MB1001 ANALİZ I - i kuweb.iku.edu.tr/~eyavuz/Dersler/Analiz I/AnalizI.pdfDers Notları Yrd. Doç....

139
MB1001 ANALİZ I Ders Notları Yrd. Doç. Dr. Emel YAVUZ DUMAN İstanbul Kültür Üniversitesi Matematik-Bilgisayar Bölümü

Transcript of MB1001 ANALİZ I - i kuweb.iku.edu.tr/~eyavuz/Dersler/Analiz I/AnalizI.pdfDers Notları Yrd. Doç....

Page 1: MB1001 ANALİZ I - i kuweb.iku.edu.tr/~eyavuz/Dersler/Analiz I/AnalizI.pdfDers Notları Yrd. Doç. Dr. Emel YAVUZ DUMAN İstanbul Kültür Üniversitesi Matematik-Bilgisayar Bölümü

MB1001 ANALİZ I

Ders Notları

Yrd. Doç. Dr. Emel YAVUZ DUMAN

İstanbul Kültür Üniversitesi

Matematik-Bilgisayar Bölümü

Page 2: MB1001 ANALİZ I - i kuweb.iku.edu.tr/~eyavuz/Dersler/Analiz I/AnalizI.pdfDers Notları Yrd. Doç. Dr. Emel YAVUZ DUMAN İstanbul Kültür Üniversitesi Matematik-Bilgisayar Bölümü

c© 2013, Emel Yavuz DumanTüm hakkı saklıdır.

Bu notlar Örgün Öğretimde Uzaktan Öğretim Desteği (UDES) lisansı altındadır. Ders not-larına ulaşmak için http://udes.iku.edu.tr/ internet adresine bakınız.

İlk yayınlanma: 2013, Eylül

Yavuz Duman, Emelİstanbul Kültür ÜniversitesiFen-Edebiyat FakültesiMatematik-Bilgisayar BölümüMB1001 Analiz IDers Notları

Ataköy Kampüs34156, Bakırköyİstanbul - Turkey

[email protected]

http://web.iku.edu.tr/∼eyavuz/

Page 3: MB1001 ANALİZ I - i kuweb.iku.edu.tr/~eyavuz/Dersler/Analiz I/AnalizI.pdfDers Notları Yrd. Doç. Dr. Emel YAVUZ DUMAN İstanbul Kültür Üniversitesi Matematik-Bilgisayar Bölümü

İçindekiler

İçindekiler iii

1 Reel (Gerçel) Sayı Sistemi 11.1 Temel Tanımlar . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.2 Sıralanmış Cisim Aksiyomları . . . . . . . . . . . . . . . . . . . 41.3 Tamlık Aksiyomu . . . . . . . . . . . . . . . . . . . . . . . . . . 181.4 Ters Fonksiyonlar ve Görüntüler . . . . . . . . . . . . . . . . . 26

2 Reel Değerli Diziler 352.1 Dizilerin Limitleri . . . . . . . . . . . . . . . . . . . . . . . . . . 352.2 Limit Teoremleri . . . . . . . . . . . . . . . . . . . . . . . . . . 412.3 Bolzano-Weierstrass Teoremi . . . . . . . . . . . . . . . . . . . 482.4 Cauchy Dizileri . . . . . . . . . . . . . . . . . . . . . . . . . . . 542.5 Limit Supremum ve Limit İnfimum . . . . . . . . . . . . . . . . 59

3 R Üzerinde Fonksiyonlar 673.1 İki-Yönlü Limitler . . . . . . . . . . . . . . . . . . . . . . . . . 673.2 Tek-Yönlü Limitler ve Sonsuzda Limit Kavramı . . . . . . . . . 763.3 Süreklilik . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 833.4 Düzgün Süreklilik . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4 R Üzerinde Diferansiyellenebilme 994.1 Türev . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 994.2 Diferansiyellenebilme Teoremleri . . . . . . . . . . . . . . . . . 1084.3 Bazı Fonksiyonların Türevleri . . . . . . . . . . . . . . . . . . . 111

Trigonometrik Fonksiyonların Türevleri . . . . . . . . . . . . . 111Kapalı Fonksiyonların Türevleri . . . . . . . . . . . . . . . . . . 114Ters Trigonometrik Fonksiyonların Türevleri . . . . . . . . . . . 116Logaritmik ve Üstel Fonksiyonların Türevleri . . . . . . . . . . 117

4.4 Ortalama Değer Teoremi . . . . . . . . . . . . . . . . . . . . . . 1204.5 Limitlerde Belirsiz Şekiller ve L’Hôpital Kuralı . . . . . . . . . 125

0\0 Belirsizliği . . . . . . . . . . . . . . . . . . . . . . . . . . . 126∞\∞, ∞ · 0, ∞−∞ Belirsizlikleri . . . . . . . . . . . . . . . . 127Belirsiz Kuvvetler . . . . . . . . . . . . . . . . . . . . . . . . . . 128

4.6 Fonksiyon Grafiklerinin Çizimi . . . . . . . . . . . . . . . . . . 1304.7 Ters Fonksiyon Teoremleri . . . . . . . . . . . . . . . . . . . . . 134

Page 4: MB1001 ANALİZ I - i kuweb.iku.edu.tr/~eyavuz/Dersler/Analiz I/AnalizI.pdfDers Notları Yrd. Doç. Dr. Emel YAVUZ DUMAN İstanbul Kültür Üniversitesi Matematik-Bilgisayar Bölümü
Page 5: MB1001 ANALİZ I - i kuweb.iku.edu.tr/~eyavuz/Dersler/Analiz I/AnalizI.pdfDers Notları Yrd. Doç. Dr. Emel YAVUZ DUMAN İstanbul Kültür Üniversitesi Matematik-Bilgisayar Bölümü

1 Reel (Gerçel) Sayı Sistemi

1.1 Temel Tanımlar

Bu derste küme ve reel sayılar için standart notasyonlar kullanılacaktır. Ör-neğin, R veya (−∞,∞) reel sayılar kümesini, ∅ ise boş kümeyi (hiç bir ele-manı olmayan küme) temsil edecektir. a ∈ A notasyonu a’nın A kümesininbir elemanı olduğunu, a /∈ A ise elemanı olmadığını söyler. Verilen bir sonlukümeyi iki farklı şekilde ifade edebiliriz. Elemanları açık olarak listeleyebilirveya kümeyi cümleler veya denklemler ile tanımlayabiliriz. Örneğin, x2 = 1denkleminin çözümleri kümesi

{−1, 1} veya {x : x2 = 1}

şeklinde gösterilebilir.A ve B iki küme olsun. A’nın B kümesinin bir alt kümesi (notasyon: A ⊆

B) olabilmesi olarak isimlendirilmesi için gerek ve yeter şart A kümesinin herelemanının aynı zamanda B kümesine de ait olmasıdır. Eğer A kümesi B’ninbir alt kümesi, fakat B kümesinin A’ya ait olmayan en az bir b ∈ B elemanıvar ise bu durumda A’ya B’nin özalt kümesi (notasyon: A ⊂ B) denir. A ve Bkümelerinin eşit (notasyon: A = B) olarak adlandırılması için gerek ve yeterşart A ⊆ B ve B ⊆ A içermelerinin sağlanmasıdır. Eğer A ve B eşit değil iseA 6= B yazılır. Bir A kümesinin boştan farklı olarak isimlendirilmesi için gerekve yeter şart A 6= ∅ olmasıdır.

A kümesine veya B kümesine veya her iki kümeye de ait x elemanlarınınoluşturduğu kümeye A ile B’nin birleşimi (notasyon: A ∪B) denir ve

A ∪B = {x : x ∈ A veya x ∈ B}

olarak gösterilir. Hem A hem de B kümesine ait x elemanlarının oluşturduğukümeye A ile B’nin kesişimi (notasyon: A ∩B) adı verilir ve

A ∩B = {x : x ∈ A ve x ∈ B}

şeklinde ifade edilir. A kümesine ait fakat B kümesine ait olmayan x eleman-larının kümesine B’nin A’ya göre tümleyeni (notasyon: A\B veya A’nın anla-şılması durumunda Bc) denir ve

A\B = {x : x ∈ A, x /∈ B}

Page 6: MB1001 ANALİZ I - i kuweb.iku.edu.tr/~eyavuz/Dersler/Analiz I/AnalizI.pdfDers Notları Yrd. Doç. Dr. Emel YAVUZ DUMAN İstanbul Kültür Üniversitesi Matematik-Bilgisayar Bölümü

olarak gösterilir. Örneğin,

{−1, 0, 1} ∪ {1, 2} = {−1, 0, 1, 2}, {−1, 0, 1} ∩ {1, 2} = {1},

{1, 2}\{−1, 0, 1} = {2}, {−1, 0, 1}\{1, 2} = {−1, 0}.X ve Y iki küme olsun. X ve Y ’nin Kartezyen çarpımı

X × Y := {(x, y) : x ∈ X, y ∈ Y }

şeklinde tanımlanan sıralı ikili lerin kümesidir (:= sembolünün anlamı tanımagöre eşit veya olarak tanımlansındır). (x, y), (z, w) ∈ X × Y gibi iki noktanıneşit olarak adlandırılması için gerek ve yeter şart x = z ve y = w ifadeleriningerçeklenmesidir. Örneğin X = {1, 2, 3} ve Y = {1, 5} ise X × Y , elemanları

(1, 1), (1, 5), (2, 1), (2, 5), (3, 1), (3, 5)

olan sıralı ikililerin kümesidir.X ve Y iki küme olsun. X×Y ’nin herhangi bir alt kümesine X×Y üzerinde

bir bağıntı adı verilir. X×Y üzerinde bir bağıntı R olsun. R’nin tanım kümesi

{x ∈ X : (x, y) ∈ R olacak şekilde y ∈ Y vardır}

ve R’nin değer kümesi

{y ∈ Y : (x, y) ∈ R olacak şekilde x ∈ X vardır}

olarak tanımlanır. (x, y) ∈ R olması durumunda genellikle xRy yazılır.X ve Y iki küme, f ise X×Y üzerinde bir bağıntı olsun. Eğer her bir x ∈ X

için (x, y) ∈ f olacak şekilde bir ve yalnız bir y ∈ Y var ise f ’ye X kümesinden

Y kümesine bir fonksiyon (notasyon: f : X → Y veya Xf→ Y ) denir. Buna

göre X×Y üzerinde tanımlı bir bağıntının fonksiyon olabilmesi için her x ∈ Xiçin (x, y) ∈ f olacak şekilde bir y ∈ Y olmalı ve ayrıca (x, y) ∈ f ve (x, y′) ∈ fise y = y′ eşitliği sağlanmalıdır. f : X → Y bir fonksiyon ise X kümesine f ’intanım kümesi (notasyon: Dom(f) := X) adı verilir.

Açık olarak, X kümesinin her x elemanına f fonksiyonu ile bir y = f(x) ∈ Ytekabül eder. (x, y) ∈ f ise y’ye x’in f altındaki görüntüsü (veya değeri veyaresmi) (notasyon: y = f(x) veya f : x 7→ y), x’e y’nin f altındaki ön görüntüsü(veya orijinali) denir. Fonksiyon tanımından da anlaşılacağı üzere ön görüntütek türlü belirli olmak zorunda değildir. Örneğin, her k = 0,±1,±2, · · · içinf(x) = sin(kπ) = 0 sağlanmakla birlikte 0 değerinin f(x) = sinx fonksiyonualtında sonsuz sayıda ön görüntüsü vardır.

f fonksiyonu X’den Y ’ye bir fonksiyon olsun. Bu durumda f fonksiyonuX üzerinde tanımlanmıştır denir ve Y kümesine eş-tanım kümesi adı verilir. ffonksiyonunun değer kümesi

Ran(f) := {y ∈ Y : f(x) = y olacak şekilde x ∈ X vardır}

şeklinde tanımlanan f ’in tüm görüntülerinin bir koleksiyonudur.

2

Page 7: MB1001 ANALİZ I - i kuweb.iku.edu.tr/~eyavuz/Dersler/Analiz I/AnalizI.pdfDers Notları Yrd. Doç. Dr. Emel YAVUZ DUMAN İstanbul Kültür Üniversitesi Matematik-Bilgisayar Bölümü

.

