MFS 9130 Hardware Description

112
Alcatel-Lucent GSM A9130 MFS Evolution Hardware Description MFS Document Sub-System Description Release B10 3BK 21270 AAAA PCZZA Ed.03

description

MFS 9130 Hardware Description

Transcript of MFS 9130 Hardware Description

Page 1: MFS 9130 Hardware Description

Alcatel-Lucent GSM

A9130 MFS Evolution Hardware

Description

MFS Document

Sub-System Description

Release B10

3BK 21270 AAAA PCZZA Ed.03

Page 2: MFS 9130 Hardware Description

Status RELEASED

Short title A9130 MFS Evolution HW Description

All rights reserved. Passing on and copying of this document, useand communication of its contents not permitted without writtenauthorization from Alcatel.

BLANK PAGE BREAK

2 / 112 3BK 21270 AAAA PCZZA Ed.03

Page 3: MFS 9130 Hardware Description

Contents

Contents

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111.1 Cabinet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121.2 Subracks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121.3 Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.3.1 A9130 MFS Evolution Naming Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131.3.2 9 JBXGPU Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141.3.3 21 JBXGPU Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151.3.4 Rack Shared Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161.3.5 Standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2 Cabinet Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192.1 Layout and Facilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202.2 Hardware Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222.3 Dimensions and Weight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232.4 Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4.1 Temperature and Humidity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242.4.2 Atmospheric Pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242.4.3 Solar Radiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242.4.4 Dust and Particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242.4.5 Lighting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252.4.6 Cooling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252.4.7 Green Compliance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3 Power System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273.1 Power Distribution Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283.1.2 Mechanical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293.1.3 Schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293.1.4 Power Station Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293.1.5 Connection to the Hosted Shelves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303.1.6 Earthing Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303.1.7 Safety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303.1.8 Provision for Future Use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303.1.9 JSXPDU Front View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303.1.10 Power Distribution Cable Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2 Cooling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4 ATCA Shelf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.1 ATCA Shelf Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344.1.1 Shelf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364.1.2 Node Slots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364.1.3 Hub Slots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364.1.4 Rear Transition Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364.1.5 Power Entry Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364.1.6 Power Distribution System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364.1.7 Blowers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394.1.8 Shelf Manager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394.1.9 Personality Card . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394.1.10 Air Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394.1.11 Backplane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404.1.12 Distribution Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404.1.13 Mechanical Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2 JBXOMCP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 414.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3BK 21270 AAAA PCZZA Ed.03 3 / 112

Page 4: MFS 9130 Hardware Description

Contents

4.2.2 Front Plate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 424.2.3 LEDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 434.2.4 Keys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 454.2.5 Connectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.3 JBXSSW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 474.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 474.3.2 Front Plate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 484.3.3 LEDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 494.3.4 Connectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 524.3.5 Reset Key . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 534.3.6 Backplane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.4 JAXSSW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 544.4.1 Front Plate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 544.4.2 LEDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 554.4.3 Ethernet Uplink Connectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.5 JBXGPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 574.5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 574.5.2 JBXGPU Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 584.5.3 Front Plate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 624.5.4 LEDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.6 JAXSMM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 654.6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 654.6.2 Payload Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 664.6.3 Shelf Management Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 674.6.4 Power Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 684.6.5 Frame Ground and ESD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 684.6.6 Front Plate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 694.6.7 LEDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 704.6.8 Ethernet Connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.7 JAXPC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 714.7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 714.7.2 Front Panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 724.7.3 LEDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 734.7.4 Alarm I/O Connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 734.7.5 Handle Toggle Switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 734.7.6 Alarm Reset Push Button . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 734.7.7 Shelf Addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.8 JBXPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 754.8.1 JBXPS Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 764.8.2 Front Plate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 764.8.3 LEDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 774.8.4 Handle Switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.9 JBXFAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 784.9.1 Front Plate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 784.9.2 LEDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 784.9.3 Handle Switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.10 ATCA Fillers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 794.10.1 JBXFILL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 804.10.2 JAXFILL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5 JSXLIU/JSXLIUB Shelf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 835.1 JSXLIU/JSXLIUB Shelf Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 845.1.2 Shelf Position in the System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 845.1.3 Main Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 855.1.4 Mechanical Housing Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 865.1.5 JSXLIU/JSXLIUB Shelf Internal Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.2 JBXLIU/JBLIU75 Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4 / 112 3BK 21270 AAAA PCZZA Ed.03

Page 5: MFS 9130 Hardware Description

Contents

5.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 905.2.2 Hardware Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 925.2.3 Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 965.2.4 Front Panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 975.2.5 Safety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.3 JBXMUX Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 985.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 985.3.2 JBXMUX Hardware Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 985.3.3 Front Panel Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1035.3.4 Backplane Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1045.3.5 Front Panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1055.3.6 Power Supply Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1055.3.7 Safety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.4 JBXPEM Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1075.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1075.4.2 JBXPEM Architecture and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1075.4.3 Front Panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1105.4.4 Back Plane Connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1115.4.5 Safety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.5 Dummy Panel (JBXDUM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1125.6 LIU Filler (JMXF1U) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1125.7 LIUB Label . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

3BK 21270 AAAA PCZZA Ed.03 5 / 112

Page 6: MFS 9130 Hardware Description

Figures

FiguresFigure 1: A9130 MFS Evolution 9 JBXGPU Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Figure 2: A9130 MFS Evolution 21 JBXGPU Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Figure 3: A9130 MFS Evolution 9 JBXGPU and A9130 BSC Evolution 1000 TRX Rack SharedConfiguration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Figure 4: Cabinet Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Figure 5: A9130 MFS Evolution Hardware Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Figure 6: JSXPDU Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Figure 7: JSXPDU Front View and Marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Figure 8: Shelf Airflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Figure 9: Block Diagram of a Blower . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Figure 10: ATCA Shelf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Figure 11: ATCA Subrack Front View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Figure 12: ATCA Subrack Back View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Figure 13: Shelf Low Power Distribution System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Figure 14: Shelf High Power Distribution System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Figure 15: JBXOMCP Front Plate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Figure 16: Location of Front Plate LEDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Figure 17: Location of Reset Key . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Figure 18: Location of USB Connectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Figure 19: Blade Functional Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Figure 20: JBXSSW Front Plate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Figure 21: JBXSSW LED Location . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Figure 22: Base Interface LED Location . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Figure 23: Connector Location . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Figure 24: Reset Key Location . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Figure 25: Front Plate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Figure 26: JAXSSW Front Plate LEDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Figure 27: Single Shelf Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Figure 28: Front Plate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Figure 29: JAXSMM Hardware Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Figure 30: JAXSMM Front Plate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Figure 31: JAXPC Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Figure 32: JAXPC Front Panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Figure 33: Rotary Switches on JAXPC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Figure 34: JBXPS Functional Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

Figure 35: JBXPS Front Plate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Figure 36: JBXFAN Front Plate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

Figure 37: JBXFILL View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

Figure 38: JAXFILL View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6 / 112 3BK 21270 AAAA PCZZA Ed.03

Page 7: MFS 9130 Hardware Description

Figures

Figure 39: JSXLIU/JSXLIUB Shelf in the MFS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Figure 40: JSXLIU/JSXLIUB Shelf Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Figure 41: JSXLIU/JSXLIUB Shelf Front View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

Figure 42: LIU Hosted Strips and Marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

Figure 43: JSXLIU/JSXLIUB Shelf Back-Plane Front View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

Figure 44: Platform Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

Figure 45: JBXLIU/JBLIU75 Board Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

Figure 46: JBXLIU/JBLIU75 Board Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

Figure 47: LIU Front Panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

Figure 48: JBXMUX Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

Figure 49: 1000 Base-T RJ45 Connector Front View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

Figure 50: JBXMUX Front Panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

Figure 51: ESD Mitigation Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

Figure 52: JBXPEM Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

Figure 53: JBXPEM Board Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

Figure 54: JBXPEM Front Panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

Figure 55: JBXPEM Side View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

Figure 56: JBXDUM Front and Side Views . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

Figure 57: JMXF1U Front View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

Figure 58: JSXLIUB Label . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

3BK 21270 AAAA PCZZA Ed.03 7 / 112

Page 8: MFS 9130 Hardware Description

Tables

TablesTable 1: A9130 MFS Evolution Configuration Naming Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Table 2: Hardware Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Table 3: Cabinet Dimensions and Weight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Table 4: Dust and/or Sand Particle Concentration Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Table 5: JBXSSW LED Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Table 6: Color Coding of Base Interface LEDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Table 7: Base Interface and RTM LEDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Table 8: Front Plate LED Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Table 9: JAXSMM LEDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

Table 10: JAXPC LEDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Table 11: Handle Toggle Switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Table 12: JBXPS LEDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

Table 13: Handle Switch Positions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

Table 14: JBXFAN LEDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

Table 15: Handle Switch Positions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

Table 16: JSXLIU/JSXLIUB Shelf Backplane Weight and Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

8 / 112 3BK 21270 AAAA PCZZA Ed.03

Page 9: MFS 9130 Hardware Description

Preface

Preface

Purpose The A9130 MFS Evolution Hardware Description describes the cabinets,subracks and modules of the A9130 MFS Evolution.

What’s New In Edition 03Description improvement in NE1OE Block (Section 5.3.2.1).

In Edition 02Description improvement in JBXGPU (Section 4.5).

In Edition 01First release of the document.

Audience This manual is intended for:

Commissioning personnel

System support engineers

Training department personnel (for reference use)

Any other personnel requiring an overview of the A9130 MFS Evolution

hardware.

Assumed Knowledge The reader must have a general knowledge of telecommunications systems,terminology and A9130 MFS Evolution functions.

3BK 21270 AAAA PCZZA Ed.03 9 / 112

Page 10: MFS 9130 Hardware Description

Preface

10 / 112 3BK 21270 AAAA PCZZA Ed.03

Page 11: MFS 9130 Hardware Description

1 Overview

1 Overview

The Overview provides information needed by project managers and foremen,for presentation to the customer and for site planning.

3BK 21270 AAAA PCZZA Ed.03 11 / 112

Page 12: MFS 9130 Hardware Description

1 Overview

1.1 CabinetThe A9130 MFS Evolution hardware consists of an indoor cabinet whichis housed in a telecommunications building. It contains subracks, powerdistribution unit, PBAs, modules and cabling.

The cabinet is designed for buildings with a minimum ceiling height of 2.7meters.

Cable entry to the cabinet can be from:

The topIf the cabinet is mounted on a solid floor, cable ducts in the ceiling carry thecables to the top of the cabinet.

The bottomIf the cabinet is mounted on a raised floor, cable ducts in the floor carry thecables to the bottom of the cabinet.

The cabinet consists of a rack fitted with front and rear doors. When thedoors are closed, the equipment is EMI protected. The doors can be easilyremoved for maintenance.

The arrangement of the subracks in the cabinet takes into account therequirements for:

Thermal cooling, achieved with forced-air cooling

Minimization of floor space

Ease of access for maintenance, from the front of the cabinets

Future system expansion.

1.2 SubracksThe following types of subracks are used in the A9130 MFS Evolution:

ATCAThe ATCA 19" subrack is made of stainless steel. There is one mountingbracket on each side of the shelf, designed for front-mounting into a rack.Depending on the rack in which the shelf is installed, there are two possiblelocations for the mounting brackets on the side of the shelf.For more information about ATCA subracks and hosted boards, refer toATCA Shelf (Section 4).

Line Interface Unit (JSXLIU/JSXLIUB)The JSXLIU/JSXLIUB subrack assumes the concentration of 256 E1 on oneGiga Ethernet link.For more information about JSXLIU/JSXLIUB subracks and hosted boards,refer to JSXLIU/JSXLIUB Shelf (Section 5).

Power Distribution Unit (JSXPDU).The JSXPDU provides power distribution inside the cabinet.For more information about the JSXPDU, refer to Power Distribution Unit(Section 3.1).

12 / 112 3BK 21270 AAAA PCZZA Ed.03

Page 13: MFS 9130 Hardware Description

1 Overview

1.3 Configurations

1.3.1 A9130 MFS Evolution Naming Conventions

The following table lists the naming conventions used for A9130 MFS Evolutionconfigurations.

9* JBXGPU This configuration allows up to 9* active JBXGPUboards and 1 standby JBXGPU board.

21 JBXGPU This configuration allows up to 21 active JBXGPUboards and 1 standby JBXGPU board.

* : In case of centralized clock synchronization mode the number of GP is limitedto 8 GP instead of 9 GP.

Table 1: A9130 MFS Evolution Configuration Naming Conventions

The follwing table gives the boards allocation for the main ATCA shelf.

Physical slots

Boards Qty 1 2 3 4 5 6 7 8 9 10 11 12 13 14

JBXSSW 2 x x

JBXGPUnumber

1 to 9*

+1 spare

1 2 3 4 0 5 6 7 8 9

JBXOMCP 2 x x

JAXSSW 2 u u u u u x x u u u u u u

* : In case of centralized clock synchronization mode the number of GP is limited to 8 GP instead of 9 GP.

u : Slot is not used and closed with a filler

JBXGPU0 is always in slot 5 for redundancy function.

Configuration evolution and shelf filling from JBXGPU 1 to 9* is done fromleft side to right side.

The follwing table gives the boards allocation for the extension ATCA shelf.

Physical slots

Boards Qty 1 2 3 4 5 6 7 8 9 10 11 12 13 14

JBXSSW 2 x x

JBXGPUnumber

1 to 12 10 11 12 13 14 15 16 17 18 19 20 21

JAXSSW 2 u u u u u u x x u u u u u u

u : Slot is not used and closed with a filler

3BK 21270 AAAA PCZZA Ed.03 13 / 112

Page 14: MFS 9130 Hardware Description

1 Overview

Configuration evolution and shelf filling from JBXGPU 10 to 21 is done fromleft side to right side.

1.3.2 9 JBXGPU Configuration

The following figure shows the rack layout in an A9130 MFS Evolution 9JBXGPU configuration (stand-alone).

1234567890123456789123456789012345678912345678901234567891234567890123456789

CLOSED / OPEN H/S OOS

CLOSED / OPEN H/S OOS

CLOSED / OPEN H/S OOS

CLOSED / OPEN H/S OOS

−48 / 60 VDC

4A

−48 / 60 VDC

4A

XPEM XLIU XMUXXLIU XLIU XLIU XLIU XLIU XLIU XLIU XDUM XPEMXMUX

JSXLIUShelf 1

JSXATCAShelf 3

(JSXATCA Shelf 4)

JSXPDU

Free space

Air inlet

Free space

XDUM XDUM XDUMXDUMXDUMXDUM XDUM

JBX

SS

W

JBX

SS

W

JBX

GP

U

JBX

GP

U

JBX

GP

U

JBX

GP

U

JBX

GP

U

JBX

OM

CP

JBX

OM

CP

JBX

GP

U

JBX

GP

U

JBX

GP

U

JBX

GP

U

JBX

GP

U

1 212 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Figure 1: A9130 MFS Evolution 9 JBXGPU Configuration

14 / 112 3BK 21270 AAAA PCZZA Ed.03

Page 15: MFS 9130 Hardware Description

1 Overview

1.3.3 21 JBXGPU Configuration

The following figure shows the rack layout in an A9130 MFS Evolution 21JBXGPU configuration.

12345678901234567890123456789012345678901234567890123456789012345678901234567890

CLOSED / OPEN H/S OOS

CLOSED / OPEN H/S OOS

CLOSED / OPEN H/S OOS

CLOSED / OPEN H/S OOS

12345678901234567890123456789012345678901234567890123456789012345678901234567890

CLOSED / OPEN H/S OOS

CLOSED / OPEN

H/S OOS

CLOSED / OPEN H/S OOS

CLOSED / OPEN H/S OOS

−48 / 60 VDC

4A

−48 / 60 VDC

4A

XPEM XLIU XMUXXLIU XLIU XLIU XLIU XLIU XLIU XLIU XLIU XLIU XLIU XLIU XLIU XLIU XLIU XLIU XPEMXMUX

JSXLIUShelf 1

JSXATCAShelf 3

(Main* Shelf)

JSXATCAShelf 4

(Extended Shelf)

JSXPDU

JBX

SS

W

JBX

SS

W

JBX

GP

U

Free space

Air inlet

Air inlet

JBX

GP

U

JBX

GP

U

JBX

GP

U

JBX

GP

U

JBX

GP

U

JBX

GP

U

JBX

GP

U

JBX

GP

U

JBX

GP

U

JBX

GP

U

JBX

GP

U

JBX

SS

W

JBX

SS

W

JBX

GP

U

JBX

GP

U

JBX

GP

U

JBX

GP

U

JBX

GP

U

JBX

OM

CP

JBX

OM

CP

JBX

GP

U

JBX

GP

U

JBX

GP

U

JBX

GP

U

JBX

GP

U

1 212 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

* : In 21 JBXGPU configuration (Multishelf), the main shelf (the one containing theOMCP boards) is always ATCA shelf 3.

