Mechatronic System Design: 2. signals and dynamic

12
1 WB2414-Mechatronic System Design 2013-2014 1 Delft University of Technology Mechatronic system design Mechatronic system design wb24142013/2014 Course part 2 Prof.ir. R.H.Munnig Schmidt Mechatronic System Design Signals and dynamic plots WB2414-Mechatronic System Design 2013-2014 2 Delft University of Technology Contents Signals Periodic, Harmonic signals Fourier analysis Dynamic plots Laplace & Fourier transform Time domain Frequency domain

Transcript of Mechatronic System Design: 2. signals and dynamic

Page 1: Mechatronic System Design: 2. signals and dynamic

1

WB2414-Mechatronic System Design 2013-2014 1DelftUniversity ofTechnology

Mechatronic system design

Mechatronic system design wb2414‐2013/2014

Course part 2

Prof.ir. R.H.Munnig SchmidtMechatronic System Design

Signals and dynamic plots

WB2414-Mechatronic System Design 2013-2014 2DelftUniversity ofTechnology

Contents

•Signals

• Periodic, Harmonic signals

• Fourier analysis

•Dynamic plots

• Laplace & Fourier transform

• Time domain

• Frequency domain

Page 2: Mechatronic System Design: 2. signals and dynamic

2

WB2414-Mechatronic System Design 2013-2014 3DelftUniversity ofTechnology

Signals

•A Signal is a function that conveys information about the behavior or attributes of some phenomenon.

•DC (Direct current) signal remains constant in a measured time period. It equals the average value of any signal.

•AC (Alternating current) has periodically alternating  negative and positive values at a certain frequency (f )It’s average value is zero.

•Any signal can be described as a combination of different AC and DC signals, varying over time or space.

amount of events per time (Hz)

1Period: (s)

f

Tf

WB2414-Mechatronic System Design 2013-2014 4DelftUniversity ofTechnology

Special periodic function: Harmonic oscillations (sine-cosine)Angular frequency

A

ωt

A cos(ωt)

A sin(ωt)

x

y

t = 02 f

cos and sin have 90 degrees different phase angle

Page 3: Mechatronic System Design: 2. signals and dynamic

3

WB2414-Mechatronic System Design 2013-2014 5DelftUniversity ofTechnology

Harmonic movement

22

2

( ) sin( )

d ( )( ) cos( )

d

d ( )( ) sin( )

d

x t A t

x tx t A t

t

x tx t A t

t

( ) ( )x x t

t 1A Derivative gives phase lead

WB2414-Mechatronic System Design 2013-2014 6DelftUniversity ofTechnology

Phase relation by means of complex number

A

Re

Im

( )Z

cos

sinj

( ) (cos sin )

( ) (cos sin )

j

j t

Z A j Ae

Z t A t j t Ae

Eulers formula

Page 4: Mechatronic System Design: 2. signals and dynamic

4

WB2414-Mechatronic System Design 2013-2014 7DelftUniversity ofTechnology

Fourier decomposition of signals

•Periodic signals can be seen as a combination of harmonically related sinusoidal functions

• Fourier decomposition is based on the mathematicalfact that the multiplication of one sinusoidal function with another can only give a non‐zero average valueover time when they have an equal frequency and phase 

1 2 1 21 2

cos( ) cos( )sin( )sin( )

2

t t t tt t

WB2414-Mechatronic System Design 2013-2014 8DelftUniversity ofTechnology

Triangle waveform

2 2 2

8 1 1ˆ( ) cos( ) cos(3 ) cos(5 ) .....3 5

f t t t t

Page 5: Mechatronic System Design: 2. signals and dynamic

5

WB2414-Mechatronic System Design 2013-2014 9DelftUniversity ofTechnology

Square wave form

4 1 1ˆ( ) sin( ) sin(3 ) sin(5 ) .....3 5

f t t t t

WB2414-Mechatronic System Design 2013-2014 10DelftUniversity ofTechnology

Sawtooth waveform

2 1 1ˆ( ) sin( ) sin(2 ) sin(3 ) .....2 3

f t t t t

Page 6: Mechatronic System Design: 2. signals and dynamic

6

WB2414-Mechatronic System Design 2013-2014 11DelftUniversity ofTechnology

Random signals

WB2414-Mechatronic System Design 2013-2014 12DelftUniversity ofTechnology

Fast Fourier Transform

Mind the window!