.

x

y = f(x)

X = Dom(f)

f

Y eş-tanım kümesi

Ran(f)

Genel halde, bir fonksiyonun değer kümesi, eş-tanım kümesinin bir alt küme-sidir ve her y ∈ Ran(f) elemanı bir veya birden fazla ön görüntüye sahiptir.Eğer Ran(f) = Y ve her y ∈ Y elemanı f altında sadece bir tane x ∈ X öngörüntüsüne sahip ise bu durumda f : X → Y fonksiyonunun bir tersi vardırdenir ve ters fonksiyon f−1(y) := x olmak üzere f−1 : Y → X şeklinde tanım-lanır, burada x ∈ X için f(x) = y dir. Eğer f : X → Y fonksiyonunun tersi varise her x ∈ X ve y ∈ Y için

f−1(f(x)) = x ve f(f−1(y)) = y

sağlanır.f ve g gibi iki fonksiyonun eşit olması için gerek ve yeter şart her iki

fonksiyonun da aynı tanım kümesine ve aynı değerlere sahip olmasıdır. Yani,f, g : X → Y fonksiyonları her x ∈ X için f(x) = g(x) eşitliğini sağlar iseeşittirler. Eğer iki fonksiyonun tanım kümeleri farklı ise fonksiyonlar farklıdır.Örneğin, f(x) = g(x) = x2 olsun. Eğer f : [0, 1) → [0, 1) ve g : (−1, 1) → [0, 1)ise f ve g iki farklı fonksiyondur. Her iki fonksiyonun da değer kümesi [0, 1)olmakla birlikte, her y ∈ (0, 1)’nin f altında

√y şeklinde tek türlü belirli bir ön

görüntüsü mevcutken, g altında ±√y şeklinde iki farklı ön görüntüsü vardır.

Buna göre f fonksiyonu f−1(x) =√x ters fonksiyonuna sahip olmakla birlikte

g’nin ters fonksiyonu yoktur.X ve Y iki küme olsun. f : X → Y fonksiyonu x1, x2 ∈ X olmak üzere x1 6=

x2 iken f(x1) 6= f(x2) özelliğini sağlıyor ise injektif (veya bire-bir veya bire-biriçine) olarak adlandırılır. Fonksiyon tanımından ötürü her elemanın görüntüsütek türlü belirlidir. Yani her fonksiyon için f(x1) 6= f(x2) ise x1 6= x2 olmakzorundadır. Eğer f(x1) 6= f(x2) iken x1 = x2 = x olsaydı, bu x elemanınınf(x1) ve f(x2) gibi iki farklı görüntüsü olurdu ki bu ise f ’in fonksiyon olmatanımı ile çelişirdir. Eğer f fonksiyonu injektif ise x1 6= x2 iken f(x1) 6= f(x2)olacağından injektif bir fonksiyon için f(X) kümesinin her elemanının ancaktek bir ön görüntüsü olabilir. Şu halde injektif bir fonksiyon için f(x1) = f(x2)ise x1 = x2 eşitliği sağlanır. Örneğin, f : R → R olmak üzere f(x) = x2

şeklinde tanımlanan fonksiyon −1 6= 1 iken f(−1) = f(1) = 1 olduğundaninjektif değildir. Diğer taraftan g : R → R olmak üzere g(x) = x+1 fonksiyonu

3

Page 8: MB1001 ANALİZ I - i kuweb.iku.edu.tr/~eyavuz/Dersler/Analiz I/AnalizI.pdfDers Notları Yrd. Doç. Dr. Emel YAVUZ DUMAN İstanbul Kültür Üniversitesi Matematik-Bilgisayar Bölümü

x1 6= x2 için x1 + 1 6= x2 + 1 yani g(x1) 6= g(x2) ifadesini sağladığındaninjektiftir.

X ve Y iki küme ve f : X → Y bir fonksiyon olsun. Eğer f(X) = Y eşitliğisağlanıyor, yani Ran(f) = Y ise f fonksiyonu sürjektif (veya üzerine veyaörten) olarak adlandırılır. Buna göre herhangi bir y ∈ Y için f(x) = y olacakşekilde en az bir x ∈ X vardır. Örneğin, f : R → R olmak üzere f(x) = x2

şeklinde tanımlanan fonksiyon sürjektif değildir. Çünkü, hiç bir negatif sayı f ’ingörüntüsünde yer almaz. Bununla beraber g : R → R olmak üzere g(x) = x+1fonksiyonu, verilen her y sayısı için y = g(y − 1) şeklinde yazılabileceğindensürjektiftir.

Hem injektif hem de sürjektif olan bir f : X → Y fonksiyonuna bijektifadı verilir. Buna göre her y ∈ Y için f(x) = y eşitliğini sağlayan tek türlübelirli bir x ∈ X vardır (varlığı f ’in sürjektif olması, tekliği ise injektif olmasıgarantiler). Örneğin, X = {x ∈ R : x 6= 1} olmak üzere her x ∈ X için f(x) =2xx−1 şeklinde tanımlansın. f ’in injektif olduğunu göstermek için f(x1) = f(x2)eşitliğini sağlayan x1, x2 ∈ X noktalarını göz önüne alalım. f(x1) = f(x2)olduğundan

2x1

x1 − 1=

2x2

x2 − 1

eşitliği sağlanır. Bu ise x1(x2 − 1) = x2(x1 − 1) yani x1 = x2 demektir. Dola-yısıyla f injektiftir.

Sürjektifliği garantilemek için f ’in değer kümesini belirleyelim. Bunun içinx’e bağlı verilen y = 2x

x−1 denklemini y cinsinden yazarsak x = yy−2 elde edilir

ki bu ifade y 6= 2 için tanımlıdır. Buna göre f ’in değer kümesi Y := {y ∈ R :y 6= 2} için yukarıdaki şekilde tanımlanan fonksiyon sürjektiftir. Dolayısıylaf fonksiyonu X’den Y ’ye bir bijeksiyondur. f bir bijeksiyon olduğundan f ’intersi f−1 : Y → X fonksiyonu f−1(x) = x

x−2 şeklinde tanımlıdır.

1.2 Sıralanmış Cisim Aksiyomları

Bu kısımda reel sayı sisteminin cebirsel yapısı üzerde durulacaktır. Reel sayılarkümesinin her eleman çifti için aşağıdaki özellikleri sağlayan toplama ve çarpmaişlemleri bu küme üzerinde komütatif cisim (veya kısaca cisim) adı verilen bircebirsel yapı belirtirler.Postulat 1 [Cisim Aksiyomları]. R2 := R×R üzerinde tanımlanmış ve hera, b, c ∈ R için aşağıdaki özellikleri sağlayan “+” ve “ ·” fonksiyonları vardır:Kapalılık Özelliği. a+ b ∈ R ve a · b ∈ R dir.Asosyatiflik (Birleşme) Özelliği. a+(b+c) = (a+b)+c ve a·(b·c) = (a·b)·cdir.Komütatiflik (Değişme) Özelliği. a+ b = b+ a ve a · b = b · a dır.Distribütiflik (Dağılma) Özelliği. a · (b+ c) = a · b+ a · c dır.Toplamanın Etkisiz Elemanının Varlığı. Her a ∈ R için 0 + a = a olacakşekilde tek türlü belirli bir 0 ∈ R vardır.Çarpmanın Birim Elemanının Varlığı. Her a ∈ R için 1 · a = a ve 1 6= 0olacak şekilde tek türlü belirli bir 1 ∈ R vardır.

4

Page 9: MB1001 ANALİZ I - i kuweb.iku.edu.tr/~eyavuz/Dersler/Analiz I/AnalizI.pdfDers Notları Yrd. Doç. Dr. Emel YAVUZ DUMAN İstanbul Kültür Üniversitesi Matematik-Bilgisayar Bölümü

Toplamada Ters Elemanların Varlığı. Her x ∈ R için x+ (−x) = 0 olacakşekilde tek türlü belirli bir −x ∈ R vardır.Çarpmada Ters Elemanların Varlığı. Her x ∈ R\{0} için x · (x−1) = 1olacak şekilde tek türlü belirli bir x−1 ∈ R vardır.Buna göre toplama ve çarpma işlemleri, R reel sayılar kümesi üzerinde birkomütatif cisim yapısı belirtirler.

Genellikle a + (−b) ifadesi a − b, a · b ifadesi ab, a−1 ifadesi 1a veya 1/a

ve a · b−1 ifadesi ab veya a/b şeklinde gösterilir. Toplamada ve çarpmada ters

elemanların varlığının garantisi ile her a ∈ R için x + a = 0 ve a 6= 0 olmasıdurumunda ax = 1 denklemleri çözülebilir.

Postulat 1’den reel sayıların iyi bilinen aşağıdaki cebirsel kuralları elde edi-lebilir:

(−1)2 = 1, (1.1)

0 · a = 0, −a = (−1) · a, −(−a) = a, a ∈ R, (1.2)

−(a− b) = b− a, a, b ∈ R (1.3)

vea, b ∈ R ve ab = 0 ise a = 0 veya b = 0 sağlanır. (1.4)

Postulat 1 her ne kadar R üzerindeki tüm cebirsel kuralları belirlemedeyeterli olsa da reel sayılar sistemini tam olarak açıklamaz. Reel sayılar kümesiüzerinde aynı zamanda bir sıralama bağıntısı vardır.Postulat 2 [Sıralama Aksiyomları]. R × R üzerinde aşağıdaki özelliklerisağlayan bir “<” bağıntısı vardır:Trikotomi (Üç Hal) Özelliği. Her a, b ∈ R için aşağıdaki ifadelerin bir veyalnız bir tanesi doğrudur:

a < b, b < a veya a = b.

Transitiflik (Geçişme) Özelliği. Her a, b, c ∈ R için

a < b ve b < c ise a < c’dir.

Toplama Özelliği. Her a, b, c ∈ R için

a < b ve c ∈ R ise a+ c < b+ c’dir.

Çarpma Özelliği. Her a, b, c ∈ R için

a < b ve c > 0 ise ac < bc

vea < b ve c < 0 ise bc < ac’dir.

b > a ile a < b kastedilmektedir. a ≤ b ve b ≥ a ile a < b veya a = banlatılmaktadır. a < b < c ile a < b ve b < c ifade edilmektedir. 2 < x < 1şeklindeki bir eşitsizliğin hiç bir anlamı yoktur.

5

Page 10: MB1001 ANALİZ I - i kuweb.iku.edu.tr/~eyavuz/Dersler/Analiz I/AnalizI.pdfDers Notları Yrd. Doç. Dr. Emel YAVUZ DUMAN İstanbul Kültür Üniversitesi Matematik-Bilgisayar Bölümü

Yukarıda verildiği gibi iki tane Çarpma Özelliği vardır ve bu özellikleri kul-lanırken dikkatli olmak gerekir. Örneğin x < 1 olması x > 0 değil ise x2 < xeşitsizliğinin gerçeklenmesini gerektirmez. Eğer x < 0 ise İkinci Çarpma Özel-liği’ne göre x < 1 için x2 > x sağlanır.

a ≥ 0 özelliğini sağlayan bir a reel sayısı negatif olmayan, a > 0 ise pozitifolarak adlandırılır.

Reel sayılar kümesi bazı özel alt kümeleri içerir. Bunlardan ilki 1 ile başlayanve 2 := 1 + 1, 3 := 2 + 1, · · · formunda elemanlarına ardışık olarak 1 eklemeksureti ile elde edilen

N := {1, 2, · · · }doğal (İngilizce karşılığı Natural) sayılar kümesidir. Ayrıca

Z := {· · · ,−2,−1, 0, 1, 2, · · · }

şeklinde tanımlanan tamsayılar (Almanca karşılığı Zahl) kümesi,

Q :={m

n: m,n ∈ Z, n 6= 0

}

olarak tanımlanan rasyonel (İngilizce karşılığı Quotients) sayılar kümesi ve

Qc = R\Q

irrasyonel (İngilizce karşılığı Irrationals) sayılar kümesi diğer önemli sayı kü-meleridir. Rasyonel sayıların eşitliği aşağıdaki şekilde tanımlanır:

m

n=

p

qancak ve ancak mq = np.

Yukarıdaki sayı kümeleri arasında

N ⊂ Z ⊂ Q ⊂ R

şeklinde bir içerme bağıntısı vardır ve bu kümelerin her biri R reel sayılarkümesinin bir özalt kümesidir. Örneğin her rasyonel sayı bir reel sayıdır. Ger-çekten, rasyonel sayılar m/n := mn−1 şeklinde yazılabileceğinden ve Postulat2’ye göre mn−1 bir reel sayı olduğundan m/n rasyonel sayısı aynı zamanda birreel sayıdır. Fakat

√2 reel sayısı rasyonel değildir.

