MECHANICAL, THERMAL AND MORPHOLOGICAL...

23
MECHANICAL, THERMAL AND MORPHOLOGICAL PROPERTIES OF MONTMORILLONITE FILLED LINEAR LOW DENSITY POLYETHYLENE-TOUGHENED POLYLACTIC ACID NANOCOMPOSITES HARINTHARAVIMAL BALAKRISHNAN UNIVERSITI TEKNOLOGI MALAYSIA

Transcript of MECHANICAL, THERMAL AND MORPHOLOGICAL...

Page 1: MECHANICAL, THERMAL AND MORPHOLOGICAL …eprints.utm.my/id/eprint/12200/6/HarintharavimalBalakrishnanMFKKSA2010.pdf · sementara sifat termal ditentukan dengan menggunakan analisis

MECHANICAL, THERMAL AND MORPHOLOGICAL PROPERTIES OF

MONTMORILLONITE FILLED LINEAR LOW DENSITY

POLYETHYLENE-TOUGHENED POLYLACTIC ACID NANOCOMPOSITES

HARINTHARAVIMAL BALAKRISHNAN

UNIVERSITI TEKNOLOGI MALAYSIA

Page 2: MECHANICAL, THERMAL AND MORPHOLOGICAL …eprints.utm.my/id/eprint/12200/6/HarintharavimalBalakrishnanMFKKSA2010.pdf · sementara sifat termal ditentukan dengan menggunakan analisis

MECHANICAL, THERMAL AND MORPHOLOGICAL PROPERTIES OF

MONTMORILLONITE FILLED LINEAR LOW DENSITY

POLYETHYLENE-TOUGHENED POLYLACTIC ACID NANOCOMPOSITES

HARINTHARAVIMAL BALAKRISHNAN

A thesis submitted in fulfillment of the

requirements for the award of the degree of

Master of Engineering (Polymer)

Faculty of Chemical and Natural Resources Engineering

Universiti Teknologi Malaysia

JANUARY 2010

Page 3: MECHANICAL, THERMAL AND MORPHOLOGICAL …eprints.utm.my/id/eprint/12200/6/HarintharavimalBalakrishnanMFKKSA2010.pdf · sementara sifat termal ditentukan dengan menggunakan analisis

iii

‘To mankind, may knowledge and wisdom endeavor us with capabilities for our

challenging future ahead’

Page 4: MECHANICAL, THERMAL AND MORPHOLOGICAL …eprints.utm.my/id/eprint/12200/6/HarintharavimalBalakrishnanMFKKSA2010.pdf · sementara sifat termal ditentukan dengan menggunakan analisis

iv

ACKNOWLEDGEMENTS

First and foremost, I would like to express my heartfelt gratitude to my

supervisor, Professor Dr. Azman Hassan, for his ever-lasting enthusiasm,

encouragement, excellent advice and great concern to my work. A sincere thanks is

accorded to my co-supervisor, Assoc. Prof. Dr. Mat Uzir Wahit for his guidance,

suggestions, motivation and encouraging advices.

I also wish to express my appreciation to all the lecturers in the Department of

Polymer Engineering, the Quality Control staffs in Poly-Star Compounds Sdn. Bhd.,

Malaysian Institute of Nuclear Technologies (MINT) and Malaysian Rubber Board

(LGM) for their help and support in my research. A heartfelt line of appreciation to all

the technicians and my labmates of Enhanced Polymers Research Group (EnPRO) for

creating a friendly and enjoyable working environment.

Besides, I would like to acknowledge IRPA grant 79162 and the Ministry of

Science, Technology and Innovation (MOSTI), Malaysia for generous financial funding

and Research Student Grant throughout my studies.

Last but not least, I wish to extend my deep appreciation to my beloved father,

Mr. Balakrishnan, my brothers and Shree, who have always encouraged and provided

me with moral support in completing this thesis.

