference method

    FE Finite element

    FEA Finite element analysis

    FEM Finite element method

    FFT Fast Fourier transform

    FPI Fabry Perot interferometer

    HDTV High-definition television

    HF HydrofluoricHVAC Heat, ventilation, and air-conditioning

    I/O Input/output

    IBE Ion beam etching

    IC Integrated circuit

    ICP Intracranial pressure

    IF Intermediate frequency

    IR Infrared

    ISR Interrupt service routine

    LCD Liquid crystal display

    LED Light-emitting diode

    xiii

  • 8/11/2019 Micro and Smart Systems

    16/497

    LIGA Lithographie Galvanoformung

    & Abformung

    LPCVD Low-pressure chemical vapor deposition

    LPF Low-pass filter

    LSB Least significant bit

    LTCC Low-temperature cofired ceramics

    LVDT Linear variable differential transformer

    MAP Manifold-absolute pressure

    MBE Molecular beam epitaxy

    MCM Multichip module

    MCM-D Multichip module deposited

    MEMS Microelectromechanical systems

    MGS Metallurgical grade silicon

    Micro-EDM Microelectrical discharge machining

    MMF Magneto motive force

    MMIC Monolithic microwave integrated circuits

    MOCVD Metal-organic chemical vapor

    deposition

    MOEMS Micro-opto-electromechanical systems

    MOS Metal-oxide-semiconductor

    MOSFET Metal oxide semiconductor field-effect

    transistor

    MR Magnetorheological

    MS Metal semiconductor

    nMOS n-channel MOSFETs

    pMOS p-channel MOSFET

    ODE Ordinary differential equation

    Op-amp Operational amplifier

    PCB Printed circuit board

    PCR polymerase chain reaction

    PDE Partial differential equationPBGA Plastic-ball-grid array

    PDMS Polydimethylsiloxane

    PECVD Plasma-enhanced chemical vapor

    deposition

    PFC Piezofiber composite

    PHET Photovoltaic electrochemical etch-stop

    technique

    PID Proportional-integral-derivative

    PLC Programmable logic controller

    PLL Phase-locked loop

    PMMA Polymethyl methacrylate

    pMOS p-channel MOSFETs

    PMPE Principle of minimum

    potential energy

    PSG Phosphosilicate glass

    PTFE Polytetra-fluoroethylene

    PVC Polyvinyl chloride

    PVD Physical vapor deposition

    PVDF Polyvinylidene fluoride

    PVW Principle of virtual work

    PZT Lead zirconate titanate

    R&D Research and development

    RF Radio frequency

    RIE Reactive-ion etching

    RTA Rapid thermal annealing

    SAC Successive-approximation converter

    SAW Surface acoustic wave

    SCS Single-crystal silicon

    SEM Scanning electron microscope

    SFB Silicon fusion bonding

    SFEM Spectral FEM

    SI unit International standard unitSIP System-on-a-chip

    SISO Single-inputsingle-output

    SMA Shape-memory-alloy

    SNR Signal-to-noise ratio

    SOI Silicon-on-insulator

    SOP System-on-a-package

    sPROMs Structurally programmable microfluidic

    system

    SuMMiT Santia ultra multi-layer microfabricationtechnology

    TCR Temperature coefficient of resistivity

    UV Ultraviolet

    VCO Voltage-controlled oscillator

    VED Vacuum electron devices

    VLSI Very large-scale integration

    VPE Vapor phase epitaxy

    WRT Weighted residual technique

    XFEM Extended FEM

    xiv c Acronyms

  • 8/11/2019 Micro and Smart Systems

    17/497

    cNotat ionThere are 26 letters in the English alphabet and 24 in the Greek alphabet. Using both lower

    and upper case, we have 100 symbols to denote various quantities. Traditionally, every

    discipline reserves certain symbols for certain quantities. When we mix disciplines, as

    happens in interdisciplinary subjects, there are bound to be clashes: the same symbol is

    used for different quantities in different disciplines (e.g., Rfor reaction force in mechanics

    and resistance in electronics). We have made an effort to minimize the overlap of such

    quantities when they are used in the same chapter. As a result, we use nontraditional

    symbols for certain quantities. For example, Yis used for Youngs modulus instead ofE

    sinceEis used for the magnitude of the electric field, because they both appear in the same

    chapter.Occasionally, we also use subscripts to relate a certain symbol to a discipline (e.g.,kth

    for thermal conductivity). Boldface symbols are used for vectors (e.g., E for the electric

    field vector).

    The symbols in the list below are arranged in this order: upper-case English, lower-

    case English, upper-case Greek, and lower-case Greek, all in alphabetical order. For each

    symbol, boldface symbols appear first and symbols with subscripts or superscripts appear

    afterwards. If the same symbol is used in two different disciplines, the descriptions are

    separated by OR; if the same symbol is used within the same discipline, or is used.

    A Cross-sectional area of a bar or beam ORarea of a parallel-plate capacitor or a proof

    mass

    B Magnetic flux density vector

    A0 Difference mode gain

    AC Common mode gain

    Bo Bond number

    C Capacitance OR a constant

    Cox Gate oxide capacitance per unit area

    D Coil diameter of a helical spring OR

    magnitude of the electric displacement

    vector OR diffusion constant

    Dn Normal component of the electric

    displacement vector

    DE Dissipated energy

    E Electric field vector

    En Normal component of the electric field

    ESE Electrostatic energy

    ESEc Electrostatic complementary energy

    F Force; occasionally, also the transverse force

    on a beam or a point force on a body

    Fe Electrostatic forceFd Damping force

    G Gauge factorH Magnetic field

    I Inertia in general or area of moment of

    inertia of a beam OR electric current

    Ic0 Reverse saturation current

    Kd Derivative controller gain

    KP Proportional controller gain

    KI Integral controller gain

    J Polar moment of inertia OR the magnitude

    of the electric current density

    K Bulk modulus of a material

    KB Boltzmann constant

    Kn Knudsen number

    KE Kinetic energy

    L Length or size OR inductance OR

    Lagrangian

    M Magnetization

    M Bending moment in a beam or a column OR

    mass of the proof mass

    MSEc Magnetostatic coenergy

    n Number of turns

    NA Acceptor dopant concentrationND Donor dopant concentration

    xv

  • 8/11/2019 Micro and Smart Systems

    18/497

    No

    Intrinsic concentration

    P Axial force in a bar or a beam or a point force

    on a body OR magnitude of an electric

    polarization vector

    PE Potential energy

    Q Electric chargeR Reaction force OR electrical resistance

    Re Reynolds number

    S Sensitivity

    SE Strain energy

    SEc Complementary strain energy

    T Torque OR temperature

    U Velocity vector

    V Volume OR vertical shear force OR voltage

    W Work

    Vth Threshold voltage

    Vbi Built in potential

    Y Youngs modulus, a material property usually

    denoted byain mechanics; we useabecausea

    is used for the magnitude of the electric field

    and for acceleration

    n Unit vector usually normal to a surface and

    directed outward

    a Acceleration

    b Width of a beam or damping coefficient

    dl A differential vector tangential to a path at a

    pointds A differential vector normal to a surface

    dV Differential volume

    g Acceleration due to gravity OR gap in parallel-

    plate capacitor

    g0 Initial gap in parallel-plate capacitor

    h Convective heat transfer coefficient

    i Electric current

    k Spring constant or stiffness in general

    kB Boltsmann constant

    ke Electrical conductivity

    kth Thermal conductivityl Length

    p Perimeter OR pressure

    q Distributed transverse load OR electric charge

    qe

    Charge of electron

    r Position or distance vector

    r Unit vector in the direction of a position or

    distance vector

    se Strain energy per unit volume

    t Surface force on an elastic body (also called

    traction)

    te Electrostatic force on a conductor

    t Time OR thickness OR force (traction) on a

    surface

    u Displacement in general or onlyx-displacementin 2D or 3D objects

    v y-displacement in 2D or 3D objects

    w Width OR transverse displacement of a beam or

    z-displacement in a 3D object

    D Deflection OR an increment in a quantity (if

    followed by another symbol)

    a Coefficient of thermal expansion OR a constant

    of proportionality

    xe Electrical susceptibility

    d Deflection OR an increment in a quantity (if

    followed by another symbol)

    2 Normal strain

    e Permittivity

    e0 Permittivity of free space

    er Relative permittivity

    h Viscosity

    f Twist OR electric potential

    g Shear strain OR surface tension

    k Torsional spring constant

    l Wave length

    m Permeabilitymn

    electron mobility

    m0 Permeability of free space

    n Poisson ratio

    u Slope of a bent beam

    r Radius of curvature of a straight beam that is

    bent

    re Electrical resistivity

    rm Mass density

    se Maxwells stress tensor

    s Normal stress

    t Shear stress or time constantv Frequency of applied stimulus (force, voltage,

    etc.)

    vn Natural frequency (also called resonance

    frequency)

    cL Line charge density

    cs Surface charge density

    cv Volumetric charge density

    xvi c Notation

  • 8/11/2019 Micro and Smart Systems

    19/497

    cContentsPreface viiAcknowledgments ixA Note to the Reader xiAcronyms xiiiNotation xv

    c CHAPTER 1

    Introduction 11.1. Why Miniaturization? 2

    1.2. Microsystems Versus MEMS 4

    1.3. Why Microfabrication? 5

    1.4. Smart Materials, Structures and Systems 7

    1.5. Integrated Microsystems 9

    1.5.1. Micromechanical Structures 10

    1.5.2. Microsensors 11

    1.5.3. Microactuators 12

    1.6. Applications of Smart Materials and

    Microsystems 131.7. Summary 15

    c CHAPTER 2

    Micro Sensors, Actuators, Systems andSmart Materials: An Overview 172.1. Silicon Capacitive Accelerometer 18