N ve Z kümelerini tam olarak tanımlamadığımızdan bazı kabuller yapmamızgerekmektedir:

Açıklama 1.2.1. N doğal sayılar ve Z tamsayılar kümelerinin aşağıdaki özel-

likleri gerçeklediği kabul edilsin:

i) Eğer n,m ∈ Z ise n+m, n−m ve nm sayıları da Z kümesine aittirler.

ii) Eğer n ∈ Z ise n ∈ N olması için gerek ve yeter şart n ≥ 1 eşitsizliğinin

sağlanmasıdır.

iii) 0 < n < 1 olacak şekilde bir n ∈ Z yoktur.

6

Page 11: MB1001 ANALİZ I - i kuweb.iku.edu.tr/~eyavuz/Dersler/Analiz I/AnalizI.pdfDers Notları Yrd. Doç. Dr. Emel YAVUZ DUMAN İstanbul Kültür Üniversitesi Matematik-Bilgisayar Bölümü

Bu özellikler kullanılarak Q rasyonel sayılar kümesinin Postulat 1’i sağladığıgösterilebilir (bkz Alıştırma 1.2.10). Dikkat edilirse R’nin rasyonel sayılar kü-mesi hariç hiçbir özel alt kümesi Postulat 1’i gerçeklemez. N kümesi üç özellikhariç diğer tüm özellikleri gerçekler: N kümesi 0 /∈ N olduğundan toplamanınetkisiz elemanına sahip değildir, negatif eleman barındırmadığından toplamadaters elemanları olamaz ve 1 dışında hiç bir elemanının çarpmada ters elemanıyoktur. Z kümesi bir özellik hariç Postulat 1’in diğer tüm özellikleri gerçekler: 1ve −1 hariç Z’nin sıfırdan farklı hiç bir elemanının çarpmada ters elemanı yok-tur. Qc kümesi üç özellik hariç Postulat 1’in diğer özellikleri gerçekler: 0 /∈ R\Qolduğundan toplamanın etkisiz elemanına sahip değildir, 1 /∈ R\Q olduğundançarpmanın etkisiz elemanı yoktur. Ayrıca kapalılık özelliğini de her zaman sağ-lamaz. Gerçekten,

√2 irrasyonel olmakla birlikte

√2 + (−

√2) = 0 toplamı ve√

2 ·√2 = 2 çarpımı rasyoneldir.

Dikkat edilirse R’nin sözü edilen tüm alt kümeleri Postulat 2’yi gerçekler.Buna göre Q Postulat 1 ve Postulat 2’yi sağlarken Kısım 1.3’de verilen Postu-lat 3’ü (Tamlık Aksiyomu) gerçeklemez. Benzer şekilde N, Z ve Qc kümelerininPostulat 1 ve Postulat 2’de verilen özelliklerden hangilerini sağladığı, hangi-lerini sağlamadığı okuyucu tarafından incelenmelidir. Verilen bu postulatlaraslında R’yi karakterize ederler. R kümesi Postulat 1, Postulat 2 ve Postulat3’ü gerçekleyen tek kümedir ve bu özelliğinden ötürü Tam Archimedean Sıra-lanmış Cisim olarak isimlendirilir.

Postulat 1 ve Postulat 2 kullanılarak reel sayıların sağladıkları tüm eşitlik veeşitsizlikler ispatlanabilir. Bu aşamada ispat kavramına kısaca değinelim. İspatnedir? Her matematiksel sonuç (örnek, açıklama (remark), lemma ve teorem)hipotez ve bir hüküm içerir. Bir ispatı yapmak için üç temel yöntem vardır:matematiksel indüksiyon (tümevarım), doğrudan çıkarım (doğrudan ispat) veçelişki (olmayana ergi).

Matematiksel indüksiyon (veya tümevarım) verilen bir ifadenin tüm doğalsayılar için doğru olduğunu ispatlamakta kullanılan oldukça pratik bir yön-temdir. Bu yönteme ifadenin önce 1 için (daha doğrusu, ifadenin doğruluğununbaşladığı doğal sayı için) doğru olduğu gösterilir. Daha sonra n doğal sayısı içindoğru olduğu farz edilir ve n+1 doğal sayısı için doğru olduğu gösterilir. Bu daherhangi bir doğal sayı için doğruysa sonraki için de doğru olacağını ispatladı-ğından bütün doğal sayılar için geçerli bir ifade olduğu anlamına gelecektir. Buyöntem genelde sonsuz sayıda domino taşlarının dizilmesine benzetilir. n. taşındevrilmesi bir sonraki yani n + 1. taşın da devrilmesi anlamına geleceğindentaşların tamamı devrilecektir. Tabi ki yine n = 1 için doğruluğunu söylemekgerekir. Bunun için de ilk taşı devirmemiz yeterli olacaktır.

Doğrudan çıkarım (veya doğrudan ispat) yönteminde hipotez doğru olarakkabul edilir ve adım adım ilerleyerek istenen hükmün gerçeklendiği gösterilir.Doğru olduğu gösterilmek istenen ifade, direk olarak, doğruluğu kanıtlanmışbaşka ifadelerle veya aksiyomlarla türetilir.

Çelişki (veya olmayana ergi) yönteminde hipotez doğru, doğruluğunu gös-termeyi planlanan ifadenin yanlış olduğu kabul edilir ve adım adım işlem ya-pılarak bir çelişkiye ulaşılır. Çelişki, açık olarak yanlış olan ya da hipotez ileçelişen bir ifadedir. Çelişkiye ulaşıldığı anda ispat tamamlanmış olur (bkz Te-

7

Page 12: MB1001 ANALİZ I - i kuweb.iku.edu.tr/~eyavuz/Dersler/Analiz I/AnalizI.pdfDers Notları Yrd. Doç. Dr. Emel YAVUZ DUMAN İstanbul Kültür Üniversitesi Matematik-Bilgisayar Bölümü

orem 1.2.9). Çünkü, başta yanlış olduğu kabul edilen ifadenin aslında doğruolduğu ispatlanmış olur.

Peki verilen bir ifadenin yanlış olduğu nasıl “ispatlanır”? Bunun için ifadeninhipotezini gerçekleyen fakat hüküm ile çelişen somut bir örnek vermek yeter.Bu örneğe ters örnek adı verilir. Örneğin “x > 1 ise x2 − x − 2 6= 0 sağlanır.”ifadesinin doğru olmadığını göstermek için 1’den büyük x = 2 sayısı seçilsin.22 − 2− 2 = 0 olduğundan verilen ifadenin yanlış olduğu gösterilmiş olur.

Aşağıda doğrudan çıkarım yöntemi kullanılarak bazı ispatlar yapılmaktadır.� sembolü ispatın ya da çözümün tamamlandığını ifade eder.

Örnek 1.2.2. a ∈ R olsun. Buna göre

a 6= 0 ise a2 > 0 (1.5)

olduğunu ve −1 < 0 < 1 eşitsizliğinin gerçeklendiğini ispatlayınız.

Kanıt. a 6= 0 olsun. Trikotomi özelliğine göre ya a < 0 ya da a > 0 sağlanır.

Durum 1. a > 0 olsun. Eşitsizliğin her iki tarafı Birinci Çarpma Özelliği kul-

lanılarak a ile çarpılırsa a2 = a · a > 0 · a elde edilir. (1.2)’ye göre 0 · a = 0

olduğundan a2 > 0 sonucuna ulaşılır.

Durum 2. a < 0 olsun. Eşitsizliğin her iki tarafı İkinci Çarpma Özelliği kulla-

nılırarak a ile çarpılırsa a2 = a · a > 0 · a elde edilir. (1.2)’ye göre 0 · a = 0

olduğundan a2 > 0 sonucuna ulaşılır.

Buna göre a 6= 0 ise a2 > 0 sağlanır. Diğer taraftan 1 6= 0 olduğundan 1 = 12 >

0’dır. Bu eşitsizliğin her iki tarafına −1 eklenirse 0 = 1− 1 > 0− 1 = −1 elde

edilir.

Örnek 1.2.3. a ∈ R olsun. Buna göre

0 < a < 1 ise 0 < a2 < a ve a > 1 ise a2 > a (1.6)

olduğunu ispatlayınız.

Kanıt. 0 < a < 1 olsun. Eşitsizliğin her iki tarafı Birinci Çarpma Özelliği

kullanılırarak a ile çarpılırsa 0 = 0 · a < a2 < 1 · a = a yani 0 < a2 < a

elde edilir. Diğer taraftan a > 1 ise Örnek 1.2.2 ve Transitiflik Özelliği’ne göre

a > 0’dır. Dolayısıyla Birinci Çarpma Özelliği kullanılabilir. a > 1 ifadesinin

her iki tarafı a ile çarpılır ise a2 = a · a > 1 · a = a sonucuna ulaşılır.

Benzer şekilde (bkz Alıştırma 1.2.3) aşağıdaki ifadelerin doğruluğu gösteri-lebilir:

0 ≤ a < b ve 0 ≤ c < d ise ac < bd, (1.7)

0 ≤ a < b ise 0 ≤ a2 < b2 ve 0 ≤ √a <

√b, (1.8)

8

Page 13: MB1001 ANALİZ I - i kuweb.iku.edu.tr/~eyavuz/Dersler/Analiz I/AnalizI.pdfDers Notları Yrd. Doç. Dr. Emel YAVUZ DUMAN İstanbul Kültür Üniversitesi Matematik-Bilgisayar Bölümü

ve

0 < a < b ise1

a>

1

b> 0. (1.9)

Tanım 1.2.4. Bir a ∈ R sayısının mutlak değeri

|a| :=

a a ≥ 0

−a a < 0

şeklide tanımlanan bir sayıdır.

Mutlak değere ilişkin bir özelliği ispatlamak istediğimizde genellikle para-metrelerin pozitif, negatif veya sıfıra eşit olmasına bağlı olarak ispatı çeşitli altdurumlara ayırıp bu alt durumlar üzerinde çalışırız. Aşağıda bu duruma ilişkinbir örnek verilmektedir.

Açıklama 1.2.5. Mutlak değer çarpımsaldır. Yani her a, b ∈ R için |ab| = |a||b|sağlanır.

Kanıt. Aşağıdaki dört durumu göz önüne alalım:

Durum 1. a = 0 veya b = 0 olsun. Bu durumda ab = 0’dır ve tanım gereği

|ab| = 0 = |a||b| sağlanır.

Durum 2. a > 0 ve b > 0 olsun. Birinci Çarpma Özelliği’ne göre ab > 0 · b = 0

sağlandığından mutlak değer tanımı gereği |ab| = ab = |a||b| elde edilir.

Durum 3. a > 0, b < 0 veya b > 0, a < 0 olsun. İspatı a > 0 ve b < 0 eşitsizlik-

lerinin sağlandığı durumda yapmak yeter (çünkü simetriden ötürü a ile b’nin

yerlerini değiştirdiğimize b > 0 ve a < 0 kabulünü elde ederiz). İkinci Çarpma

Özelliği’ne göre ab < 0 olduğundan Tanım 1.2.4, asosyatiflik ve komütatiflik

özellikleri kullanılarak

|ab| = −(ab) = (−1)(ab) = a((−1)b) = a(−b) = |a||b|

sonucuna ulaşılır.

Durum 4. a < 0 ve b < 0 olsun. İkinci Çarpma Özelliği’ne göre ab > 0 oldu-

ğundan Tanım 1.2.4 kullanılarak

|ab| = ab = (−1)2(ab) = (−a)(−b) = |a||b|

elde edilir.

Aşağıdaki teorem mutlak değer barındıran eşitsizlikleri çözmede oldukça sıkkullanılır.

Teorem 1.2.6 (Mutlak Değerin Temel Teoremi). a ∈ R ve M ≥ 0 olsun.

Buna göre |a| ≤ M olması için gerek ve yeter şart −M ≤ a ≤ M eşitsizliğinin

sağlanmasıdır.

9

Page 14: MB1001 ANALİZ I - i kuweb.iku.edu.tr/~eyavuz/Dersler/Analiz I/AnalizI.pdfDers Notları Yrd. Doç. Dr. Emel YAVUZ DUMAN İstanbul Kültür Üniversitesi Matematik-Bilgisayar Bölümü

Kanıt. (Gereklilik İspatı ⇒) a ∈ R ve |a| ≤ M olsun. Bu eşitsizliği −1 ile

çarparak −|a| ≥ −M elde edilir.

