Membrane Technology 3527608591 - Buch.de · in the Chemical Industry Edited by Suzana Pereira Nunes...

15
in the Chemical Industry Edited by Suzana Pereira Nunes and Klaus-Viktor Peinemann Second, Revised and Extended Edition Membrane Technology

Transcript of Membrane Technology 3527608591 - Buch.de · in the Chemical Industry Edited by Suzana Pereira Nunes...

  • in the Chemical Industry

    Edited bySuzana Pereira Nunes and Klaus-Viktor Peinemann

    Second, Revised and Extended Edition

    Membrane Technology

    InnodataFile Attachment3527608591.jpg

  • Edited bySuzana Pereira Nunes andKlaus-Viktor Peinemann

    Membrane Technology

  • Related Titles

    Sammells, A.F., Mundschau, M.V. (eds.)

    Nonporous Inorganic Membranesfor Chemical Processing

    approx. 380 pages with approx. 150 figures2006HardcoverISBN 3-527-31342-7

    Ohlrogge, K., Ebert, K. (eds.)

    MembranenGrundlagen, Verfahren und industrielle Anwendungen

    approx. 592 pages with approx. 270 figures2006HardcoverISBN 3-527-30979-9

  • in the Chemical Industry

    Edited bySuzana Pereira Nunes and Klaus-Viktor Peinemann

    Second, Revised and Extended Edition

    Membrane Technology

  • The Editors

    Dr. Suzana Pereira NunesGKSS ForschungszentrumMax-Planck-Str. 121502 Geesthacht

    Dr. Klaus-Viktor PeinemannGKSS ForschungszentrumInstitut für ChemieMax-Planck-Str. 121502 Geesthacht

    Library of Congress Card No.:applied for

    British Library Cataloguing-in-PublicationDataA catalogue record for this book is availablefrom the British Library.

    Bibliographic information published byDie Deutsche BibliothekDie Deutsche Bibliothek lists this publication inthe Deutsche Nationalbibliografie; detailedbibliographic data is available in the Internet at

    © 2006 WILEY-VCH Verlag GmbH & Co. KGaA,Weinheim, Germany

    All rights reserved (including those of translationinto other languages). No part of this book maybe reproduced in any form – by photoprinting,microfilm, or any other means – nor transmittedor translated into a machine language withoutwritten permission from the publishers.Registered names, trademarks, etc. used in thisbook, even when not specifically marked as such,are not to be considered unprotected by law.

    Typesetting K+V Fotosatz GmbH, BeerfeldenPrinting betz-druck GmbH, DarmstadtBinding Litges & Dopf GmbH, HeppenheimCover Design Grafik-Design Schulz, Fußgönheim

    Printed in the Federal Republic of GermanyPrinted on acid-free paper

    ISBN-13: 978-3-527-31316-7ISBN-10: 3-527-31316-8

    � All books published by Wiley-VCH are carefullyproduced. Nevertheless, authors, editors, andpublisher do not warrant the information containedin these books, including this book, to be free oferrors. Readers are advised to keep in mind thatstatements, data, illustrations, procedural details orother items may inadvertently be inaccurate.

  • Part I Membrane Materials and Membrane PreparationS.P. Nunes and K.-V. Peinemann

    1 Introduction 3

    2 Membrane Market 5

    3 Membrane Preparation 93.1 Phase Inversion 10

    4 Presently Available Membranes for Liquid Separation 154.1 Membranes for Reverse Osmosis 154.2 Membranes for Nanofiltration 184.2.1 Solvent-resistant Membranes for Nanofiltration 204.2.2 NF Membranes Stable in Extreme pH Conditions 224.3 Membranes for Ultrafiltration 234.3.1 Polysulfone and Polyethersulfone 234.3.2 Poly(vinylidene fluoride) 264.3.3 Polyetherimide 284.3.4 Polyacrylonitrile 304.3.5 Cellulose 324.3.6 Solvent-resistant Membranes for Ultrafiltration 324.4 Membranes for Microfiltration 344.4.1 Polypropylene and Polyethylene 344.4.2 Poly(tetrafluorethylene) 364.4.3 Polycarbonate and Poly(ethylene terephthalate) 37

    5 Surface Modification of Membranes 395.1 Chemical Oxidation 395.2 Plasma Treatment 405.3 Classical Organic Reactions 415.4 Polymer Grafting 41

    V

    Contents

  • 6 Membranes for Fuel Cells 456.1 Perfluorinated Membranes 466.2 Nonfluorinated Membranes 486.3 Polymer Membranes for High Temperatures 516.4 Organic-Inorganic Membranes for Fuel Cells 52

    7 Gas Separation with Membranes 537.1 Introduction 537.2 Materials and Transport Mechanisms 537.2.1 Organic Polymers 557.2.2 Background 557.2.3 Polymers for Commercial Gas-separation Membranes 577.2.4 Ultrahigh Free Volume Polymers 587.2.5 Inorganic Materials for Gas-separation Membranes 627.2.6 Carbon Membranes 627.2.7 Perovskite-type Oxide Membranes for Air Separation 647.2.8 Mixed-matrix Membranes 677.3 Basic Process Design 69

    Acknowledgments 75References 75

    Part II Current Application and Perspectives

    1 The Separation of Organic Vapors from Gas Streamsby Means of Membranes 93K. Ohlrogge and K. StürkenSummary 93

    1.1 Introduction 941.2 Historical Background 941.3 Membranes for Organic Vapor Separation 961.3.1 Principles 961.3.2 Selectivity 961.3.3 Temperature and Pressure 971.3.4 Membrane Modules 981.4 Applications 1001.4.1 Design Criteria 1001.4.2 Off-gas and Process Gas Treatment 1021.4.2.1 Gasoline Vapor Recovery 1031.4.2.2 Polyolefin Production Processes 1091.5 Applications at the Threshold of Commercialization 1111.5.1 Emission Control at Petrol Stations 1111.5.2 Natural Gas Treatment 1131.5.3 Hydrogen/Hydrocarbon Separation 1141.6 Conclusions and Outlook 116

    References 116

    ContentsVI

  • 2 Gas-separation Membrane Applications 119D. J. Stookey

    2.1 Introduction 1192.2 Membrane Application Development 1202.2.1 Membrane Selection 1202.2.2 Membrane Form 1232.2.3 Membrane Module Geometry 1252.2.4 Compatible Sealing Materials 1292.2.5 Module Manufacture 1302.2.6 Pilot or Field Demonstration 1302.2.7 Process Design 1322.2.8 Membrane System 1332.2.9 Beta Site 1352.2.10 Cost/Performance 1362.3 Commercial Gas-separation Membrane Applications 1362.3.1 Hydrogen Separations 1372.3.2 Helium Separations 1402.3.3 Nitrogen Generation 1402.3.4 Acid Gas-Separations 1432.3.5 Gas Dehydration 1442.4 Developing Membrane Applications 1462.4.1 Oxygen and Oxygen-enriched Air 1462.4.2 Nitrogen Rejection from Natural Gas 1472.4.3 Nitrogen-enriched Air (NEA) 147

    References 147

    3 State-of-the-Art of Pervaporation Processesin the Chemical Industry 151H.E. A. Brüschke

    3.1 Introduction 1513.2 Principles and Calculations 1533.2.1 Definitions 1533.2.2 Calculation 1553.2.3 Permeate-side Conditions 1633.2.4 Transport Resistances 1663.2.5 Principles of Pervaporation 1683.2.6 Principles of Vapor Permeation 1713.3 Membranes 1753.3.1 Characterization of Membranes 1803.4 Modules 1823.4.1 Plate Modules 1833.4.2 Spiral-wound Modules 1853.4.3 “Cushion” Module 1853.4.4 Tubular Modules 1863.4.5 Other Modules 187

    Contents VII

  • 3.5 Applications 1883.5.1 Organophilic Membranes 1883.5.2 Hydrophilic Membranes 1893.5.2.1 Pervaporation 1893.5.2.2 Vapor Permeation 1913.5.3 Removal of Water from Reaction Mixtures 1943.5.4 Organic–Organic Separation 1973.6 Conclusion 200

    References 200

    4 Organic Solvent Nanofiltration 203A.G. Livingston, L. G. Peeva and P. SilvaSummary 203

    4.1 Current Applications and Potential 2034.2 Theoretical Background to Transport Processes 2054.2.1 Pore-flow Model 2054.2.2 Solution-Diffusion Model 2064.2.3 Models Combining Membrane Transport with the Film Theory of

    Mass Transfer 2074.3 Transport of Solvent Mixtures 2104.3.1 Experimental 2104.3.1.1 Filtration Equipment and Experimental Measurements 2104.3.2 Results for Binary Solvent Fluxes 2104.4 Concentration Polarization and Osmotic Pressure 2134.4.1 Experimental 2134.4.2 Results for Concentration Polarization and Osmotic Pressure 2144.4.2.1 Parameter Estimation 2144.4.2.2 Nanofiltration of Docosane-Toluene Solutions 2164.4.2.3 Nanofiltration of TOABr-Toluene Solutions 2194.5 Conclusions 224

    Nomenclature 225Greek letters 225Subscripts 226References 226

    5 Industrial Membrane Reactors 229M.F. Kemmere and J. T.F. Keurentjes

    5.1 Introduction 2295.2 Membrane Functions in Reactors 2325.2.1 Controlled Introduction of Reactants 2325.2.2 Separation of Products 2385.2.3 Catalyst Retention 2415.3 Applications 2425.3.1 Pervaporation-assisted Esterification 2425.3.2 Large-scale Dehydrogenations with Inorganic Membranes 248

    ContentsVIII

  • 5.3.3 OTM Syngas Process 2505.3.4 Membrane Recycle Reactor for the Acylase Process 2515.3.5 Membrane Extraction Integrated Systems 2535.4 Concluding Remarks and Outlook to the Future 254

    References 255

    6 Electromembrane Processes 259T.A. Davis, V.D. Grebenyuk and O. Grebenyuk

    6.1 Ion-exchange Membranes 2596.2 Ion-exchange Membrane Properties 2626.2.1 Swelling 2626.2.2 Electrical Conductivity 2636.2.3 Electrochemical Performance 2676.2.4 Diffusion Permeability 2686.2.5 Hydraulic Permeability 2696.2.6 Osmotic Permeability 2696.2.7 Electroosmotic Permeability 2706.2.8 Polarization 2716.2.9 Chemical and Radiation Stability 2736.3 Electromembrane Process Application 2746.3.1 Electrodialysis 2746.3.2 Electrodeionization 2806.3.3 Electrochemical Regeneration of Ion-exchange Resin 2826.3.4 Synthesis of New Substances without Electrode Reaction

    Participation: Bipolar-membrane Applications 2836.3.5 Isolation of Chemical Substances from Dilute Solutions 2856.3.6 Electrodialysis Applications for Chemical-solution Desalination 2856.4 Electrochemical Processing with Membranes 2866.4.1 Electrochemistry 2866.4.2 Chlor-alkali Industry 2916.4.3 Perfluorinated Membranes 2916.4.4 Process Conditions 2936.4.5 Zero-gap Electrode Configurations 2946.4.6 Other Electrolytic Processes 2956.4.7 Fuel Cells 2976.4.8 Electroorganic Synthesis 2996.4.9 Electrochemical Oxidation of Organic Wastes 300

    Acknowledgments 300List of Symbols 300References 301

    Contents IX

  • 7 Membrane Technology in the Chemical Industry:Future Directions 305R.W. Baker

    7.1 The Past: Basis for Current Membrane Technology 3057.1.1 Ultrathin Membranes 3057.1.2 Membrane Modules 3067.1.3 Membrane Selectivity 3087.2 The Present: Current Status and Potential

    of the Membrane Industry 3097.2.1 Reverse Osmosis 3097.2.2 Ultrafiltration 3137.2.3 Microfiltration 3147.2.4 Gas Separation 3157.2.4.1 Refinery Hydrogen Applications 3177.2.4.2 Nitrogen (and Oxygen) Separation from Air 3197.2.4.3 Natural Gas Separations 3237.2.4.4 Vapor/Gas, Vapor/Vapor Separations 3267.2.5 Pervaporation 3297.2.6 Ion-conducting Membranes 3307.3 The Future: Predictions for 2020 332

    References 333

    Subject Index 337

    ContentsX

  • The idea of the first edition of Membrane Technology in the Chemical Industrywas to review the available membranes for the broad variety of separation pro-cesses in the chemical sector. A further important decision was to invite well-known membrane scientists with recognized experience in the chemical indus-try to supply a deep analysis of the main membrane applications in this field.After 5 years the use of membranes is even more widespread, new membraneshave entered the market, some are no longer commercialized and some applica-tions have become more relevant, justifying now the second edition of the book.In the first part of this new edition, market statistics have been reviewed, aswell as the currently available membranes and membrane materials. A newchapter on Fuel Cells has been added, a field that has grown considerably in re-cent years. Also, the balance of applications connected to gas separation hasbeen critically reanalyzed. Part II has been reviewed by the various authors. The“future directions” have been reanalyzed. The major change in Part II is theinclusion of a chapter on Organic Solvent Nanofiltration, written by AndrewLivingstone, Ludmila G. Peeva and Pedro Silva, which reflects the rapid develop-ment of this field in recent years.

    Suzana Pereira Nunes, Klaus-Viktor PeinemannMarch 2006

    XI

    Preface

  • XIII

    List of Contributors

    R. BakerMembrane Technology & Research1360 Willow RoadMenlo Park, CA 94025USA

    H.E. A. BrüschkeKurpfalzstraße 64D-69226 NußlochGermany

    T.A. DavisTAD Consulting5 Davis Farm RoadAnnandale, NJ 08801USA

    O. GrebenyukIonics65 Grove StreetWatertown, MA 02172USA

    V.D. GrebenyukIonics65 Grove StreetWatertown, MA 02172USA

    M.F. KemmereNIZO Food Research B.V.P.O. Box 206710 BA EdeThe Netherlands

    J. T.F. KeurentjesEindhoven University of TechnologyP.O. Box 5135600 MB EindhovenThe Netherlands

    A. LivingstoneDepartment of Chemical EngineeringImperial College LondonPrince Consort RoadSouth KensingtonLondon, SW7 2AZUnited Kingdom

    S.P. NunesGKSS ForschungszentrumMax-Planck-Str. 1D-21502 GeesthachtGermany

    K. OhlroggeGKSS-Research CenterMax-Planck-Str. 1D-21502 GeesthachtGermany