    2.1.1. Overview 18

    2.1.2. Advantages of Silicon Capacitive

    Accelerometers 19

    2.1.3. Typical Applications 192.1.4. An Example Prototype 19

    2.1.5. Materials Used 19

    2.1.6. Fabrication Process 19

    2.1.7. Key Definitions 20

    2.1.8. Principle of Operation 21

    2.2. Piezoresistive Pressure Sensor 22

    2.2.1. Overview 22

    2.2.2. Advantages of Piezoresistive Pressure

    Sensors 22

    2.2.3. Typical Applications 22

    2.2.4. An Example Commercial Product 23

    2.2.5. Materials Used 23

    2.2.6. Fabrication Process 23

    2.2.7. Key Definitions 23

    2.2.8. Principle of Operation 23

    2.3. Conductometric Gas Sensor 24

    2.3.1. Overview 24

    2.3.2. Typical Applications 25

    2.3.3. An Example Product Line 25

    2.3.4. Materials Used 25

    2.3.5. Fabrication Process 25

    2.3.6. Key Definitions 26

    2.3.7. Principle of Operation 26

    2.4. Fiber-Optic Sensors 26

    2.4.1. Overview 26

    2.4.2. Advantages of Fiber-Optic Sensors 27

    2.4.3. An Example Prototype 27

    2.4.4. Materials Used 27

    2.4.5. Fabrication Process 27

    2.4.6. Key Definitions 28

    2.4.7. Principle of Operation 282.5. Electrostatic Comb-Drive 29

    2.5.1. Overview 29

    2.5.2. An Example Prototype 30

    2.5.3. Materials Used 31

    2.5.4. Fabrication Process 31

    2.5.5. Key Definitions 31

    2.5.6. Principle of Operation 31

    2.6. Magnetic Microrelay 32

    2.6.1. Overview 32

    2.6.2. An Example Prototype 33

    2.6.3. Materials Used 332.6.4. Fabrication Process 33

    2.6.5. Key Definitions 33

    2.6.6. Principle of Operation 33

    2.7. Microsystems at Radio Frequencies 34

    2.7.1. Overview 34

    2.7.2. Advantages of RF MEMS 34

    2.7.3. Typical Applications 35

    2.7.4. An Example Prototype 35

    2.7.5. Materials Used 36

    2.7.6. Fabrication Process 362.7.7. Key Definitions 36

    2.7.8. Principle of Operation 37

    xvii

  • 8/11/2019 Micro and Smart Systems

    20/497

    2.8. Portable Blood Analyzer 37

    2.8.1. Overview 37

    2.8.2. Advantages of Portable Blood

    Analyzer 39

    2.8.3. Materials Used 39

    2.8.4. Fabrication Process 392.8.5. Key Definitions 39

    2.8.6. Principle of Operation 39

    2.9. Piezoelectric Inkjet Print Head 40

    2.9.1. Overview 40

    2.9.2. An Example Product 40

    2.9.3. Materials Used 41

    2.9.4. Fabrication Process 41

    2.9.5. Key Definitions 41

    2.9.6. Principle of Operation 41

    2.10. Micromirror Array for Video Projection 42

    2.10.1. Overview 42

    2.10.2. An Example Product 43

    2.10.3. Materials Used 43

    2.10.4. Fabrication Process 44

    2.10.5. Key Definitions 44

    2.10.6. Principle of Operation 44

    2.11. Micro-PCR Systems 45

    2.11.1. Overview 45

    2.11.2. Advantages of Micro-PCR

    Systems 45

    2.11.3. Typical Applications 462.11.4. An Example Prototype 46

    2.11.5. Materials Used 46

    2.11.6. Fabrication Process 46

    2.11.7. Key Definitions 47

    2.11.8. Principle of Operation 47

    2.12. Smart Materials and Systems 48

    2.12.1. Thermoresponsive Materials 49

    2.12.2. Piezoelectic Materials 50

    2.12.3. Electrostrictive/Magnetostrictive

    Materials 50

    2.12.4. Rheological Materials 512.12.5. Electrochromic Materials 51

    2.12.6. Biomimetic Materials 51

    2.12.7. Smart Gels 51

    2.13. Summary 52

    c CHAPTER 3

    Micromachining Technologies 553.1. Silicon as a Material for Micromachining 56

    3.1.1. Crystal Structure of Silicon 563.1.2. Silicon Wafer Preparation 59

    3.2. Thin-film Deposition 60

    3.2.1. Evaporation 60

    3.2.2. Sputtering 61

    3.2.3. Chemical Vapor Deposition 62

    3.2.4. Epitaxial Growth of Silicon 64

    3.2.5. Thermal Oxidation for Silicon

    Dioxide 653.3. Lithography 65

    3.3.1. Photolithography 66

    3.3.2. Lift-Off Technique 68

    3.4. Doping the Silicon Wafer: Diffusion and Ion

    Implantation of Dopants 69

    3.4.1. Doping by Diffusion 70

    3.4.2. Doping by Ion Implantation 72

    3.5. Etching 75

    3.5.1. Isotropic Etching 75

    3.5.2. Anisotropic Etching 76

    3.5.3. Etch Stops 81

    3.6. Dry Etching 82

    3.6.1. Dry Etching Based on Physical

    Removal (Sputter Etching) 84

    3.6.2. Dry Etching Based on Chemical

    Reaction (Plasma Etching) 84

    3.6.3. Reactive Ion Etching 85

    3.6.4. Deep Reactive Ion Etching (DRIE) 87

    3.7. Silicon Micromachining 89

    3.7.1. Bulk Micromachining 91

    3.7.2. Surface Micromachining 923.8. Specialized Materials for Microsystems 97

    3.8.1. Polymers 97

    3.8.2. Ceramic Materials 98

    3.9. Advanced Microfabrication Processes 99

    3.9.1. Wafer Bonding Techniques 99

    3.9.2. Dissolved Wafer Process 101

    3.9.3. Special Microfabrication

    Techniques 102

    3.10. Summary 106

    c CHAPTER 4

    Mechanics of Slender Solids inMicrosystems 111

    4.1. The Simplest Deformable Element: A

    Bar 112

    4.2. Transversely Deformable Element: A

    Beam 115

    4.3. Energy Methods for Elastic Bodies 124

    4.4. Examples and Problems 127

    4.5. Heterogeneous Layered Beams 1324.6. Bimorph Effect 135

    4.7. Residual Stresses and Stress Gradients 136

    xviii c Contents

  • 8/11/2019 Micro and Smart Systems

    21/497

    4.7.1. Effect of Residual Stress 137

    4.7.2. Effect of the Residual Stress

    Gradient 140

    4.8. Poisson Effect and the Anticlastic Curvature

    of Beams 141

    4.9. Torsion of Beams and Shear Stresses 1444.10. Dealing with Large Displacements 151

    4.11. In-Plane Stresses 153

    4.12. Dynamics 159

    4.12.1. A Micromachined Gyroscope:

    Two-Degree-of-Freedom Dynamic

    Model for a Single Mass 160

    4.12.2. A Micromechanical Filter:

    Two-Degree-of-Freedom Dynamic

    Model with Two Masses 166

    4.12.3. Dynamics of Continuous Elastic

    Systems 171

    4.12.4. A Note on the Lumped Modeling of

    Inertia and Damping 172

    4.13. Summary 173

    c CHAPTER 5

    The Finite Element Method 1775.1. Need for Numerical Methods for Solution of

    Equations 177

    5.1.1. Numerical Methods for Solution ofDifferential Equations 178

    5.1.2. What is the Finite Element Method?

    179

    5.2. Variational Principles 182

    5.2.1. Work and Complementary Work 182

    5.2.2. Strain Energy and Kinetic

    Energy 184

    5.2.3. Weighted Residual Technique 185

    5.2.4. Variational Symbol 190

    5.3. Weak Form of the Governing Differential

    Equation 1915.4. Finite Element Method 192

    5.4.1. Shape Functions 193

    5.4.2. Derivation of the Finite Element

    Equation 199

    5.4.3. Isoparametric Formulation and

    Numerical Integration 204

    5.4.4. One-Dimensional Isoparametric Rod

    Element 204

    5.4.5. One-Dimensional Beam Element

    Formulation 2075.4.6. Two-Dimensional Plane Isoparametric

    Element Formulation 209

    5.4.7. Numerical Integration and Gauss

    Quadrature 210

    5.5. Numerical Examples 212

    5.5.1. Example 1: Analysis of a Stepped Bar

    (Rod) 212

    5.5.2. Example 2: Analysis of a Fixed RodSubjected to Support Movement 214

    5.5.3. Example 3: A Spring-Supported Beam

    Structure 215

    5.6. Finite Element Formulation for

    Time-Dependent Problems 217

    5.6.1. Mass and Damping Matrix

    Formulation 218

    5.6.2. Free Vibration Analysis 223

    5.6.3. Free Vibration Analysis of a Fixed

    Rod 225

    5.6.4. Free-Vibration Analysis of Proof-

    Mass Accelerometer 229

    5.6.5. Forced Vibration Analysis 230

    5.6.6. Normal Mode Method 231

    5.7. Finite Element Model for Structures with

    Piezoelectric Sensors and Actuators 233

    5.8. Analysis of a Piezoelectric Bimorph

    Cantilever Beam 235

    5.8.1. Exact Solution 236

    5.8.2. Finite Element Solution 238

    5.9. Summary 239

    c CHAPTER 6

    Modeling of Coupled ElectromechanicalSystems 245

    6.1. Electrostatics 246

    6.1.1. Multiple Point Charges 247

    6.1.2. Electric Potential 248

    6.1.3. Electric Field and Potential Due to

    Continuous Charge 252

    6.1.4. Conductors and Dielectrics 2536.1.5. Gausss Law 254

    6.1.6. Charge Distribution on the