Durum 1. a ≥ 0 olsun. Bu durumda Tanım 1.2.4’e göre |a| = a sağlanır.

Dolayısıyla hipotez şartından

−M ≤ 0 ≤ |a| = a ≤ M

sonucu elde edilir.

Durum 2. a < 0 olsun. Bu durumda Tanım 1.2.4’e göre |a| = −a sağlanır.

Dolayısıyla hipotez şartından

−M ≤ −|a| = a < 0 ≤ M

ifadesine ulaşılır. Yani her iki durumda da −M ≤ a ≤ M eşitsizliği gerçeklenir.

(Yeterlilik İspatı ⇐) Tersine, −M ≤ a ≤ M eşitsizliği doğru olsun. Buna

göre a ≤ M ve −M ≤ a’dır. Dolayısıyla

a ≥ 0 olması durumunda |a| = a ≤ M

a < 0 olması durumunda |a| = −a ≤ M

elde edilir. Yani her iki durumda da |a| ≤ M sağlanır.

Not. Benzer şekilde |a| < M olması için gerek ve yeter şartın −M < a < Meşitsizliğinin sağlanması olduğu gösterilebilir.

Aşağıdaki teorem mutlak değer kavramı için kullanışlı bir sonuçtur.

Teorem 1.2.7. Mutlak değer aşağıdaki üç özelliği gerçekler:

i) [Pozitiflik] Her a ∈ R için |a| ≥ 0’dır, öyleki |a| = 0 olması için gerek ve

yeter şart a = 0 eşitliğinin sağlanmasıdır.

ii) [Simetriklik] Her a, b ∈ R için |a− b| = |b− a| gerçeklenir.

iii) [Üçgen Eşitsizliği] Her a, b ∈ R için

|a+ b| ≤ |a|+ |b| ve ||a| − |b|| ≤ |a− b|

eşitsizlikleri geçerlidir.

Kanıt. i) Eğer a ≥ 0 ise |a| = a ≥ 0 sağlanır. Diğer taraftan a < 0 olması

durumunda Tanım 1.2.4 ve İkinci Çarpma Özelliği’ne göre |a| = −a = (−1)a >

0 elde edilir. Yani her a ∈ R için |a| ≥ 0 sonucuna ulaşılır.

Şimdi |a| = 0 olması için gerek ve yeter şartın a = 0 eşitliğinin sağlanması

olduğunu gösterelim. Öncelikle |a| = 0 olduğunu kabul edelim. Tanımından

10

Page 15: MB1001 ANALİZ I - i kuweb.iku.edu.tr/~eyavuz/Dersler/Analiz I/AnalizI.pdfDers Notları Yrd. Doç. Dr. Emel YAVUZ DUMAN İstanbul Kültür Üniversitesi Matematik-Bilgisayar Bölümü

ötürü a ≥ 0 için a = |a| = 0 ve a < 0 için a = −|a| = 0 gerçeklendiğinden

|a| = 0 olması a = 0 eşitliğini gerektirir. Tersine, a = 0 olsun. Mutlak değer

tanımına göre |0| = 0 sağlandığından |a| = 0 gerçeklenir.

ii) Açıklama 1.2.5 göz önüne alındığında

|a− b| = | − 1||a− b| = |b− a|

eşitliği elde edilir.

iii) İlk eşitsizliğin doğruluğunu ispatlamak için her x ∈ R reel sayısının |x| ≤|x| eşitsizliğini sağladığı göz önüne alınsın. Buna göre Teorem 1.2.6 ifadesinden

−|a| ≤ a ≤ |a| ve −|b| ≤ b ≤ |b| elde edilir. Bu iki eşitsizliği taraf tarafa

topladığımızda

−(|a|+ |b|) ≤ a+ b ≤ |a|+ |b|sonucuna ulaşılır. Bu aşamada tekrar Teorem 1.2.6 kullanılır ise |a+b| ≤ |a|+|b|eşitsizliği elde edilir.

İkinci eşitsizliği ispatlamak için (a− b) + b ifadesine ilk eşitsizlik uygulanır.

Buna göre

|a| − |b| = |a− b+ b| − |b| ≤ |a− b|+ |b| − |b| = |a− b|

elde edilir. Şimdi yukarıda a ile b’nin yerleri değiştirilir ve ii) sonucu kullanılır

ise

|b| − |a| = |b− a+ a| − |a| ≤ |b− a|+ |a| − |a| = |b− a| = |a− b|,

ve bu ifadeyi −1 ile çarparak

|a| − |b| ≥ −|a− b|

sonucu bulunur. Dolayısıyla

−|a− b| ≤ |a| − |b| ≤ |a− b|

eşitsizliği doğru olduğundan Teorem 1.2.6’ya göre ||a| − |b|| ≤ |a− b| ifadesine

ulaşılır.

Yukarıdaki son eşitsizlik ispatlanırken aynı zamanda her a, b ∈ R için |a| −|b| ≤ |a− b| olduğu sonucu da elde edildi ki bu ifade sıkça kullanılacaktır.

Uyarı. Burada dikkat edilmesi gereken bir husus Toplama Özelliği ve mutlakdeğerin beraber kullanılıp b < c ise |a+ b| < |a+ c| şeklinde bir eşitsizliğin herzaman geçerli olduğunun düşünülmemesidir. Bu eşitsizlik sadece a+ b ve a+ cifadelerinin her ikisi de negatif değil ise doğrudur. Örneğin a = 1, b = −5 vec = −1 ise b < c sağlanır fakat |a + b| = |1 + (−5)| = 4 > 0 = |1 + (−1)| =|a+ c|’dır.

11

Page 16: MB1001 ANALİZ I - i kuweb.iku.edu.tr/~eyavuz/Dersler/Analiz I/AnalizI.pdfDers Notları Yrd. Doç. Dr. Emel YAVUZ DUMAN İstanbul Kültür Üniversitesi Matematik-Bilgisayar Bölümü

Örnek 1.2.8. Eğer −2 < x < 1 ise |x2 − x| < 6 olduğunu gösteriniz.

Kanıt. Hipoteze göre −2 < x < 1 olduğundan −2 < x < 1 < 2 yani −2 < x <

2 dolayısıyla |x| < 2 sağlanır. Dolayısıyla üçgen eşitsizliği ve Açıklama 1.2.5

kullanıldığında

|x2 − x| ≤ |x2|+ |x| = |x|2 + |x| < 22 + 2 = 6

elde edilir.

Şimdi Trikotami Özelliği’ne karşılık gelen ve çokça kullanacağımız aşağıdakisonucu verelim:

Teorem 1.2.9. x, y, a ∈ R olsun.

i) Her ε > 0 sayısı için x < y + ε olması için gerek ve yeter şart x ≤ y

eşitsizliğinin gerçeklenmesidir.

ii) Her ε > 0 sayısı için x > y − ε olması için gerek ve yeter şart x ≥ y

eşitsizliğinin gerçeklenmesidir.

iii) Her ε > 0 sayısı için |a| < ε olması için gerek ve yeter şart a = 0

eşitliğinin gerçeklenmesidir.

Kanıt. i) Gereklilik kısmının ispatını çelişki yöntemi ile elde edeceğiz. Buna

göre, her ε > 0 sayısı için x < y + ε sağlansın fakat buna karşılık x > y olsun.

x > y olduğundan x − y farkı pozitiftir. ε0 = x − y > 0 denirse y + ε0 = x

olarak ifade edilebilir. Dolayısıyla, Trikotami Özelliği’ne göre y+ε0 değeri x’den

büyük olamaz. Bu ise ε = ε0 için teorem hipotezi ile çelişir. Bu çelişkiye neden

x > y olarak alınmasıdır. Yani, x ≤ y eşitsizliği geçerlidir.

Tersine, ε > 0 sayısı verilsin ve x ≤ y sağlansın. Buna göre ya x = y ya

da x < y’dir. Eğer x < y ise Toplama ve Transitiflik Özellikleri’nden x + 0 <

y + 0 < y + ε yazılabilir. Eğer x = y ise Toplama Özelliği’ne göre x < y + ε

sağlanır. Bu durumda her ε > 0 sayısı için x < y+ ε eşitsizliği her iki durumda

da gerçeklenir.

ii) Her ε > 0 sayısı için x > y − ε olsun. İkinci Çarpma Özelliği’ne göre bu

ifade −x < −y + ε eşitsizliğine denktir. Dolayısıyla i) şıkkına göre −x ≤ −y

olduğu sonucu elde edilir. Bu ise İkinci Çarpma Özelliği göz önüne alındığında

x ≥ y eşitsizliğinin doğruluğunu gösterir.

iii) Her ε > 0 sayısı için |a| < ε = 0 + ε olsun. i) neticesine göre bu ifade

|a| ≤ 0 olmasına denktir. Diğer taraftan her zaman |a| ≥ 0 sağlandığından

Trikotami kuralı gereğince |a| = 0’dır. Bu ise Teorem 1.2.7’nin i) şıkkına göre

a = 0 olduğu anlamına gelir.

12

Page 17: MB1001 ANALİZ I - i kuweb.iku.edu.tr/~eyavuz/Dersler/Analiz I/AnalizI.pdfDers Notları Yrd. Doç. Dr. Emel YAVUZ DUMAN İstanbul Kültür Üniversitesi Matematik-Bilgisayar Bölümü

a ve b iki reel sayı olsun. Bu durumda

[a, b] := {x ∈ R : a ≤ x ≤ b}, [a,∞) := {x ∈ R : a ≤ x},

(−∞, b] := {x ∈ R : x ≤ b} veya (−∞,∞) := R

formundaki bir kümeye kapalı aralık,

(a, b) := {x ∈ R : a < x < b}, (a,∞) := {x ∈ R : a < x},

(−∞, b) := {x ∈ R : x < b} veya (−∞,∞) := R

formundaki bir kümeye ise açık aralık adı verilir.Aralık ile ya bir kapalı aralık ya bir açık aralık ya da

[a, b) := {x ∈ R : a ≤ x < b} veya (a, b] := {x ∈ R : a < x ≤ b}

formundaki bir küme kastedilmektedir.a < b olması durumunda [a, b], [a, b), (a, b] ve (a, b) aralıkları reel sayı doğ-

rusu üzerinde bir doğru parçasına tekabül eder, eğer b < a ise bu “aralıkların”hepsi boş kümedir.

−∞ < a ≤ b < ∞ olmak üzere bir I aralığının sınırlı olarak adlandırılmasıiçin gerek ve yeter şart [a, b], (a, b), [a, b) veya (a, b] formlarından birine sahipolmasıdır. Bu durumda a ve b sayılarına I aralığının uç noktalar ı denir. Sınırlıolmayan diğer tüm aralıklar sınırsız olarak isimlendirilir.

a, b uç noktaları a = b eşitliğini sağlayan bir aralığa dejenere, a < b eşitsiz-liğini sağlayan bir aralığa ise dejenere olmayan aralık adı verilir. Tanıma görebir dejenere açık aralık boş kümedir ve dejenere kapalı aralık ise bir noktadanibarettir.

Mutlak değer uzunluk kavramı ile yakından ilişkilidir. a ve b uç noktalarınasahip bir kapalı aralığın uzunluğu |I| := |b − a| olarak, a, b ∈ R gibi herhangiiki sayının arasındaki uzaklık ise |a− b| şeklinde tanımlanır.

Aralıklar kullanılarak eşitsizlikler ifade edilebilir. Örneğin, Teorem 1.2.6istenirse |a| ≤ M olması için gerek ve yeter şart a’nın [−M,M ] kapalı aralığındayer almasıdır, benzer şekilde Teorem 1.2.9’da iii) ifadesi a sayısının ε > 0 olmaküzere (−ε, ε) açık aralığında yer alması için gerek ve yeter şart a = 0 eşitliğiningerçeklenmesidir şeklinde yazılabilir.

Alıştırmalar

1.2.1. a, b, c, d ∈ R olmak üzere aşağıda verilen ifadelerin hangilerinin doğru, han-gilerinin yanlış olduğunu tespit ediniz. Doğru olanları ispatlayıp yanlış olanlara isebirer ters örnek veriniz.

a) a < b ve c < d < 0 ise ac > bd’dir.b) a ≤ b ve c > 1 ise |a+ c| ≤ |b+ c|’dir.c) a ≤ b ve b ≤ a+ c ise |a− b| ≤ c’dir.d) Her ε > 0 için a < b− ε ise a < 0’dır.