Page 7: Mechatronic System Design: 2. signals and dynamic

7

WB2414-Mechatronic System Design 2013-2014 13DelftUniversity ofTechnology

Window functions

WB2414-Mechatronic System Design 2013-2014 14DelftUniversity ofTechnology

Contents

•Signals

• Periodic, Harmonic signals

• Fourier analysis

•Dynamic plots

• Laplace & Fourier transform

• Time domain

• Frequency domain

Page 8: Mechatronic System Design: 2. signals and dynamic

8

WB2414-Mechatronic System Design 2013-2014 15DelftUniversity ofTechnology

Laplace transform, first step from the time into the frequency domain via the transfer function

0

0

d

i

d

( ) { ( )} ( )

( )F ( ) ( ) (0)

( )F ( ) ( )

d

d

st

t

f s f t e f t dt s j

x ts sx s x

t

x ss x t t

s

WB2414-Mechatronic System Design 2013-2014 16DelftUniversity ofTechnology

Laplace domain = complex plane with poles and zeros. Fourier transform gives frequency response

0

d

i

d ( )F ( ) ( )

d

( ) ( )F ( ) ( )d

t

x tj x

t

x xx t t j

j

s j

Page 9: Mechatronic System Design: 2. signals and dynamic

9

WB2414-Mechatronic System Design 2013-2014 17DelftUniversity ofTechnology

With a phase change depending on the location of s

d

d

i

0

0

i

( )F ( ) ( ) (0)

d ( )F ( ) ( )

d

( )F ( ) ( )

d

d

d

( ) ( )F ( ) ( )d

t

t

x ts sx s x

t

x tj x

t

x ss x t t

s

x xx t t j

j

Multiply with s 90ᵒ phase lead, divide by s  90ᵒ phase lag 

Derivative gives phase lead (+j), Integral gives phase lag (‐j)

WB2414-Mechatronic System Design 2013-2014 18DelftUniversity ofTechnology

Test and analysis stimuli of dynamic systems

•Frequency domain related responses

• Step and impulse

• Frequency sweep

• Noise

• Multi‐sines

Page 10: Mechatronic System Design: 2. signals and dynamic

10

WB2414-Mechatronic System Design 2013-2014 19DelftUniversity ofTechnology

Stimuli in the frequency domain

• Step and impulse

• Need for limitation of force

• Frequency sweep

• Not too fast to enable stabilising of resonances (energy)

•Noise

• White noise, constant “Power Spectral Density”

•Multi‐sines

• Tuneable to frequency area of interest

WB2414-Mechatronic System Design 2013-2014 20DelftUniversity ofTechnology

Step response

Fourier analysis of a unit step gives wide spectrum with decreasing magnitude at higher frequenciesIt is a squarewave of almost 0Hz

4 1 1ˆ( ) sin( ) sin(3 ) sin(5 ) .....3 5

f t t t t

Page 11: Mechatronic System Design: 2. signals and dynamic

11

WB2414-Mechatronic System Design 2013-2014 21DelftUniversity ofTechnology

Impulse time response

Fourier analysis of impulse is constant amplitude density over all frequencies (linear scale).

WB2414-Mechatronic System Design 2013-2014 22DelftUniversity ofTechnology

Bode plot

•Magnitude and phase

•Output versus input 

•Output and input can be different (Force vs displacement)

•Double logarithmic scale loglog 1/x = straight line ‐1

•Horizontal frequency axis in Hz or rad/s

•Vertical axis magnitude abs or in dB 

•Vertical axis phase in degrees

Page 12: Mechatronic System Design: 2. signals and dynamic

12

WB2414-Mechatronic System Design 2013-2014 23DelftUniversity ofTechnology

Nyquist plot, the most important of all!

And don’t show the negativefrequencies!