    Conductors Surfaces 257

    6.1.7. Electrostatic Forces on the

    Conductors 258

    6.2. Coupled Electromechanics: Statics 259

    6.2.1. An Alternative Method for Solving the

    Coupled Problem 264

    6.2.2. Spring-Restrained Parallel-Plate

    Capacitor 2676.3. Coupled Electromechanics: Stability and

    Pull-In Phenomenon 276

    Contents b xix

  • 8/11/2019 Micro and Smart Systems

    22/497

    6.3.1. Computing the Pull-In and Pull-Up

    Voltages for Full Models 282

    6.4. Coupled Electromechanics: Dynamics 283

    6.4.1. Dynamics of the Simplest Lumped

    Electromechanical Model 285

    6.4.2. Estimating the Lumped Inertia of anElastic System 287

    6.4.3. Estimating the Lumped Damping

    Coefficient for the In-Plane

    Accelerometer 290

    6.5. Squeezed Film Effects in

    Electromechanics 294

    6.6. Electro-Thermal-Mechanics 295

    6.6.1. Lumped Modeling of the Coupled

    Electro-Thermal-Compliant

    Actuators 297

    6.6.2. General Modeling of the Coupled ETC

    Actuators 304

    6.7. Coupled Electromagnet-Elastic Problem 306

    6.8. Summary 308

    c CHAPTER 7

    Electronics Circuits and Control for Microand Smart Systems 313

    7.1. Semiconductor Devices 314

    7.1.1. The Semiconductor Diode 3147.1.2. The Bipolar Junction Transistor 317

    7.1.3. MOSFET 320

    7.1.4. CMOS Circuits 323

    7.2. Electronics Amplifiers 325

    7.2.1. Operational Amplifiers 325

    7.2.2. Basic Op-Amp Circuits 327

    7.3. Signal Conditioning Circuits 330

    7.3.1. Difference Amplifier 331

    7.3.2. Instrumentation Amplifier as a

    Differential Voltage Amplifier 332

    7.3.3. Wheatstone Bridge for Measurementof Change in Resistance 334

    7.3.4. Phase-Locked Loop 336

    7.3.5. Analog-to-Digital Converter 337

    7.4. Practical Signal conditioning Circuits for

    Microsystems 341

    7.4.1. Differential Charge

    Measurement 341

    7.4.2. Switched-Capacitor Circuits for

    Capacitance Measurement 343

    7.4.3. Circuits for Measuring FrequencyShift 343

    7.5. Introduction to Control Theory 344

    7.5.1. Simplified Mathematical

    Description 344

    7.5.2. Representation of Control

    Systems 345

    7.5.3. State-Space Modeling 346

    7.5.4. Stability of Control Systems 3517.6. Implementation of Controllers 354

    7.6.1. Design Methodology 354

    7.6.2. Circuit Implementation 356

    7.6.3. Digital Controllers 357

    7.7. Summary 360

    c CHAPTER 8

    Integration of Micro and SmartSystems 363

    8.1. Integration of Microsystems andMicroelectronics 364

    8.1.1. CMOS First 364

    8.1.2. MEMS First 365

    8.1.3. Other Approaches of Integration 365

    8.2. Microsystems Packaging 366

    8.2.1. Objectives of Packaging 366

    8.2.2. Special Issues in Microsystem

    Packaging 367

    8.2.3. Types of Microsystem Packages 369

    8.2.4. Packaging Technologies 3708.2.5. Reliability and Key Failure

    Mechanisms 374

    8.3. Case Studies of Integrated

    Microsystems 375

    8.3.1. Pressure Sensor 376

    8.3.2. Micromachined Accelerometer 388

    8.4. Case Study of a Smart Structure in Vibration

    Control 401

    8.4.1. PZT Transducers 402

    8.4.2. Vibrations in Beams 403

    8.5. Summary 404

    c CHAPTER 9

    Scaling Effects in Microsystems 4099.1. Scaling in the Mechanical Domain 410

    9.2. Scaling in the Electrostatic Domain 413

    9.3. Scaling in the Magnetic Domain 414

    9.4. Scaling in the Thermal Domain 415

    9.5. Scaling in Diffusion 417

    9.6. Scaling in Fluids 4189.7. Scaling Effects in the Optical Domain 420

    9.8. Scaling in Biochemical Phenomena 422

    xx c Contents

  • 8/11/2019 Micro and Smart Systems

    23/497

    9.9. Scaling in Design and Simulation 423

    9.10. Summary 426

    c CHAPTER 10

    Simulation of Microsystems Using FEA

    Software 42910.1. Background 429

    10.2. Force-Deflection of a Tapering Helical Spring

    Using ABAQUS 430

    10.3. Natural Frequencies of an Accelerometer in

    ANSYS 432

    10.4. Deflection of an Electro-Thermal-Compliant

    (ETC) Microactuator in COMSOL

    MultiPhysics 436

    10.5. Lumped Stiffness Constant of a Comb-Drive

    Suspension in NISA 438

    10.6. Piezoelectric Bimorph Beam in a

    Customized FEA Program 440

    10.7. Resonant Micro-Accelerometer in

    ABAQUS 442

    10.8. Pull-In Voltage of an RF-MEMS Switch in

    IntelliSuite 44410.9. A Capacitive Pressure Sensor in

    Coventorware 447

    10.10. Summary 449

    Appendix 451Glossary 459Index 463About the Authors 473

    Contents b xxi

  • 8/11/2019 Micro and Smart Systems

    24/497

  • 8/11/2019 Micro and Smart Systems

    25/497

    cCHAPTER 1I n t r o d u c t i o n

    L E A R N I N G O B J E C T I V E S

    After completing this chapter, you will be able to:

    c Get an overview of microsystems and smart systems.c Understand the need for miniaturization.

    c Understand the role of microfabrication.

    c Learn about smart materials and systems.

    c Learn about typical applications of microsystems and smart systems.

    M yt ho lo gy a nd f ol k t al es i n a ll c ul tu re s h av e f as ci na t in g s to ri e s i nv ol vi n g m ag i c a nd

    m i n i a t u r i z a t i o n . A l i B a b a , i n a s t o r y i n1001 Arabian Nights, h a d t o s a y Open Sesame to

    m ak e t he c av e d oo r o pe n b y i ts el f. W e n ow h av e a ut o ma ti c d oo rs i n s up er ma r ke ts t ha t o pe na s y o u m o v e t o w a r d t h e m w i t h o u t e v e n u t t e r i n g a w o r d . J o n a t h a n S w i f t s fi c t i t i o u s B r i t i s h

    h e r o , L e m u e l G u l l i v e r , t r a v e l e d t o t h e i s l a n d o f L i l l i p u t a n d w a s a m a z e d a t t h e m i n i a t u r e

    w o r l d h e s a w t h e r e . G u l l i v e r w o u l d p r o b a b l y b e e q u a l l y a m a z e d i f h e w e r e w a s h e d a s h o r e

    i n t o t h e 2 1st- c en t ur y w or l d b e ca u se w e n o w h a ve f a bu l ou s m i ni a tu r e m a rv e ls u n dr e am t

    o f i n S wi ft s t im e . M ag i c a nd m in ia t ur iz at io n a re r ea li t ie s t od ay . A rt hu r C . C la rk e, a

    f am ou s s ci en ce fi ct i on w ri te r, o nc e s ai d t ha t a s uf fic i en tl y a dv an ce d t ec hn ol og y i s

    i n di s ti n gu i sh a bl e f r om m a gi c . W h at m a ke s t h is m a gi c a r e al i ty ? T h e a n sw e r l i e s i n e x ot i c

    a n d s m ar t m a te r ia l s, s e ns o rs a n d a c tu a to r s, c o nt r ol a n d m i ni a t ur i za t io n . S m ar t ne s s a n d

    s m a l l n e s s g o h a n d i n h a n d . S m a r t s y s t e m s a r e i n c r e a s i n g l y b e c o m i n g s m a l l e r , l e a d i n g t o a

    m a g i c a l r e a l i t y . S m a l l s y s t e m s a r e i n c r e a s i n g l y b e c o m i n g s m a r t e r b y i n t e g r a t i n g s e n s i n g ,

    a c t ua t io n , c o mp u ta t io n , c o mm u ni c at i on , p o we r g e ne r at i on , c o nt r ol , a n d m o re . L i ke t h e

    I n d i a n m y t h o l o g i c a l i n c a r n a t i o n V a m a n a , d e s c r i b e d a s b e i n g s m a l l a n d s m a r t , y e t a b l e t o

    c ov er t he E ar th , s ky , a nd t he w or ld b en ea t h i n t hr ee f oo ts te ps , t he c om bi na t io n o f s ma ll ne ss

    a nd s ma rt ne ss h as l im it le ss p os si bi l it ie s. T hi s b oo k i s a bo ut m ic ro sy st em s a nd s ma rt

    s ys te ms , n ot a bo ut m ag ic . A s N ob el L au re at e p hy si c is t R ic ha rd F ey nm an n ot ed i n h is

    l e c t u r e s , t h e l a w s o f s c i e n c e a s w e k n o w t h e m t o d a y d o n o t p r e c l u d e m i n i a t u r i z a t i o n , a n d

    t h e r e i s s u f fi c i e n t r o o m a t t h e b o t t o m [ 1 , 2 ] . I t i s o n l y a q u e s t i o n o f d e v e l o p i n g t h e r e q u i s i t e

    t e c h n o l o g i e s a n d p u t t i n g t h e m t o g e t h e r t o m a k e i t a l l h a p p e n . L e t u s b e g i n w i t h t h e n e e d

    f o r m i n i a tu r i z at i o n .

    1

  • 8/11/2019 Micro and Smart Systems

    26/497

    c 1.1 WHY MINIATURIZATION?

    A m i c r o s y s t e m i s a s y s t e m t h a t i n t e g r a t e s , o n a c h i p o r i n a p a c k a g e , o n e o r m o r e o f m a n y

    t h in g s: s e ns o rs , a c tu a to r s, e l ec t r on i cs , c o mp u ta t io n , c o mm u ni c at i on , c o nt r ol , p o we rg e n e r a t i o n , c h e m i c a l p r o c e s s i n g , b i o l o g i c a l r e a c t i o n s , a n d m o r e . Y o u m a y fi n d i t i n t e r e s t -

    i n g t h a t t h i s d e fi n i t i o n d o e s n o t e x p l i c i t l y m e n t i o n s i z e o t h e r t h a n a l l u d i n g t o a c h i p o r a

    p a c k a g e d s y s t e m c o n s i s t i n g o f c h i p s a n d o t h e r a c c e s s o r i e s . M i n i a t u r i z a t i o n i s e s s e n t i a l i na c hi e vi n g t h is l e ve l o f i n te g ra t io n o f a d i sp a ra t e a r ra y o f c o mp o ne n ts .

    T h e r e i s n o d o u b t t h a t t h e f u n c t i o n a l i t y o f s u c h a n i n t e g r a t e d s y s t e m w i l l n o t o n l y b e

    f a r s u p e r i o r t o a n y o t h e r e n g i n e e r e d s y s t e m t h a t w e k n o w a t t h e m a c r o s c a l e b u t w i l l a l s o

    a c h i e v e t h i n g s b e y o n d t h o s e a c h i e v a b l e b y m a c r o s y s t e m s . T h i n k o f a b i g s h i p , a n a i r c r a f t ,

    o r a p ow er p la n t: t he y a ll s er ve o ne p ri ma r y p ur po se . B ut a c hi p t ha t i nt eg ra te s s ev er al

    c o m po n e n t s, a s a l r e a dy m e n t i on e d ,can serve multiple functions. T hi s i s o ne r ea so n f or

    m i ni a tu r iz a t io n . T h is d o es n o t i m p l y t h at w e c a nn o t i n te g ra t e m a ny t h in g s a t t h e m a cr o

    s ca le ; i t i s a q ue st io n o f e co no my a nd t o s om e e xt en t f un ct io na li ty . M ic ro sy st em s

    t e ch n ol o gy , b y f o ll o wi n g t h e l a rg e l y s u cc e ss f ul p a ra d ig m o f m i cr o el e ct r on i cs , r e ma i ns

    economical due to the batch production o f m i cr o fa b ri c at i on p r oc e ss e s. Y o u c a n m a kep l e n t y o f t h i n g s o n o n e s i n g l e s i l i c o n w a f e r , a n d t h u s , t h e c o s t p e r i n d i v i d u a l t h i n g c o m e s

    d o wn d r as t i ca l ly . T h is i s a n ot h er r e as o n f o r m i ni a tu r iz a t io n . N o th i ng w o ul d b e tt e r i l l us t ra t e

    t hi s t ha n a dv an ce s i n c om pu te r t ec hn ol og y. C om pu ti ng s ys te ms o f t od ay a re m uc h

    m o re p o we r fu l , h a ve m a ny m o re f e at u re s , a r e f a r l e ss p o we r -c o ns u mi n g a n d, o f c o ur s e,

    a re s ig ni fic an tl y c he ap er t ha n t ho se a va il a bl e 2 0 o r 3 0 y ea rs a go . M in i at ur iz at i on a nd

    i n te g ra t io n a p pr o ac h es h a ve p l ay e d a s i gn i fic a nt r o le i n a c hi e vi n g t h es e ( s ee F i gu r e 1 . 1) .

    C om mo n o bj ec ts i n v ar io us s iz e s ca le s a re c om pa re d i n F ig ur e 1 .2 . I n a l ig ht e r v ei n, a

    p o p u l a r a c r o n y m f o r t h e m i c r o s y s t e m s t e c h n o l o g y i s s p e l l e d MDM $ : i t r e a d s m i l l i o n s o f

    e ur os a nd m il li on s o f d ol la rs ! T he m ar ke t s ha re o f microelectromechanical systems

    ( ME MS ) h as e xc ee de d t he m il li on -d ol la r m ar k s om e t im e b ac k a nd i s w el l p oi se d t o

    c r o ss t h e b i l l i on - d ol l a r m a r k.E n e r g y h a s a l w a y s b e e n a p r e c i o u s c o m m o d i t y . T o d a y i t i s i n c r e a s i n g l y s o b e c a u s e o f

    e v e r - i n c r e a s i n g d e m a n d c o u p l e d w i t h r a p i d l y d e p l e t i n g e n e r g y r e s o u r c e s . W i t h t h e h u m a n

    p ro pe ns it y f or e le c tr on ic g ad ge ts , t he r eq ui re m en ts f or b at te ri es a re a ls o o n t he r is e,

    t r i g g e r i n g r e s e a r c h e f f o r t s o n h i g h - e n e r g y m i n i a t u r e b a t t e r i e s . A n d t h e s m a l l e r t h e g a d g e t s

    ( a n d c o n s t i t u e n t d e v i c e s ) , t h elower theenergy requirements, t h u s a d d i n g a f u r t h e r r e a s o n

    f o r m i n i at u r i z in g d e v i ce s a n d s y s te m s .

    T h er e a r e, o f c o ur s e, m o re t e ch n ic a l r e as on s f o r m i ni a t ur i za t io n .Some phenomena

    favor miniaturization. T a k e o p t i c s , f o r e x a m p l e . I f w e h a v e a m i c r o m e c h a n i c a l d e v i c e t h a t

    Figure 1.1 M i n i a t u r i z a t i o n o f c o m p u t e r h a r d w a r e t e c h n o l o g y .

    2 c 1 Introduction

  • 8/11/2019 Micro and Smart Systems

    27/497

    c a n m o v e a m i cr o n- s iz e d c o m p on e nt a n d c o n t ro l i t s m o v e me n t t o a f r ac t io n o f a m i cr o n

    ( t h e r a n g e o f l i g h t w a v e l e n g t h v i s i b l e t o h u m a n s ) , t h i s o p e n s u p n u m e r o u s n e w p o s s i b i l i t -

    i e s . T h e r e a r e a l r e a d y c o m m e r c i a l p r o d u c t s t h a t u s e o p t i c a l m i c r o s y s t e m s , a l s o k n o w n a s

    m i c r o -o p t o- e l e c tr o m e c ha n i c al s y s t em s ( M OE M S ) .

    T h in k o f t h e b i ol o gi c al c e ll s t h at a r e t h e b a si c b u il d in g b l oc k s o f l i vi n g o r g a ni s ms .T h e y a r e t h e w o r k s h o p s w h e r e a m a z i n g m a n u f a c t u r i n g , a s s e m b l i e s a n d d i s a s s e m b l i e s t a k e

    p l a c e m o s t e f fi c i e n t l y . T h e s e c e l l s t o o h a v e f e a t u r e s , t h a t i s , s i z e , m o t i o n , a n d f o r c e s , t h a t

    Atoms

    Molecules

    NanostructuresViruses

    Smallestmicroelectronic

    features

    BacteriaBiological cellsDust particles

    Diameter of human hairMicrosystem devices

    Optical fibers

    Packaged ICsPackaged MEMS

    Lab-on-a-chip

    Plain old machinesHumansAnimalsPlants

    Planes, trains, automobiles

    1 nm

    0.1 m

    10 m

    1 mm

    100 mm

    10 nm

    1 m

    100 m

    10 mm

    1 m

    10 m

    Figure 1.2 I l l u s t r a t i o n o f o b j e c t s a t v a r i o u s s i z e s c a l e s .

    1.1 Why Miniaturization? b 3

  • 8/11/2019 Micro and Smart Systems

    28/497

    a re c om pa ra bl e t o t ho se o f m ic ro me ch an ic al s tr uc tu re s. S o, t he re i s a s ub fie ld w it hi n

    m i c ro s ys t e ms k n ow n a s b io - m ic r o el e c t ro m ec h a ni c a l s y st e m s ( b i o- M EM S ). F u r th e r -

    m o re , t h e re a r e r e a so n s f o r m i n ia t u ri z i ng c h e mi c a l p r oc e s si n g . C o nt r o ll i n g p r o ce s s c o n di -

    t io ns o ve r a s ma ll v ol um e i s m uc h e as ie r t ha n o ve r a l ar ge v ol um e. H en ce , t he efficiency of a

    chemical reaction is greater i n m i n i a t u r i z e d s y s t e m s . I t i s c l e a r f r o m t h i s p e r s p e c t i v e w h y

    l i v in g o r g an i s ms a r e c o m pa r t me n t al i z e d i n t o m i c ro n - si z e d u n i ts t he c e l ls .M in ia tu r iz at io n c an r es ul t i n f as te r d ev i ce s w it h improved thermal management.

    E n e r g y a n d m a t e r i a l s r e q u i r e m e n t d u r i n g f a b r i c a t i o n c a n b e r e d u c e d s i g n i fi c a n t l y , t h e r e b yr e s ul t i n g i n cost/performance advantages. A rr ay s o f d ev ic es a re p os si bl e w it hi n a s ma ll

    s p ac e . T h is h a s t h e p o te n ti a l f o r i m pr o ve d r e du n da n cy . A n ot h er i m po r ta n t a d va n ta g e o f

    m in ia tu ri z at io n i s t he p os si b il it y o f i nt eg ra ti on o f m ec ha ni ca l a nd fl ui di c p ar ts w it h

    e l e c tr o n i c s, t h e r eb y s i m p li f y i n g s y s t e m s a n d r e d u c in g p o w e r r e q u i r e m e nt s . M i c r of a b ri -

    c a t i o n e m p l o y e d f o r r e a l i z i n g s u c h d e v i c e s h a s improved reproducibility, a n d d e v i c e s t h u s

    p r od u ce d h a ve increased selectivity and sensitivity, wider dynamic range, improved

    accuracy and reliability.

    I n t e g r a t e d m i c r o s y s t e m s a r e a c o l l e c t i o n o f m i c r o s e n s o r s a n d a c t u a t o r s t h a t c a n s e n s e

    t he ir e nv i ro nm en t a nd r ea ct t o c ha ng es i n t ha t e nv ir on me nt b y u se o f a m ic ro ci rc ui t c on tr ol .S u c h m i c r o s y st e m s i n c l ud e , i n a d d i ti o n t o t h e c o n ve n t i o na l m i c r o el e c t r on i c s p a c k ag i n g ,

    i n t e gr a t e d a n t e nn a s t r uc t u r e s f o r c o m m an d s i g n al s , a n d m i c r oe l e c t ro m e c ha n i c a l c o n fig u -

    r a t i o n s f o r d e s i r e d s e n s i n g a n d a c t u a t i n g f u n c t i o n s . T h e s y s t e m m a y a l s o n e e d m i c r o p o w e r

    s u pp l y, m i cr o re l ay , a n d m i cr o si g na l p r oc e ss i ng u n it s . S uc h s y st e ms w i th m i cr o co m po -

    n e n t s a r e f a s t e r , m o r e r e l i a b l e , m o r e a c c u r a t e , c h e a p e r , a n d c a p a b l e o f i n c o r p o r a t i n g m o r e

    c o mp l ex a n d v e rs a ti l e f u nc t i on s t h an s y st e m s u s ed t o da y .

    A m i ni a tu r iz e d l o w- p ow e r t r an s ce i ve r i s a n e x ce l le n t e x am p le o f a m i cr o sy s te mt ec hn ol og y. F ig ur e 1 .3 (a ) s ho ws a s im pl ifi ed b lo ck d ia gr am o f a t ra ns ce iv er a nd a

    b o a rd - l e ve l i m p le m e n ta t i o n o f t h e s a m e c o n s i s ti n g o f s e v er a l c h i ps t h a t a r e b a s ic a l l y

    c o mp o ne n ts w i th h i gh q u al i ty - fa c to r s s uc h a s r a di o f r eq u en c y ( R F) fi l te r s, s ur f ac ea c ou st i c w a ve ( SA W ) i n te r me d ia t e- f re q ue n cy ( I F) fi l te r s, c r ys t al o sc i ll a to rs , a n d

    t r a n s i s t o r c i r c u i t s [ 3 ] . A p o s s i b l e s i n g l e - c h i p i m p l e m e n t a t i o n o f t h i s t r a n s c e i v e r u s i n g

    m i c r o s y s t e m s t e c h n o l o g y i s s h o w n i n F i g . 1 . 3 ( b ) . T h i s e n a b l e s m i n i a t u r i z a t i o n a s w e l l

    a s l o w p o w er c o n su m p ti o n .

    c 1.2 MICROSYSTEMS VERSUS MEMS

    W e h a ve p r es e nt e d s e ve r al r e as o ns f o r m i ni a tu r iz a ti o n f r om d i ff e re n t p o in t s o f v i ew . L e t u s

    n o w e x a m i ne h o w m i cr o sy s te m s t e ch n ol o gy c a me i n to e x is t en c e . I n t h e l a te 1 9 60 s a n d

    e a r l y 1 9 7 0 s , n o t l o n g a f t e r t h e e m e r g e n c e o f t h e i n t e g r a t e d c h i p , r e s e a r c h e r s a n d i n v e n t o r si n a c a d e m i a a n d i n d u s t r y b e g a n t o e x p e r i m e n t w i t h m i c r o f a b r i c a t i o n p r o c e s s e s b y m a k i n g

    m o v ab l e m e c h an i c a l e l e m e nt s . A c c e l er o m et e r s , m i c r om i r r o rs , g a s -c h r o ma t o g r ap h y i n s t ru -m e n t s , e t c . , w e r e m i n i a t u r i z e d d u r i n g t h i s p e r i o d . S i l i c o n w a s t h e m a t e r i a l o f c h o i c e a t t h a t

    t i m e . A s e m i na l p a p e r b y P e t e r se n [ 4 ] s u m m a r i ze s t h e s e d e v e l o pm e n t s. I n c r ea s e d a t t e n t i o n

    t o t h e m i cr o sy s te m s fi e ld c a me i n l a te 1 9 80 s w h en a m i cr o ma c hi n ed e l ec t ro s ta t i c m o to r

    w as m ad e a t t he U ni ve rs it y o f C al if or ni a, B er ke l ey a nd M as sa ch us et ts I ns ti tu te o f

    T e ch n ol o gy , C a mb r id g e. T h is m o vi n g m i cr o me c ha n ic a l e n ti t y f a sc i na t e d e v er y on e a n d

    s h o w e d t h e w a y f o r w a r d f o r m a n y o t h e r d e v e l o p m e n t s . T h e a c r o n y m M E M S w a s c o i n e d

    d u ri n g t h at p e ri o d. H o we v er , t h is a c ro n ym i s i n ad e qu a te t o da y b e ca u se o f t h e n u me r ou s

    d is ci pl i ne s b ey on d j us t m ec ha ni ca l a nd e le ct ri c al t ha t h av e j oi ne d t he l ea gu e. A m or es u it a bl e t e r m i s mi c ro s ys t em s ; h e nc e t h e t i tl e f o r t h is b o ok .

    4 c 1 Introduction

  • 8/11/2019 Micro and Smart Systems

    29/497

    c 1.3 WHY MICROFABRICATION?

    M i c r o s y s t e m s t e c h n o l o g y e m e r g e d a s a n e w d i s c i p l i n e b a s e d o n t h e a d v a n c e s i n i n t e g r a t e dc i r c ui t ( I C ) f a b r i c a ti o n p r o c es s e s, b y w h i c h s e n s o rs , a c t u at o r s a n d c o n t ro l f u n ct i o n s w e r e

    c o- fa br ic at ed i n s il ic on . T he c on ce pt s a nd f ea si bi l it y o f m or e c om pl e x m ic ro sy st em sd e vi c e s h a ve b e en p r op o se d a n d d e mo n st r at e d f o r a p pl i ca t io n s i n s u ch v a ri e d fi e ld s a s

    m i c r o flu i d i cs , a e r os p a c e , a u t o mo b i l e, b i o m ed i c a l , c h e m ic a l a n a l ys i s , w i r el e s s c o m m un i -

    c a t io n s, d a ta s t or a ge , a n d o p ti c s.

    I n m i c r o s y s t e m s , m i n i a t u r i z a t i o n i s a c h i e v e d b y a f a b r i c a t i o n a p p r o a c h s i m i l a r t o t h a t

    f o l l o w e d i n I C s , c o m m o n l y k n o w n a s micromachining. A s i n I C s , m u c h o f t h e p r o c e s s i n g

    i s d o ne b y c h em i ca l p r oc e ss i ng r a th e r t h an m e ch a ni c al m o di fi ca t io n s. H e nc e ,machiningh er e d oe s n ot r ef er t o c on ve nt io na l a pp ro ac he s ( su c h a s d ri l li ng , m il li ng , e tc .) u se d i n

    r e al i z in g m a cr o me c h an i ca l p a rt s , a l th o ug h t h e o b je c ti v e i s t o r e al i z e s u ch p a rt s . A s w i th

    s e m i c o n d u c t o r p r o c e s s i n g i n I C f a b r i c a t i o n , m i c r o m a c h i n i n g h a s b e c o m e t h e f u n d a m e n t a l

    t e c hn o lo g y f o r t h e f a br i ca t io n o f m i cr o sy s te m s d e vi c es a n d, i n p a rt i cu l a r, m i ni a tu r iz e ds e ns o rs a n d a c t ua t or s . S i li c on m i cr o ma c hi n i ng , t h e m o st m a tu r e o f t h e m i cr o ma c hi n i ng

    (a)

    Surfaceacoustic

    wave(SAW)

    RF filter LNA

    VCOVCO

    BPF

    Mixer Mixer

    IF Amp.Basebandprocessing

    circuits

    IF filter

    Off oron-boardantenna

    Crystaloscillator

    Off-chip

    Ceramicor boardlevel MIC

    (b)

    RF filter LNA

    Micromachinedfilters

    Micromachinedfilter

    Micromachined

    antennas

    Micromachinedresonator

    VCOVCO

    BPF

    Mixer Mixer

    IF Amp.Basebandprocessing

    circuits

    IF filter

    Crystaloscillator

    Figure 1.3 I n t e g r a t e d r a d i o f r e q u e n c y t r a n s c e i v e r s : a t y p i c a l a p p l i c a t i o n o f m i c r o s y s t e m s [ 3 ] . ( a) C u r r e n t a p p r o a c h e s

    ( s h a d e d r e m a r k s i n d i c a t e c o m p o n e n t s o u t s i d e t h e e l e c t r o n i c s d i e ) . (b) I n t e g r a t e d M E M S - b a s e d R F r e c e i v e r o n a s i n g l e

    c h i p . L N A , l o w n o i s e a m p l i fi e r ; R F , r a d i o f r e q u e n c y ; V C O , v o l t a g e - c o n t r o l l e d o s c i l l a t o r ; I F , i n t e r m e d i a t e f r e q u e n c y ;

    B P F , b a n d p a s s fi l t e r .

    1.3 Why Microfabrication? b 5

  • 8/11/2019 Micro and Smart Systems

    30/497

    t e ch n ol o gi e s, a l lo ws t h e f a br i ca t io n o f m i cr o sy s te m s t h at h a ve d i me n si o ns i n t h e s u b-

    m i ll i me t e r t o m i cr o n r a ng e . I t r e fe r s t o f a sh i on i ng m i cr o sc o pi c m e ch a ni c al p a rt s o u t o f a

    s il ic on s ub st ra t e o r o n a s il i co n s ub st ra te t o m ak e t hr ee -d im en si on al ( 3D ) s tr uc tu re s,

    t h er e by c r ea t in g a n e w p a ra d i gm i n t h e d e si g n o f m i ni a tu r iz e d s y st e m s. B y e m pl o yi n g

    m a te r ia l s s u ch a s c r ys t al l in e s i li c on , p o ly c ry s ta l li n e s i li c on , s i li c on n i tr i de , e t c. , a v a ri e ty o f

    m e ch a ni c al m i cr o st r uc t ur e s i n cl u di n g b e am s , d i ap h ra g ms , g r oo v es , o r ifi c es , s p ri n gs ,g e ar s , s u sp e ns i on s , a n d a g r ea t d i ve r si t y o f o t he r c o mp l ex m e c ha n ic a l s t ru c tu r es h a ve

    b e e n c o n ce i v e d , i m p l em e n t e d, a n d c o m m e rc i a l l y d e m o ns t r a te d .S il ic on m ic ro ma ch in i ng h as b ee n t he k ey f ac to r i n t he f as t p ro gr es s o f m ic ro sy st em s i n

    t he l as t d ec ad e o f t he 2 0t h c en tu ry . T hi s i s t he f as hi on in g o f m ic ro sc op ic m ec ha ni c al

    p ar ts o ut o f s il i co n s ub st ra te s a nd

    m o re r e ce n tl y o t he r m a te r ia l s. T h is

    t e ch n iq u e i s u se d t o f a br i c at e s u ch

    f ea tu re s a s c la mp ed b ea ms , m em -

    b ra ne s, c an ti le ve r s, g ro ov e s, o ri -

    fi ce s, s pr in gs , g ea rs , c ha mb er s,

    e tc ., t ha t c an t he n b e s ui t ab ly c om -b i n e d t o c r e a t e a v a r i e t y o f s e n s o r s .

    Bulk micromachining, which in-

    vo lve s c ar vi ng o ut t he r eq ui re d

    s t ru c tu r e b y e t ch i ng o u t t h e s i li c on

    s ub st ra te , i s t he c om mo nl y u se d

    m et ho d. F or i ns ta nc e, a t hi n d ia -

    p hr ag m o f p re ci se t hi c kn es s i n t hef e w- m ic r on r a ng e s u it a bl e f o r i n te -

    g ra ti ng s en si ng e le me nt s i s v er y

    o ft en r ea li z ed w it h t hi s a pp ro ac h.F i g u r e 1 . 4 s h o w s t h e s c a n n i n g e l e c -

    t ro n m ic ro sc op e ( SE M) i ma ge o f a c an t il ev er b ea m o f S iO2 f a br i c at e d b y b u lk m i cr o -

    m a ch i ni n g ( w et c h em i ca l e t ch i ng ) o f s i li c on . T h e d i me n si o ns o f t h is c a nt i l ev e r b e am a r e

    length65mm , w i dt h15mm , a n d t h ic k ne s s 0.52mm (1mm 106 m).

    Surface micromachining i s a n a lt er na te m ic ro ma ch in in g a pp ro ac h. I t i s b as ed o np a t t e r n i n g l a y e r s d e p o s i t e d o n t h e s u r f a c e o f s i l i c o n o r a n y o t h e r s u b s t r a t e . T h i s a p p r o a c h

    o ff er s t he a tt ra c ti ve p os si bi l it y o f i nt eg ra ti ng t he m ic ro ma ch in ed d ev ic e w it h m ic ro -

    e l ec t ro n ic s p a tt e r ne d a n d a s se m bl e d o n t h e s a m e w a fe r . I n a d di t io n , t h e t h ic k ne s s o f t h e

    s t r u c t u r a l l a y e r i n t h i s c a s e i s p r e c i s e l y d e t e r m i n e d b y t h e t h i c k n e s s o f t h e d e p o s i t e d l a y e r

    a n d h e nc e c a n b e c o nt r ol l ed t o s u bm i cr o n t h ic k ne s s l e ve l s.

    F i g u r e 1 . 5 s h o w s a s c h e m a t i c o f a p o l y c r y s t a l l i n e s i l i c o n r e s o n a t i n g b e a m t h a t c a n b em a d e b y t h e s u r f a c e m i c r o m a c h i n i n g t e c h n i q u e . N o t e t h a t t h e r e s o n a t o r b e a m i s a n c h o r e d

    a t i t s e n d s a n d t h a t a g a p o f d 0.1mm e x i s t sb e t w e e n t h e r e s o n a t o r a n d t h e r i g i d b e a m l a i d

    p e rp e nd i cu l ar t o i t . A s a r e su l t, t h e r e so n at o r

    v ibr at es a t t he f re que ncy of t he a c si gna l

    a pp li ed t o i t w it h r es pe ct t o t he r ig id b ea m

    a nd a c ur re nt fl ow s d ue t o t he c ap ac it an ce

    v a r i a t i o n w i t h t i m e . T h i s c u r r e n t p e a k s w h e n

    t he f re qu en c y o f t he i np ut s ig na l m at ch e s w it h

    t he m ec ha ni ca l r es on an ce f re qu en cy o f t hev ib ra ti ng b ea m. T hu s t he r es on at or c an b e

    u se d a s a fi lt er .

    Figure 1.4 S E M i m a g e o f S i O2 microcantilever beam

    p r e p a r e d b y b u l k m i c r o m a c h i n i n g ( w e t c h e m i c a l

    e t c h i n g ) o f s i l i c o n .

    Anchor Resonator

    Rigid beamElectrodes

    Figure 1.5 S c h e m a t i c o f a r e s o n a t o r b e a m [ 4 ] .

    6 c 1 Introduction

  • 8/11/2019 Micro and Smart Systems

    31/497

    U n ti l a b o ut t h e 1 9 90 s , m o st m i c ro s ys t em s d e v ic e s w i th v a r io u s s e ns i ng o r a c tu a t in g

    mechanismswerefabricatedusingsiliconbulkmicromachining,surfacemicromachining,and

    micromolding processes. More recently, 3D microfabrication processes incorporating other

    materials(suchaspolymers)havebeenintroducedinmicrosystemstomeetspecificapplication

    requirements (e.g. biomedical devices and microfluidics).

    I t i s i n t e r e s t i n g t o n o t e t h a t a l m o s t a l l t h e m i c r o s y s t e m s d e v i c e s e m p l o y o n e o r m o r eo f t h e t h re e b a si c s t ru c tu r es n a m el y , a d i ap h ra g m, a m i cr o br i dg e , o r a b e am th a t a r e

    r ea li z ed u si ng m ic ro ma ch in in g o f s il ic on i n m os t c as es a nd o th er m at er i al s i nc lu di ngp ol ym e rs , m et al s, a nd c er am ic s. T he se t hr ee s tr uc tu re s p ro vi d e f ea si bl e d es ig ns f or

    m ic ro se ns or s a nd a ct ua to rs t ha t e ve nt u al ly p er fo rm t he d es ir ed t as k i n m an y s ma rt

    s t ru c tu r es . T h e m a in i s su e s w i th r e sp e ct t o i m pl e me n ti n g t h es e s t ru c tu r es a r e t h e c h oi c e

    o f m a te r ia l s a n d t h e m i cr o ma c hi n in g t e ch n ol o gi e s u s ed t o f a br i c at e t h es e d e vi c e s.

    c 1.4 SMART MATERIALS, STRUCTURES AND SYSTEMS

    T he a re a o f s ma r t m at er ia l s ys te ms h as e vo lv ed f ro m t he u ne nd in g q ue st o f m an ki nd t o

    m im ic s ys te ms o f n at ur al o ri gi n. T he o bj e ct iv e o f s uc h i ni ti at iv es i s t o d ev el o p t ec hn ol og ie s

    t o p r o du c e n o n bi o l og i c a l s y s t e m s t h a t a c h ie v e

    o p ti m um f u nc t io na l it y a s o b se r ve d i n n at u ra l

    b i ol og i ca l s y st e ms a n d e mu l at e t h ei r a d ap t iv e

    c a p a bi l i ti e s b y a n i n t e gr a t ed d e si g n a p pr o a ch .I n t h e p r e s en t c o nt e xt , a s ma r t m a te ri a l i s o n e

    w h o se e l e ct r i ca l , m e c ha n ic a l , o r a c o us t i c p r o -

    p e r t ie s o r w h os e s t r uc t u re , c o m po s it i o n, o r f u n c-

    t i on s c h an g e i n a s p ec i fie d m a nn e r i n r es p on se t o

    s o m e s t i m u l u s f r o m t h e e n v i r o n m e n t . I n a s i m i -

    l a r w a y , o n e m a y e n v i s a g e s m a r t s t r u c t u r e s t h a tr e qu ir e t he a d di ti o n o f p r op e rl y d e si g ne d s e n-

    s o r s, a c t ua t or s , a n d c o n tr o ll e r s t o a n o t h er w i se d um b s t r uc t u re ( s e e s c he m a ti c i n F i g ur e 1 . 6 ).

    A s s m ar t m a te r ia l s s y st e ms s h ou l d m i mi c

    n at ur al ly o cc ur ri n g s ys te ms , t he g en er a l r e-

    q u i r e me n t s e x p e c te d f r o m t h e s e n o n bi o l o g ic a l

    s y s t em s i n c l ud e :

    1. F u l l i n te g ra t io n o f a l l f u nc t io n s o f t h e s y st e m.

    2. C o n t i nu o u s h e a l t h a n d i n t e gr i t y m o n it o r i ng .3. D a m a g e d e t e ct i o n a n d s e l f -r e c o v er y .

    4. I n t e l l i g e nt o p e r at i o n a l m a n a ge m e n t .

    5. H i g h d e g re e s o f s e c u ri t y , r e l i ab i l i t y , e f fi c i e n c y a n d s u s t ai n a b il i t y .

    A s o ne c an n ot e, t he m at er i al s i nv ol ve d i n i mp le me nt in g t hi s t ec hn ol o gy a re n ot

    n e c e s s a r i l y n o v e l . Y e t t h e t e c h n o l o g y h a s b e e n a c c e l e r a t i n g a t a t r e m e n d o u s p a c e i n r e c e n t

    y e ar s a n d h a s i n de e d b e en i n sp i re d b y s e ve r al i n no v at i ve c o nc e pt s .

    A s m en ti on ed e ar li er , t he s tr uc tu ra l , p hy si ca l, o r f un ct io na l p ro pe rt ie s o f s ma rt

    m at er ia ls r es po nd t o s om e s ti mu lu s f ro m t he e nv ir on m en t a nd t hi s r es po ns e s ho ul d b e

    r ep et it iv e i n t he s en se t ha t t he s am e c ha ng e i n t he e nv i ro nm en t m us t p ro du ce t he s am er e s p o n s e . W e k n o w t h a t e v e n w i t h o u t d e s i g n , m o s t m a t e r i a l s d o r e s p o n d t o t h e i r e n v i r o n -

    m en t. F or e xa mp le , n ot e t he c ha ng e i n d im en si on s o f m os t m at er ia l s w he n h ea te d o r

    Structure

    Sensor Actuator

    Controlunit

    Figure 1.6 B u i l d i n g b l o c k s o f a t y p i c a l

    s m a r t s y s t e m .

    1.4 Smart Materials, Structures and Systems b 7

  • 8/11/2019 Micro and Smart Systems

    32/497

    c o o l e d . H o w e v e r , w h a t d i s t i n g u i s h e s a s m a r t m a t e r i a l f r o m t h e r e s t i s t h a t w e design the

    m a t e r i a l s o t h a t s u c h c h a n g e s o c c u r i n a s p e c i fi c m a n n e r f o r s o m e d e fi n e d o b j e c t i v e t o b e

    a cc om pl is he d. H en ce , t he m ai n f ea tu re t ha t d is ti ng ui sh es s ma rt m at er ia l s i s t ha t t he y

    respondsignificantly t o s o me e x te r na l s t im u li t o w hi c h m o st m a te r ia l s a r e u n re s po n si v e.

    F u r t h e r m o r e , o n e w o u l d l i k e t o e n h a n c e s u c h a r e s p o n s e b y a t l e a s t o n e o r t w o o r d e r s o f

    m a g ni t u d e o v e r o t h e r m a t e r i a l s.B ot h a ct i ve a n d p a ss iv e a p pr oa c he s h a ve b e en a t te mp t ed i n t hi s c o nt e xt . T h is d i st i nc t io n

    i s b a se d o n t he r e qu ir e me n t t o g e ne ra t e p o we r r e qu ir e d t o p e rf o rm r e sp on s es . H en c e, a na ct i ve s ys t em h as a n i n bu i lt p o we r s o ur c e. T y pi ca l ly , a c ti v e s e ns or s a n d a ct u at or s h a ve b e en

    f av o re d i n d e si gn i ng s ma r t s tr u ct u re s. H ow ev e r, i n r e ce nt y e ar s t h e c on c ep t o f p a ss iv e

    s m a r t n e s s h a s c o m e t o t h e f o r e . P a s s i v e s m a r t n e s s c a n b e p e r v a s i v e a n d e v e n c o n t i n u o u s i n

    t he s t ru c tu r e. S uc h s t ru c tu re s d o n o t n e ed e x te r na l i n te r ve nt i on f or t h ei r o p er a ti on . I n

    a d d i t i o n , t h e r e i s n o r e q u i r e m e n t f o r a p o w e r s o u r c e . T h i s i s p a r t i c u l a r l y r e l e v a n t i n l a r g e -

    s ca l e c i vi l e n gi ne e ri n g s tr uc t ur es . P a ss i ve s ma r tn e ss c a n b e d e ri ve d f ro m t h e u n iq u e i n tr in si c

    p r o p e r t i e s o f t h e m a t e r i a l u s e d t o b u i l d s u c h s t r u c t u r e s . O n e c o m m o n e x a m p l e i s t h e s h a p e -

    m e m o r y - a l l o y ( S M A ) m a t e r i a l e m b e d d e d i n a e r o s p a c e c o m p o s i t e s , d e s i g n e d s o t h a t c r a c k s

    d o n o t p r op a ga t e. S u ch s m ar t m at e ri a ls a r e d i sc us se d b ri e fly i n C ha p te r 2 .B e si d e s sm a rt s y st e m o r sm a rt m a te r ia l , a n ot h er w i de l y u s ed t e rm i s smart

    structure. O n e d i s t i nc t iv e f e at u re o f s m ar t s t ru c tu r es i s t h at a c tu a to r s a n d s e ns o rs c a n b e

    e m be d de d a t d i sc r et e l o ca t io n s i n si d e t h e s t ru c tu r e w i th o ut a f fe c ti n g t h e s t ru c tu r al i n te g ri t y

    o f t he m ai n s tr uc tu re . A n e xa mp le i s t he e mb ed de d s ma rt s tr uc tu re i n a l am in at ed

    c o mp o si t e s t ru c tu r e. F u rt h er m or e , i n m a ny a p pl i ca t io n s, t h e b e ha v io r o f t h e e n ti r e s t ru c tu r e

    i ts el f i s c ou pl ed w it h t he s ur ro un di ng m ed iu m. T he se f ac to rs n ec es si ta te a c ou pl e d

    m o de l in g a p pr o ac h i n a n al y zi n g s uc h s m ar t s t ru c tu r es . T h e f u nc t i on a n d d e sc r ip t io n o f v ar io us c om po ne nt s o f t he s ma rt s ys te m i n T ab l e 1 .1 a re s um ma ri ze d i n T ab le 1 .1 [ 5] .

    C i vi l e n gi n ee ri n g s y st e ms s uc h a s b u il di n g f ra m es , t ru s se s , o r b ri d ge s c o mp r is e a

    c om p le x n e tw or k o f t r us s, b e am , c o lu m n, p la t e, a n d s h el l e l em en t s. M o ni t or i ng t he s tr u ct u ra lh ea lt h o f b ri dg e s tr uc tu re s f or d if fe re nt m ov in g l oa ds i s a n a re a o f g re at i mp or ta nc e i n

    i nc r ea s in g t h e s t ru ct u ra l i nt e gr i ty o f i n fr a st ru c tu re s a n d h as b e en p u rs ue d i n m an y c o un tr i es .

    D a m p i n g o f e a r t h q u a k e m o t i o n s i n s t r u c t u r e s i s y e t a n o t h e r a r e a t h a t h a s b e e n t a k e n u p f o r

    a ct i ve r e se a rc h i n m an y s ei s mi c al l y a c ti ve c o un tr i es . S ma r t d ev i ce s d e ri v ed f ro m s ma rt

    m at e ri a ls a r e e x te n si ve l y u s ed f o r s uc h a p pl i ca t io n s. A b r id g e w ho s e s t ru c tu ra l h e al t h c a n b em on i to r ed i s s h ow n i n F i gu r e 1 . 7. I n s u ch a b ri d ge , fi b er o pt i c s en s or s a r e u s ed a s s e ns in g

    d ev i ce s, w he re a s l e ad z i rc o na t e t i ta n at e ( P ZT ) o r T e rf e no l- D a c tu at o rs a r e n o rm al l y u s ed f or

    p e rf o r mi n g a c t ua t i on s s u ch a s v i b ra t i on i s o la t i on a n d c o n tr o l.

    Table 1.1 Purpose of various components of a smart system

    Unit

    Equivalent in

    Biological Systems Purpose Description

    Sensor Tactile sen sing Data acquisition Collect required raw data needed for appropriate

    s e n s i n g a n d m o n i t o r i n g

    Data bus 1 Sensory nerves Data tran smission Forward raw data to local and/or central command

    a n d c o n t r o l u n i t s

    Control system Brain Command and

    c o n t r o l u n i t

    M a n a g e a n d c o n t r o l t h e w h o l e s y s t e m b y a n a l y z i n g

    d a t a , r e a c h i n g t h e a p p r o p r i a t e c o n c l u s i o n s , a n d

    d e t e r m i n i n g t h e a c t i o n s r e q u i r e d

    Data bus 2 Moto r n erves Data instruction s Transmit decisions and asso ciated instructions tom e m b e r s o f s t r u c t u r e

    Actuator Muscles Action d ev ices Take action by triggering controlling devices/u nits

    8 c 1 Introduction

  • 8/11/2019 Micro and Smart Systems

    33/497

    T h e b e n e fi c i a r i e s a n d s u p p o r t e r s o f t h e s m a r t s y s t e m s t e c h n o l o g y h a v e b e e n m i l i t a r y

    a n d a e ro s pa c e i n du s tr i e s. S o me o f t h e p r oo f -o f -c o nc e pt p r og r am s h a ve a d dr e ss e d s t ru c -

    t u ra l h e al t h m o ni t or i ng , v i br a ti o n s u pp r es s io n , s h ap e c o nt r ol , a n d m u lt i fu n ct i on a l s t ru c -

    t u ra l c o nc e pt s f o r s p ac e cr a ft s , l a un c h v e hi c le s , a i rc r af t s a n d r o to r cr a ft s . T h e s t ru c tu r es b u il t

    s o f a r h a v e f o c u se d o n d e m o ns t r a ti n g p o t e nt i a l s y s te m - l e ve l p e r f or m a n c e i m p r o v e m en t s

    u s in g s m ar t t e ch n ol o gi e s i n r e al i st i c a e ro s pa c e s y st e ms . C i vi l e n gi n ee r in g s t ru c tu r es

    i nc lu di n g b ri dg es , r un wa ys a nd b ui l di ng s t ha t i nc or po ra te t hi s t ec hn ol og y h av e a ls ob e en d e mo n st r at e d. S m ar t s y st e m d e si g n e n vi s ag e s t h e i n te g ra t io n o f t h e c o nv e nt i on a l

    fi e l d s o f m e c h an i c a l e n g i n ee r i n g, e l e c t ri c a l e n g i n ee r i n g, a n d c o m pu t e r s c i e nc e / i n fo r m a -

    t i on t ec hn ol o gy a t t he d es ig n s ta ge o f a p ro du ct o r a s ys te m.

    A s d i s c u s s e d e a r l i e r , s m a r t s y s t e m s s h o u l d r e s p o n d t o i n t e r n a l ( i n t r i n s i c ) a n d e n v i r o n -

    m e nt a l ( e xt r i ns i c) s t im u li . T o t h i s e n d , t h ey s h o u ld h a v e s e ns o rs a n d a c tu a to r s e m be d de d i n

    t h em . S o me o f t h es e d e vi c es c o mm o nl y e n co u nt e re d i n t h e c o nt e xt o f s m ar t s ys t em s a r e

    l i st e d i n T ab le 1 .2 .

    c 1.5 INTEGRATED MICROSYSTEMS

    I n te g ra t ed m i cr o sy s te m s c a n b e c l as si fi ed i n to t h re e m a jo r g r ou p s a s f o ll o ws :

    1. Micromechanical structures: T h e s e a r e n o n - m o v i n g s t r u c t u r e s , s u c h a s m i c r o b e -

    a m s a n d m i c r oc h a n ne l s .

    Figure 1.7 T h e h i s t o r i c G o l d e n B r i d g e b u i l t i n 1 8 8 1 t o c o n n e c t A n k l e s h w a r a n d B h a r u c h i n G u j a r a t ,

    I n d i a . T h e i n s e t s h o w s t h e d e t a i l s o f o n e - t i m e s t r u c t u r a l h e a l t h m o n i t o r i n g o f a s e c t i o n o f t h e b r i d g e .

    I t h a d 6 6 fi b e r o p t i c s t r a i n g a u g e s a n d m i c r o m a c h i n e d a c c e l e r o m e t e r s . C o u r t e s y : I n s t r u m e n t a t i o n

    Scientific Technologies Pvt. Ltd., Bangalore, www.inscitechnologies.com.

    Table 1.2 Some sensors and actuators used in smart systems

    Device Physical Quantity Example Successful Technologies

    Sensor Acceleration Accelerometer PZT , Microfabrication

    Angular rate Gyroscope Fiber o ptic, Micro fabricatio n

    Position Linear variab le d ifferential

    transformer (LVDT)

    Electromagnetic

    Tran sd ucer Crack detection Ultrasonic transducer PZT

    Actuator Movement Thermal Shape memory alloy

    1.5 Integrated Microsystems b 9

    http://www.inscitechnologies.com/http://www.inscitechnologies.com/http://www.inscitechnologies.com/
  • 8/11/2019 Micro and Smart Systems

    34/497

    2. Microsensors: T h e s e r e s p o n d t o p h y s i c a l a n d c h e m i c a l s i g n a l s ( s u c h a s p r e s s u r e ,

    a c ce l er a ti o n, p H, g l uc o se l e ve l , e t c. ) a n d c o nv e rt t h em t o e l ec t ri c al s i gn a ls .

    3. Microactuators: T h e se c o nv e rt e l ec t ri c al o r m a gn e ti c i n pu t t o m e ch a ni c a l f o rm so f e n er g y ( e .g . r e so n at i ng b e am s , s wi t c he s , a n d m i cr o pu m ps ) .

    Microsystems i n te g ra t e s e ns o rs , a c tu a t or s a n d e l ec t ro n ic s t o p r ov i de s o me u s ef u l

    f un ct io n. T he A DX L5 0, w hi ch w as r el ea se d i n 1 99 1 a nd w as A na lo g D ev ic es fi rs t

    c o m m e r c i a l d e v i c e , i s a n e x c e l l e n t e x a m p l e o f s u c h a m i c r o s y s t e m . T h e b l o c k d i a g r a m o f

    t hi s s ys te m i s s ho wn i n F ig ur e 1 .8 [ 6] . T hi s m ic ro sy st em i s b as ed o n a s ur fa ce m ic ro -

    m ac hi ni ng t ec hn ol og y w it h s en si ng e le ct ro ni cs i nt eg ra te d o n t he s am e c hi p a s t he

    a cc el e ro me te r. H er e, t he a cc el er om et e r i s a s en so r t ha t r es po nd s t o t he a cc el er at io n o r

    d e ce l er a ti o n a n d g i ve s a n o u tp u t v o lt a ge t o t h e c o nt r ol c i rc u it , w h ic h i n t u rn t r ig g er s a n

    a c t u a t o r t o d e p l o y t h e a i r b a g d u r i n g a c r a s h , s o t h a t t h e p e r s o n s s e a t e d i n t h e f r o n t s e a t a r ep r ot e ct e d f r om c r as h in g i n to t h e f r on t w i nd s hi e l d o r t h e d a sh b oa r d.

    1.5.1 Micromechanical Structures

    M ic ro ma c hi ni ng i s u se d c om me r ci al ly t o p ro du ce c ha nn el s f or m ic ro flu id ic d ev ic es

    a nd a ls o t o f ab ri ca te s ys te ms r ef er re d t o a s l ab s o n a c hi p f or c he mi al a na ly si s a nd

    a n a l y s i s o f b i o m e d i c a l m a t e r i a l s [ 7 ] . U s u a l l y s u c h c h a n n e l s a r e m a d e o n p l a s t i c s o r g l a s s

    s ub st ra t es . F ig ur e 1 .9 ( a) s ho ws o ne s uc h d ev ic e r ep or te d i n t he l it er at ur e [ 8] . M ic ro -

    m a ch i ni n g i s a l so u s ed t o m a ke a v a ri e t y o f m e ch a ni c al s t ru c tu r es . F i gu r e 1 . 9 ( b ) s h o ws a n

    S E M i m a g e o f a s i li c on n a no t i p f a br i ca t e d [ 9 ] u s in g a bu l k m i cr o ma c hi n in g p r oc e ss .

    S u c h m i c r o t i p s fi n d a p p l i c a t i o n s i n a t o m i c f o r c e m i c r o s c o p y ( A F M ) t e c h n o l o g y a n d fi e l de m is s io n a r ra y f o r f u tu r is t i c v a cu u m e l ec t r on d e vi c es c a pa b l e o f o p er a t io n i n t e ra h er t z

    f r e qu e n c y r a n g e [ 1 0 ] .

    Outputvoltage

    PreampBufferDemodulatorand low-pass

    filter

    Square waveoscillator

    Feedback voltage

    Anchor

    Polysilicon proofmass and moving

    electrodes

    Fixed polysiliconcapacitor plates

    Suspensionsystem

    Figure 1.8 A s c h e m a t i c d i a g r a m o f A D X L 5 0 a c c e l e r o m e t e r .

    10 c 1 Introduction

  • 8/11/2019 Micro and Smart Systems

    35/497

    1.5.2 MicrosensorsS e v e r a l m i c r o m a c h i n e d s e n s o r s h a v e e v o l v e d o v e r t h e l a s t t w o d e c a d e s . A m o n g t h e m t h e

    p r e s s u r e s e n s o r s o c c u p y a l m o s t 6 0 % o f t h e m a r k e t . A s c h e m a t i c i s o m e t r i c c u t - a w a y v i e w

    o f a p i ez o re s is t iv e p r e s su r e s e n so r d i e i s s h o w n i n F i g. 1 . 10 ( a ). H e re , w e c a n s e e t h e f o ur

    Figure 1.9 Miniature mechanicals t r u c t u r e s s h o w i n g ( a ) p o l y m e r

    m e s o p u m p ; ( b ) s i l i c o n n a n o t i p

    f a b r i c a t e d u s i n g b u l k

    micromachining.(a) (b)

    Figure 1.10 Schematic diagrams

    o f m i c r o s e n s o r s : ( a ) c u t - a w a y

    v i e w o f a p i e z o r e s i s t i v e p r e s s u r es e n s o r; ( b ) c a p a c it i v e -s e n s in g

    accelerometer.

    (a)

    Piezoresistor

    Pad

    Diaphragm

    Pressure port

    Glass

    Glass

    (b)

    Fixed electrode

    Fixed electrode

    Seismic massSi

    1.5 Integrated Microsystems b 11

  • 8/11/2019 Micro and Smart Systems

    36/497

    p r es su r e- s en s it i ve r e si s to r s ( p ie z or e si s to r s) i n te g ra t e d o n a m i cr o ma c hi n ed s i li c on d i a-

    p h ra g m. M i cr o ma c h in e d a c ce l er o me t er i s y e t a n ot h er d e vi c e w hi c h h a s r e ce i v ed c o ns i d-

    e r a b le a t t e nt i o n f r o m t h e a e r o s p a c e, a u t o mo b i l e , a n d b i o m ed i c a l i n d u s t r ie s . F i g u r e 1 . 1 0 ( b )

    s h o w s a s c h e m a t i c c r o s s - s e c t i o n a l v i e w o f o n e s u c h d e v i c e . T h e s e i s m i c m a s s r e s p o n d s t o

    a cc el e ra ti on a nd d efl ec t s, t hu s b ri ng in g a bo ut a c ha ng e i n t he c ap ac i ta nc e b et we en t he m as s

    a nd t he fi xe d e le ct r od es . T he c ha ng e i n c ap ac i ta nc e i s a m ea su re o f t he d is pl ac em en t,w hi c h i n t u rn d e pe n ds u p on t h e a c ce l e ra t io n .

    1.5.3 Microactuators

    O v e r t h e l a s t f e w y e a r s , m i c r o m a c h i n e d a c t