Çözüm.

13

Page 18: MB1001 ANALİZ I - i kuweb.iku.edu.tr/~eyavuz/Dersler/Analiz I/AnalizI.pdfDers Notları Yrd. Doç. Dr. Emel YAVUZ DUMAN İstanbul Kültür Üniversitesi Matematik-Bilgisayar Bölümü

a) Yanlış. a = 2/3, b = 1, c = −2 ve d = −1 alınır ise istenilen gösterilmiş olur.b) Yanlış. a = −4, b = −1 ve c = 2 alınır ise istenilen gösterilmiş olur.c) Doğru. a ≤ b ve b ≤ a+ c olduğundan |a− b| = b− a ≤ a+ c− a = c sağlanır.d) Eğer b ≤ 0 ise a < b− ε < 0 + 0 = 0 yani a < 0 olur. Eğer b > 0 ise ε = b için

a < b− ε = 0 elde edilir.

1.2.2. a, b, c ∈ R ve a ≤ b olsun.

a) a+ c ≤ b+ c olduğunu ispatlayınız.b) c ≥ 0 ise a · c ≤ b · c eşitsizliğinin geçerliliğini gösteriniz.

Çözüm.

a) a < b ise Toplama Özelliği’ne göre a+c < b+c sağlanır. a = b olması durumunda+ bir fonksiyon olduğundan a+ c = b+ c gerçeklenir. Buna göre her a ≤ b içina+ c ≤ b+ c eşitsizliği doğrudur.

b) c = 0 ise ac = 0 = bc ifadesi sağlanacağından c > 0 olduğunu kabul edebiliriz.Eğer a < b ise Çarpma Özelliği’ne göre ac < bc gerçeklenir. a = b olmasıdurumunda · bir fonksiyon olduğundan ac = bc sağlanır. Buna göre her a ≤ b

ve c ≥ 0 için ac ≤ bc eşitsizliği doğrudur.

1.2.3. (1.7), (1.8) ve (1.9) ifadelerini ispatlayınız. Ayrıca a ≥ 0 veya a > 0 koşullarınınkaldırılması durumunda bu ifadelerin gerçeklenemediğini gösteriniz.Çözüm.

a) 0 ≤ a < b ve 0 ≤ c < d ise ac < bd sağlanır. Gerçekten, ilk eşitsizliği c veikinci eşitsizliği b ile çarparsak 0 ≤ ac < bc ve 0 ≤ bc < bd elde edilir. Bu iseTransitiflik Özelliği’ne göre ac < bd olduğu anlamına gelir.

b) 0 ≤ a < b ise 0 ≤ a2 < b2 ve 0 ≤ √a <

√b sağlanır. Gerçekten, 0 ≤ a < b

olduğundan (1.7)’ye göre 0 ≤ a2 < ab ve 0 ≤ ab < b2 yani 0 ≤ a2 < b2

eşitsizliği doğrudur. Diğer taraftan eğer√a ≥

√b olsaydı

√a ≥

√b dolayısıyla

a = (√a)2 ≥ (

√b)2 = b çelişkisi elde edilirdi.

c) 0 < a < b ise 1/a > 1/b > 0 sağlanır. Gerçekten, eğer 1/a ≤ 1/b olsaydıÇarpma Özelliği’ne göre b = ab(1/a) ≤ ab(1/b) = a çelişkisi elde edilirdir.Diğer taraftan 1/b ≤ 0 olsaydı b = b2(1/b) ≤ 0 çelişkisine ulaşılırdı.

d) a < 0 için verilen ifadelerinin doğru olması gerekmediğini göstermek için a =

−2, b = −1, c = 2 ve d = 5 alalım. Bu durumda a < b ve c < d iken ac = −4

olup bd = −5 değerinden küçük değildir. Ayrıca a2 = 4 sayısı da b2 = 1’denküçük değildir. Diğer taraftan 1/a = −1/2 değeri de 1/b = −1 sayısından küçükkalmaz.

1.2.4. Bir a ∈ R sayısının pozitif kısmı

a+ :=|a|+ a

2,

negatif kısmı ise

a− :=|a| − a

2,

olarak tanımlanır.

a) a = a+ − a− ve |a| = a+ + a− olduğunu gösteriniz.

14

Page 19: MB1001 ANALİZ I - i kuweb.iku.edu.tr/~eyavuz/Dersler/Analiz I/AnalizI.pdfDers Notları Yrd. Doç. Dr. Emel YAVUZ DUMAN İstanbul Kültür Üniversitesi Matematik-Bilgisayar Bölümü

b) Aşağıdaki ifadelerin doğruluğunu gösteriniz:

a+ =

a a ≥ 0

0 a ≤ 0ve a− =

0 a ≥ 0

−a a ≤ 0.

Çözüm.

a) Verilen tanımlara göre

a+ − a− =|a|+ a

2− |a| − a

2=

|a|+ a− |a|+ a

2=

2a

2= a,

ve

a+ + a− =|a|+ a

2+

|a| − a

2=

|a|+ a+ |a| − a

2=

2|a|2

= |a|sağlanır.

b) Mutlak değer tanımına göre a ≥ 0 ise a+ = (a + a)/2 = a ve a < 0 isea+ = (−a + a)/2 = 0 olur. Benzer şekilde a ≥ 0 ise a− = (a − a)/2 = 0 vea < 0 ise a− = (−a− a)/2 = −a gerçeklenir.

1.2.5. Aşağıdaki eşitsizlikleri sağlayan x ∈ R sayılarını tespit ediniz.

a) |2x+ 1| < 7b) |2− x| < 2c) |x3 − 3x+ 1| < x3

d) xx−1

< 1

e) x2

4x2−1< 1

4

Çözüm.

a) |2x + 1| < 7 ancak ve yalnız −7 < 2x + 1 < 7 ancak ve yalnız −8 < 2x < 6

ancak ve yalnız −4 < x < 3.b) |2−x| < 2 ancak ve yalnız −2 < 2−x < 2 ancak ve yalnız −4 < −x < 0 ancak

ve yalnız 0 < x < 4.c) |x3 − 3x + 1| < x3 ancak ve yalnız −x3 < x3 − 3x + 1 < x3 ancak ve yalnız

−3x+1 < 0 yani 3x− 1 > 0 ve 2x3 − 3x+1 > 0. 3x− 1 > 0 eşitsizliği x > 1/3

olmasına denktir. Diğer taraftan 2x3 − 3x + 1 = (x − 1)(2x2 + 2x − 1) = 0

ifadesini sağlayan değerler x = 1, (−1 ±√3)/2 olduğundan 2x3 − 3x + 1 > 0

eşitsizliği (−1 −√3)/2 < x < (−1 +

√3)/2 ya da x > 1 eşitsizliğine karşılık

gelir. Dolayısıyla çözüm (1/3, (√3− 1)/2) ∪ (1,∞) olarak bulunur.

d) Verilen ifadenin her iki yanını x− 1’in pozitif veya negatif olduğunu göz önünealmadan x− 1 ile çarpamayız.Durum 1. x − 1 > 0 olsun. Bu durumda x < x − 1 yani 0 < −1 olacağındaneşitsizliği sağlayan x değerlerinin kümesi boştur.Durum 2. x−1 < 0 olsun. Bu durumda İkinci Çarpma Özelliği’ne göre x > x−1

yani 0 > −1 olması her x reel sayısı için doğru olduğundan çözüm aralığı(−∞, 1)’dir.

e) Durum 1. 4x2 − 1 > 0 olsun. Çapraz çarpma yaparak 4x2 < 4x2 − 1 yani boşküme elde edilir.Durum 1. 4x2 − 1 < 0 olsun. Bu durumda İkinci Çarpma Özelliği’ne göre4x2 > 4x2 − 1 yani 0 > −1 olması her x reel sayısı için doğru olduğundançözüm aralığı (−1/2, 1/2)’dir.

15

Page 20: MB1001 ANALİZ I - i kuweb.iku.edu.tr/~eyavuz/Dersler/Analiz I/AnalizI.pdfDers Notları Yrd. Doç. Dr. Emel YAVUZ DUMAN İstanbul Kültür Üniversitesi Matematik-Bilgisayar Bölümü

1.2.6. a, b ∈ R olsun.

a) a > 2 ve b = 1 +√a− 1 ise 2 < b < a olduğunu ispatlayınız.

b) 2 < a < 3 ve b = 2 +√a− 2 ise 0 < a < b olduğunu ispatlayınız.

c) 0 < a < 1 ve b = 1−√1− a ise 0 < b < a olduğunu ispatlayınız.

d) 3 < a < 5 ve b = 2 +√a− 2 ise 3 < b < a olduğunu ispatlayınız.

Çözüm.

a) a > 2 olsun. Bu durumda a−1 > 1 yani 1 <√a− 1 < a−1 sağlanır. Dolayısıyla

2 < b = 1 +√a− 1 < 1 + (a− 1) gerçeklenir.

b) 2 < a < 3 olsun. Bu durumda 0 < a − 2 < 1 yani 0 < a − 2 <√a− 2 < 1

sağlanır. Dolayısıyla 0 < a < 2 +√a− 2 = b gerçeklenir.

c) 0 < a < 1 olsun. Bu durumda 0 > −a > −1 yani 0 < 1 − a < 1 sağlanır.√1− a reel olduğundan 1−a <

√1− a doğrudur. Dolayısıyla b = 1−

√1− a <

1− (1− a) = a gerçeklenir.d) 3 < a < 5 olsun. Bu durumda 1 < a− 2 < 3 yani 1 <

√a− 2 < a− 2 sağlanır.

Dolayısıyla 3 < 2 +√a− 2 = b < a gerçeklenir.

1.2.7. a, b ∈ R sayılarının aritmetik ortalaması A(a, b) = (a + b)/2 ve a, b ∈ [0,∞)

sayılarının geometrik ortalaması ise G(a, b) =√ab olarak tanımlanır. Eğer 0 ≤ a ≤ b

ise a ≤ G(a, b) ≤ A(a, b) ≤ b olduğunu ispatlayınız. Ayrıca G(a, b) = A(a, b) eşitli-ğinin sağlanması için gerek ve yeter şartın a = b ifadesinin gerçeklenmesi olduğunugösteriniz.Çözüm. Her a, b ∈ [0,∞) için a + b − 2

√ab = (

√a −

√b)2 ≥ 0 sağlanır. Buna göre

2√ab ≤ a + b ve dolayısyla G(a, b) ≤ A(a, b) gerçeklenir. Diğer taraftan 0 ≤ a ≤ b

olduğundan A(a, b) = (a + b)/2 ≤ 2b/2 = b ve G(a, b) =√ab ≥

√a2 = a elde

edilir. Son olarak, A(a, b) = G(a, b) ancak ve yalnız 2√ab = a + b ancak ve yalnız

(√a−

√b)2 = 0 ancak ve yalnız

√a =

√b ancak ve yanlız a = b ifadesine ulaşılır.

1.2.8. x ∈ R olsun.

a) |x| ≤ 2 ise |x2 − 4| ≤ 4|x− 2| olduğunu ispatlayınız.b) |x| ≤ 1 ise |x2 + 2x− 3| ≤ 4|x− 1| olduğunu ispatlayınız.c) −3 ≤ x ≤ 2 ise |x2 + x− 6| ≤ 6|x− 2| olduğunu ispatlayınız.d) −1 < x < 0 ise |x3 − 2x+ 1| < 1.26|x− 1| olduğunu ispatlayınız.

Çözüm.

a) |x| ≤ 2 ve |x+ 2| ≤ |x|+ 2 olduğundan |x2 − 4| = |x+ 2||x− 2| ≤ 4|x− 2| eldeedilir.

b) |x| ≤ 1 ve |x+3| ≤ |x|+3 olduğundan |x2 + 2x− 3| = |x+ 3||x− 1| ≤ 4|x− 1|elde edilir.

c) −3 ≤ x ≤ 2 ve |x−2| ≤ |x|+2 olduğundan |x2+x−6| = |x+3||x−2| ≤ 6|x−2|elde edilir.

d) −1 < x < 0 ve x2 + x − 1 fadesi (−1, 0) aralığında minimum değerini −1.25

noktasında aldığından |x3−2x+1| = |x2+x−1||x−1| < 5|x−1|/4 elde edilir.