Page 5: MECHANICAL, THERMAL AND MORPHOLOGICAL …eprints.utm.my/id/eprint/12200/6/HarintharavimalBalakrishnanMFKKSA2010.pdf · sementara sifat termal ditentukan dengan menggunakan analisis

v

ABSTRACT

Linear low density polyethylene (LLDPE) toughened polylactic acid (PLA)

nanocomposites containing organophilic modified montmorillonite (MMT) were

prepared by melt extrusion using a counter-rotating twin-screw extruder followed by

injection molding in order to examine the mechanical, morphological and thermal

properties of the nanocomposites. The mechanical properties of PLA/LLDPE

nanocomposites were studied through tensile, flexural and impact tests. Scanning

electron microscopy (SEM) was used to investigate the phase morphology and LLDPE

particle’s size in PLA/LLDPE blends and nanocomposites. X-ray diffraction (XRD) was

employed to characterize the formation of nanocomposites while the thermal properties

were determined using thermogravimetric analysis (TGA) and differential scanning

calorimetry (DSC). The dynamic mechanical properties were examined via dynamic

mechanical analysis (DMA) while moisture permeability properties of the PLA/LLDPE

nanocomposites were assessed through water absorption and hygrothermal aging.

Subsequently, for PLA/LLPDE blends, the loadings of LLPDE were varied from 5-15

wt% and PLA/LLDPE nanocomposites with 2 phr and 4 phr loadings of MMT were

prepared only for the optimum formulation (10 wt% of LLDPE). The results showed

that the blending of LLDPE significantly increased the toughness but at the expense of

stiffness and strength. Conversely, the incorporation of the MMT increased the stiffness,

while the toughness and strength decreased. The PLA/LLDPE nanocomposites

containing 2 phr of MMT and 10 wt% of LLDPE had the best balance of stiffness,

strength and toughness. The impact strength results also proved that PLA

nanocomposites were successfully toughened with LLDPE. XRD established that MMT

were well dispersed and preferentially embedded in the PLA phase. SEM revealed that

blend ratio and the presence of MMT were found to influence the morphology (e.g.

LLDPE particle size and distribution) of the system. Finer particles’ size and better

distribution of LLDPE has been observed in higher MMT loadings in the system. The

SEM micrographs also revealed that increasing content of LLDPE has increased the

particle size of LLDPE in PLA. DMA analysis discovered that the storage modulus at

30ºC increased with the presence of MMT for PLA nanocomposites. The DSC results

showed that the crystallization temperature (Tc) dropped gradually with increasing

content of MMT for both PLA and PLA/LLDPE nanocomposites while the glass

transition (Tg) and melting temperature (Tm) remained unchanged. TGA also exhibited

an increase in T10% decomposition temperature for PLA and PLA/LLDPE

nanocomposites. Water absorption curves obeyed the Fick’s law with rapid moisture

absorption to maximum saturation level (Mm) and the value of Mm of PLA increased

with addition of LLDPE and 2 phr of MMT. Hygrothermal aging revealed that the Mm

increased significantly at elevated temperatures (60ºC and 90ºC) and addition of LLDPE

and MMT improved the hygrothermal stability of PLA.

Page 6: MECHANICAL, THERMAL AND MORPHOLOGICAL …eprints.utm.my/id/eprint/12200/6/HarintharavimalBalakrishnanMFKKSA2010.pdf · sementara sifat termal ditentukan dengan menggunakan analisis

vi

ABSTRAK

Nanokomposit asid polilaktik (PLA) yang mengandungi montmorillonite (MMT)

yang diubahsuai secara organofilik, diliat dengan polietilena berantai lurus

berketumpatan rendah (LLDPE), telah disediakan melalui penyemperitan leburan

menggunakan penyemperit skru berkembar berlawanan arah diikuti proses acuan

suntikan untuk mengkaji sifat mekanikal, morfologi dan terma nanokomposit tersebut.

Sifat mekanikal nanokomposit PLA/LLDPE dikaji berdasarkan ujian tegangan, lenturan

dan hentaman. Mikroskop Imbasan Elektron (SEM) digunakan untuk mengkaji

morfologi dan saiz partikel LLDPE dalam adunan PLA/LLDPE dan nanokompositnya.