Figure 2: A9130 MFS Evolution 21 JBXGPU Configuration

3BK 21270 AAAA PCZZA Ed.03 15 / 112

Page 16: MFS 9130 Hardware Description

1 Overview

1.3.4 Rack Shared Configuration

The following figure shows the rack layout for an A9130 MFS Evolution 9JBXGPU and an A9130 BSC Evolution 1000 TRX rack shared configuration.

12345678901234567890123456789012345678901234567890123456789012345678901234567890

CLOSED / OPEN H/S OOS

CLOSED / OPEN H/S OOS

CLOSED / OPEN H/S OOS

CLOSED / OPEN H/S OOS

−48 / 60 VDC

4A

−48 / 60 VDC

4A

XPEM XLIU XMUXXLIU XLIU XLIU XLIU XLIU XLIU XLIU XLIU XLIU XLIU XLIU XLIU XLIU XLIU XLIU XPEMXMUX

LIUShelf 1

(to MFS)

ATCAShelf 3(MFS)

ATCAShelf 4(BSC)

JSXPDU

JBX

SS

W

JBX

SS

W

JBX

OM

CP

JBX

OM

CP

JBX

GP

U

LIUShelf 2

(to BSC)

Air inlet

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

JBX

GP

U

JBX

GP

U

JBX

GP

U

JBX

GP

U

JBX

GP

U

JBX

GP

U

JBX

GP

U

JBX

GP

U

JBX

GP

U

−48 / 60 VDC

4A

−48 / 60 VDC

4A

XPEM XLIU XMUXXLIU XLIU XLIU XLIU XLIU XLIU XLIU XLIU XLIU XLIU XLIU XLIU XLIU XLIU XLIU XPEMXMUX

12345678901234567890123456789012345678901234567890123456789012345678901234567890

CLOSED / OPEN H/S OOS

CLOSED / OPEN H/S OOS

CLOSED / OPEN H/S OOS

CLOSED / OPEN H/S OOS

Air inlet

JBX

TP

JBX

TP

JBX

CC

P

JBX

SS

W

JBX

SS

W

JBX

OM

CP

JBX

OM

CP

JBX

CC

P

JBX

CC

P

JBX

CC

P

Not U

sed

Not U

sed

JBX

CC

P

JBX

CC

P

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Figure 3: A9130 MFS Evolution 9 JBXGPU and A9130 BSC Evolution 1000TRX Rack Shared Configuration

Note: In rack shared configuration, the MFS can also be positioned in the upperATCA shelf:

ATCA Shelf 4 -> MFS

ATCA Shelf 3 -> BSC.

16 / 112 3BK 21270 AAAA PCZZA Ed.03

Page 17: MFS 9130 Hardware Description

1 Overview

1.3.5 Standards

The complete system is fully compliant with:

PICMG 3.0 R1.0 (AdvancedTCA) specifications defining mechanics, board

dimensions, power distribution, power and data connectors and systemmanagement.

EN 60950 - Safety of Information Technology Equipment safety standard.

EN 55022 - EMC requirements on system level

ANSI/IPC - A610 Rev.C Class 2 Manufacturing Requirements.

3BK 21270 AAAA PCZZA Ed.03 17 / 112

Page 18: MFS 9130 Hardware Description

1 Overview

18 / 112 3BK 21270 AAAA PCZZA Ed.03

Page 19: MFS 9130 Hardware Description

2 Cabinet Description

2 Cabinet Description

Cabinet Description describes the A9130 MFS Evolution cabinet and therequired environmental conditions.

3BK 21270 AAAA PCZZA Ed.03 19 / 112

Page 20: MFS 9130 Hardware Description

2 Cabinet Description

2.1 Layout and FacilitiesThe A9130 MFS Evolution equipment is housed in a single 19’’ standard rack.The rack provides:

Mechanical housing for up to two ATCA shelves

Connection of the secondary power supply, via duplicated -48V or -60V

distribution, through a power distribution shelf called the JSXPDU

Connection of the external links, essentially comprised of E1 interfaces andGiga Ethernet on balanced pairs

Safety protection to industry standards.

The following figure shows the layout of the cabinet.

JSXPDU

JSXATCA Shelf 4

JSXATCA Shelf 3

JSXLIU Shelf 1

Free Space

Plinth

Cable Pipes

Figure 4: Cabinet Layout

The front door is 80% perforated (the maximum possible perforation for theallowed space).

A 100 mm plinth is provided to allow site installation without opening theequipment, or to allow back cable entry on a concrete floor. Four levellingscrews provided to allow rack levelling.

20 / 112 3BK 21270 AAAA PCZZA Ed.03

Page 21: MFS 9130 Hardware Description

2 Cabinet Description

The front upright racking is welded 100 mm from the front door internal face toallow space for cables. The back racking upright position can be adjusted to fitthe depth of the ATCA shelves hosted in the cabinet.

The top of the cabinet can be completely removed (including when cableentry is located at the top of the equipment) to allow easy access for on-sitecabling. It is reversible (front to back) to allow access from the left or right sides,depending on the configuration. For a corner installation, part of the installationkit is bolted to the racks using the ring hooks of the cabinet, therefore allowingthe use of a vertical cable guide.

The following facilities are provided for site cabling:

When cable entry is from the bottom, a rectangular pipe is installed on

each side, between the front and the back upright racking, to easily allow

14 power cables (14 mm in diameter ) to be fed from the bottom to thetop (seven on each side)

When cable entry is from the top, these pipes are used to feed 32 PCMcables (9 mm in diameter and equipped with a 12 x 66 mm connector) from

the top to the bottom (16 on each side). In this case, up to six Ethernet

cables (8 mm in diameter) can also be fed through these pipes.

The bottom of the rack has three windows for bottom cable entry:

One window at the front, covering the complete usable width of the

JSXLIU/JSXLIUB shelf and dedicated principally to PCM cables access

One window on each side, under the pipes, used for power cables routing incase of bottom access and for PCM cables routing in case of top access.

3BK 21270 AAAA PCZZA Ed.03 21 / 112

Page 22: MFS 9130 Hardware Description

2 Cabinet Description

2.2 Hardware ArchitectureThe following figure shows the hardware architecture of the A9130 MFSEvolution.

JBXSSW w

(duplicated)

Rad

io N

etw

ork

links

External Ethernet Links

JSXLIU Shelf(21 slots)

E1

JBXGPU n

JBXMUX w

JBXLIU 1

JBXLIU n

JSXATCA Shelf (14 slots)

JBXGPU 1

JBXOMCP w

JBXOMCP r

(duplicated)

(duplicated)

Figure 5: A9130 MFS Evolution Hardware Architecture

The following table lists the functions provided by each functional block.

Functional Block Function

Gigabit Ethernet switch (JBXSSW) Allows exchanges between allplatform elements and externalIP/Ethernet equipment.

O&M Control Processing board(JBXOMCP)

Acts as system manager for the wholeplatform and for O&M applications.

Radio Processing board (JBXGPU) Manages the user plane packet dataflow processing.

Line Interface Unit (JSXLIU/JSXLIUB)shelf

Multiplexes/demultiplexes and crossconnects all E1 external links to/fromNE multiplexed links (n E1 overEthernet) on the JBXGPU board.Equipped with two JBXMUX boardsand n JBXLIU/JBLIU75 boards,depending on capacity.

22 / 112 3BK 21270 AAAA PCZZA Ed.03

Page 23: MFS 9130 Hardware Description

2 Cabinet Description

Functional Block Function

JBXLIU/JBLIU75 boards (theinterface for radio network links)

These links correspond to the userplane interfaces.

Ethernet links on the IP ports of theJBXSSW switch

These links connect the platform toexternal IP equipment (i.e. OMC-R,external alarm box).

Table 2: Hardware Functions

2.3 Dimensions and WeightThe following table describes the cabinet’s external physical dimensions.

Dimension Overall Size (mm)

Height 2000 (including a 100 mm plinth)

Width 600

Depth 600

Maximum weight 300 kg

Table 3: Cabinet Dimensions and Weight

2.4 EnvironmentThe equipment must not be exposed to extremes of temperature, or to relativehumidity. To meet the required environmental conditions, air conditioningequipment may have to be installed.

The environmental conditions are:

Temperature and humidity

Atmospheric pressure

Solar radiation

Dust and particles

Lighting

Cooling

Safety standards

Green compliance.

3BK 21270 AAAA PCZZA Ed.03 23 / 112

Page 24: MFS 9130 Hardware Description

2 Cabinet Description

2.4.1 Temperature and Humidity

For altitudes between sea level and 500 meters, the temperature must bebetween + 5�C and + 40�C, within a relative humidity band of between 20 % to80 %. The temperature gradient must be less than 0.5�C per minute.

Electrostatic DangerElectrostatics may cause minor shocks and/or damage to the equipment.The relative humidity must be at least 20 % at manned sites or duringmaintenance periods.Cooling, EMI conditions and noise emission are respected only if the doorsare closed during operation.

2.4.2 Atmospheric Pressure

For normal operation of the equipment, the atmospheric pressure must bebetween 65 kilopascals (kPa) and 120 kPa. Low pressure extremes must notbe allowed to coincide with upper temperature limits.

Note: An altitude of 3500 meters corresponds to a pressure of approximately 65.7kPa.

2.4.3 Solar Radiation

Direct Solar RadiationExposure to direct solar radiation may result in damage to equipment dueto overheating.Ensure that equipment is not subject to direct sunlight.

2.4.4 Dust and Particles

The equipment operates normally in the presence of solid (non-conductive,non-ferromagnetic, non-corrosive) particles. The following table lists themaximum sizes and concentrations of particles.

Size of Particles(micrometers)

Concentration(millions of particles per cubic meter)

0.5 14

1 0.7

3 0.24

5 0.13

Table 4: Dust and/or Sand Particle Concentration Levels

24 / 112 3BK 21270 AAAA PCZZA Ed.03

Page 25: MFS 9130 Hardware Description

2 Cabinet Description

2.4.5 Lighting

All optical signals, displays and labels are visible with an ambient light intensityof 800 lux.

2.4.6 Cooling

The A9130 MFS Evolution equipment uses forced air cooling.

2.4.7 Green Compliance

The A9130 MFS Evolution cabinet complies with the new European directivesconcerning the environment:

Wastes of Electrical and Electronic Equipment (WEEE)The requirements for re-use and recycling capabilities are applicable to thecomplete A9130 MFS product line (not only for the cabinet).

Restriction of Hazardous Substances (RoHS).

3BK 21270 AAAA PCZZA Ed.03 25 / 112

Page 26: MFS 9130 Hardware Description

2 Cabinet Description

26 / 112 3BK 21270 AAAA PCZZA Ed.03

Page 27: MFS 9130 Hardware Description

3 Power System

3 Power System

Power System describes the power distribution system of the A9130 MFSEvolution.

3BK 21270 AAAA PCZZA Ed.03 27 / 112

Page 28: MFS 9130 Hardware Description

3 Power System

3.1 Power Distribution Unit

3.1.1 Introduction

The new generation of MFS equipment referred to as A9130 MFS Evolution ishoused in a single 19’’ standard rack called the JRXCAB. Power distributioninside this cabinet is handled by the Power Distribution Unit (JSXPDU) shelf,which provides:

Connection to a duplicated secondary -48V or -60V power supplydistribution, through 35 mm2 double skin cables

Breakers and power supply distribution to ATCA shelves (75A each) andJSXLIU/JSXLIUB shelves (10A each)

Safety protection to industry standards.

In order to supply the two JSXATCA shelves and the two JSXLIU/JSXLIUBshelves of an A9130 MFS cabinet, the JSXPDU shelf meets the followingexternal requirements:

19’’ standard shelf

Connection to the power plant via 12 double skin 35mm2 cables, with

an overall diameter of 14mm each

Connection to the loads via 24 x 16 mm2 cables with an overall diameterof 7mm each

Connection to ground via one double skin 35mm2 cable with an overalldiameter of 14 mm

Cabling access from the top back part of the equipment

Paint color according to Alcatel standards

The front panel is covered by a light grey label (the other face is not painted)

EMC shielding is not required (no active part)

Earthquake protection

Fire protection

Compliance with the new European directives concerning the environment

Meets the RoHS and WEEE requirements

Safety protection is provided via two independent covers.

28 / 112 3BK 21270 AAAA PCZZA Ed.03

Page 29: MFS 9130 Hardware Description

3 Power System

3.1.2 Mechanical Characteristics

The JSXPDU is a standard 19’’ shelf, 2U in height. The racking brackets aremounted 60 mm behind the front panel. The overall depth is approximately250 mm.

3.1.3 Schematic

The JSXPDU consists of two independent branches, the BATA and BATB.

Each branch of the JSXPDU shelf is composed of three independentdistribution systems, independently powered by two 35 mm2 wires with doubleskin insulation:

Each distribution system (1 or 2) includes:

One 75A breaker with two outputs

One 10A breaker with one output.

Each distribution system includes one 75A breaker and two outputs.

Each branch comprises:

Three 75A breakers, to supply up to two ATCA shelves. The third 75A

breaker is equipped for future use.

Two 10A breakers, to supply up to two JSXLIU/JSXLIUB shelves.

BATA BATR BATR

A3 A4 A5 B5

JSX

AT

CA

3

JSX

AT

CA

4

JSX

LIU

2

Not

use

d

JSX

LIU

1

Branch ABATB

A1 A2 B1 B2 B3 B4

Branch B

JSX

AT

CA

4

JSX

LIU

2

JSX

AT

CA

3

JSX

LIU

1

Not

use

d

Figure 6: JSXPDU Overview

3.1.4 Power Station Connection

Connection to the power station is via two or more 35 mm2 double skin wiresper ATCA shelf and per branch. The JSXPDU therefore provides connection tothe power station via 12 x 14mm power cables and one 14mm ground cable.

3BK 21270 AAAA PCZZA Ed.03 29 / 112

Page 30: MFS 9130 Hardware Description

3 Power System

3.1.5 Connection to the Hosted Shelves

Each ATCA shelf is connected to the JSXPDU via eight 16 mm2 wires (7mm indiameter).

Each JSXLIU/JSXLIUB shelf is connected to the JSXPDU by two 7 mm (three1.5 mm2 wires ) cords, including the ground.

3.1.6 Earthing Connection

The building’s ground is connected to the JSXPDU by a double stud. Thisearthing conductor is distributed to the JSXLIU/JSXLIUB shelves through thepower cord, and to the mechanics of the cabinet via a double stud. A specificlabel is added near the connection of the earthing conductor.

3.1.7 Safety

The JSXPDU meets the EN 60950 safety standards. Branch A and branch B arebe independently protected by two separate covers so that service personnelcan safely access one power branch when the other branch is operational.

3.1.8 Provision for Future Use

In the case where an alarm function will be added in the JSXPDU, a free spaceof approximately 25 mm width of the whole height (2U) is reserved betweenboth branches A and B. The front plate is bored with a column of five 4mmholes. These holes will be hidden by the label which covers the whole frontpanel and bears the marking.

3.1.9 JSXPDU Front View

The following figure shows the front view of the JSXPDU.

I

O

I

O

I

O

I

O

I

O

I

O

I

O

I

O

I

O

I

O

B1 B2 B3 B4 B5A2 A3 A4 A5A1

Shelf 4 Shelf 2 Shelf 3 Shelf 1 Shelf 4 Shelf 2 Shelf 3 Shelf 1

Figure 7: JSXPDU Front View and Marking

3.1.10 Power Distribution Cable Characteristics

3.1.10.1 ATCA Shelves SupplyingThe power entry on ATCA shelves is done via 6 mm studs. The power cablescoming from the JSXPDU shelf are terminated by lugs rings.

The cable used is a two wire, 16 mm2 cable. The blue wire corresponds toVBAT. The black marked wire corresponds to the Battery Return.

The required cable lengths are:

1.5 m for the upper ATCA shelf

2.1m for the second ACTA shelf.

30 / 112 3BK 21270 AAAA PCZZA Ed.03

Page 31: MFS 9130 Hardware Description

3 Power System

3.1.10.2 ATCA Shelf GroundingThe ATCA grounding point is a double lug, spaced at 19 mm. The 16mm2

yellow/green ground cable is terminated by a lug with two holes.

There are two possibilities for the ground connection:

One cable between each ATCA shelf and the JSXPDU (same length aspower cable), or

The frame of the cabinet is used as ground, and the JSXPDU and the ATCA

shelves are connected to the frame by a cable.