1.2.9. Aşağıdaki eşitsizlikleri gerçekleyen tüm n ∈ N değerlerini tespit ediniz.

a) 1−n1−n2 < 0.01

b) n2+2n+32n3+5n2+8n+3

< 0.025c) n−1

n3−n2+n−1< 0.002

16

Page 21: MB1001 ANALİZ I - i kuweb.iku.edu.tr/~eyavuz/Dersler/Analiz I/AnalizI.pdfDers Notları Yrd. Doç. Dr. Emel YAVUZ DUMAN İstanbul Kültür Üniversitesi Matematik-Bilgisayar Bölümü

Çözüm.

a) (1− n)/(1− n2) = 1/(1 + n) olduğundan 1/(n+ 1) < 0.01 = 1/100 elde edilir.Her n ∈ N için 1+n > 0 olduğundan n+1 > 100 yani n > 99 sonucuna ulaşılır.

b) Sadeleştirme yapıldığında verilen ifadenin 1/(2n+ 1) < 1/40 yani 2n+ 1 > 40

eşitsizliğine denk olduğu elde edilir. Buna göre n > 39/2 dolayısıyla n ≥ 20

eşitsizliğine ulaşılır.c) Verilen eşitsizlik n2 + 1 > 500 olmasına denktir. Buna göre n >

√499 ≈ 22.33

yani n > 23 eşitsizliği elde edilir.

1.2.10. a) m/n rasyonel sayısını m ·n−1 ∈ R şeklinde yorumlayıp m,n, p, q, ℓ ∈ Z

ve n, q, ℓ 6= 0 olmak üzere Postulat 1’i kullanarak aşağıdaki ifadelerin doğrulu-ğunu gösteriniz:

m

n+

p

q=

mq + np

nq,

m

n· pq=

mp

nq, −m

n=

−m

nve

( ℓ

n

)−1

=n

ℓ.

b) Açıklama 1.2.1’i kullanarak Postulat 1’de R yerine Q olması durumunda Pos-tulat 1’in gerçeklendiğini gösteriniz.

c) Bir rasyonel sayının irrasyonel bir sayı ile toplamının her zaman irrasyonelolduğunu ispatlayınız. Rasyonel bir sayı ile irrasyonel bir sayının çarpım sonucuhakkında yorum yapınız.

d) n, q > 0 olmak üzere m/n, p/q ∈ R sayıları göz önüne alınsın. Aşağıdaki ifadenindoğruluğunu kanıtlayınız:

m

n<

p

qeşitsizliği için gerek ve yeter şart mq < np olmasıdır.

(Bu sonuç rasyonel sayılara kısıtlanarak Q üzerinde “<” tanımı elde edilir.)

1.2.11. Her a, b, c, d ∈ R için

(ab+ cd)2 ≤ (a2 + c2)(b2 + d2)

eşitsizliğinin gerçeklendiğini gösteriniz.

1.2.12. a) R+ ile pozitif reel sayılar kümesi gösterilsin. Buna göre R+’nin aşağı-daki iki özelliği gerçeklediğini gösteriniz:

i) Her a ∈ R için aşağıdakilerin bir ve sadece bir tanesi doğrudur:

x ∈ R+, −x ∈ R

+ veya x = 0.

ii) x, y ∈ R+ olmak üzere x+ y ve x · y sayıları da R+ kümesine aittir.

b) R kümesi i) ve ii) ile verilen özellikleri gerçekleyen bir R+ alt kümesini kapsasın(bu küme pozitif reel sayılar kümesinin kendisi olmak zorunda değildir). x ≺ y

ile y − x ∈ R+ tanımlansın. Buna göre Postulat 2’de < yerine ≺ yazılmasıdurumunda Postulat 2’nin gerçeklendiğini gösteriniz.

17

Page 22: MB1001 ANALİZ I - i kuweb.iku.edu.tr/~eyavuz/Dersler/Analiz I/AnalizI.pdfDers Notları Yrd. Doç. Dr. Emel YAVUZ DUMAN İstanbul Kültür Üniversitesi Matematik-Bilgisayar Bölümü

1.3 Tamlık Aksiyomu

Bu bölümde R reel sayılara ilişkin üç postulatın sonuncusu üzerinde durula-caktır. İlk iki postulatın her ikisini de gerçekleyen R ve Q kümeleri arasında birayırım özelliği görecek üçüncü postulatı formülüze etmek için aşağıdaki konseptkullanılır.

Tanım 1.3.1. E reel sayıların boştan farklı bir alt kümesi olsun. Buna göre

i) E kümesinin üstten sınırlı olarak adlandırılması için gerek ve yeter şart

her a ∈ E için a ≤ M olacak şekilde bir M ∈ R sayısının var olmasıdır.

Bu durumda M sayısına E kümesinin bir üst sınırı denir.

ii) Bir s sayısının E kümesinin supremumu olarak adlandırılması için gerek

ve yeter şart s’in E kümesinin bir üst sınırı olması ve E’nin tüm M üst

sınırları için s ≤ M eşitsizliğinin gerçeklenmesidir. Bu durumda E kümesi

sonlu bir s supremumuna sahiptir denir ve s = supE yazılır.

Tanım 1.3.1 ii)’ye göre bir E kümesinin supremumu (eğer varsa) E’ninüst sınırlarının en küçüğüdür. Yine tanıma göre herhangi bir E ⊂ R kümesiverildiğinde s = supE olduğunu ispatlamak için hem s’in bir üst sınır olduğunuhem de üst sınırların en küçüğü olduğunu göstermek gerekir.

Örnek 1.3.2. E = [0, 1] olsun. Buna göre supE = 1’dir.

Kanıt. Aralığın tanımından 1 sayısının E kümesinin bir üst sınırı olduğu gö-

rülür. Zira her x ∈ [0, 1] için x ≤ 1 gerçeklenir. Diğer taraftan M sayısı E

kümesinin bir üst sınırı olsun. Buna göre her x ∈ E için M ≥ x eşitsizliği sağ-

lanır. 1 ∈ E olduğundan aynı zamanda M ≥ 1 eşitsizliği doğrudur. Buradan

E’nin en küçük üst sınırının 1 olduğu sonucuna ulaşılır.

Aşağıdaki iki açıklama verilen bir kümenin kaç tane üst sınırı ve supremumuolabilir sorusuna cevap mahiyetindedir.

Açıklama 1.3.3. Bir kümenin bir üst sınırı varsa sonsuz sayıda üst sınırı

vardır.

Kanıt. Eğer M0 sayısı E kümesinin bir üst sınırı ise M > M0 eşitsizliğini

gerçekleyen tüm M sayıları da E kümesinin üst sınırı olurlar. Bir sayıdan büyük

sonsuz tane reel sayı olduğundan E kümesinin sonsuz sayıda üst sınıra sahip

olduğu sonucu elde edilir.

Açıklama 1.3.4. Eğer bir kümenin supremumu varsa tek türlü belirlidir.

18

Page 23: MB1001 ANALİZ I - i kuweb.iku.edu.tr/~eyavuz/Dersler/Analiz I/AnalizI.pdfDers Notları Yrd. Doç. Dr. Emel YAVUZ DUMAN İstanbul Kültür Üniversitesi Matematik-Bilgisayar Bölümü

Kanıt. E kümesinin s1 ve s2 gibi iki supremumu olsun. Supremum tanımına

göre hem s1 hem de s2 sayıları E kümesinin birer üst sınırıdır. Ayrıca Tanım

1.3.1 ii)’ye göre s1 ≤ s2 ve s2 ≤ s1 sağlanır. Dolayısıyla, Trikotami Özelliği

gereği s1 = s2 olmalıdır.

Not. Yukarıdaki ispat genel bir prensibi göstermektedir. a = b olduğu kanıt-lanmak istenildiğinde ayrı ayrı a ≤ b ve b ≤ a olduğunu ispatlamak genellikledaha kolaydır.

Teorem 1.3.5 (Supremum için Yaklaşım Özelliği). E kümesinin sonlu bir

supremumu var olsun. Buna göre ε > 0 herhangi bir pozitif sayı olmak üzere

supE − ε < a ≤ supE

eşitsizliğini gerçekleyen bir a ∈ E noktası vardır.

Kanıt. Farz edelim ki teorem yanlış olsun. Buna göre öyle bir ε0 > 0 sayısı

vardır ki E kümesinin hiç bir elemanı s0 := supE − ε0 ile supE arasında yer

almaz. supE sayısı E kümesinin bir üst sınırı olduğundan her a ∈ E için a ≤ s0

sağlanır. Buna göre s0 sayısı E kümesinin bir üst sınırı olur. Dolayısıyla, Tanım

1.3.1 ii)’den supE ≤ s0 = supE−ε0 eşitsizliği gerçeklenir. Bu eşitsizliğin her iki

tarafına ε0 − supE eklenir ise ε0 ≤ 0 elde edilir ki bu durum bir çelişkidir.

Yaklaşım Özelliği kullanılarak tamsayıların herhangi bir alt kümesinin sup-remumunun yine bir tamsayı olduğu gösterilebilir.

Teorem 1.3.6. Eğer E ⊂ Z kümesinin bir supremumu varsa supE ∈ E’dir.

Özel olarak, sadece tamsayıları içeren bir kümenin supremumu varsa yine bir

tamsayıdır.

Kanıt. s := supE olsun. Yaklaşım Özelliği kullanılarak s− 1 < x0 ≤ s eşitsiz-

liğini sağlayan bir x0 ∈ E tamsayısı seçilsin. Eğer s = x0 ise s ∈ E olacağından

istenen sağlanır. Yani supE bir tamsayıdır. Diğer durumda s − 1 < x0 < s

olur ve yine Yaklaşım Özelliği kullanılarak x0 < x1 < s eşitsizliğini sağlayan

bir x1 ∈ E seçilebilir. x0 < x1 < s eşitsizliğinin her üç tarafından x0 çıkartılır

ise 0 < x1 − x0 < s − x0 elde edilir. Diğer taraftan s − 1 < x0 olduğundan

−x0 < 1 − s yazılabilir. Buna göre 0 < x1 − x0 < s + (1 − s) = 1 sonucuna

ulaşılır. Dolayısıyla x1−x0 ∈ Z∩(0, 1) neticesi elde edilir ki bu durum Açıklama

1.2.1 iii) ile çelişir. Şu halde s ∈ E olmak zorundadır.

R ile ilgili yapılacak son varsayım supremumun varlığı ile ilgilidir:

19

Page 24: MB1001 ANALİZ I - i kuweb.iku.edu.tr/~eyavuz/Dersler/Analiz I/AnalizI.pdfDers Notları Yrd. Doç. Dr. Emel YAVUZ DUMAN İstanbul Kültür Üniversitesi Matematik-Bilgisayar Bölümü

Postulat 3 [Tamlık Aksiyomu]. E reel sayıların boştan farklı ve üsten sınırlıbir alt kümesi ise E’nin sonlu bir supremumu vardır.

Tamlık Aksiyomu sıklıkla kullanılan bir olgudur. Bu aksiyomun ilk iki uy-gulaması tamsayıların ve reel sayılar içerisinde rasyonel sayıların dağılımlarınıortaya koyar.

Teorem 1.3.7 (Archimedean Özelliği). a > 0 olmak üzere her a ve b reel sayısı

için b < na eşitsizliğini sağlayacak şekilde bir n ∈ N tamsayısı vardır.

Strateji: İspatın arkasında yatan mantık gayet basittir. Tamlık Aksiyomu veTeorem 1.3.6’ya göre tamsayıların boştan farklı üstten sınırlı her alt kümesibir “en büyük” tamsayıya sahiptir. Eğer k0a ≤ b koşulunu sağlayan en büyüktamsayı k0 ise n = k0+1 için, ki bu durumda n sayısı k0’dan büyüktür, na > beşitsizliği gerçeklenir. Bu aşamada iki olgunun üzerinde durulması gerekir: (1)E := {k ∈ N : ka ≤ b} kümesi üstten sınırlı mıdır? (2) E kümesi boştan farklımıdır? İkinci sorunun cevabı b < a olup olmamasına bağlıdır. Şimdi detaylarıverebiliriz.