Pembelauan sinar-X (XRD) digunakan untuk pencirian pembentukan nanokomposit

sementara sifat termal ditentukan dengan menggunakan analisis termogravimetrik

(TGA) dan kalorimeter pembezaan imbasan (DSC). Sifat dinamik diperiksa dengan

menggunakan penganalisis terma dinamik (DMA) sementara sifat kebolehtelapan

lembapan nanokomposit PLA/LLDPE dikaji melalui penyerapan air dan penuaan

higroterma. Seterusnya, untuk adunan PLA/LLDPE, kandungan LLDPE diubah dari 5

hingga 15 wt% dan nanokomposit PLA/LLDPE dengan kandungan MMT 2 phr dan 4

phr disediakan hanya untuk formulasi yang optimum (10 wt% LLDPE). Keputusan

menunjukkan adunan LLDPE jelas meningkatkan keliatan tetapi menyebabkan

penurunan kekakuan dan kekuatan bahan. Sebaliknya campuran dengan MMT

meningkatkan kekakuan namun keliatan dan kekuatan menurun. Nanokomposit

PLA/LLDPE yang mengandungi 2 phr MMT dan 10 wt% LLDPE adalah formulasi

yang terbaik dengan keseimbangan kekakuan, kekuatan dan keliatan. Keputusan

kekuatan hentaman membuktikan bahawa nanokomposit PLA berjaya diliatkan dengan

LLDPE. XRD menunjukkan MMT diselerakkan dengan baik dan berada di dalam

matrik PLA. SEM mendedahkan nisbah adunan dan kehadiran MMT didapati

mempengaruhi morfologi sistem (saiz partikel dan keserakan LLDPE). Partikel saiz

LLDPE yang kecil dan keserakan yang baik dapat dilihat dengan kandungan MMT yang

banyak. Mikrograf SEM juga mendedahkan peningkatan kandungan LLDPE telah

meningkatkan saiz partikel LLDPE dalam PLA. Analisis DMA mendapati bahawa

modulus simpanan pada 30 �C meningkat dengan kehadiran MMT dalam nanokomposit

PLA. Keputusan DSC menunjukkan suhu penghabluran (Tc) turun beransur-ansur

dengan peningkatan kandungan MMT dalam kedua-dua PLA dan nanokomposit

PLA/LLDPE, sementara suhu peralihan kaca (Tg) dan takat lebur (Tm) kekal tidak

berubah. TGA juga menunjukkan suhu penguraian T10% meningkat untuk PLA dan

nanokomposit PLA/LLLDPE. Lengkungan penyerapan air mematuhi hukum Fick

dengan penyerapan lembapan pantas ke tahap ketepuan maksimum (Mm) dan nilai Mm

untuk PLA meningkat dengan penambahan LLDPE dan MMT. Penuaan higroterma

menunjukkan bahawa Mm meningkat pada suhu (60�C dan 90�C) dan penambahan

LLDPE dan MMT meningkatkan kestabilan higroterma PLA.

Page 7: MECHANICAL, THERMAL AND MORPHOLOGICAL …eprints.utm.my/id/eprint/12200/6/HarintharavimalBalakrishnanMFKKSA2010.pdf · sementara sifat termal ditentukan dengan menggunakan analisis

vii

TABLE OF CONTENT

CHAPTER TITLE PAGE

TITLE i

DECLARATION ii

DEDICATION iii

ACKNOWLEDGEMENTS iv

ABSTRACT v

ABSTRAK vi

TABLE OF CONTENTS vii

LIST OF TABLES xi

LIST OF FIGURES xii

LIST OF ABBREVIATIONS AND SYMBOLS xv

LIST OF APPENDICES xvii

1 INTRODUCTION 1

1.1 Background 1

1.2 Objectives of the study 4

1.3 Scope of Research 5

1.4 Importance of Research 6

2 LITERATURE REVIEW 7

2.1 Biopolymers 7

2.2 Polylactic acid (PLA) 7

2.3 Plasticized PLA 12

Page 8: MECHANICAL, THERMAL AND MORPHOLOGICAL …eprints.utm.my/id/eprint/12200/6/HarintharavimalBalakrishnanMFKKSA2010.pdf · sementara sifat termal ditentukan dengan menggunakan analisis

viii

2.4 Nanocomposites 13

2.5 Montmorillonite (MMT) 14

2.5.1 Morphology and Structure 15

2.5.2 Clay characteristics 16

2.5.3 Clay Surface Modification 17

2.5.4 Clay Distribution 18

2.6 Nanocomposites preparation methods 19

2.7 Polylactic acid nanocomposites 23

2.8 Plasticized polylactic acid nanocomposite 30

2.9 Toughened polymers 32

2.10 Toughened polylactic acid 34

2.11 Toughened polylactic acid nanocomposites 36

2.12 Characterization of Nanocomposites 37

2.12.1 X-Ray Diffraction (XRD) 37

2.12.2 Transmission Electron Microscopy (TEM) 38

2.13 Water absorption 41

2.13.1 Mechanism of moisture penetration 41

2.13.2 Diffusion 41

2.14 Hygrothermal aging 43

2.14.1 Degradation and Hydrolysis 44

3 MATERIALS AND METHODS 47

3.1 Materials 47

3.1.1 Thermoplastics 47

3.1.2 Montmorillonite (MMT) 48

3.1.3 Composition and Designation of Materials 48

3.2 Sample Preparation 49

3.2.1 Premixing 49

3.2.2 Extrusion 49

3.2.3 Injection Moulding 50

Page 9: MECHANICAL, THERMAL AND MORPHOLOGICAL …eprints.utm.my/id/eprint/12200/6/HarintharavimalBalakrishnanMFKKSA2010.pdf · sementara sifat termal ditentukan dengan menggunakan analisis

ix

3.3 Materials Properties Characterization 50

3.3.1 Mechanical Testing 50

3.3.1.1 Tensile 50

3.3.1.2 Flexural 50

3.3.1.3 Notched Izod Impact 51

3.3.2 Morphological Study 51

3.3.2.1 X-ray Diffraction (XRD) 51

3.3.2.2 Scanning Electron Microscopy (SEM) 51

3.3.2.3 Transmission Electron Microscopy (TEM) 52

3.3.3 Thermal Analysis 52

3.3.3.1 Dynamic Mechanical Analysis (DMA) 53

3.3.3.2 Differential Scanning Calorimetry (DSC) 53

3.3.3.3 Thermogravimetry Analysis (TGA) 53

3.3.4 Water Absorption 54

3.3.5 Hygothermal aging 55

4 RESULTS AND DISCUSSION 56

4.1 Effect of LLDPE contents on PLA/LLDPE blends 56

4.1.1 Mechanical Properties 56

4.1.1.1 Izod Impact Properties 56

4.1.1.2 Tensile properties 58

4.1.1.3 Elongation at break 60

4.1.1.4 Flexural properties 61

4.1.1.5 Overall mechanical properties 62

4.1.2 Morphology studies (Scanning electron microscopy) 64

4.1.3 Thermal properties 67

4.1.3.1 Differential scanning calorimetry (DSC) 67

4.1.3.2 Thermogravimetric analysis (TGA) 68

Page 10: MECHANICAL, THERMAL AND MORPHOLOGICAL …eprints.utm.my/id/eprint/12200/6/HarintharavimalBalakrishnanMFKKSA2010.pdf · sementara sifat termal ditentukan dengan menggunakan analisis

x

4.2 Effect of MMT on PLA/MMT and PLA/LLDPE/MMT

nanocomposites 71

4.2.1 Mechanical properties 71

4.2.1.1 Overall mechanical properties 76

4.2.2 Morphological properties 77

4.2.2.1 X-Ray Diffraction (XRD) 77

4.2.2.2 Transmission electron microscope (TEM) 82

4.2.2.3 Scanning Electron Microscopy (SEM) 87

4.2.3 Thermal properties 90

4.2.3.1 Differential scanning calorimetry (DSC) 90

4.2.3.2 Thermogravimetry analysis (TGA) 92

4.2.3.3 Dynamic mechanical analysis (DMA) 96

4.3 Water absorption 102

4.3.1 Kinetics of water absorption 102

4.4 Hygrothermal aging 105

5 CONCLUSION AND RECOMMENDATIONS 112

5.1 Conclusion 112

5.2 Recommendations for future works 114

REFERENCES 116

Appendices A-E 125

Page 11: MECHANICAL, THERMAL AND MORPHOLOGICAL …eprints.utm.my/id/eprint/12200/6/HarintharavimalBalakrishnanMFKKSA2010.pdf · sementara sifat termal ditentukan dengan menggunakan analisis

xi

LIST OF TABLES

TABLE NO. TITLE PAGE

2.1 Mechanical properties of PLA (Material datasheet by Biomer for L9000) 10

3.1 Blend composition of PLA/LLDPE 48

3.2 Blend composition of PLA with different MMT loadings 48

3.3 Blend composition of PLA/LLDPE (90/10) with different content of MMT 59

4.1 Thermal characteristics of PLA and PLA/LLDPE blends 68

4.2 TGA results of PLA and PLA/LLDPE blends 70

4.3 The 2� angle and d-spacing of MMT for PLA/MMT and

PLA/LLDPE/MMT nanocomposites 79

4.4 DSC results for PLA/MMT and PLA/LLDPE/MMT nanocomposites 92

4.5 TGA results for PLA/MMT and PLA/LLDPE/MMT nanocomposites 96

4.6 Equilibrium water content, Mm and diffusivity, D of

PLA/MMT and PLA/LLDPE/MMT nanocomposites 103

4.7 Effect of immersion temperature on equilibrium moisture content

(Mm) of PLA/MMT and PLA/LLDPE/MMT nanocomposites 107

4.8 Calculated weight loss of PLA in percentage (%) in

PLA/MMT and PLA/LLDPE/MMT nanocomposites at 30 days 111

Page 12: MECHANICAL, THERMAL AND MORPHOLOGICAL …eprints.utm.my/id/eprint/12200/6/HarintharavimalBalakrishnanMFKKSA2010.pdf · sementara sifat termal ditentukan dengan menggunakan analisis

xii

LIST OF FIGURES

FIGURE NO. TITLE PAGE

2.1 Lifecycle of polylactic acid (PLA) 9

2.2 Mechanical properties of PLA and other commodity plastics:

(a) Young’s Modulus (b) Tensile strength (c) Elongation at break 11

2.3 Structure of 2:1 phyllosilicates (Ray and Okomoto 2003) 15

2.4 Surface modification of montmorilonite (Lim, 2006) 18

2.5 Three possible structures of polymer-layered silicate composites 19

2.6 Schematic representation of polymer nanocomposite obtained

by in-situ polymerization 20

2.7 Schematic representation of polymer-layered silicate nanocomposite

obtained by intercalation of polymer from solution 21

2.8 Schematic representation of polymer-layered silicate

nanocomposite obtained direct melt intercalation 22

2.9 Typical XRD patterns for organically modified layered

silicates (OMLS) and various types of nanocomposites 39

2.10 TEM images of three different types of nanocomposites 40

2.11 Reaction pathway of hydrolysis in PLA 45

4.1 Effect of LLDPE content on the Izod Impact strength of

PLA/LLDPE blends 57

4.2 Effect of LLDPE content on the Young’s modulus and

tensile strength of PLA/LLDPE blends 59

4.3 Typical stress-strain curves for PLA/LLDPE blends 59

4.4 Effect of LLDPE content on Elongation of break of PLA/LLDPE blends 60

4.5 Effect of LLDPE content on flexural strength and modulus

of PLA/LLDPE blends 62

Page 13: MECHANICAL, THERMAL AND MORPHOLOGICAL …eprints.utm.my/id/eprint/12200/6/HarintharavimalBalakrishnanMFKKSA2010.pdf · sementara sifat termal ditentukan dengan menggunakan analisis

xiii

4.6 Determination of balance properties based on flexural modulus

and impact strength of PLA/LLDPE blends 63

4.7 Representative SEM images of impact fractured surfaces:

(a) PLA, (b) P95/L5, (c) P90/L10, (d) P85/L15 66

4.8 Correlation between impact strength and LLDPE particles size 66

4.9 Thermogravimetric analysis of PLA and PLA/LLDPE with

different LLDPE contents 70

4.10 The effect of MMT content on Young’s modulus and

tensile strength of PLA/MMT and PLA/LLDPE/MMT nanocomposites 73

4.11 The effect of MMT content on the flexural modulus and flexural

strength of PLA/MMT and PLA/LLDPE/MMT nanocomposites 74

4.12 The effect of MMT content on the impact strength and elongation

at break of PLA/MMT and PLA/LLDPE/MMT nanocomposites 76

4.13 Determination of balanced properties based on flexural modulus and

impact strength of PLA/MMT and PLA/LLDPE/MMT nanocomposites 77

4.14 XRD of (a) neat PLA, (b) PLA/M2, (c) PLA/M4 and (d) neat MMT 79

4.15 XRD of (a) PLA/LLDPE, (b) PLA/LLDPE/M2, (c) PLA/LLDPE/M4

and (d) neat MMT 80

4.16 XRD of (a) neat PLA, (b) PLA/M2, (c) PLA/M4,

(d) PLA/LLDPE, (e) PLA/LLDPE/M2, (f) PLA/LLDPE/M4 82

4.17 TEM micrographs of PLA and PLA/MMT nanocomposites 84

4.18 TEM micrographs of PLA/LLDPE and PLA/LLDPE/MMT

nanocomposites 86

4.19 Representative SEM images of Izod impact fractured surfaces:

(a) PLA/LLDPE, (b) PLA/LLDPE/M2, (c) PLA/LLDPE/M4 89

4.20 TGA curves of PLA and PLA/MMT nanocomposites 93

4.21 TGA curves for PLA/LLDPE and PLA/LLDPE/MMT nanocomposites 94

4.22 Storage modulus of PLA and PLA/MMT nanocomposites 98

4.23 Storage modulus of PLA/LLDPE and PLA/LLDPE/MMT nanocomposites 100

4.24 Loss modulus of PLA and PLA/MMT nanocomposites 101

4.25 Loss modulus of PLA/LLDPE and PLA/LLDPE/MMT nanocomposites 102

Page 14: MECHANICAL, THERMAL AND MORPHOLOGICAL …eprints.utm.my/id/eprint/12200/6/HarintharavimalBalakrishnanMFKKSA2010.pdf · sementara sifat termal ditentukan dengan menggunakan analisis

xiv

4.26 Water absorption curves of PLA/MMT and PLA/LLDPE/MMT

nanocomposites 105

4.27 Water absorption curves for PLA/MMT and PLA/LLDPE/MMT

nanocomposites at 60ºC 106

4.28 Hygrothermal aging of PLA/MMT and PLA/LLDPE/MMT

nanocomposites at 60ºC 107

4.29 Hygrothermal aging of PLA/MMT and PLA/LLDPE/MMT

nanocomposites at 90ºC 109

Page 15: MECHANICAL, THERMAL AND MORPHOLOGICAL …eprints.utm.my/id/eprint/12200/6/HarintharavimalBalakrishnanMFKKSA2010.pdf · sementara sifat termal ditentukan dengan menggunakan analisis

xv

LIST OF ABBREVIATIONS AND SYMBOLS

ASTM American Society for Testing and Materials

CEC Cation Exchange Capacity

D Diffusivity

DMA Dynamic Mechanical Analysis

DSC Differential Scanning Calorimeter

d Spacing between diffractional lattice plane (interspacing)

E’ Storage Modulus

E” Loss Modulus

ENR Epoxidized Natural Rubber

HDPE High Density Polyethylene

Hz Hertz

LDPE Low Density Polyethylene

LLDPE Linear Low Density Polyethylene

MFR Melt flow rate

MMT Montmorillonite

Mm Moisture absorption at maximum

Mt Percentage weight at time, t

NBR Acrylonitrile butadiene rubber

NR Natural rubber

PA Polyamide

PA6 Polyamide 6

PE Polyethylene

PEG Polyethylene glycol

PET Polyethyelene terephtalate

PLA Polylactic acid

PS Polystyrene

Page 16: MECHANICAL, THERMAL AND MORPHOLOGICAL …eprints.utm.my/id/eprint/12200/6/HarintharavimalBalakrishnanMFKKSA2010.pdf · sementara sifat termal ditentukan dengan menggunakan analisis

xvi

PVC Polyvinyl chloride

SBR Styrene butadiene rubber

SEM Scanning electron microscopy

tan � Tangent delta

TEM Transmission electron microscopy

Tg Glass transition temperature

Tm Melting temperature

Tc Crystallization temperature

TGA Thermogravimetric analysis

Wd Weight of dry sample

Ww Weight of samples after exposure to distilled water

XRD X-ray diffraction

Xc Degree of crystallinity

� Diffraction angle

� Wave length

�Hm Heat of fusion for sample

�Hmideal Heat of fusion for 100% crystalline

Page 17: MECHANICAL, THERMAL AND MORPHOLOGICAL …eprints.utm.my/id/eprint/12200/6/HarintharavimalBalakrishnanMFKKSA2010.pdf · sementara sifat termal ditentukan dengan menggunakan analisis

xvii

LIST OF APPENDICES

APPENDIX TITLE PAGE

A. Paper 1 (Abstract) Journal of Elastomers and Plastics 126

B. Paper 2 (Abstract) Materials and Design 127

C. Paper 3 (Abstract) 128

D. Conference proceeding (RAFSS 2008), Malaysia. 129

E. Conference Proceeding (NSPM 2008), Malaysia. 130

Page 18: MECHANICAL, THERMAL AND MORPHOLOGICAL …eprints.utm.my/id/eprint/12200/6/HarintharavimalBalakrishnanMFKKSA2010.pdf · sementara sifat termal ditentukan dengan menggunakan analisis

CHAPTER 1

INTRODUCTION

1.1 Background

��

Biopolymers have been studied extensively due to environmentally aware

consumers, increased price of crude oil and global warming. These polymers are derived

from naturally occurring polymers that are found in all living organisms. Biopolymers

which sourced from renewable resources will reduce our dependence on petroleum

(Peterson and Oksman, 2006). Today, biopolymers are used in a variety of applications

such as therapeutic aids, medicines, coatings, food product and packaging materials.

Polylactic acid (PLA) has caught the attention of polymer scientist recently as a

potential biopolymer to substitute the conventional petroleum based plastics. Apart from

being in the category of biodegradable polymer, PLA has wide applications in

biomedical field due to its biocompatibility characteristics. Recent studies on PLA had

concluded that the biopolymer has good mechanical properties, thermal plasticity and

biocompatibility, and is readily fabricated, thus being a promising polymer for various

end-use applications (Ray et al., 2003). However, PLA, similar to polystyrene, is a

Page 19: MECHANICAL, THERMAL AND MORPHOLOGICAL …eprints.utm.my/id/eprint/12200/6/HarintharavimalBalakrishnanMFKKSA2010.pdf · sementara sifat termal ditentukan dengan menggunakan analisis

2

comparatively brittle and stiff polymer with low deformation at break and low impact

strength (Jacobsen and Fritz, 1999).

One main task will be to modify these properties in such a way that PLA is able

to compete with other more flexible commodity polymers such as polyethylene (PE),

polypropylene (PP), polyethylene terepthalate (PET) or polyvinyl chloride (PVC).

Previous researchers (Jacobsen and Fritz, 1999; Baiardo et al., 2003; Kulinski and

Piorkowska, 2005) had used plasticizers to enhance PLA’s elongation at break and

reduce its brittleness. Jacobsen et al. (1999) had studied the introduction of plasticizers

such as polyethylene glycol (PEG), glucosemonoesters and partial fatty acid esters into

PLA. They showed that the impact strength of PLA had increased significantly from 31

to 80 J/m with the addition of 10% PEG, leading to a toughened PLA.

The recent achievements in nanocomposite technology has fueled the need for

new knowledge and findings resulting development of respective polymer

nanocomposites; polyamide (Kelnar et al., 2005), polypropylene (Lim et al., 2006),

polycaprolactone (Lepoittevin et al., 2002), polystyrene (Fu and Qutubuddin, 2000) and

others. In recent years, the field of PLA nanocomposites (Ray et al., 2003; Lee et al.,

2003; Petersson and Oksman, 2006) based on layered silicates, such as MMT, has

steadily increasing interest from scientist and industrialist. The nanoscale distribution of

such high aspect ratio fillers brings up some large improvements to the polymer matrix

in terms of mechanical, fire retardant, rheological, gas barrier and optical properties,

especially at low clay content (as small as 1wt%) in comparison with conventional

microcomposites (>30 wt% of microfiller). In order to reach this nanoscale distribution,

the naturally hydrophilic clay filler has to be organically modified to be compatible with

the organic polymer matrix.

Interestingly, the distribution of nanoclay is proven to be well dispersed in PLA

without introduction of compatibilizing agents due to the interaction of hydrogen

bonding between ammonium group in the organic “surfactant” of the MMT with the

Page 20: MECHANICAL, THERMAL AND MORPHOLOGICAL …eprints.utm.my/id/eprint/12200/6/HarintharavimalBalakrishnanMFKKSA2010.pdf · sementara sifat termal ditentukan dengan menggunakan analisis

3

carbonyl group of PLA chain segments contributes to this process (Pluta, 2006). There

are also strong interactions between the PLA hydroxyl end groups and the MMT platelet

surfaces or the ammonium group of the ammonium surfactant in the organically

modified MMT reported in previous studies (Jiang et al., 2007). Regardless of the

improvements achieved in the development of PLA nanocomposites, the polymer’s

brittleness had become more inherent. This had limited its applications.

Similar brittleness problems had been solved before by researches with the

approach of introduction of tough materials into a brittle nanocomposite system. Ahn et

al. (2006) had examined the rubber toughening of nylon 6 nanocomposites in terms of

impact strength, ductile–brittle transition temperature, and tensile properties. Lim et al.

(2006) had successfully developed the poly(ethylene-co-octene) toughened

polypropylene nanocomposites and studied its morphology, thermal and mechanical

behaviour. Only several studies had been conducted recently in the development of

plasticized PLA nanocomposites (Pluta, 2004; Paul et al., 2003; Thellen et al., 2005) but

the mechanical properties of these nanocomposites were not studied in detail. Thellen et

al. (2005) had investigated the influence of MMT layered silicate on plasticized PLA

blown films and concluded that the plasticized PLA/MMT nanocomposites did not see

highly significant enhancements with addition of MMT but the toughness is at least

maintained in the nanocomposites unlike other filled polymeric systems. They found

that the plasticization effect reduced the brittleness of the nanocomposites and the

breakthrough will widen PLA’s applications.

Although the addition of plasticizers such as PEG will overcome the brittleness,

it comes with a sacrifice of stiffness of the material which is also important for structural

applications (Baiardo et al., 2003). Jacobsen et al. (1999) had proved that the addition of

a plasticizer (PEG) leads to a decrease of the elasticity modulus and the addition of 2.5

wt% already lowers the modulus by 10% to 15% and this result was nearly

independently of the type of plasticizer used. Thus, a new toughener was needed to

overcome the brittleness nevertheless significantly reducing the stiffness. The

introduction of LLDPE as a toughener for PLA indeed showed a remarkable

Page 21: MECHANICAL, THERMAL AND MORPHOLOGICAL …eprints.utm.my/id/eprint/12200/6/HarintharavimalBalakrishnanMFKKSA2010.pdf · sementara sifat termal ditentukan dengan menggunakan analisis

4

enhancement in terms of toughness of the material. The results showed a significant

improvement in impact strength with considerable reduction in tensile and flexural

strength and modulus. It was also concluded that the partial miscibility of LLDPE in

PLA enabled it to perform as an impact modifier for PLA (Anderson et al., 2003).

Although it seems that the use of LLDPE as an impact modifier for PLA may defeat the

purpose of developing a ‘green’ polymer, it shall be noted that the main aim of this

research is for utilization of PLA in structural applications such as furniture and

automobile parts.

1.2 Objectives of the study

One of the most important aspects of materials development in thermoplastics

engineering is to achieve a good combination of mechanical properties and

processability at a moderate cost. As far as mechanical properties are concerned, the

main target is to strike a balance of stiffness, strength and toughness. To the best of our

knowledge, no study on LLDPE toughened PLA nanocomposites have been reported

yet. Thus, the aim of the research is to develop an environmentally friendly polymer

nanocomposite with enhanced toughness namely LLDPE-toughened PLA/MMT

nanocomposite.

The main objective can further be divided into:

� To explore the effect of LLDPE contents on the mechanical, thermal and

morphological properties of PLA/LLDPE blends.

� To investigate the effect of MMT concentration on the mechanical, thermal and

morphological properties of PLA/MMT and PLA/LLDPE/MMT

nanocomposites.

Page 22: MECHANICAL, THERMAL AND MORPHOLOGICAL …eprints.utm.my/id/eprint/12200/6/HarintharavimalBalakrishnanMFKKSA2010.pdf · sementara sifat termal ditentukan dengan menggunakan analisis

5

� To evaluate the water absorption behavior and hygrothermal aging of PLA/MMT

and PLA/LLDPE/MMT nanocomposites.

1.3 Scope of Research

In order to achieve the objectives of the research the following activities were

carried out:

1. Sample preparation

In this research project, sample preparation and blending was performed via melt

intercalation method. This involves:

i) Blending of LLDPE with PLA to produce PLA/LLDPE blends with twin screw

extruder.

ii) Blending of MMT with PLA to produce PLA/MMT nanocomposites with twin

screw extruder.

iii) Blending of LLDPE and MMT with PLA to produce PLA/LLDPE/MMT

nanocomposites with twin screw extruder.

iv) The blends and nanocomposites fabricated into test specimens via injection

molding for analysis.

2. Physical and mechanical analysis

(i) Water absorption

(ii) Hygrothermal aging

(iii)Tensile test

(iv) Flexural test

(v) Izod impact test

Page 23: MECHANICAL, THERMAL AND MORPHOLOGICAL …eprints.utm.my/id/eprint/12200/6/HarintharavimalBalakrishnanMFKKSA2010.pdf · sementara sifat termal ditentukan dengan menggunakan analisis

6

3. Characterization and morphological study

(i) X-ray Diffraction (XRD)

(ii) Scanning electron microscopy (SEM)

(iii) Transmission electron microscopy (TEM)

4. Thermal properties analysis

(i) Differential scanning calorimeter (DSC)

(ii) Themogravimetric analysis (TGA)

(iii) Dynamic mechanical analysis (DMA)

1.4 Importance of Research

The research expects to develop a toughened nanocomposite from a renewable

resource with balanced mechanical properties. The success of this project will widen the

applications of PLA such as furniture, automobile parts and enables it to be considered

as a possible substitute for conventional petroleum based plastics.