3.1.10.3 JSXLIU/JSXLIUB Shelf Supply and GroundingThe power connection on the JSXLIU/JSXLIUB shelves is done through threepin UP connectors. The connector is composed of a moulding and threecontacts.

3.2 CoolingThe JSXATCA shelf provides fault tolerant cooling to front mounted AdvancedTelecom Computing Architecture (Advanced TCA) blades, and to rear transitionmodules based on four front-maintainable, intelligent fan trays, with one fanper tray.

Blower trays are mounted in the shelf top. The following figure shows thegeneral airflow for the ATCA system. The cooling type is front to rear.

Air Inlet

Air Outlet

Front Rear

Blowers

Figure 8: Shelf Airflow

The cooling system is designed to manage a heat dissipation of 200W perfront slot and an additional 20-30W per rear slot.

Each of the fan tray units contains an IPMC, which is located on both theIPMB-A and IPMB-B buses. Individual fan failures are detected by monitoringthe fan rotation speed. Rotation which is 15% below demand is deemed to be afan failure. Usually the cooling system runs the fans at 40%. In the case of a

3BK 21270 AAAA PCZZA Ed.03 31 / 112

Page 32: MFS 9130 Hardware Description

3 Power System

single fan failure, the fans run at 100% to still provide full air pressure within thearea between the fans and the boards.

Each fan tray monitors and reports air temperature and failure conditions to theshelf manager. The shelf manager controls the fan speed based on sensorand failure information acquired from the fan and board sensors. If a fantray looses IPMI communication with the shelf manager, it will automaticallyrun the fans at full speed.

The following figure shows the block diagrams with the main componentsof the blower.

Blower

PCB

Tach

PWM

LEDs

Hot Swap Switch

Flame Sensor

RiCool − 2Controller

Control

Interface

Flame Sensor

HA

Enables

IPMC Bus 1

IPMC Bus 2

− 48 A

− 48 B+ V_A

+ V_B

Figure 9: Block Diagram of a Blower

JSXLIU/JSXLIUB shelf cooling is managed by natural convection.

32 / 112 3BK 21270 AAAA PCZZA Ed.03

Page 33: MFS 9130 Hardware Description

4 ATCA Shelf

4 ATCA Shelf

This section describes the ATCA shelf and its components.

3BK 21270 AAAA PCZZA Ed.03 33 / 112

Page 34: MFS 9130 Hardware Description

4 ATCA Shelf

4.1 ATCA Shelf DescriptionThe ATCA shelf is designed for "five nines" uptime (99.999%).

The shelf provides 14 slots which can be equipped with Advanced TCA bladesand corresponding Rear Transition Modules (RTM) at the rear of the system.The 14 slots are typically set up as two hub slots and 12 node slots.

This is shown in the following figure.

Fan Trays

Air Inlet

Figure 10: ATCA Shelf

The system is always equipped with:

A dual star backplane providing connector interfaces for power distribution,input/output connectivity between front blades, and mechanical alignment

and support

A backplane with base and fabric interface

A subrack providing attachment points for the backplane, alignment and

support, and a mechanical engagement for insertion and extraction ofthe front blades and RTMs

Two JAXSMM shelf manager boards. Each blade and Field Replaceable

Unit (FRU) provides links to the shelf manager through an IntelligentPlatform Management Bus (IPMB)

12 node slots which can be equipped with Advanced TCA node blades

Two hub slots which can be equipped with Advanced TCA hub blades

14 slots at the system’s rear side which can be populated with 14 RTMs.These RTM connections provide user defined input and output connectivity

to the corresponding front blades

Four IPMC-enabled intelligent blowers

Four single entry DC Feed intelligent JBXPSs with 90 Amp / 50 Amp

breakers and line filters

Two alarm boards

34 / 112 3BK 21270 AAAA PCZZA Ed.03

Page 35: MFS 9130 Hardware Description

4 ATCA Shelf

An air filter

Rear ESD wrist strap sockets and grounding studs.

The following figures show the ATCA subrack front and back views.

1234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012

Air inlet

CLOSED / OPEN H/S OOS

CLOSED / OPEN H/S OOS

CLOSED / OPEN H/S OOS

CLOSED / OPEN H/S OOS

Figure 11: ATCA Subrack Front View

−(P

OW

ER

)

+(R

ET

UR

N)

−(P

OW

ER

)

+(R

ET

UR

N)

−(P

OW

ER

)

+(R

ET

UR

N)

−(P

OW

ER

)

+(R

ET

UR

N)

ATCA M100

OOS

OK

ACT

H/S

ATCA M100

OOS

OK

ACT

H/S

1234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012

Air outlet

GND

JAX

PC

JAX

PC

JAX

SM

MJBXPS

JAX

SM

M

Open

Closed

OOS

OK

Han

dle

H/S

Alarm/Reset

Te

lco

Ala

rms

& R

ela

ys

JAXPC

Open

Closed

OOS

OK

Han

dle

H/S

Alarm/Reset

Te

lco

Ala

rms

& R

ela

ys

JAXPC

JBXPS JBXPS JBXPS

Figure 12: ATCA Subrack Back View

3BK 21270 AAAA PCZZA Ed.03 35 / 112

Page 36: MFS 9130 Hardware Description

4 ATCA Shelf

4.1.1 Shelf

The 13U (577 mm) and 440 mm deep shelf for 19" racks is made of stainlesssteel.

There is one mounting bracket on each side of the shelf, designed forfront-mounting the shelf into a rack.

The system can be installed in a standard 19’’ rack.

4.1.2 Node Slots

The node slots are equipped with Advanced TCA blades.

Advanced TCA blades used in MFS configuration are the followinghigh-performance, single slot, hot-swap node boards:

JBXOMCP

JBXSSW.

Advanced TCA blades offer a high processing performance. They are idealfor telecommunication applications.

4.1.3 Hub Slots

The hub slots are equipped with JBXSSW switches. The JBXSSW is a GigabitEthernet switch.

4.1.4 Rear Transition Modules

The Advanced TCA blades can be connected to Rear Transition Modules(RTM) to provide easy access to I/O signals through the zone 3 connectordefined by the Advanced TCA specifications.

RTMs can be used as a rear expansion board for the JBXSSW switch to accessthe different interfaces on an AdvancedTCA blade through the JAXSSWfront plate.

4.1.5 Power Entry Modules

Four field hot-swap intelligent JBXPSs with a 50 Amp breaker and line filterare installed beneath the rear slots of the backplane. The four JBXPSs areused to provide split power distribution. For details about the JBXPS refer toJBXPS (Section 4.8)

4.1.6 Power Distribution System

The shelf has two different power distribution systems that run throughout theshelf. The first is a low power (3.4VVDC) system that provides power to all ofthe IPMCs. The second is a high power (-48VDC) system that provides powerto all of the blades, blowers and shelf managers.

36 / 112 3BK 21270 AAAA PCZZA Ed.03

Page 37: MFS 9130 Hardware Description

4 ATCA Shelf

4.1.6.1 Low Power Distribution SystemThe shelf’s low power distribution system powers the IPMCs engines. Thislow power source (3.4V DC) manifests itself in the form of a redundantinterconnect. The first (V_A) is sourced from the JAXSMM in the J3 location.The second (V_B) is sourced from the JAXSMM in the J11 location. The IPMCsare expected to OR the two sources to allow for redundancy. Current on eachsource is limited by the 2 mm connector to approximately 1.5 A.

The inclusion of the low power distribution system is to allow for powering theIPMCs without having to include an isolated DC-DC and all of its relatedcircuitry in each IPMC. This is most useful in FRUs such as the blowers andJAXPCs, where their size essentially prohibits the inclusion of such powerconversion circuitry.

The voltage from the power distribution system can also be found on theoptional IPMC expansion connectors found throughout the shelf.

The following figure shows the low power distribution system found in theJBXPS shelf.

JBXSSW

JAXSMM

JBXFAN

JBXPS2B1

JBXPS3A2

JBXPS1A1

1 2 3 4 5 6 9 10 11 12 13 14 7 8

JBXPS4B2

Physical Slot

JBXOMCP

JBXOMCP

JBXSSW

JAXSMM

JAXPC

JAXPC

JBXFAN

JBXFAN

JBXFAN

Figure 13: Shelf Low Power Distribution System

3BK 21270 AAAA PCZZA Ed.03 37 / 112

Page 38: MFS 9130 Hardware Description

4 ATCA Shelf

4.1.6.2 High Power Distribution SystemThe shelf’s high power distribution system is for powering the blade, JAXSMMsand blowers. This high power source (-48V DC - nominal) manifests itself inthe form of one or two sets of redundant interconnects. The JBXPS shelf hastwo set of redundant interconnects.

The following figure shows the high power distribution system.

JBXSSW

JAXSMM

JBXFAN

JBXPS2B1

JBXPS3A2

JBXPS1A1

1 2 3 4 5 6 9 10 11 12 13 14 7 8

JBXPS4B2

Outside the chassis Battery

plant A

Batteryplant B

Physical Slot

JBXOMCP

JBXOMCP

JBXSSW

JAXSMM

JAXPC

JAXPC

JBXFAN

JBXFAN

JBXFAN

Figure 14: Shelf High Power Distribution System

38 / 112 3BK 21270 AAAA PCZZA Ed.03

Page 39: MFS 9130 Hardware Description

4 ATCA Shelf

The first redundant interconnect is made up of the A1 and B1 feeds. The firstfeed (-48V_A1) is sourced from the A1 JBXPS in the far left (as viewed from therear of the shelf). The second feed (-48V_B1) is sourced from the B1 JBXPS tothe right of the first one. Both feeds are individually routed to each JAXSMM,blower and odd numbered slots. The second redundant interconnect is madeup of the A2 and B2 feeds. The third feed (-48V_A2) is sourced from the A2JBXPS (to the right of the B1 JBXPS). The fourth feed (-48V_B2) is sourcedfrom the B2 JBXPS (to the right of the A2 JBXPS). These feeds only route tothe even numbered slots. In both interconnects, the FRUs are expected to ORthe two sources to allow for redundancy.

The A1 and B1 JBXPS locations are capable of supplying 90 A of current,although the JBXPSs will only allow for 50 A. The A2 and B2 JBXPS locationsare capable of supplying 50 A. This allows for a single JBXPS in eachinterconnect, to support the full power requirement of the interconnect.

For the blowers, the A1 and B1 feeds are capable of supplying 12 A whenderated for a 30� C temperature rise. For the JAXSMMs, the A1 and B1 feedsare limited by the 2 mm connector to approximately 1.5 A (per feed).

4.1.7 Blowers

The system provides fault-tolerant cooling by using four front accessible,hot-swap intelligent fan trays. Each fan tray contains one blower with built-inspeed control. A toggle switch is provided to allow supervision interruptionfor maintenance reasons.

4.1.8 Shelf Manager

The shelf manager (JAXSMM) is designed to be used in Advanced TCAsystems. It is the central management unit of the shelf. It monitors, controlsand ensures the proper operation of the shelf and all other components ofthe Advanced TCA shelf.

It reports anomalies and errors and takes corrective actions if required (e.g.increases the speed of the blowers). The JAXSMM has access to detailedinventory information as well as to sensor status information concerning theshelf and all the components of the shelf.

4.1.9 Personality Card

The personality card (JAXPC) is a shelf configuration and alarm board usedwith AdvancedTCA systems. The JAXPC personality card is designed for rearaccess applications. It is located below the Rear Transition Module (RTM) area.

4.1.10 Air Filter

The air filter is located in the lower part of the shelf. It ensures that the shelfoperates properly. Regular cleaning and replacement is mandatory.

3BK 21270 AAAA PCZZA Ed.03 39 / 112

Page 40: MFS 9130 Hardware Description

4 ATCA Shelf

4.1.11 Backplane

The backplane provides the following features:

Two hub slots

12 node slots

14-slot fabric interface with a dual star interconnect

A base interface with a dual star interconnect

An update interface between physical adjacent slots

A base interface to the shelf manager slots

Bused IPMB-0 connections

Synchronization of clock buses.

4.1.12 Distribution Board

The distribution board has the following features:

Power lugs and studs for power transfer to the backplane

Blower interface

Interface for two shelf manager boards

Support for up to four JBXPSs

Interfaces for two JAXPC personality cards (Telco I/O).

4.1.13 Mechanical Data

The following table describes the dimensions and the weight of the system.

Measurement Value

Height 577 mm (13U)

Width 438 mm (14 x 6HP)

Rack mounting 482.6 mm (19’’)

Depth from rack mounting pane Top: Towards the front 60 mm in theblower area

Middle: The wiring area is compliantwith PICMG 3.0

Bottom: Towards the rear 415 mm inthe JBXPS area

Weight 38kg (Without ATCA blades andRTMs)

40 / 112 3BK 21270 AAAA PCZZA Ed.03

Page 41: MFS 9130 Hardware Description

4 ATCA Shelf

4.2 JBXOMCP

4.2.1 Introduction

The JBXOMCP is an Advanced TCA compliant single board computer offeringhigh processing performance. Four on-board PMC sites, a redundant GBitEthernet connection to the ATCA Base interface and standard I/O interfacesmake it ideal for telecommunication and datacom applications.

It provides the following features:

A Pentium M processor with up to 1.8 GHz speed

Up to 4 GByte main memory SDRAM with ECC protection

Redundant ATCA Base interface

Two USB 2.0 interfaces on the front plate

60 GByte hard disk

Support for Carrier Grade Linux Ed. 3.1

On-board IPMC compliant to IPMI V.1.5 with redundant IPMB support

Different Rear Transition Modules (RTM) available separately

A CMC module providing two serial interfaces on the front plate.

3BK 21270 AAAA PCZZA Ed.03 41 / 112

Page 42: MFS 9130 Hardware Description

4 ATCA Shelf

4.2.2 Front Plate

The following figure shows the connectors, keys and LEDs available on thefront plate.

PMC1

RESET

PMC2

PMC3

PMC4

oos

OK

ACT

HDD

H/S

USB1

USB2

JBXOMCP

Figure 15: JBXOMCP Front Plate

42 / 112 3BK 21270 AAAA PCZZA Ed.03

Page 43: MFS 9130 Hardware Description

4 ATCA Shelf

4.2.3 LEDs

The following figure shows all LEDs available on the front plate.

PMC2

oos

OK

ACT

HDD

H/S

Figure 16: Location of Front Plate LEDs

The following table describes the JBXOMCP LEDs.

LED Description

OOS Out Of Service

Red: The blade is out of service

OFF: The blade is working properly

OK Power status

Green: Supply voltages are within threshold values

OFF: Supply voltages are outside threshold values

ACT Not used

3BK 21270 AAAA PCZZA Ed.03 43 / 112

Page 44: MFS 9130 Hardware Description

4 ATCA Shelf

LED Description

HDD During booting this LED indicates the boot status. Laterit indicates the combined parallel/serial ATA activity or isused as user LED. Toggling between both modes is donevia the LED control register.

In user mode:

Depending on the FPGA LED control register, the LEDis either red, green or OFF.

In parallel/serial ATA activity mode:

Red: Combined activity of parallel and serial ATAinterfaces.

OFF: No activity.

H/S Hot swap

During blade installation:

Permanently blue: On-board IPMC powers up

Blinking blue: Blade communicates with the ShelfManagement controller

OFF: Blade is active

During blade removal:

Blinking blue: Blade notifies the Shelf Managementcontroller of its desire to deactivate.

Permanently blue: Blade is ready to be extracted.

44 / 112 3BK 21270 AAAA PCZZA Ed.03

Page 45: MFS 9130 Hardware Description

4 ATCA Shelf

4.2.4 Keys

The blade provides one front plate reset key. This is shown in the followingfigure.

RESET

PMC3

H/S

Figure 17: Location of Reset Key

On pressing the reset key, a hard reset is triggered and all attached on-boarddevices are reset.

Note: The IPMC is not reset via this key.

4.2.5 Connectors

4.2.5.1 Front Plate ConnectorsThe blade provides two mini USB 2.0 connectors (type AB) on its front plate.They correspond to the USB interfaces 1 and 2. These interfaces are notused for MFS application.

This is shown in the following figure.

PMC2

ACT

HDD

USB1

USB2

Figure 18: Location of USB Connectors

3BK 21270 AAAA PCZZA Ed.03 45 / 112

Page 46: MFS 9130 Hardware Description

4 ATCA Shelf

4.2.5.2 On-Board ConnectorsThe blade provides the following on-board connectors:

CompactFlash

PMC

Parallel ATA

Serial ATA

CMC

ATCA backplane connectors.

4.2.5.3 ATCA Backplane ConnectorsThe ATCA backplane connectors reside in zones 1 to 3, as specified in theATCA standards.

The connector located in zone 1 is used to draw power from the backplane.Zone 2 contains the 3 connectors P20, P21 and P23. P20 is used to supporttelephony clocking. P21 and P23 are used to connect the blade to the standardATCA interfaces. All these connectors are standard and therefore are notdocumented in this guide.

Zone 3 contains the 3 connectors P30 to P32. They are used to connect anRTM to the blade and carry the following signals:

Serial (RS232)

Serial ATA

USB

Keyboard/Mouse

IPMI

Power

PMC user I/O.

In case of MFS application only the JBXSSW blades use the RTM.

46 / 112 3BK 21270 AAAA PCZZA Ed.03

Page 47: MFS 9130 Hardware Description

4 ATCA Shelf

4.3 JBXSSW

4.3.1 Introduction

The blade provides the following features:

Advanced TCA compliant switch

Managed 24-port Layer 2 Gigabit switch for the base interface

Gigabit Ethernet support for 14 payload slots

Eight base and one fabric Gigabit Ethernet uplinks via the rear transition

module

16-port Layer 2 Gigabit Ethernet switch for the fabric interface

ATCA Management Controller (IPMI version 1.5) which communicateswith Shelf Management controllers

SNMP agent for switch management

Option for TDM clock generation and synchronization via CGM module

Designed for NEBS level 3 and ETSI requirements.

The fabric interface and clock generation and synchronization module are notused for MFS application.

The following figure shows the main function blocks of the blade.

BootFlash

Processor

RTC

Power Module

CompactFlashCard

FabricInterfaceSwitch

BaseInterfaceSwitch

BaseInterfaceSwitch

PMC Slot forClock

GenerationModule

Figure 19: Blade Functional Blocks

3BK 21270 AAAA PCZZA Ed.03 47 / 112

Page 48: MFS 9130 Hardware Description

4 ATCA Shelf

4.3.2 Front Plate

The following figure shows:

Position of the Ethernet interface

LEDs

Reset key

Serial interface on the front plate.

OOS

OK

ACT

PMC

INTERFACE

FABRIC

INTERFACE

BASE

12345

12345678

ABC

S

ABC

ETH2RESET

H/S

ST

SERIAL

ETH1

L A

JBXSSW

Figure 20: JBXSSW Front Plate

48 / 112 3BK 21270 AAAA PCZZA Ed.03

Page 49: MFS 9130 Hardware Description

4 ATCA Shelf

4.3.3 LEDs

The following LEDs are available on the front plate:

Status and Ethernet LEDs

Base interface LEDs.

4.3.3.1 Status and Ethernet LEDsThe following figure shows the location of the status and Ethernet LEDs.

OOS

OK

ACT

SLA

ABC

ETH2RESET

H/S

ST

SERIAL

ETH1

Figure 21: JBXSSW LED Location

3BK 21270 AAAA PCZZA Ed.03 49 / 112

Page 50: MFS 9130 Hardware Description

4 ATCA Shelf

The following table describes the LEDs.

Name Color Description

OOS Red Out Of Service

Red: The blade is out of service

OFF: The blade is working properly

OK Green Power OK

Green: The blade is operating properly

OFF: Otherwise

ACT Amber Active

Amber: The blade is active

OFF: The blade is in standby mode

H/S Blue Blue: The blade is ready to be extracted

Blinking: The blade communicates with theJAXSMM during insertion or notifies its requestto deactivate during extraction.

OFF: The blade is not ready to be extracted.Do not remove the board during this state.

ETH2 S - Speed Green

Orange

10 BaseT

100 Base Tx

ETH2 L - Link Green ON: Link up

OFF: Link down

ETH2 A - Activity Orange ON: Activity

OFF: No activity

During power-up

ST A Red

Green

Power good 3

FPGA initialized

ST B Red

Green

Power good 2

Power good of all DC/DCs

ST C Red

Green

Orange

Power good 1

Power up command from IPMC

Power good 1 and power up command fromIPMC are indicated

During operation

50 / 112 3BK 21270 AAAA PCZZA Ed.03

Page 51: MFS 9130 Hardware Description

4 ATCA Shelf

Name Color Description

ST A Indicates general activity via UART betweenboth boards:

Green

Orange

No activity

Activity

ST B Indicates the status at the Ethernet heartbeatconnection:

Red

Green

Orange

Heartbeat connection is dead

Active

Warning

ST C Indicates the status at the UART heartbeatconnection:

Red

Green

Orange

Heartbeat connection is dead

Active

Warning

Table 5: JBXSSW LED Description

4.3.3.2 Base Interface (BIF) LEDsThere is one LED per physical port, located on the front plate.

This is shown in the following figure.

BASE

1

2

3

4

5

6

7

8

INTERFACE

Figure 22: Base Interface LED Location

The following table describes the LEDs.

3BK 21270 AAAA PCZZA Ed.03 51 / 112

Page 52: MFS 9130 Hardware Description

4 ATCA Shelf

Color Description

Green Port-performed linkup but no activity

Orange Port-performed linkup and there isactivity

Table 6: Color Coding of Base Interface LEDs

The following table describes the mapping of the physical port to the frontplate LEDs.

LED Interface/Port

(BIF)

LED Interface/Port

(BIF)

LED Interface/Port

(RTM)

A1 1 B1 9 C1 17

A2 2 B2 10 C2 18

A3 3 B3 11 C3 19

A4 4 B4 12 C4 20

A5 5 B5 13 C5 21

A6 6 B6 14 C6 22

A7 7 B7 15 C7 23

A8 8 B8 16 C8 24

Table 7: Base Interface and RTM LEDs

4.3.4 Connectors

The front plate provides the following connectors:

RJ-45, which is used for debugging only

Serial, which is used for factory settings.

52 / 112 3BK 21270 AAAA PCZZA Ed.03

Page 53: MFS 9130 Hardware Description

4 ATCA Shelf

SLA

ETH2

RESET

H/S

ETH1

SERIAL

Figure 23: Connector Location

4.3.5 Reset Key

The front plate provides one mechanical reset key. This is shown in thefollowing figure.

SLA

ETH2

RESET

H/S

SERIAL

Figure 24: Reset Key Location

A reset of all on-board I/O devices and the CPU is performed when the resetkey is set to the active position. The reset is maintained until the key is returnedto the inactive position, however at least 200 ms are guaranteed by a local timer.

4.3.6 Backplane

The backplane provides the following connectors:

Zone 1: power connectorZone 1 connectors are used to implement the power supply interface.

Zone 2: data transport interfaceZone 2 connectors are used to implement the base and fabric interface.

Zone 3: access to RTM.The Zone 3 connectors provide access to the JAXSSW rear transitionmodule.

3BK 21270 AAAA PCZZA Ed.03 53 / 112

Page 54: MFS 9130 Hardware Description

4 ATCA Shelf

4.4 JAXSSW

4.4.1 Front Plate

The following figure shows the front plate of the blade.

ET 1H

OOS

OK

ACT

HS

ET 2H

ET 3H

ET 4H

ET 5H

ET 6H

ET 7H

ET 8H

JAXSSW

Figure 25: Front Plate

54 / 112 3BK 21270 AAAA PCZZA Ed.03

Page 55: MFS 9130 Hardware Description

4 ATCA Shelf

4.4.2 LEDs

The RTM provides four LEDs on the front plate, as shown in the following figure.

All LEDs are standard ATCA LEDs.

OOS

OK

ACT

ET 3H

ET 4H

ET 5H

ET 6H

HS

Figure 26: JAXSSW Front Plate LEDs

The following table describes the LEDs.

LED Description

OOS Out Of Service

Red: The blade is out of service

OFF: The blade is working properly

OK Power OK

Green: The blade is operatingproperly

OFF: Otherwise

3BK 21270 AAAA PCZZA Ed.03 55 / 112

Page 56: MFS 9130 Hardware Description

4 ATCA Shelf

LED Description

ACT Not used

H/S Hot Swap

Blue: The blade is ready to beextracted

OFF: The blade is not ready to beextracted. Do not remove the boardduring this state.

Table 8: Front Plate LED Description

4.4.3 Ethernet Uplink Connectors

The JAXSSW provides eight Ethernet uplink connectors (ETH1 to ETH8) onthe front plate. ETH1 to ETH8 are routed to the base channel switch located onthe JBXSSW, and provide access to the shelf′s base channel interfaces.

ETH1 to ETH8 are available as RJ-45 connectors and constitute10/100/1000BaseTX interfaces.

For Ethernet uplink connectors location refer to Figure 25.

56 / 112 3BK 21270 AAAA PCZZA Ed.03

Page 57: MFS 9130 Hardware Description

4 ATCA Shelf

4.5 JBXGPU

4.5.1 Introduction

The JBXGPU board is installed in the MFS equipment designed to handle theGeneral Packet Radio Service (GPRS) in the BSS.

The MFS:

Receives Ater links from BSCs, carrying a mix of circuit (voice) and GPRSpacket channels

Transparently forwards circuit channels to the MSC through another Aterinterface

Processes GPRS packet channels and forwards them to the SGSN, directly

or through the MSC, on a Gb interface.

The Ater interface has an E1 structure (2,048 Mbit/s), with a 64 or 16 or 8kbit/s sub-channeling.

For Gb interface, there are two posible configurations:

FR over E1, E1 structure bearing Nx64 kbit/s channels, each of which carry

GPRS packets on Frame Relay links

IP over Ethernet

The Ater and Gb interfaces can be on the same link between the MFS andthe transcoders.

The SGSN performs similar functions as the MSC in GSM, such as trackingindividual MS locations and providing security functions and access control.

The MFS equipment is housed in a new platform, based on standard AdvancedTCA shelves. The main shelf contains :

Two redundant shelf managers (JAXSMM) performing management

through redundant IPMI busses

Two redundant switches (JBXSSW) performing mainly Gigabit Ethernet

switching at the shelf level

Two redundant Operation and Maintenance Control Processing boards(JBXOMCP) in charge of telecom control, and providing large capacity

storage

Up to 10 JBXGPU boards in one shelf and up to 22 JBXGPU boards incase of two selves configuration.

3BK 21270 AAAA PCZZA Ed.03 57 / 112

Page 58: MFS 9130 Hardware Description

4 ATCA Shelf

This is shown in the following figure.

JBXGPU 1

NE1oE

JBXOMCP P

JSXLIU Termination Shelf

JBXOMCP W

JBXSSW W

JBXSSW P

JBXGPU N

JBXGPU P

External E1 links

1 Gigabit Ethernet ATCA Base Interface

Figure 27: Single Shelf Environment

4.5.2 JBXGPU Architecture

The JBXGPU can be split into eight functional modules :

The OBC module, based on the Puma-Agx PrPMC and the JGXDBC EPLD,

provides processing power for GPRS packet handling

The HDLC Termination module ensures management of the Frame Relay

low layers for the Gb and GSL interfaces

The DSP module provides processing power for the management of theAter interface low layers

The TDM Termination module provides the physical termination of the

16 E1 interfaces of the board (Ater or Gb) interfaces and a spatial andtemporal switch

The IPMC module provides the IPMB interface for hardware managementservices

The Ethernet switch module provides a switch between data and control

Ethernet frames

58 / 112 3BK 21270 AAAA PCZZA Ed.03

Page 59: MFS 9130 Hardware Description

4 ATCA Shelf

The NE1OE module provides emission/reception of the E1 links overEthernet

The Power Supply module provides all of the required on-board powersupply.

4.5.2.1 OBC ModuleThe OBC module is composed of a micro controller and the JGXDBC EPLD.

In addition, it includes 1 Gbyte DDR SDRAM running at 166MHz, 512 KbytesBoot Flash, and 32 Mbytes User Flash.

Communication between the OBC and the JBXGPU "mother board" is via aconnector supporting a 32bit/33MHz PCI bus, a device bus, two serial links andthree Gigabit Ethernet links.

The JGXDBC EPLD controls:

The reset function for all the components

Access to some components through the device bus

Access to the Giga Ethernet switch through the SPI bus

PCI arbitration

JGXSRE FPGA downloading

Interrupt management

The ATCA H3

Two application LEDs.

4.5.2.2 HDLC Termination ModuleThis HDLC termination module provides the HDLC Termination used by thelow layers of the Frame Relay protocol. This protocol is used to carry theGPRS packets on the Gb interfaces.

The main characteristics of this module are:

16 x 2 Mbit/s ports, across 64 kbit/s channels, connected to the TDM

Termination module

Termination of 128 Nx64kbit/s HDLC channels

The 32bit/33MHz PCI connection.

4.5.2.3 DSP ModuleThe DSP module is built around four DSPs, operating at 720 MHz.

Each DSP:

Provides 64 MBytes of SDRAM memory, operating at 133 MHz, accessiblefrom the OBC CPU

Provides a master interface to the PCI bus, for DMA transfers between

the DSPs and the OBC memory

Is connected to the TDM module through a 8,192Mbit/s TDM serial link

Is directly connected on the 32bit/33MHz PCI bus.

3BK 21270 AAAA PCZZA Ed.03 59 / 112

Page 60: MFS 9130 Hardware Description

4 ATCA Shelf

4.5.2.4 TDM Termination ModuleThe TDM Termination module, associated with the NE1OE module, performsthe 16 x 2,048 Mbit/s E1 physical layer termination and related functions.It is composed of:

Two octal-framers, connected to the JGXESD FPGA

An 192 Mbit/s port, non-blocking TDM switch, which dynamically switches

the Ater and Gb channels to the proper modules

A JGXSRE FPGA which performs the synchronization function of the E1lines and 2,048 to 8,192 Mbit/s link multiplexing

A JGXESD FPGA which performs E1 multiplexing and bit stuffing forasynchronous E1 transport

A LIU component managing eight E1 links, installed for test purpose

(without the NE1OE module). The E1 termination resistance is 120 ohm or75 ohm for the eight E1.

The JGXESD and LIU components have a micro-controller interface forconfiguration and status retrieval. This interface is under the control of theOBC module.

The JGXSRE and JGXESD FPGAs are downloaded by the OBC and NE1OEmodules respectively.

4.5.2.5 IPMC ModuleAll Advanced TCA boards support an intelligent hardware management system,based on the "Intelligent Platform Management Interface Specification". Thehardware management system provides the ability to manage power, cooling,and interconnect needs to intelligent devices, in order to monitor events and tolog events to a central repository.

The IPMC module uses the Pigeon Point System reference design. It is basedon two processors (one master, one slave). On the JBXGPU board, the IPMCmodule manages:

All the communication with the shelf manager

ATCA blue H4, H1 and H2

The RI EEPROM.

The IPMC module has a serial interface for configuration and status retrieval.This interface is under the control of the OBC module.

4.5.2.6 Ethernet Switch ModuleThe Ethernet switch module provides a switch function between the dataframes and the control frames.

The data frames are managed by the NE1OE module, whereas the controlframes are managed by the OBC module.

This module is based on an eight port Gigabit switch. It has an SPI interfacefor configuration and status retrieval. This interface is under the control of theOBC module.

60 / 112 3BK 21270 AAAA PCZZA Ed.03

Page 61: MFS 9130 Hardware Description

4 ATCA Shelf

4.5.2.7 NE1OE ModuleThe nE1 over Ethernet module provides the transport of the E1 links payloadover a Giga Ethernet link between JSXLIU/JSXLIUB shelf (256 E1) andJBXGPU board (16 E1). This transport is made through a Giga Ethernetswitch (JBXSSW board).

The module is composed of:

JGXEOE FPGA, which performs the E1 links transport over Ethernet

JGXCLU EPLD performing the downloading of the JGXESD FPGA (TDMtermination module) and the JGXEOE FPGA. An attached flash contains

the code for these two FPGAs.

The configuration and status retrieval of this module is under the control ofthe JBXOMCP.

4.5.2.8 Power Supply ModuleThe power supply module provides the secondary power supply for the overallboard. On-board DC/DC converters and regulators provide the necessarypower supply to the board from a received -48V DC redundant primarypower supply input.

The Power Supply module can be controlled (cut off) by the IPMC module.

3BK 21270 AAAA PCZZA Ed.03 61 / 112

Page 62: MFS 9130 Hardware Description

4 ATCA Shelf

4.5.3 Front Plate

On the front panel:

ATCA LEDs H1, H 2, H3 and H4:

H1: Controlled by the IPMCThe H1 is a bi-color (RED/AMBER) to meet different geographicrequirements. It indicates a failure or other an out of service state. ThisLED is controlled by the JGXTP EPLD and the status is as describedbelow:ON : Board is out of service (OOS)OFF: Board is operational

H2: The LED is GREEN and is controlled by the IPMC (not used)

H3: The LED is AMBER and is controlled by the OBC (not used)

H4: The LED is BLUE and is controlled by the IPMCThe Blue LED shines during the board insertion into Node Slot ofAdvancedTCA system. It serves as an indication of whether or not thefront board can be extracted. This LED is controlled by the IPM

Two "three-colors-LEDs" for MFS applications (L1 and L2). Theirsignificance and operational control are specific to the MFS application

One RJ45 connector (RS232) for three RS232 debug links (OBC,IPMC

master, NE1OE)

One RJ45 connector (ETH) for a 10/100Mbit/s Ethernet debug link.

Upper handle

Lower handle.

62 / 112 3BK 21270 AAAA PCZZA Ed.03

Page 63: MFS 9130 Hardware Description

4 ATCA Shelf

This is shown in the following figure.

F

L2

FF

H 1

Handle

L1

H 2

H 3

H 4

Handle

RS232

ETH

JBXGPU

Figure 28: Front Plate

3BK 21270 AAAA PCZZA Ed.03 63 / 112

Page 64: MFS 9130 Hardware Description

4 ATCA Shelf

4.5.4 LEDs

LED Color Description

H1 Red/Amber ON: The JBXGPU is out of service

OFF: The JBXGPU is operational

H2 Green Not used

H3 Amber Not used

H4 Blue Hot swap

During blade installation:

Permanently blue: On-board IPMCpowers up

Blinking blue: Blade communicates withthe Shelf Management controller

OFF: Blade is active

During blade removal:

Blinking blue: Blade notifies the ShelfManagement controller of its desire todeactivate.

Permanently blue: Blade is ready to beextracted.

L1 JBXGPU board is active:

OFF: All PCM-TTP ar not installed

No change of the current color: At leastone PCM-TTP is not installed

Green: All PCM-TTP are available

Red: All equipped PCM-TTP are in fault

Yellow: At least one PCM-TTP is in fault,but not all

JBXGPU board is standby:

LED is OFF.

L2 JBXGPU board is active:

LED is green.

JBXGPU board is standby:

LED is green blinking.

64 / 112 3BK 21270 AAAA PCZZA Ed.03

Page 65: MFS 9130 Hardware Description

4 ATCA Shelf

4.6 JAXSMM

4.6.1 Introduction

The JAXSMM is a 2U shelf manager board used in AdvancedTCA systems. Itplugs into a dedicated shelf management slot of an advancedTCA system. Theboard provides management for up to 16 advancedTCA front blades as well asfor blowers, power entry modules, alarm modules, and shelf FRU info modulesthat are used in an advancedTCA system. In a redundant configuration theJAXSMM are used as redundant shelf manager.

The JAXSMM is a main component of the shelf management system. The shelfmanagement system is used in AdvancedTCA systems and its purpose is toensure proper operation of AdvancedTCA blades and other system componentslike blowers, power entry modules (PEMs) and rear transition modules (RTMs).

The shelf manager board possesses a backplane connector and is pluggedinto a 2U slot.

The alignment protrusion offers a guide rail to the slot and a coding mechanismto ensure the installation of the board in the matching slot. It also prevents bentpins, which can occur during installation.

The following figure shows the JAXSMM hardware architecture.

Ethernet

Ethernet

SerialInterface

SerialInterface

Payload

Shelf Management Controller

48V48V

HandleSwitch

Ethernet

ATCA LEDs

IPMB0 A

IPMB0 B

HardwareAddress

Backplane Front Plate

Block TransferInterface

Figure 29: JAXSMM Hardware Architecture

The shelf manager JAXSMM hardware consists of:

Payload hardware with:

Ethernet interfaces to the backplane and to the front plate

Redundant connection between two shelf managers via the backplane

Block transfer interface to the JAXSMM

3BK 21270 AAAA PCZZA Ed.03 65 / 112

Page 66: MFS 9130 Hardware Description

4 ATCA Shelf

Shelf management controller with:

IPMB0-A and IPMB0-B interface to the backplane

Handle switch and status LED interface to the front plate

Option signals to the backplane

Support logic for testing and debugging as well as local and remote

programming of all programmable devices on the board

Power supply with 3.3V feed to the backplane for external devices

4.6.2 Payload Hardware

The payload hardware on the shelf manager board is always powered whenpower supply is present. During power on, the JAXSMM keeps the payload in areset state. The following interfaces are available:

Three Ethernet interfaces

Two redundancy interfaces (serial)

Block transfer interface.

4.6.2.1 Ethernet InterfacesThe shelf manager board has three Ethernet ports which are availableconcurrently.

One 10/100 BaseT out-of-band interface is accessible via a RJ45 connector atthe front plate. Link and activity status LEDs are integrated into the connector.

Two 10 BaseT interfaces are connected to the backplane connector at the pinsEth1-Hub Tx/Rx and Eth2-Hub Tx/Rx.

These ports connect to the base interface of up to two AdvancedTCA switchboards (e.g. SSW) in the hub slots of an AdvancedTCA shelf.

The green LEDs (Ethernet LEDs) on the front plate indicate the link status ofthe Ethernet ports.

4.6.2.2 Redundancy InterfacesJAXSMM uses a private, redundant, high-speed, full duplex serial connectionfor heart beating and data replication between the two shelf manager boards.

The redundancy interface is routed to the backplane via differential line LVDStransceivers. The physical interface of both channels are compliant with theAdvancedTCA specifications for the update interface.

Each of the serial inputs of the redundancy interface triggers an interrupt to thePowerQUICC when the other shelf manager board:

Initiates a break-in condition on the serial line

Experiences a power failure

Switches in the reset state

Is extracted.

66 / 112 3BK 21270 AAAA PCZZA Ed.03

Page 67: MFS 9130 Hardware Description

4 ATCA Shelf

4.6.2.3 Block Transfer InterfaceThe payload CPU is connected to the JAXSMM via a parallel interface withinterrupt support implemented in a FPGA.

The block transfer (BT) interface is compliant with IPMI specification v1.5.

4.6.3 Shelf Management Controller

The JAXSMM part is derived from IPMC building block and consists of twocoupled microcontrollers:

IPMC master controller (IMC)

IPMC Slave Controller (ISC).

4.6.3.1 IPMB0 InterfaceIPMB0-A is connected to the I2C controller of the IMC.

IPMB0-B is connected to the I2C controller of the ISC of the JAXSMM. Bothhave their own I2C controller and handle message transmission and receptionindependently, including bus error handling and bus arbitration.

Received messages from both the IMC and the ISC channels are collected bythe IMC. The IMC dispatches messages which have to be sent either to itsown I2C interface or to the ISC for transmission.

4.6.3.2 IPMC Standard FunctionsThe following functions of the IPMCs are available on the IPMC of the JAXSMM:

Hardware address input from the backplane connector (HA 0 ...7)

Handle switch.The handle switch is generally activated by a lever which moves when oneof the front plate fastening screws is loosened or fastened.

3BK 21270 AAAA PCZZA Ed.03 67 / 112

Page 68: MFS 9130 Hardware Description

4 ATCA Shelf

4.6.4 Power Supply

The JAXSMM is powered by:

A dual redundant -48V to -60V from the backplane connector

48V-A, 48V-ARTN

48V-B, 48V-BRTNEach of the 4 power connections is separately fused.

The fuse rating is 1 Amp. An EME filter at the power input ensures conductedemission levels below EN 55022 class B.

4.6.4.1 Onboard and External SupplyThe JAXSMM makes no provision for switching OFF the power input. Theboard is powered when the power input is in the operating range of -36 to -72V.

An on-board DC/DC converter supplies all on-board circuitry, and provides:

A 3.3V power supply to external circuits with a consumption of no morethan 4W

V3.4 management on the backplane pins

GND on the backplane pins.

Output voltage is slightly above 3.3V to compensate for losses caused byORing circuits, which may be present on the external load.

The board satisfies the standby power limit of 10W for AdvancedTCA FRUs,even when supplying 4W to external loads. Typical power consumption ofthe JAXSMM board is 2W.

4.6.4.2 Power Supply HoldupThe JAXSMM complies with the requirements for board level voltage transients.

It meets the requirements for uninterrupted operation during a power failure of5ms, while supplying 4W to external circuits.

4.6.5 Frame Ground and ESD

The frame ground connection is provided by the FrameGND backplaneconnector.

The front plate mounting holes of the board are connected to frame ground.

An ESD strip, for rear transition modules (RTMs), is provided on one edge ofthe PCB.

68 / 112 3BK 21270 AAAA PCZZA Ed.03

Page 69: MFS 9130 Hardware Description

4 ATCA Shelf

4.6.6 Front Plate

The following figure shows the position of connector and LEDs on the frontplate of the board.

OOS

OK

ACT

H/S

JAXSMM

Eth 3 Linkup

Eth 3 Activity

Eth 1

Eth 2

Figure 30: JAXSMM Front Plate

3BK 21270 AAAA PCZZA Ed.03 69 / 112

Page 70: MFS 9130 Hardware Description

4 ATCA Shelf

4.6.7 LEDs

The following LEDs are used on the front plate of the board.

LED Color Description

OOS Red Failure

Red: The shelf manager board is out of service

OFF: The shelf manager board is working properly

OK Green Power

Green: The shelf manager board is operatingproperly

Green blinking: The board bots up

OFF: Otherwise

ACT Amber Active

Amber: The shelf manager board is active

OFF: The shelf manager board is in standby mode

H/S Blue Blue: The shelf manager board is ready to beextracted

OFF: The shelf manager board is not ready to beextracted. Do not remove the board during this state.

Eth 2: Ethernet Uplink Green Green: Link to backplane Ethernet 2 is available

OFF: Otherwise

Eth 1 Green Green: Link to backplane Ethernet 1 is available

OFF: Otherwise

Ethernet 3 Activity Green Green: Link to Ethernet is available

OFF: Otherwise

Ethernet 3 Linkup Amber Amber: Activity

OFF: No activity

Table 9: JAXSMM LEDs

4.6.8 Ethernet Connector

One 10/100 Mbps Ethernet port is provided via the Ethernet connector on thefront plate. It allows external system managers to access the shelf manager.

70 / 112 3BK 21270 AAAA PCZZA Ed.03

Page 71: MFS 9130 Hardware Description

4 ATCA Shelf

4.7 JAXPC

4.7.1 Introduction

The JAXPC is a shelf configuration and alarm board used with AdvancedTCAsystems. The JAXPC alarm board is a 4 Horizontal Pitch (HP) wide x 87 mmhigh card and is designed for rear access applications. It is located below theRear Transition Module (RTM) area. The communication with the JAXPC alarmboard takes place via Intelligent Platform Management Bus (IPMB).

The JAXPC is a general purpose device providing the functions notimplemented by the other Field Replaceable Units (FRUs).

The JAXPC alarm board:

Contains the Shelf FRU Information Store

Contains rotary switches for setting SGAs

Provides HA, SGA and configuration bit inputs

Visualizes the states and alarms via LEDs on the front panel

Provides interface to IPMB0-A and IPMB0-B.

The following figure shows the JAXPC board.

Figure 31: JAXPC Hardware

3BK 21270 AAAA PCZZA Ed.03 71 / 112

Page 72: MFS 9130 Hardware Description

4 ATCA Shelf

4.7.2 Front Panel

The following figure shows the position of connectors and LEDs on the frontpanel of the board.

Open

Closed

OOS

OK

Han

dle

H/S

Alarm/Reset

Tel

co A

larm

s &

Rel

ays

Failure LEDPower LED

Hot Swap LED

Alarm Reset Push Button

Alarm I/O Connector

JAXPC

Figure 32: JAXPC Front Panel

72 / 112 3BK 21270 AAAA PCZZA Ed.03

Page 73: MFS 9130 Hardware Description

4 ATCA Shelf

4.7.3 LEDs

The following LEDs are used on the front plate of the board.

LED Color Description

OOS Red Failure

ON: The JAXPC alarm board is out of service

Red blinking: the shelf FRU information is invalid

OFF: The JAXPC alarm board is working properly

OK Green Power

ON: The IPMC has initialized properly

OFF: Otherwise

H/S Blue ON steady: The JAXPC alarm board is ready to beextracted

Blue blinking: The IPMC is attempting tocommunicate with the JAXSMM

OFF: The JAXPC alarm board is operating and notready to be extracted. Do not remove the boardduring this state.

Table 10: JAXPC LEDs

4.7.4 Alarm I/O Connector

The DB15 connector on the front panel provides access to the dry contactinputs and outputs.

4.7.5 Handle Toggle Switch

There is one handle toggle switch located on the front panel. It mimics thefunction of the ejector handle on a front panel, as described in the followingtable.

Switch Position Function

Upper position Handle is closed

Lower position Handle is open

Table 11: Handle Toggle Switch

4.7.6 Alarm Reset Push Button

The JAXPC provides an alarm reset push button on the front panel. It is usedto reset a cleared alarm condition.

3BK 21270 AAAA PCZZA Ed.03 73 / 112

Page 74: MFS 9130 Hardware Description

4 ATCA Shelf

4.7.7 Shelf Addressing

On an ATCA system there are 8 bits allocated for a Shelf Geographic Address(SGA). The SGA on the JAXPC alarm board is set via two SGA rotary switches.The two JAXPC in the same shelf must always be set to the same SGA.

S1 (bottom switch in the figure below) sets the lower nibble and S2 (top switchin the figure below) sets the upper nibble. Use a screwdriver to set the switchesby turning them. A little arrow on the switch shows you the value to which theswitch is set.

S2

S1

Figure 33: Rotary Switches on JAXPC

Optionally, the Shelf Geographic Address can be set by the backplane.

74 / 112 3BK 21270 AAAA PCZZA Ed.03

Page 75: MFS 9130 Hardware Description

4 ATCA Shelf

4.8 JBXPSFour field maintainable intelligent Power Entry Modules (JBXPS) are installedbeneath the rear slots of the backplane. The JBXPSs A1 and B1 supply the oddnumbered slots, and the JBXPSs A2 and B2 supply the even numbered slots.

Each feed has two power attachment points, each of which is capable ofsupplying 50 A.

At the minimum operating voltage (-39.5V), this power entry supports 3950W,which is beyond the limit of 200W per slot.

The JBXPSs provide the following features and functions:

Redundancy so that a single JBXPS failure will still provide full power

to the system

Hot-swap

Providing monitoring information to the shelf manager

Power feed voltage and current measurement

Temperature sensing

Power filtering

IPMC for input power monitoring within the power distribution path. IPMCis located on both IPMB-A and IPMB-B buses.

Each JBXPS connects to the distribution board via a Positronic PLC series 3x6connector and a 3x10 connector. The DIN connector has multiple levels ofmating to allow hot insertion and removal. The panel I/O is comprised of apower feed input and a hot swap toggle switch, and hot swap and status LEDs.

All JBXPSs are a single width module with dual M6 insulated studs and powerfiltering. The four-JBXPS system includes a full IPM interface for 50A.

A toggle switch is provided to allow supervision interruption for maintenancereasons.

The following figure shows the functional blocks of the JBXPS.

Fro

nt P

late

Dis

trib

utio

n B

oard

Breaker Filter

LEDs, Switch

CurrentSensing

Switch

LEDs

− 48V DC

IPMC

Curr/Voltg TEMP

− 48V DC

GA

IPMB_0

Figure 34: JBXPS Functional Blocks

3BK 21270 AAAA PCZZA Ed.03 75 / 112

Page 76: MFS 9130 Hardware Description

4 ATCA Shelf

4.8.1 JBXPS Specifications

4.8.1.1 Power InputThe external power is connected to the JBXPS via dual, isolated power studs.The studs are sized to support a maximum of 90 A when derated for a 30�

C temperature rise.

The JBXPS is designed to operate from 36V to 75V and can withstand 100Vtransients for at least 100ms, 200V transients for at least 5µs, and 1500Vfast transients. A breaker (depending on the model) is used to provide shelfprotection. The breaker is equipped with finger guards and a push-to-resetfeature to avoid accidental tripping.

4.8.1.2 Power FilteringThe JBXPS is equipped with input power filtering. The filter is designed tosupport 50A in the four-JBXPS system.

The filter provides transient voltage immunity, in accordance with the IEC1000-4-4 Part 4 for electronic fast transient/burst immunity specifications, andtest level 1 in accordance with generic EMC requirements.

For details about power distribution system refer to Power Distribution System(Section 4.1.6).

4.8.2 Front Plate

The following figure shows the front plate of the JBXPS.

− (P

OW

ER

)

ON

I

O

OFF

+(R

ET

UR

N)

Operating Voltage − 44V to −72 VDCMaximum Current 50A

Torque Nut 7.12 Nm (8 lbf.in) Max

H/S

hand

le closed

open

OOS

OK

Rev. Power

Figure 35: JBXPS Front Plate

76 / 112 3BK 21270 AAAA PCZZA Ed.03

Page 77: MFS 9130 Hardware Description

4 ATCA Shelf

4.8.3 LEDs

The following LEDs are used on the front plate of the board.

LED Color Description

OOS Red Out of Service

ON: The JBXPS is out of service

OFF: The JBXPS is working properly

OK Green Power

ON: The JBXPS is powered properly

OFF: The JBXPS is not powered.

Rev. Power Red Polarity

ON: Power-feed cables of the JAXPS isreversed connected.

OFF: Power-feed cables of the JAXPS arecorrect connected.

H/S Blue Hot Swap

On JBXPS insertion:

ON: On boards IPMC poweres up

Blue blinking: The JBXPS communicateswith the JAXSMM

OFF: The JBXPS is active

On JBXPS extraction:

Blue blinking: The JBXPS notifies theJAXSMM its request to deactivate

OFF: The JBXPS can be removed.

Table 12: JBXPS LEDs

4.8.4 Handle Switch

The handle switch is located on the front plate in the left upper corner. It hastwo positions as described in the following table.

Position Description

Open Out of JAXSMM control

Closed Under JAXSMM control

Table 13: Handle Switch Positions

3BK 21270 AAAA PCZZA Ed.03 77 / 112

Page 78: MFS 9130 Hardware Description

4 ATCA Shelf

4.9 JBXFANThe JSXATCA shelf is equipped with four fan modules, JBXFAN.

4.9.1 Front Plate

The following figure shows the JBXFAN font plate.

CLOSED / OPENH/S OOS

Figure 36: JBXFAN Front Plate

4.9.2 LEDs

The following LEDs are used on the front plate of the JBXFAN unit.

LED Color Description

OOS Red Out of Service

ON: The JBXFAN is out of service

OFF: The JBXFAN is working properly

H/S Blue Hot Swap

On JBXFAN insertion:

ON: On board IPMC powers up

Blue blinking: The JBXFAN communicates with theJAXSMM

OFF: The JBXFAN is active

On JBXFAN extraction:

ON: The JBXFAN is ready to be removed.

Blue blinking: The JBXFAN notifies the JAXSMM itsrequest to deactivate

OFF: The JBXFAN is active

Table 14: JBXFAN LEDs

78 / 112 3BK 21270 AAAA PCZZA Ed.03

Page 79: MFS 9130 Hardware Description

4 ATCA Shelf

4.9.3 Handle Switch

The handle switch is located on the front plate in the left upper corner. It hastwo positions as described in the following table.

Position Description

Open Out of JAXSMM control

Closed Under JAXSMM control

Table 15: Handle Switch Positions

4.10 ATCA FillersAll unused slots are covered with filler blades. These blades ensure aconsistent airflow per slot whether or not the neighboring slot contains anAdvancedTCA blade.

The system comes delivered with unused slots at the system’s rear coveredwith RTM filler blades. These RTM filler blades are necessary to provideproper airflow.

Front and rear filler blades must be removed before RTM or AdvancedTCAblade installation.

3BK 21270 AAAA PCZZA Ed.03 79 / 112

Page 80: MFS 9130 Hardware Description

4 ATCA Shelf

4.10.1 JBXFILL

Front unused slots are covered with font fillers, JBXFILL. The following figureshows the front filler.

Figure 37: JBXFILL View

80 / 112 3BK 21270 AAAA PCZZA Ed.03

Page 81: MFS 9130 Hardware Description

4 ATCA Shelf

4.10.2 JAXFILL

Rear unused slots are covered with rear fillers, JAXFILL. The following figureshows the rear filler.

Figure 38: JAXFILL View

3BK 21270 AAAA PCZZA Ed.03 81 / 112

Page 82: MFS 9130 Hardware Description

4 ATCA Shelf

82 / 112 3BK 21270 AAAA PCZZA Ed.03

Page 83: MFS 9130 Hardware Description

5 JSXLIU/JSXLIUB Shelf

5 JSXLIU/JSXLIUB Shelf

JSXLIU/JSXLIUB shelf provides basic information about the:

JSXLIU/JSXLIUB shelf

JBXLIU/JBLIU75 board

JBXMUX

JBXPS

Dummy panel.

3BK 21270 AAAA PCZZA Ed.03 83 / 112

Page 84: MFS 9130 Hardware Description

5 JSXLIU/JSXLIUB Shelf

5.1 JSXLIU/JSXLIUB Shelf Description

5.1.1 Introduction

The JSXLIU/JSXLIUB shelf ensures the concentration of 256 E1 on a 1 GigaEthernet link.

The JSXLIU/JSXLIUB shelf hosts:

Two JBXPS boards supporting the connection from - 40 up to 72VDCsecondary voltage, the EMI filtering, the down conversion in a 12V SELV

voltage, and collects the alarms through a I2C link

Two JBXMUX boards which collect the E1 links from the 16 JBXLIU/JBLIU75

boards on 16 serial links at 36.864 Mbit/s and build packets sent towards up

to 32 directions (125ms each) on a Giga Ethernet link

Up to 16 JBXLIU/JBLIU75 boards converting 16 plesiochronous E1 links

into a synchronous link at 36.864 Mbits (4B/5B coded).

5.1.2 Shelf Position in the System

The JSXLIU/JSXLIUB shelf is located between the DDF and the ATCA shelfhosting the MFS functions.

It is connected to the DDF through up to 16 cables, each in 32 pairs. The PCMinterfaces are balanced 120 or unbalanced 75 , in accordance with G703standards. The unbalanced 75 is not supported on the LIU itself. In this case,the adaption is done at DDF side.

It is powered from two sources (48/60VDC).

The JSXLIU/JSXLIUB shelf has its own EMI enclosure and fire protection. Itcan be hosted in the same cabinet as the ATCA shelf or can be stand-alone.

This is shown in the following figures.

84 / 112 3BK 21270 AAAA PCZZA Ed.03

Page 85: MFS 9130 Hardware Description

5 JSXLIU/JSXLIUB Shelf

JBXGPU 1

JNXGPU P

JBXGPU N

JBXSSW W

JBXSSW P

JBXOMCP W

JBXOMCP P

1 Gigabit Ethernet −ATCA Base Interface

JSXLIU Shelf

External E1 Links

O&M + TELECOM

NE1oE

Figure 39: JSXLIU/JSXLIUB Shelf in the MFS

X 16

32 pairs cable DDF

NE1OE

DDF

JBXPEM A

JBXMUX A

JBXLIU

JSXATCA SHELF

DDF

JBXPEM B

JBXMUX B

JBXSSW A

JBXSSW B

NE1OE

16 cables

Power Source A

Power Source B

Figure 40: JSXLIU/JSXLIUB Shelf Environment

5.1.3 Main Features

The LIU is composed of:

A mechanical housing designed to hold the JBXMUX, the LIU and the

JBXPS pluggable items:

Width compatible with a standard 19” cabinet

Overall height : 3U

Depth : to accommodate the pluggable boards depth of 160 mm.

Two JBXPS slots

3BK 21270 AAAA PCZZA Ed.03 85 / 112

Page 86: MFS 9130 Hardware Description

5 JSXLIU/JSXLIUB Shelf

Two JBXMUX slots

16 LIU slots

One unused position referred to as the shelf address slot.

The power input is -48/60VDC, redundant with the A + B power feed. Theconsumption is less than 100W (fully loaded).

For thermal requirements, natural convection is sufficient. This assumes thatthere is 1U free space up one side and down the other side of the shelf.

A single backplane provides all the internal connections between the hostedboards. All the external accesses to the JSXLIU/JSXLIUB shelf are madethrough the front plate of the boards.

This is shown in the following figure.

−48 / 60 VDC

4A

−48 / 60 VDC

4A

JBXPEM JBXMUX JBXLIU JBXPEMJBXMUX JBXLIU JBXLIU JBXLIU JBXLIU JBXLIU JBXLIU JBXLIUJBXLIUJBXLIU JBXLIU JBXLIU JBXLIU JBXLIU JBXLIU JBXLIU JBXDUM

Figure 41: JSXLIU/JSXLIUB Shelf Front View

5.1.4 Mechanical Housing Description

21 slots are available (20 are required) and the spacing is 20.32 mm. The slotnumbering marking is added on a 1U filler on top of the shelf , including theslot numbers from 1 to 21.

Board guides are plastic and are made with an ESD clip. The board’smechanical size is a 3U small form factor.

This is shown in the following figure.

86 / 112 3BK 21270 AAAA PCZZA Ed.03

Page 87: MFS 9130 Hardware Description

5 JSXLIU/JSXLIUB Shelf

JBXMUX

GbE

TEST

Active

Power/Fail

JBXDUMJBXPEM

− 48/60VDC

4 A

Power/Fail

JBXLIU

Power/Fail

E1/T1

Figure 42: LIU Hosted Strips and Marking

The following table lists the backplane sizes.

JSXLIU/JSXLIUB Shelf Backplane Weight and Dimensions

Length 426.72 mm

High 128.7 mm

Thickness 3.2 mm

Weight Less than 10 Kg

Table 16: JSXLIU/JSXLIUB Shelf Backplane Weight and Dimensions

JBXMUX slots position are fitted with a P1 connector and a P2 connector .Other slots (LIU & JBXPEM) are fitted with only one P1 connector. On the slotaddress shelf (slot #11), the P2 connector is replaced by a set of eight jumpersused to configure the shelf address. Sub-equipment of JBXLIU/JBLIU75 boardis possible and requires no specific recommendations. The JBXDUM filler forEMI compliance is used to close the unused slot. In terms of hot insertion, thedesign of the boards takes account the inrush current.

3BK 21270 AAAA PCZZA Ed.03 87 / 112

Page 88: MFS 9130 Hardware Description

5 JSXLIU/JSXLIUB Shelf

JBX

PE

M A

JBX

LIU

1

JBX

MU

X A

JBX

LIU

2

JBX

LIU

3

JBX

LIU

4

JBX

LIU

5

JBX

LIU

6

JBX

LIU

7

JBX

LIU

8

JBX

MU

X B

JBX

LIU

9

JBX

PE

M B

JBX

LIU

10

JBX

LIU

11

JBX

LIU

12

JBX

LIU

13

JBX

LIU

14

JBX

LIU

15

JBX

LIU

16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Figure 43: JSXLIU/JSXLIUB Shelf Back-Plane Front View

5.1.5 JSXLIU/JSXLIUB Shelf Internal Connection

5.1.5.1 - 48/60 Volts Power SupplyThe power supply is in the range -38.4/-72V. It is composed of two independentlines (VBATA and VBATB), and a common return VBATR. The battery returnis normally not connected to the mechanic ground but to a jumper on eachJBXPEM which can provide the link if requested. The logical ground GND andthe mechanic ground MGND are connected together on the backplane byscrews in a basic configuration. For specific markets, it is possible to separatethem by removing the dedicated screws.

5.1.5.2 VBAT Power Supply DistributionVBAT power supply enters the front panel of each JBXPEM on the left andright sides of the shelf . It also is distributed to the other JBXPEM boards. TheVBATO of JBXPEMA is connected to the VBATI of JBXPEMB (and reciprocally).

5.1.5.3 12 Volts Power Supply Distribution12 V power supply is distributed by each JBXPEM to all the other boardsvia a complete plan.

P12VA is the +12 voltage generated by the left JBXPEM. It is connected toP12Vi on the right JBXPEM.

P12VB is the +12 voltage generated by the right JBXPEM. It is connected toP12Vi on the left JBXPEM.

5.1.5.4 Serial Data Interface Between JBXMUX and JBXLIU/JBLIU75 BoardsThe serial link carrying data and control between JBXLIU/JBLIU75 boards andJBXMUX board is encoded 4B/5B. It needs only one pair for each direction.Two additional pairs are provided for any future use.

The upward interface is composed of UDATPxx and UDATNxx pairs carryinguplinks A and B from the LIU to the corresponding input or JBXMUX boardA and B.

The downward interface is composed of DDATPxx and DDATNxx pairs carryingthe downlink from JBXMUX A and B to the corresponding LIU input A and B.

88 / 112 3BK 21270 AAAA PCZZA Ed.03

Page 89: MFS 9130 Hardware Description

5 JSXLIU/JSXLIUB Shelf

5.1.5.5 I2C LinkThis link allows the JBXMUX to read the RI EEPROM, the alarm register andthe temperature on the adjacent JBXPEM board. It is composed of the SCLand SDL signals. Arbitration of I2C master is performed via the active/standbysignal.

The LIU RI data is read by the JBXMUX board through the serial 4B/5Binterface.

5.1.5.6 Active/Standby Control JBXMUXThis link allows selection of the active JBXMUX, depending on the JBXMUX Aand B help and software requests.

5.1.5.7 Board Presence and Reset LinksThis link allows each JBXMUX (A or B) to detect whether a LIU is pluggedinto a slot, and to restart it.

5.1.5.8 Slot AddressEach slot in the JSXLIU/JSXLIUB shelf backplane is individually identified by aspecific polarization of the SLA signals. “X” indicates that the jumper is presentand lowers the corresponding SLA pin of JBX* board. It is left open, so that theselected board will detect a logical level “1” via the adequate pull up resistor.

5.1.5.9 Shelf AddressEach JSXLIU/JSXLIUB shelf belonging to a given system can be individuallyidentified by a specific polarization of SHA signals on the JSXLIU/JSXLIUBshelf backplane. “X” indicates the jumper is present and lowers thecorresponding SHA (0 to 3) pin of the two JBXMUX boards.

3BK 21270 AAAA PCZZA Ed.03 89 / 112

Page 90: MFS 9130 Hardware Description

5 JSXLIU/JSXLIUB Shelf

5.2 JBXLIU/JBLIU75 BoardThere are two version of LIU boards, identical from functional point of view butdifferent by the type of cables that can be conncted on it. JBXLIU supportsthe 120 Ohm cables connection and JBLIU75 supports the 75 Ohm cablesconnection.

5.2.1 Introduction

The JBXLIU/JBLIU75 board ensures the interfacing of 16 plesiochronous E1links in the JSXLIU/JSXLIUB shelf. The JSXLIU/JSXLIUB shelf hosts 16JBXLIU/JBLIU75 boards.

The JBXLIU/JBLIU75 board functions are:

In the ingress direction:

2048 kHz clock recovery

HDB3 decoding

LOS detection

Stuffing

Multiplexing 16 lines and board control into a serial signal at 36.864 Mbit/s

Encoding the serial signal 4B/5B at 46.08 Mbauds.

In the egress direction:

46.08 MHz clock recovery

5B/4B decoding

De-multiplexing

De-stuffing

HDB3 encoding.

The E1 interface is compliant with the G.703 recommendations in 120or 75 termination.

90 / 112 3BK 21270 AAAA PCZZA Ed.03

Page 91: MFS 9130 Hardware Description

5 JSXLIU/JSXLIUB Shelf

5.2.1.1 System DescriptionThe JBXLIU/JBLIU75 board is part of the JSXLIU/JSXLIUB shelf whichbelongs to the ATCA based platform. It is shown in the following figure in anMFS environment.

GPUGPU

1 Gigabit Ethernet − ATCA Base Interface

External E1/T1 Links

NE1oE

JBXLIU

GPUGPU

JBXGPU 1

JBXGPU N

JBXGPU P

JBXSSW W

JBXSSW P

JBXOMCP P

JSXLIU Shelf

JBXOMCP W

Figure 44: Platform Architecture

5.2.1.2 LIU EnvironmentThe JBXLIU/JBLIU75 board is hosted in the JSXLIU/JSXLIUB shelf. It ispowered from two redundant +12 V from two JBXPEM boards.

The interface with the two JBXMUX boards through the backplane is composedof:

One point to point bi-directional encoded serial link 4B/5B carrying both

payload and control data. This link is supported by two pairs with LVDSsignals.

One point to point bi-directional link for board presence indication andreset functions

Two point to multipoint signals to indicate which is the active JBXMUX (SELA

and SELB). SELA and SELB signals always display a complementary state,and only SELA is used.

3BK 21270 AAAA PCZZA Ed.03 91 / 112

Page 92: MFS 9130 Hardware Description

5 JSXLIU/JSXLIUB Shelf

The JBXLIU/JBLIU75 board provides 16 balanced E1 interfaces on its frontpanel via one 68 pin sub-D connector.

This is shown in the following figure.

JBXPEM

GE Link

GE S witch

JBXLIU

JBXMUX16 E1/T1

ATCA Shelf

JSXLIU Shelf

4B/5B up

4B/5B down

PRSET

+12 V +12 V

− 48V A − 48V B

MUX Select

Figure 45: JBXLIU/JBLIU75 Board Environment

5.2.2 Hardware Architecture

The JBXLIU/JBLIU75 board provides the following functions:

Power supply

Line Interface

LIU reference clock generation

Mux selection

E1/T1 configuration

Stuffing

Multiplexing

Serialization

4B/5B encoding

Loop-back facilities

RI.

92 / 112 3BK 21270 AAAA PCZZA Ed.03

Page 93: MFS 9130 Hardware Description

5 JSXLIU/JSXLIUB Shelf

This is shown in the following figure.

JSXLIU Board

DC/DC converters

OCTALLIU E1/T1

OCTALLIU E1/T1

Electricalprotection &Transformer

Electrical E1 MUX+

Bit stuffing

RIEEPROM

Control Bus

Data + Clock

EPLDEEPROM

I2C

E1 MUX+

Bit stuffing

SELA/B

JGXESD

1544kHz

2048kHz

E1/T1 selection

JSXLIU Board

DC/DC Converters

12V (B)

OCTALLIU E1/T1

OCTALLIU E1/T1

Serial link 1

Serial link 2

SELASELB

ElectricalProtection & Transformer

Electrical Protection & Transformer

E1 MUX+

Bit stuffing

RIEEPROM

12V (A)

Control Bus

Data + Clock

EPLDEEPROM

I2C

Board presenceand reset

SELA/B

JGXESD

1544kHz1544kHz

2048kHz

2048kHz

E1/T1 selection

E1 MUX+

Bit stuffing

Figure 46: JBXLIU/JBLIU75 Board Architecture

5.2.2.1 Power SupplyThe board is powered from two separated +12 V inputs. The + 3.3 voltageis obtained via a non isolated converter (the isolation is performed on theJBXPEM board). The 1.5 voltage required for the JGXESD FPGA is providedvia a linear regulator.

5.2.2.2 Line InterfaceThe JBXLIU/JBLIU75 provides 16 balanced 120 or unbalanced 75 E1lines, compliant with G.703.

The line interface is provided by two octal E1 short hall JBXLIU/JBLIU75s inthe PBGA package. These LIUs are associated with four octal transformersensuring the galvanic isolation.

Tripolar protection is provided on the PCB to prevent difficulties with regard tomeeting K41 requirements. It is assumed that if this protection is not required, itwill not be equipped.

5.2.2.3 LIU Reference ClockFor clock recovery and jitter attenuation, the E1/T1 LIU needs a 2048 kHzreference clock when used in E1 mode, and a 1544 kHz reference clockwhen used in T1. In order to permit the dual mode, two crystal free runningoscillators are implemented on the board. On the current board, only the 2048kHz oscillator is equipped.

3BK 21270 AAAA PCZZA Ed.03 93 / 112

Page 94: MFS 9130 Hardware Description

5 JSXLIU/JSXLIUB Shelf

5.2.2.4 E1/T1 ConfigurationThe LIU functions are as follows:

In the ingress direction:

Clock recovery

HDB3 decoding

LOS detection.

In the egress direction:

HDB3 encoding

Jitter attenuation.

The configuration of the LIU is achieved via the non-multiplexed bus typeemulated by the JGXESD. Depending on the configured mode, the LIUreference clock is switched to 2048 kHz or 1544 kHz. In the current design,the JGXESD only provides E1 capability. This configuration is downloadedinto the LIU upon hardware reset.

The LIUs are configured as follows:

AIS disabled on LOS

LOS criteria is G.775

HDB3 coding enabled

Jitter attenuator depth 32 bits

Jitter transfer bandwidth 1.7 Hz

Jitter attenuator in transmit path.

In the egress direction, the JGXESD extracts the orders of local or a remoteloop-back on each E1 link from the serial link. It transfers these orders into theLIU loop-back configuration register. In the ingress, it reads the loop-back andLOS status registers of the LIU and inserts the information in the serial link.

5.2.2.5 JGXESD Reference ClockThe JGXESD component requires a 36864 kHz transport clock for the 4B/5Brecovery clock function. It is provided via a VCXO used in free run mode.

5.2.2.6 JBXMUX SelectionDepending on the status of the SELA input, the E1 or T1 output signal comesfrom the serial link A or B. This function is performed inside the JGXESDcomponent. The link A is active when SELA is low.

In the ingress direction, the 16 E1 are converted and sent on both serial links.

5.2.2.7 Stuffing33 bytes of payload are allowed to each E1 or T1 link every 125 ms. Dependingon the phase relationship between each line clock and transport clock, these33 bytes carry 255, 256, or 257 bits. This function is performed inside theJGXESD component.

94 / 112 3BK 21270 AAAA PCZZA Ed.03

Page 95: MFS 9130 Hardware Description

5 JSXLIU/JSXLIUB Shelf

5.2.2.8 Multiplexing and SerializationIn the ingress direction, the JGXESD multiplexes the data coming from the16 lines, RI data, and LIU status information on a serial link at 36864 kbit/s.In the egress direction, the JGXESD extracts the data from the 16 lines andcontrols the LIU of the serial link

5.2.2.9 4B/5B EncodingIn the ingress direction, the serial link is encoded 4B/5B. In the egress direction,the clock is recovered from the received signal, the frame alignment is checkedand the data is decoded 5B/4B. This function is performed by the JGXESDcomponent.

5.2.2.10 Remote InventoryAn EEPROM with I2C access is dedicated to RI data. It can be read by theJGXESD component. A specific connector allows the factory to write thedata when the board is not powered.

5.2.2.11 Board PresenceA pull down indicates the presence of the JBXLIU/JBLIU75 board to theJBXMUX boards. The active JBXMUX board can reset the JBXMUX boardby driving this access high.

5.2.2.12 Hot InsertionThe JBXLIU/JBLIU75 board can be plugged into the JSXLIU/JSXLIUB shelfwithout perturbing the other boards of the shelf.

5.2.2.13 ESD Discharge CircuitAn ESD discharge circuit allows a progressive discharge of the board beforecomplete insertion.

5.2.2.14 Start PolicyThe board starts when powered ON.

5.2.2.15 Reset PolicyThe board is reset at power ON, or by the active JBXMUX by PRSET access.

The LIU can be reset through the serial egress link.

5.2.2.16 Boundary Scan Chain (JTAG)The boundary scan chain includes the JGXESD and the two octal LIU. Thechain is accessible on a dedicated connector for factory use. For futureimprovements, a “Firecron“ scan path component is implemented (notequipped). This component can provide access to the boundary scan chainfrom a backplane bus reserved for this application.

3BK 21270 AAAA PCZZA Ed.03 95 / 112

Page 96: MFS 9130 Hardware Description

5 JSXLIU/JSXLIUB Shelf

5.2.3 Interfaces

5.2.3.1 Internal InterfacesThe following internal interfaces are available:

Data + clock interface between the LIU and JGXESD

Ingress data + clock interface between the LIU and JGXESD

Egress data + clock interface between JGXESD and the LIU.

Control interface between the LIU and JGXESD

I2C interface

Board type interface.

5.2.3.2 External InterfacesThe following external interfaces are available:

Line interface (X6)

Backplane Interface (X1)

Visual interface (H0201)

Remote inventory interface (X2)

JTAG Interface (X4)

Programming Interface (X3).

96 / 112 3BK 21270 AAAA PCZZA Ed.03

Page 97: MFS 9130 Hardware Description

5 JSXLIU/JSXLIUB Shelf

5.2.4 Front Panel

The following figure shows the LIU board front panel for the 120 ohm and 75ohm solutions.

Power/Fail

JBXLIU

E1/T1

Power/Fail

JBLIU75

E1/75

Figure 47: LIU Front Panel

5.2.5 Safety

The JBXLIU/JBLIU75 board belongs to the JSXLIU/JSXLIUB shelf and meetsthe required safety specifications.

The E1 accesses are TNV1 voltages.

Other circuits are SELV voltage.

Mechanical ground and logic ground are separated on the board. These twoground types can be connected together at the backplane level.

3BK 21270 AAAA PCZZA Ed.03 97 / 112

Page 98: MFS 9130 Hardware Description

5 JSXLIU/JSXLIUB Shelf

5.3 JBXMUX Board

5.3.1 Introduction

The JBXMUX board, which is part of the JSXLIU/JSXLIUB shelf, ensures theconcentration of 256 E1 PCM links on a Gb Ethernet external interface.

This board performs the following functions:

Multiplexing and de-multiplexing of up to 16 E1 trunks (1 per LIU card)

for a total capacity of 256 E1 lines

Overall timing synchronization generation via the nE1oE mechanism

NE1oE packing/ unpacking

Control, supervision and data frame management through the GbE link

Control management and supervision of LIU cards

One GbE physical interface

Active/ standby communication link with the second JBXMUX card for 1+1

protection purpose

Debug interface

RI data storage

Hot insertion.

5.3.2 JBXMUX Hardware Architecture

The JBXMUX card architecture can be described as follows:

The NE1OE block, which provides emission/reception of the E1 links overEthernet, along with control management (also over Ethernet). It also

performs Active/ Standby JBXMUX control.

The NE1oE master clock, which provides synchronization timing for theoverall MX platform

One Gb Ethernet physical interface

Control management and supervision of JBXLIU/JBLIU75 cards

Active/ standby communication link with the second JBXMUX card for1+1 protection purposes

One Flash memory block for FPGA bit stream, and boot firmware

FPGA configuration

One 16MX32 bit SDRAM block attached to the nE1oE system on thechip processor

One RS232 test interface for the nE1oE SOC processor

One I2C interface for RI data storage

The reset module, which provides the reset logic for the FPGA (JGXEOEand JGXCLU) and the GbE transceiver

98 / 112 3BK 21270 AAAA PCZZA Ed.03

Page 99: MFS 9130 Hardware Description

5 JSXLIU/JSXLIUB Shelf

The power supply module, which provides all the required on-board powerfrom the backplane 12V A and B rails. It also manages the power/failure

front plate LED.

This is shown in the following figure.

ResetPower Supply

JGXCLU

FPGA / configuration

nE1oE / User &Control planesmanagement

System On Chip

JGXEOE

EthernetPhysical interface

module

RAM16MX32b

FLASH8 MB

RIEEPROM

Address/ data/ ctrl Address/ data/ ctrl

RGMII

Serial data links

RS232transceiver

Debug

LIU cards presence

I2C

12V A/B

Backplaneaccess

Timinggeneration

Frontpanel

access

Active/ standby

SMbus

TWSI

Figure 48: JBXMUX Architecture

5.3.2.1 NE1OE BlockThe nE1oE function constitutes the main part of the JBXMUX card and ishoused in the JGXEOE FPGA. This function provides, along with the E1interface/ alignment/ Mux function setting on each LIU card, an overall E1cross-connect capability for 512 E1 PCM links (limited by hardware capabilitiesto 256 E1 links) over Ethernet transport.

The nE1oE can be split into the following sub-blocks:

16E1 data interfaces 4B-5B codingEach of the 16 serial data links in connection with the 16 LIU cards inthe shelf are 4B-5B coded/decoded for reducing the backplane accessconnector pin-count and ultimately simplifying the backplane physicaldesign. The nominal bit rate before coding is 36.864Mbps and the linebit-rate is 46.08Mbps. Data out and data in signals are conveyed to/fromeach LIU card after single to differential signal conversion (100 Ohmbalanced pairs), ending up with a two pair backplane interconnection perdata stream. Data and synchronization signals are recovered from the 4B5Bcode itself via an over-sampling technique.

Ethernet frames packing/ unpacking and E1 cross-connect with physicalentities within the MX platform perimeter (JBXGPU, JBXOMCP)

Gb Ethernet MAC/Physical interfacing, with auto-negotiation 10/100/1000base-T with Reduced Pin count GMII (RGMII) interfacing on the MAC side

Communication with the second JBXMUX card for mutual active/ standby

switching-over process control

Control and user plane management to/from the Gb Ethernet link.

3BK 21270 AAAA PCZZA Ed.03 99 / 112

Page 100: MFS 9130 Hardware Description

5 JSXLIU/JSXLIUB Shelf

This part is achieved by an embedded processor (SOC) also in charge ofthe SDRAM, the Flash, the I2C, the RS232 debug link, the in-band resetand shelf address management.

5.3.2.2 Timing GenerationNE1oE Master clock: The designated active JBXMUX card in theselected JSXLIU/JSXLIUB shelf is by definition also the master, in terms ofsynchronization for the entire nE1oE function on the MX platform. As a result,all other entities present in the system are necessarily synchronized with the8kHz rhythm sent by the JBXMUX through the nE1oE framing mechanism.

A 36.864MHz VCXO used as a free run oscillator is dedicated to this end, andprovides the clock signal used by the JGXEOE as the reference for all nE1oEsub-blocks. The 8KHz frame synchronization signal is also internally builtfrom this reference.

Given that the JGXEOE architecture is common to the different applications(JBXGPU or JBXMUX), the internal PLL tracking is disabled in the JBXMUXcase and the phase comparator output pulse width is set to its mid-range value.An analog low pass filter (cut-off at approximately 10Hz) provides the VCXOwith a DC voltage, setting the output frequency to its mid-range value.

System clock: A 25MHz system clock signal is produced by a free runoscillator for the JGXEOE, the JGXCLU and the GbE transceiver. TheJGXEOE Mac interface sub-block uses the 25MHz input clock to produce the125MHz reference clock necessary for the 10/100/1000base-T application. Thefrequency multiplication is managed via an internal broadband PLL embeddedin the FPGA matrix. The same artifact is used on the transceiver Mac side.

5.3.2.3 Ethernet Physical Interface ModuleThe gigabit Ethernet physical access is performed via the Marvell 88E1111transceiver. This transceiver use a Reduced pin count GMII (RGMII) interfacewith the JGXEOE, and has its MDI interface connected directly to an1000base-T RJ45 module integrating the filtering magnetics and two LEDs .

RGMII interface:

Upward: TXD[3:0], TXEN, GTX CLK

Downward: RXD[3:0], RXDV, XCLK.

For alarm collection and register programming, the transceiver TWSI interfaceis also connected to the JGXEOE.

5.3.2.4 Active/ Standby CommunicationIn the 1+1 protection scheme philosophy adopted on the MX platform, theactive/ standby switchover provides a very important function of the JBXMUX. Itgives each of the 16 LIU cards in the shelf clear information as to which of theincoming data streams (from either JBXMUX card A or B) is the valid one.

The active/ standby communication link concerns the two JBXMUX cardspresent in the JSXLIU/JSXLIUB shelf as part of a shared RS flip-flop function).This function provides each JBXMUX with an exclusive mechanism fortriggering one JBXMUX in Active or Standby modes, whereas the secondJBXMUX is automatically set to the opposite state.

Switchover triggering events:

100 / 112 3BK 21270 AAAA PCZZA Ed.03

Page 101: MFS 9130 Hardware Description

5 JSXLIU/JSXLIUB Shelf

Master request from the MX platform management entity. The order isreceived from the JBXOMCP through the Ethernet and is decoded as such

by the JGXEOE control plane management.

Card in error (see below).

These two events are processed in an autonomous fashion vis-a-vis the MXplatform management entity. In both cases, a report of the JBXMUX statechange is sent to the MX platform management entity through the Ethernetcontrol frames.

A JBXMUX card is declared in error after any of the following events:

Card currently in reset mode (nE1oE functions are unavailable until the end

of this sequence)

FPGA download sequence NOK (monitoring of JGXEOE init done signal

along with watchdog time-out) or card absent

Boot operational status not validated (specific bit and watchdog time-outmonitoring)

No supervision frame received for more than n X T seconds, whereby T =

mX100 ms and n is a positive integer.

5.3.2.5 Flash Memory BlockThe Flash memory contains the FPGA configuration files and the boot code ofthe processor embedded in the JGXEOE.

The Flash is accessed via a data path of 8 bits wide at a frequency of 12,5MHz. The Flash is performed with two components (8Mx8 (M29DW640Dfrom ST, 70ns access time).

The Flash is split in two main areas

A permanent area programmed in the factory (write protected)

An update area which can be programmed by the SoC processor.

The programming process is controlled by the JGXCLU EPLD but the updateconfiguration is managed by the embedded processor of the JGXEOE FPGAand is received through the Ethernet communication.

5.3.2.6 SDRAM Memory BlockThe SDRAM is used by the SoC processor to store its executable programand eventually to store data (constants, variables) if the JGXEOE internalmemory is not sufficient.

The SDRAM capacity is 512 Mbits. It is organized in 16 Mega words of 32bits each and is accessed via a data bus of 32 bits at the frequency of theprocessor (i.e. 66 MHz). The SDRAM memory is built with two 16Mbit*16memory components.

5.3.2.7 RS232 Test InterfaceConnected to the JGXEOE, this serial interface provides test access through adedicated RJ45 connector setting on the front plate.

Communication port settings:

Speed : 115200 baud

3BK 21270 AAAA PCZZA Ed.03 101 / 112

Page 102: MFS 9130 Hardware Description

5 JSXLIU/JSXLIUB Shelf

Parity : No

Data bits: 8

Stop bit: 1

Flow control: No.

5.3.2.8 LIU Cards Presence DetectionThe JGXEOE is in charge of collecting, via the I2C interface, card presenceinformation for each LIU card slot in the JSXLIU/JSXLIUB shelf. In order to doso, a I2C decoder able to manage 16 I/O is used (PCA9555) to detect the 16signals PRST_1 to 16 present on the backplane connectors.

LIU present: PRST_xx = Voltage logic level low (LVTTL)

LIU absent: PRST_xx = Voltage logic level high (forced on the JBXMUX cardinput by a pull-up resistor to 3.3V).

5.3.2.9 I2C InterfaceA single master I2C interface managed by the JGXEOE is used to communicatewith the :

RI component (EEPROM 512X8, 10ms)

JBXPEM in the JSXLIU/JSXLIUB shelf (local RI and alarms polling)

External components in charge of detecting the JBXLIU/JBLIU75 board’spresence.

For the different I2C items to be accessed properly, each item of the sametype (i.e. RI EEPROM, temperature controller, I2C GPIO) have a uniquehardware address code within this type.

5.3.2.10 Reset LogicTwo types of reset are implemented on the JBXMUX:

Power-ON resetThis is a global hardware reset of the entire card. A power supplysupervisory circuit supervisor monitors the main power supply rail (3.3V).As soon as it reaches a certain threshold, it maintains the JGXEOE, theJGXCLU and the GbE transceiver (PHY) in reset. As soon as the JGXCLUreset is released, it performs the JGXEOE download operation from theFLASH down to the FPGA. As soon as the JGXEOE bit stream is loaded,the component “Init-done” signal is activated and the JGXEOE master resetis released, followed by the boot loader execution

JBXMUX resetThis is a single reset bit carried out by the nE1oE control frames. It isalso used as a global hardware reset for the JBXMUX card. This resetbeing conveyed by the FPGA, which is a target for this reset action, theFPGA JBXMUX reset output falling edge is detected and converted into acalibrated negative pulse driving the power supply supervisory circuit(MAX708S) responsible of delivering the master reset pulse. A discretecomponent (TLC7701) is responsible for performing this function.

102 / 112 3BK 21270 AAAA PCZZA Ed.03

Page 103: MFS 9130 Hardware Description

5 JSXLIU/JSXLIUB Shelf

5.3.2.11 FPGA DownloadThe FPGA download is performed by the JGXCLU EPLD. This device is alsoused on the JBXGPU card. The behavior of the JGXCLU depends on the typeof the board. Selection of the board type is made with the BRD_SEL(1:0)input pin.

5.3.2.12 Power Supply ModuleThe power supply module provides the secondary power supply for the overallboard. On-board DC/DC converters and regulators provide the necessaryvoltage rails from two 12V DC redundant primary feeds.

Start-up, shut-down and supervisory voltage rails are provided via a dedicatedEPLD.

5.3.3 Front Panel Interface

5.3.3.1 RS232 Test Interface (X5)The connector type is a 10/100/1000 base T-RJ45 single port.

5.3.3.2 GbE Interface (X6)The GbE interface provides:

Connector type: 10/100/1000 base T-RJ45 single port with integrated

LEDs and magnetics.

The mechanical ground is connected via the PCB to the connector shield.

This is shown in the following figure.

PCB pin side

Top LED (Link Satusup/down)

Bottom LED (1000 base T link activity)

Figure 49: 1000 Base-T RJ45 Connector Front View

3BK 21270 AAAA PCZZA Ed.03 103 / 112

Page 104: MFS 9130 Hardware Description

5 JSXLIU/JSXLIUB Shelf

5.3.3.3 LEDsFour LEDs are visible on the front panel (from the top to the bottom):

Power ON/OFF/failure LED (L1)This is a bi-colour, red/green LED. When the card is powered ON and all themonitored power supply rails voltages are at least at 0.9xVcc, the greenLED is turned ON. If any of the power supply rails drop below 0.9xVcc, thegreen LED is turned OFF and the red LED is turned ON

Active/ standby LED (L2)This is a yellow LED driven by the JGXEOE SEL signal. When the JBXMUXcard is in active mode, the signal SEL is set to 3.3V, saturating a switchingtransistor and turning the LED ON. When the JBXMUX card is back instandby mode, the LED is turned OFF.

Two additional LEDs are associated with the GbE RJ45 front panel connector:

Upper LED (L3): Link status. Green LED:

LED ON: Link up

LED OFF: Link down.When up, the link is operational, in either idle or transmission modes.

Lower LED (L4): 1000 base-T Link activity. Yellow LED

LED ON: Transmitting

LED OFF: Not transmitting or negotiated mode is 10base-T or 100base-T.

5.3.4 Backplane Interface

Two connectors share the overall height of the card on the back.

The backplane accesses are as follows:

JBXLIU/JBLIU75/ JBXMUX 16E1 serial differential links

JBXMUX active/ standby link

I2C link

Slot address

Shelf address

12V Power supply A & B

JBXLIU/JBLIU75 card presence

Provision for JSXLIU/JSXLIUB shelf unused slot communication.

104 / 112 3BK 21270 AAAA PCZZA Ed.03

Page 105: MFS 9130 Hardware Description

5 JSXLIU/JSXLIUB Shelf

5.3.5 Front Panel

The following figure shows the JBXMUX front panel.

YELLOW Led

GREEN/ RED Led

JBXMUX

GbE

TEST

GbE access

Test access

Link activity (L4)

Link status (L3)

Figure 50: JBXMUX Front Panel

5.3.6 Power Supply Description

This block is responsible for converting the incoming 12V A and 12V B DCvoltages to the following DC voltage rails:

+3.3V / GND powers the RAM, the Flash, the JGXCLU, the JGXEOE I/O,the ISPPAC and all the discrete components

+1.5V / GND is for the JGXEOE core

+1.2V / GNDis for the GbE transceiver core

+2.5V / GND is for the GbE transceiver I/O and the JGXEOE I/O.

5.3.6.1 TNV/ SELV Galvanic IsolationThe incoming 12V rails are provided by each JBXPEM card in theJSXLIU/JSXLIUB shelf. The -48V to +12V DC/DC converters used for this

3BK 21270 AAAA PCZZA Ed.03 105 / 112

Page 106: MFS 9130 Hardware Description

5 JSXLIU/JSXLIUB Shelf

purpose feature a galvanic isolation between the two classes of voltageshandled in the system. For this reason, the DC/DC converter block used onthe JBXMUX card does not have to exhibit any galvanic isolation, therebyreducing its overall cost.

5.3.6.2 Power Supply ManagementA specialized IC monitors and controls each secondary power supply voltagerail used by the card:

Card plug-in (hot insertion) whereby all the secondary voltages rails areenabled at the same time and a smooth start is programmed to limit the

inrush current

DC rail voltage failure, whereby any secondary power supply rail whose

voltage value is below 10% of its nominal value ( factory programmable

threshold) triggers a global disabling of all the secondary rails.

5.3.7 Safety

The JBXMUX board belongs to the JSXLIU/JSXLIUB shelf, and meets thesafety specifications, according to the LIU Product Integration QualificationSpecification:

The Gigabit Ethernet access is TNV1 voltage class

Other circuits are SELV voltage class.

Mechanical ground and logic ground are kept separated on the board. Thesetwo ground types can be connected together at the backplane level by additionof dedicated screws.

With regard to the ESD discharges for the front plate and the electrical groundplanes. The Compact PCI standard [16] ensures a soft discharge of anyhazardous ESD buildup by the use of 3 copper stripes laid down the PCB card,and one metallic card guide clip placed within mechanical rails in the shelf.When the card is plugged into its slot, the stripes are successively in contactwith the clip, ensuring an electrical path towards the mechanical ground.

Consequently, the front plate is connected to stripe 1 (nearest to the front plate)through a 10M Ohm resistance, the ground planes are connected to the secondstripe, and the third stripe (nearest to the back side) connects the front platedirectly to the mechanical ground (no resistance).

This is shown in the following figure.

Font plate

GND planes

10 M Ohm

ESD Stripes

1

2

3

Card enclosure Chassis

Card guide clip

Mechanical ground

Figure 51: ESD Mitigation Mechanism

106 / 112 3BK 21270 AAAA PCZZA Ed.03

Page 107: MFS 9130 Hardware Description

5 JSXLIU/JSXLIUB Shelf

5.4 JBXPEM Board

5.4.1 Introduction

The JBXPEM board handles the power for the JSXLIU/JSXLIUB shelf. EachJBXPEM receives front input from - 40V up to - 72 VDC, redundant A + Bpower feeds. Each JBXPEM board distributes the +12VDC supply to theJBXLIU/JBLIU75 and JBXMUX boards. The global consumption is less than100W (fully loaded).

The JBXPEM board is part of the JSXLIU/JSXLIUB shelf, which belongsto the MX platform.

The JBXPEM board is hosted in the JSXLIU/JSXLIUB shelf in slots 1 and 21.Each JBXPEM board receives -48/60 VDC on the front panel. The redundantfunction between both JBXPEMs is provided through the backplane.

This is shown in the following figure.

JBXPEM A

JBXPEM B

JBXLIU1 to 16

JBXMUX A&B+ unused slot

+12V +12VI2Clink

Redundant link

JSXLIU Shelf

− 48V B Input

− 48V A Input

Figure 52: JBXPEM Environment

5.4.2 JBXPEM Architecture and Functions

The JBXPEM board functions are as follows:

EMI filter

DC/DC converter with basic insulation (-40/72VDC into +12Vdc)

Alarm connection

Temperature detection

RI EEPROM

Current limitation device for hot insertion.

3BK 21270 AAAA PCZZA Ed.03 107 / 112

Page 108: MFS 9130 Hardware Description

5 JSXLIU/JSXLIUB Shelf

The following figure shows the JBXPEM board architecture.

I2C

− 48V Back inputto the other PEM B

− 48V Back inputfrom other PEM B

ALA48ALA12

Power Entry Module

DC/DCisolated converter

− 48V front input

EMI filter

RIEEPROM

12V (A or B)

I2C

Power coupling+

Current limitation+

Protection+

Input monitoring

Temperaturesensor

Alarmcollection

Logic alim

Local +12V

Remote + 12V

Slot Address

+3.3V

Figure 53: JBXPEM Board Architecture

5.4.2.1 Hot Insertion DeviceThe JBXPEM board can be plugged into the JSXLIU/JSXLIUB shelf withoutdisturbing the other boards in the shelf. A specific device suppresses theinrush input current.

5.4.2.2 EMI FilterAn EMI filter is required in order to be compliant with the 73/23/EEC directive,to obtain the CE marking label.

5.4.2.3 48V / 12V ConversionTwo incoming separated input power supplies feed each board:

Front input -48/60Vdc

Back panel input -48/60Vdc (VBATI).

12 V power supply is distributed by each JBXPEM to all the other boardsvia a complete plan.

P12VA is the +12 voltage generated by the left JBXPEM. It is connected toP12Vi on the right JBXPEM.

P12VB is the +12 voltage generated by the right JBXPEM. It is connected toP12Vi on the left JBXPEM.

5.4.2.4 12V /3.3V ConversionThe 12V to 3.3V conversion is made by a bipolar low drop device to feed thelogical alarm supervision. The regulator is powered by two 12V. The first is thelocal 12V of the JBXPEM and the second is the 12V of the second JBXPEM.

5.4.2.5 Hardware ManagementA multi-master I2C interface, managed by the JGXEOE of the JBXMUX,is used to communicate with the:

RI component (EEPROM 512X8, 10ms)

JBXPEM in the JSXLIU/JSXLIUB shelf (local RI and alarms polling)

108 / 112 3BK 21270 AAAA PCZZA Ed.03

Page 109: MFS 9130 Hardware Description

5 JSXLIU/JSXLIUB Shelf

External components in charge of detecting the JBXLIU/JBLIU75 boards’presence.

Each item of the same type (i.e. RI EEPROM, temperature controller, I2CGPIO) has a single hardware address code within this type.

Slot Address: Each slot in the JSXLIU/JSXLIUB shelf backplane is individuallyidentified by a specific polarization of the SLA signals. “X” indicates thatthe jumper is present and drives the corresponding SLA pin of JBX* board.When it is left open, the selected board will detect a logical level “1” via anadequate pull up resistor.

The address number of the JBXPEM board is:

1 for JBXPEM A

21 for JBXPEM B.

RI EEPROM: An EEPROM with I2C access is dedicated to RI data. It can beread by the active JBXMUX board component. A specific connector allows thefactory to write the data when the board is not powered.

Alarm Collection: The different alarms come from:

-48/60Vdc of JBXPEM board A

-48/60Vdc of JBXPEM board B

12V

The temperature sensor.

All the alarms are connected to a I²C/SMBus device. This I2C link allows theJBXMUX to read the RI EEPROM, the alarm register and the temperature onthe adjacent JBXPEM board. It is composed of the SCL and SDL signals.Arbitration of the I2C master is performed via active/standby signals.

Temperature Sensor: The LM75 temperature sensor provides the localtemperature at all times to the JBXPEM board. When the temperature exceeds80�C, the device generates a temperature alarm.

5.4.2.6 Redundant A+B Power FeedThe VBAT power supply enters the front panel of each JBXPEM on left andright sides of the shelf . It is also distributed to the other JBXPEM board. TheVBATO of JBXPEM A is connected to VBATI of JBXPEM B (and reciprocally).

Each JBXPEM board generates 12V (A & B). All the other boards are poweredby two 12V:

P12VA from JBXPEM A

P12VB from JBXPEM B.

5.4.2.7 ESD Discharge CircuitAn ESD discharge circuit allows a progressive discharge through a resistor(10 MW) on the board before complete insertion.

3BK 21270 AAAA PCZZA Ed.03 109 / 112

Page 110: MFS 9130 Hardware Description

5 JSXLIU/JSXLIUB Shelf

5.4.3 Front Panel

The front panel shows the:

Front board connector

Visual interface

RI.

This is shown in the following figure.

JBXPEM

− 48/60VDC4A

Power/Fail

Figure 54: JBXPEM Front Panel

5.4.3.1 Front Board ConnectorThe front board connector (X3) type UPI has three pins:

Pin 1 for -48/60VDC input (VBAT)

Pin 2 for 0VCR input (VBATR)

Pin 3 for MMECA (or MGND) input (shelf ground).

110 / 112 3BK 21270 AAAA PCZZA Ed.03

Page 111: MFS 9130 Hardware Description

5 JSXLIU/JSXLIUB Shelf

5.4.3.2 Visual InterfaceA LED indicator on the front plate shows the board’s status, as described inthe following table.

Color Description

OFF The board is not powered.

Green The board is powered and OK.

Amber One input -48/60VDC is missing.

Red Board failure is detected (local +12V failure).

5.4.3.3 Remote InventoryThe interface for RI factory access is via a CONAN 9-pin connector.

5.4.4 Back Plane Connector

The board connector (J1) is a compact PCI type A.

This is shown in the following figure.

J1

100

mm

160 mm

J1

160 mm

J1

3U board format

X3

Figure 55: JBXPEM Side View

5.4.5 Safety

The JBXPEM board meets safety standards.

The front input -48/60VDC access is a classified TNV2 circuit. The output ofthe DC/DC and the other circuits are classified as SELV.

Mechanical ground (MGND) and logic ground (GND) are separated on theboard. These two grounds can be connected together through the backplane,depending on the equipment.

3BK 21270 AAAA PCZZA Ed.03 111 / 112

Page 112: MFS 9130 Hardware Description

5 JSXLIU/JSXLIUB Shelf

5.5 Dummy Panel (JBXDUM)Each unsed slot in JSXLIU/JSXLIUB shelf is closed by a dummy panel,JBXDUM

The following figure shows the front and side view of the dummy panel.

JBXDUM

Figure 56: JBXDUM Front and Side Views

5.6 LIU Filler (JMXF1U)Above each JSXLIU shelf, JMXF1U filler is used to give the physical slotnumber for the blades. It is not part of JSXLIU shelf.

The following figure shows the front view of the filler.

1 212 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Figure 57: JMXF1U Front View

5.7 LIUB LabelOn top of the front side of each JSXLIUB shelf, a label is used to give thephysical slot number for the blades. It is part of JSXLIUB shelf.

The following figure shows the JSXLIUB label.

1 212 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

JSXLIUB

Figure 58: JSXLIUB Label

112 / 112 3BK 21270 AAAA PCZZA Ed.03