Kanıt. Eğer b < a ise n = 1 için istenen sağlanır. a ≤ b olsun ve E = {k ∈ N :

ka ≤ b} kümesi göz önüne alınsın. E kümesi en azından 1 doğal sayısını içerdi-

ğinden boştan farklıdır. ka ≤ b ifadesini sağlayan k ∈ E için, a > 0 olduğundan

Birinci Çarpma Özelliği’ne göre k ≤ b/a yazılabilir. Bu ise E kümesi b/a ile üs-

ten sınırlıdır demektir. Dolayısıyla Tamlık Aksiyomu ve Teorem 1.3.6’ya göre,

E kümesi sonlu bir s supremumuna sahiptir öyle ki bu s sayısı aynı zamanda

E kümesinin elemanıdır. Yani s ∈ N gerçeklenir.

n = s+1 olsun. Buna göre n ∈ N’dir ve s’den büyük olduğundan E kümesine

ait olamaz. Şu halde na > b sağlanır.

Örnek 1.3.2 ve Teorem 1.3.6 göz önüne alındığında E’nin supremumununyine E kümesinin elemanı olduğu gözlenmektedir. Fakat durum her zamanböyle olmayabilir.

Örnek 1.3.8. A ={

1, 12 ,

18 , · · ·

}

ve B ={

12 ,

23 ,

34 , · · ·

}

kümeleri göz önüne

alınsın. supA = supB = 1 olduğunu kanıtlayınız.

Kanıt. 1 sayısının her iki kümenin de bir üst sınırı olduğu açıktır. Bu durumda

gösterilmesi gereken her iki küme için de 1’in en küçük üst sınır olduğudur. A

kümesi göz önüne alınsın. 1 ∈ A olduğundan A’nın herhangi bir M üst sınırı

için M ≥ 1 gerçeklenir. Dolayısyla supA = 1 olduğu sonucu elde edilir. Diğer

taraftan, M sayısı B kümesinin bir üst sınırı olsun, öyleki M < 1 eşitsizliğini

sağlasın. Buna göre 1−M > 0 olduğundan 1/(1−M) ∈ R gerçeklenir.

1−M pozitif olduğundan ba = 1

1−M olarak alındığında Archimedean Özel-

liği’ne göre n > 1/(1 −M) eşitsizliğini sağlayan bir n ∈ N sayısı vardır. Buna

20

Page 25: MB1001 ANALİZ I - i kuweb.iku.edu.tr/~eyavuz/Dersler/Analiz I/AnalizI.pdfDers Notları Yrd. Doç. Dr. Emel YAVUZ DUMAN İstanbul Kültür Üniversitesi Matematik-Bilgisayar Bölümü

göre n > 11−M olduğundan n(1 −M) > 1 yani 1 −M > 1

n yazılabilir. Bu ise

−M > 1n − 1 ya da M < 1 − 1

n demektir. Şimdi x0 := 1 − 1/n diyelim. B

kümesinin elemanları

B ={1

2,2

3,3

4, · · ·

}

={

1− 1

2, 1− 1

3, 1− 1

4, · · ·

}

yani her n = 2, 3, · · · için 1− 1n formunda olduğundan x0 ∈ B’dir. Fakat M < x0

olması M sayısının B kümesinin bir üst sınırı olması ile çelişir. Şu halde M < 1

olamaz. Yani supB = 1’dir.

Teorem 1.3.9 (Rasyonel Sayıların Yoğunluğu). a < b koşulunu sağlayan a ve

b reel sayıları verilsin. Buna göre a < q < b eşitsizliğini sağlayan bir q ∈ Q

sayısı vardır.

Strateji: a < q < b koşulunu sağlayan q = m/n kesrini bulmak için paydaki mve paydadaki n değerlerini belirlemek gerekir. Öncelikle a > 0 ve E := {k ∈ N :k/n ≤ a} kümesinin k0 gibi bir supremumu olduğunu farz edelim. Buna görem := k0 + 1 sayısı E’nin supremumundan büyük olmakla birlikte E kümesineait değildir. Dolayısıyla m/n > a eşitsizliği gerçeklenir. Peki aradığımız kesirbu mudur? Ayrıca m/n < b eşitsizliği sağlanır mı? Cevap eğer n sayısı yeterincebüyük değil ise istenenin sağlanmadığı yönündedir. Bunu görmek için somut birörnek verelim: a = 2/3 ve b = 1 olsun. Eğer n = 1 ise E kümesi k

1 ≤ 23 özelliğini

sağlayan k ∈ N sayılarını içereceğinden E boş kümedir ve supremumu yoktur.n = 2 olması durumunda E kümesi k

2 ≤ 23 yani k ≤ 4

3 özelliğini sağlayank ∈ N sayılarını içereceğinden E kümesinin supremumu k0 = 1’e eşittir. Benzerşekilde n = 3 olması durumunda E kümesi k

3 ≤ 23 yani k ≤ 2 özelliğini sağlayan

k ∈ N sayılarını içereceğinden E kümesinin supremumu k0 = 2’ye eşittir. Heriki durumda da (k0 + 1)/n = 1’dir ki bu değer istenenden büyüktür. Fakatn = 4 olması durumunda E kümesi k

4 ≤ 23 yani k ≤ 8

3 özelliğini sağlayank ∈ N sayılarını içereceğinden E kümesinin supremumu k0 = 2’ye eşittir ve(k0 + 1)/4 = 3/4 elde edilir ki bu değer istenildiği üzere b = 1’den küçüktür.Her a < b için yeterince büyük bir n sayısının, k0 yukarıda anlatıldığı gibiseçilmek üzere, (k0+1)/n < b eşitsizliğini sağlayacak şekilde var olduğunu nasılispatlamalıyız? Sorunun cevabı k0’ın k0/n ≤ a eşitsizliğini sağlayacak şekildeseçilmesi olgusuna dayanır. En kötü durumda a = k0/n olsun. Bu durumdab > (k0 + 1)/n eşitsizliği

b >k0 + 1

n=

k0n

+1

n= a+

1

n

yani b − a > 1/n olduğu anlamına gelirdi ki Archimedean Özelliğine göre buşekilde bir n her zaman seçilebilir.

Peki supE’nin var olduğu varsayımı için ne söylenebilir? Bu durum E’ninboştan farklı ve üstten sınırlı olmasını gerektirir. Eğer n sabitlenir ise bu du-rumda E kümesi na ile üstten sınırlı olur. Fakat E kümesinin boştan farklıolmasının tek yolu 1 ∈ E yani 1/n ≤ a olması ile mümkündür. Bu durum n

21

Page 26: MB1001 ANALİZ I - i kuweb.iku.edu.tr/~eyavuz/Dersler/Analiz I/AnalizI.pdfDers Notları Yrd. Doç. Dr. Emel YAVUZ DUMAN İstanbul Kültür Üniversitesi Matematik-Bilgisayar Bölümü

üzerinde ikinci bir kısıtlama yapılmasını gerektirir. Bu noktadan sonra ispatı-mıza geçebiliriz.

Kanıt. a > 0 olsun. Dolayısıyla b− a > 0’dır ve Archimedean Özelliği’ne göre

n > max{1

a,

1

b− a

}

eşitsizliğini sağlayan bir n ∈ N sayısı, 1/n < a ve 1/n < b − a olacak şekilde

mevcuttur. Burada belirtmek gerekir ki eğer max{

1a ,

1b−a

}

= 1a ise n > 1

a >1

b−a olduğundan 1/n < a ve 1/n < b− a aynı anda gerçeklenir. Benzer şekilde

eğer max{

1a ,

1b−a

}

= 1b−a ise n > 1

b−a > 1a olduğundan 1/n < a ve 1/n < b−a

ifadeleri de aynı anda gerçeklenir

E := {k ∈ N : k/n ≤ a} kümesi göz önüne alınsın. 1 ∈ E olduğundan E

kümesi boştan farklıdır. Diğer taraftan n > 0 olduğundan ötürü E kümesi na

ile üstten sınırlıdır. Dolayısıyla k0 := supE mevcuttur ve aynı zamanda Teorem

1.3.6’ye göre E kümesinin, özel olarak da N’nin bir elemanıdır. m = k0 + 1 ve

q = m/n olsun. k0 sayısı E kümesinin supremumu olduğundan m /∈ E’dir. Yani,

m/n > a sağlanır. Diğer taraftan k0 ∈ E olduğundan n sayısının seçiminden

ötürü

b = a+ (b− a) ≥ k0n

+ (b− a) >k0n

+1

n=

m

n= q

ifadesi elde edilir. Yani a < q = mn < b sağlanır.

a ≤ 0 olsun. Archimedean Özelliği’ne göre k > −a olacak şekilde bir k ∈ N

sayısı vardır. Bu eşitsizliğin her iki tarafına a eklenir ve a < b olduğu göz önüne

alınır ise 0 < k + a < k + b bulunur. Dolayısıyla, yukarıda ispatlandığı üzere

k + a < r < k + b olacak şekilde bir r ∈ Q sayısının varlığı garantidir. Buna

göre q := r − k sayısı Q rasyonel sayılar kümesinin elemanıdır ve a < q < b

eşitsizliğini gerçekler.

Tanım 1.3.10. E reel sayıların boştan farklı bir alt kümesi olsun. Buna göre

i) E kümesinin alttan sınırlı olarak adlandırılması için gerek ve yeter şart

her a ∈ E için a ≥ m olacak şekilde bir m ∈ R elemanının var olmasıdır.

Bu durumda m sayısına E kümesinin bir alt sınırı denir.

ii) Bir t sayısının E kümesinin infimumu olarak adlandırılması için gerek

ve yeter şart t’in E kümesinin bir alt sınırı olması ve E’nin tüm m alt

sınırları için t ≥ m eşitsizliğinin gerçeklenmesidir. Bu durumda E kümesi

bir t infimumuna sahiptir denir ve t = inf E yazılır.

iii) Bir E kümesinin sınırlı olarak adlandırılması için gerek ve yeter şart hem

alttan hem de üstten sınırlı olmasıdır.

22

Page 27: MB1001 ANALİZ I - i kuweb.iku.edu.tr/~eyavuz/Dersler/Analiz I/AnalizI.pdfDers Notları Yrd. Doç. Dr. Emel YAVUZ DUMAN İstanbul Kültür Üniversitesi Matematik-Bilgisayar Bölümü

Genellikle supremumunu içeren bir E kümesi için supE yerine maxE, in-fimumunu içeren bir E kümesi için inf E yerine minE yazılır. Bazı yazarlarsupremumu üst sınırların en küçüğü, infimumu alt sınırların en büyüğü ola-rak adlandırırlar. Fakat biz bu terminolojiyi en küçük üst sınır en büyükalt sınırdan her zaman büyük veya eşit olacağından öğrencide bir karışıklıkyaratmaması bakımından kullanmayacağız.

İnfimum ve supremum arasındaki bağlantıyı ortaya koymak için yansımatanımını kullanırız. Bir E ⊆ R kümesinin yansıması

−E := {x : x = −a, a ∈ E}

olarak tanımlanır. Tanıma göre −(1, 2] = [−2,−1)’dir.Aşağıdaki sonuç bir kümenin supremumunun, o kümenin yansımasının in-

fimumunun ters işaretli haline eşit olduğunu söyler. Bu sonuç kullanılarak infi-mum için Yaklaşım Özelliği ve Tamlık Özelliği verilebilir (bkz Alıştırma 1.3.7).

Teorem 1.3.11 (Yansıma Prensibi). E ⊆ R kümesi boştan farklı olsun.

i) E kümesinin supremumu olabilmesi için gerek ve yeter şart

inf(−E) = − sup(E)

sağlayacak şekilde −E kümesinin bir infimuma sahip olmasıdır.

ii) E kümesinin infimumu olabilmesi için gerek ve yeter şart

sup(−E) = − inf(E)

sağlayacak şekilde −E kümesinin bir supremuma sahip olmasıdır.

Kanıt. i) ve ii) şıklarının kanıtları benzer olduğundan sadece ilk ifadenin ispa-

tını vereceğiz.

E kümesinin supremumu s ve t = −s olsun. s sayısı E kümesinin bir üst

sınırı olduğundan her a ∈ E için s ≥ a yani −s = t ≤ −a eşitsizliği geçerlidir.

Buna göre t sayısı −E kümesi için bir alt sınırdır. −E kümesinin herhangi bir

alt sınırı m olsun. Her a ∈ E için m ≤ −a yani −m ≥ a gerçeklendiğinden −m

sayısı E kümesinin bir üst sınırıdır. E kümesinin supremumu s olduğundan

s ≤ −m yani t = −s ≥ m sağlanır. Bu ise t’nin −E kümesinin infimumu

olduğu ve supE = s = −t = − inf(−E) eşitliğinin sağlandığı anlamına gelir.

Tersine, −E kümesinin infimumu t olsun ve inf(−E) = − sup(E) eşitliği

sağlansın. Tanıma göre her a ∈ E için t ≤ −a eşitsizliği geçerli olduğundan

−t sayısı E kümesinin bir üst sınırıdır. E kümesi boş olmadığından Tamlık

Aksiyomu gereği E kümesinin bir supremumu vardır.

Teorem 1.3.12 (Monotonluk Özelliği). R’nin boştan farklı A ⊆ B içermesini

gerçekleyen alt kümeleri verilsin.

23

Page 28: MB1001 ANALİZ I - i kuweb.iku.edu.tr/~eyavuz/Dersler/Analiz I/AnalizI.pdfDers Notları Yrd. Doç. Dr. Emel YAVUZ DUMAN İstanbul Kültür Üniversitesi Matematik-Bilgisayar Bölümü

i) Eğer B kümesinin supremumu varsa supA ≤ supB’dir.

ii) Eğer B kümesinin infimumu varsa inf A ≥ inf B’dir.

Kanıt. i) A ⊆ B olduğundan B kümesine ait her üst sınır aynı zamanda A

kümesini de üstten sınırlar. Dolayısıyla supB sayısı A’nın bir üst sınırıdır.

Buna göre Tamlık Aksiyomu gereği supA mevcuttur ve Tanım 1.3.1 ii)’ye göre

supA ≤ supB eşitsizliği elde edilir.

ii) Açıkça A ⊆ B içermesi −A ⊆ −B olmasını gerektirir. Dolayısıyla i)

şıkkı, Teorem 1.3.11 ve İkinci Çarpma Özelliği göz önüne alındığında

inf A = − sup(−A) ≥ − sup(−B) = inf B

sonucu elde edilir.

Supremum ve infimum tanımlarını R’nin tüm alt kümelerine uyarlamakmümkündür. Bunu gerçekleştirmek için R’nin tanımını genişletmek gerekir.Genişletilmiş reel sayılar kümesi R := R

⋃{±∞} olarak tanımlanır. Buna görebir x sayısının genişletilmiş reel sayılar kümesinin bir elemanı olabilmesi içingerek ve yeter şart x ∈ R, x = +∞ veya x = −∞ ifadelerinden birinin gerçek-lenmesidir.

Boştan farklı bir E ⊆ R kümesi göz önüne alınsın. Eğer E kümesi üsttensınırlı değil ise supE = +∞, alttan sınırlı değil ise inf E = −∞ olarak tanım-lanır. Ayrıca sup ∅ = −∞ ve inf ∅ = +∞ şeklinde tanımlanır. Dikkat edilirseR’nin bir E alt kümesinin supremumunun sonlu olabilmesi için gerek ve yeterşart E’nin boştan farklı ve üstten sınırlı olmasıdır. Benzer şekilde bu E altkümesinin infimumunun sonlu olabilmesi için gerek ve yeter şart E’nin boştanfarklı ve alttan sınırlı olmasıdır. Ayrıca, her a ∈ R için −∞ < a ve a < ∞olduğu esasına göre Monotonluk Özelliği bu genişletilmiş tanım için de doğru-dur. Yani −∞ < ∞ kuralı altında R’nin A ⊆ B içermesini sağlayan her A, Balt kümeleri için supA ≤ supB ve inf A ≥ inf B eşitsizlikleri geçerlidir.

Alıştırmalar

1.3.1. Aşağıdaki ifadelerin hangilerinin doğru hangilerinin yanlış olduğunu belirleyi-niz. Doğru olanları ispatlayıp yanlış olanlara ise ters örnek veriniz.

a) A ve B reel sayıların boştan farklı ve sınırlı iki alt kümesi ise sup(A∩B) ≤ supA

sağlanır.b) ε pozitif bir reel sayı olsun. A reel sayıların boştan farklı sınırlı bir alt kümesi

ve B = {xǫ : x ∈ A} ise supB = ε supA eşitliği gerçeklenir.c) A ve B reel sayıların boştan farklı ve sınırlı iki alt kümesi olmak üzere A+B :=

{a + b : a ∈ A ve b ∈ B} şeklinde tanımlansın. Buna göre sup(A + B) =

sup(A) + sup(B) sağlanır.d) A ve B reel sayıların boştan farklı ve sınırlı iki alt kümesi olmak üzere A−B :=

{a − b : a ∈ A ve b ∈ B} şeklinde tanımlansın. Buna göre sup(A − B) =

sup(A)− sup(B) sağlanır.

24

Page 29: MB1001 ANALİZ I - i kuweb.iku.edu.tr/~eyavuz/Dersler/Analiz I/AnalizI.pdfDers Notları Yrd. Doç. Dr. Emel YAVUZ DUMAN İstanbul Kültür Üniversitesi Matematik-Bilgisayar Bölümü

1.3.2. Aşağıda verilen her bir kümenin supremum ve infimumunu tespit ediniz.

a) E = {x ∈ R : x2 + 2x = 3}b) E = {x ∈ R : x2 − 2x+ 3 > x2 ve x > 0}c) E = {p/q ∈ Q : p2 < 5q2 ve p, q > 0}d) E = {x ∈ R : x = 1 + (−1)n/n, n ∈ N}e) E = {x ∈ R : x = 1/n+ (−1)n, n ∈ N}f) E = {2− (−1)n/n2 : n ∈ N}

1.3.3. Her a ∈ R ve n ∈ N için |a− rn| < 1/n olacak şekilde bir rn rasyonel sayısınınvarlığını gösteriniz.

1.3.4. (İrrasyonel Sayıların Yoğunluğu) Gösteriniz ki a < b özelliğini gerçekleyen hera, b reel sayısı için bir ξ ∈ R irrasyonel sayısı a < ξ < b eşitsizliğini sağlayacak şekildevardır.

1.3.5. Bir kümenin alt sınırının tek türlü belirli olmak zorunda olmadığını fakatverilen bir E kümesinin infimumunun tek türlü belirli olduğunu ispatlayınız.

1.3.6. Z’nin boştan farklı bir E alt kümesi için inf E’nin mevcut ve E kümesininelemanı olduğunu kanıtlayınız.

1.3.7. Yansıma Prensibi ve supremum için benzer sonuçları kullanarak aşağıdakiifadelerin doğruluğunu gösteriniz.

a) (İnfimum için Yaklaşım Özelliği) E ⊂ R kümesinin sonlu bir supremumu varolsun. Buna göre ε > 0 herhangi bir pozitif sayı olmak üzere

inf E + ε > a ≥ inf E

eşitsizliğini gerçekleyen bir a ∈ E noktası vardır.b) (İnfimum için Tamlık Özelliği) Eğer boştan farklı E ⊆ R kümesi alttan sınırlı

ise bir (sonlu) infimumu vardır.

1.3.8. a) E ⊆ R kümesinin bir üst sınırı x ve x ∈ E ise gösteriniz ki E’ninsupremumu x sayısıdır.

b) Yukarıdaki ifadenin benzerini infimum için tekrar yazıp ispatlayınız.c) Örnek vererek yukarıdaki ifadelerin terslerinin doğru olmadığını gösteriniz.

1.3.9. E,A,B ∈ R ve E = A ∪ B olsun. Gösteriniz ki eğer E’nin supremumu varsave A, B kümeleri boştan farklı ise supA ve supB değerlerinin her ikisi de mevcutturve supE sayısı supA veya supB’den birine eşittir.

1.3.10. k, n ∈ Z olmak üzere k/2n formundaki bir sayıya diyadik rasyonel adı verilir.a < b özelliğini sağlayan her a ve b reel sayıları için a < q < b eşitsizliğini gerçekleyenbir q diyadik rasyonelinin varlığını gösteriniz.

1.3.11. xn ∈ R ve her n ∈ N için |xn| ≤ M olacak şekilde bir M ∈ R sayısı var olsun.Gösteriniz ki her n ∈ N için sn = sup{xn, xn+1, · · · } ifadesi bir reel sayı tanımlarve s1 ≥ s2 ≥ · · · eşitsizliği gerçeklenir. Benzer sonucu tn = inf{xn, xn+1, · · · } içinispatlayınız.

1.3.12. Eğer a, b ∈ R reel sayıları için b − a > 1 sağlanıyor ise a < k < b olacakşekilde en az bir k ∈ Z sayısının varlığını gösteriniz.

25

Page 30: MB1001 ANALİZ I - i kuweb.iku.edu.tr/~eyavuz/Dersler/Analiz I/AnalizI.pdfDers Notları Yrd. Doç. Dr. Emel YAVUZ DUMAN İstanbul Kültür Üniversitesi Matematik-Bilgisayar Bölümü

1.4 Ters Fonksiyonlar ve Görüntüler

Kısım 1.1’den biliyoruz ki f : X → Y fonksiyonunun bir ters fonksiyonu olmasıiçin gerek ve yeter şart Ran(f) = Y ve her y ∈ Y elemanının tek türlü belirlibir x ∈ X ön görüntüsüne sahip olmasıdır. Bu durumda f−1 ters fonksiyonuf−1(y) := x olarak tanımlanır. Özel olarak f : X → Y fonksiyonunun tersivarsa her x ∈ X ve y ∈ Y için aşağıdaki ifadeler doğrudur:

f−1(f(x)) = x ve f(f−1(y)) = y. (1.10)

Teorem 1.4.1. X ve Y iki küme ve f : X → Y olsun. Buna göre aşağıda

verilen üç ifade birbirine denktir.

i) f ’in bir tersi vardır;

ii) f fonksiyonu X’den Y ’ye üzerine bire-bir bir fonksiyondur;

iii) Her x ∈ X ve y ∈ Y için bir g : Y → X fonksiyonu aşağıdaki iki koşulu

gerçekleyecek şekilde mevcuttur:

g(f(x)) = x (1.11)

ve

f(g(y)) = y. (1.12)

Ayrıca her f : X → Y için (1.11) ve (1.12) ifadelerini sağlayan sadece bir g

fonksiyonu vardır. Bu fonksiyon f−1 ters fonksiyonudur.

Kanıt. i) gerektirir ii). f fonksiyonunun bir tersi olsun. Tanım gereği Ran(f) =

Y ’dir. Yani f fonksiyonu X’den Y ’ye üzerine bir fonksiyondur ve her y ∈ Y

elemanının tek türlü belirli bir x ∈ X ön görüntüsü vardır. Yani f(y1) = f(y2)

için y1 = y2 sağlanır ki bu f ’in X üzerinde bire-bir olduğu anlamına gelir.

ii) gerektirir iii). f fonksiyonu X’den Y ’ye üzerine bire-bir bir fonksiyon

olsun. i) gerektirir ii) ispatı aynı zamanda f ’in bire-bir ve üzerine olması du-

rumunda bir tersi olduğunu da söyler. Özel olarak g(y) := f−1(y) fonksiyonu

(1.10)’den ötürü (1.11) ve (1.12) ifadelerini de gerçekler.

iii) gerektirir i). (1.11) ve (1.12) ifadelerini gerçekleyen bir g : Y → X fonk-

siyonu var olsun. Eğer bir y ∈ Y elemanının X içinde x1, x2 gibi birbirinden

farklı iki ön görüntüsü varsa f(x1) = y = f(x2) yazılabilir. Bu durumda (1.11)’e

göre x1 = g(f(x1)) = g(f(x2)) = x2 olduğu sonucu elde edilir ki bu x1 6= x2

olması ile çelişir. Diğer taraftan verilen bir y ∈ Y için x = g(y) olsun. (1.12)’e

göre f(x) = f(g(y)) = y, yani Ran(f) = Y olduğu sonucu elde edilir.

Son olarak, (1.11) ve (1.12) ifadelerinin her ikisini birden sağlayan bir başka

h fonksiyonunun olduğunu kabul edelim ve y ∈ Y elemanını sabitleyelim. ii)’ye

26

Page 31: MB1001 ANALİZ I - i kuweb.iku.edu.tr/~eyavuz/Dersler/Analiz I/AnalizI.pdfDers Notları Yrd. Doç. Dr. Emel YAVUZ DUMAN İstanbul Kültür Üniversitesi Matematik-Bilgisayar Bölümü

göre f(x) = y olacak şekilde bir x ∈ X vardır. Dolayısıyla (1.11)’den

h(y) = h(f(x)) = x = g(f(x)) = g(y)

ifadesi yazılabilir ki buna göre Y üzerinde h = g sağlanır. