Melt conditions glass transition crystallisation TgTg TmTm POLYMER T g ( o C) Polydimethylsiloxane...

14
melt conditions glass transition crystallisation T g T m POLYMER T g ( o C) Polydimethylsiloxane -123 Poly(vinyl acetate) 28 Polystyrene 100 Poly(methyl methacrylate) 105 Polycarbonate 150 Polysulfone 190 Poly(2,6-dimethyl-1,4-phenylene oxide) 220 ers with more flexible backbones, and smaller ituent side groups have lower glass transition temp

Transcript of Melt conditions glass transition crystallisation TgTg TmTm POLYMER T g ( o C) Polydimethylsiloxane...

Page 1: Melt conditions glass transition crystallisation TgTg TmTm POLYMER T g ( o C) Polydimethylsiloxane -123 Poly(vinyl acetate) 28 Polystyrene 100 Poly(methyl.

melt conditions glass transition crystallisation Tg Tm

POLYMER Tg(oC)Polydimethylsiloxane -123Poly(vinyl acetate) 28Polystyrene 100Poly(methyl methacrylate) 105Polycarbonate 150Polysulfone 190Poly(2,6-dimethyl-1,4-phenylene oxide) 220

Polymers with more flexible backbones, and smaller substituent side groups have lower glass transition temperatures

Page 2: Melt conditions glass transition crystallisation TgTg TmTm POLYMER T g ( o C) Polydimethylsiloxane -123 Poly(vinyl acetate) 28 Polystyrene 100 Poly(methyl.

melt conditions glass transition crystallisation Tg Tm

For semi-crystalline polymers Tg Tm (oC)Polyethylene (high density) -120 135Polycaprolactone -60 61Poly(vinylidene fluoride) -45 172Polyoxymethylene -85 195Poly(vinyl alcohol) 85 258Nylon-6,6 49 265Poly(ethylene terephthalate) 69 265

Both Tg and Tm increase with decreasing chain flexibility

Page 3: Melt conditions glass transition crystallisation TgTg TmTm POLYMER T g ( o C) Polydimethylsiloxane -123 Poly(vinyl acetate) 28 Polystyrene 100 Poly(methyl.

From Fried, Joel R., “Polymer Science and Technology”, Prentice Hall PTR, Englewood Cliffs, NJ (1995)

Page 4: Melt conditions glass transition crystallisation TgTg TmTm POLYMER T g ( o C) Polydimethylsiloxane -123 Poly(vinyl acetate) 28 Polystyrene 100 Poly(methyl.

From Fried, Joel R., “Polymer Science and Technology”, Prentice Hall PTR, Englewood Cliffs, NJ (1995)

Page 5: Melt conditions glass transition crystallisation TgTg TmTm POLYMER T g ( o C) Polydimethylsiloxane -123 Poly(vinyl acetate) 28 Polystyrene 100 Poly(methyl.

From Fried, Joel R., “Polymer Science and Technology”, Prentice Hall PTR, Englewood Cliffs, NJ (1995)

Page 6: Melt conditions glass transition crystallisation TgTg TmTm POLYMER T g ( o C) Polydimethylsiloxane -123 Poly(vinyl acetate) 28 Polystyrene 100 Poly(methyl.

Polymer solutions “dilute”, semi-dilute, through to concentrated

Rheology: a study of the flow of polymer melts and solutions (shear-thinning, die swell, energy requirements for mold filling, design of mixers, extruders

Page 7: Melt conditions glass transition crystallisation TgTg TmTm POLYMER T g ( o C) Polydimethylsiloxane -123 Poly(vinyl acetate) 28 Polystyrene 100 Poly(methyl.

Block copolymer solutions and melts:

making patterned surfaces and ordered melt morphologies

Page 8: Melt conditions glass transition crystallisation TgTg TmTm POLYMER T g ( o C) Polydimethylsiloxane -123 Poly(vinyl acetate) 28 Polystyrene 100 Poly(methyl.

Scientists, academics < 1930s Industrialists1830 Charles Goodyear,: vulcanised

rubber

Hevea brasiliensis + + S elastomeric material

1847 Christian Schonbern

Cellulose + nitric acid cellulose nitrate

1860 Leo Baekeland (Bakelite) phenol-formaldehyde resin

1930s DuPont (USA) nylon, teflon1938Dow (USA) polystyrene1939 ICI (UK) LDPE

WWII: shortage of natural rubber!

“A damned gooey mess”

Another failed synthesis

Page 9: Melt conditions glass transition crystallisation TgTg TmTm POLYMER T g ( o C) Polydimethylsiloxane -123 Poly(vinyl acetate) 28 Polystyrene 100 Poly(methyl.

Scientists begin to look at complex systems . . . .

1920’s Hermann Staudinger, German Physical Chemist“long-chained molecules or macromolecules”

interacting, separate very long, alkane-like intermediate species but misunderstood .e.g., Tm, flow behaviour flexibility

Page 10: Melt conditions glass transition crystallisation TgTg TmTm POLYMER T g ( o C) Polydimethylsiloxane -123 Poly(vinyl acetate) 28 Polystyrene 100 Poly(methyl.

Synthesis of polymers

• biosynthesis• step-growth polymerisation

All monomer/oligomers/polymers are equally reactive with one another so that there is a distribution of chain sizes

• chain-growth polymerisation

Monomers joined successively to a growing chainA few long chains in a sea of monomers

Page 11: Melt conditions glass transition crystallisation TgTg TmTm POLYMER T g ( o C) Polydimethylsiloxane -123 Poly(vinyl acetate) 28 Polystyrene 100 Poly(methyl.

Step-growth polymerisation

An + Am -> An+m + by-product polydispersity

Page 12: Melt conditions glass transition crystallisation TgTg TmTm POLYMER T g ( o C) Polydimethylsiloxane -123 Poly(vinyl acetate) 28 Polystyrene 100 Poly(methyl.

Chain-growth polymerisation

An + A -> An+1 Monodisperse, high-MW of chains

• Initiation of the active monomer

• Propagation of growth of the active (free radical ) chain by sequential addition of monomer

• Termination of the active chain to give final product

Page 13: Melt conditions glass transition crystallisation TgTg TmTm POLYMER T g ( o C) Polydimethylsiloxane -123 Poly(vinyl acetate) 28 Polystyrene 100 Poly(methyl.
Page 14: Melt conditions glass transition crystallisation TgTg TmTm POLYMER T g ( o C) Polydimethylsiloxane -123 Poly(vinyl acetate) 28 Polystyrene 100 Poly(methyl.

Q8: Contrast step-growth and chain-growth mechanisms in the synthesis of linear polymers and include statements comparing the final products of these two classes of synthetic mechanisms.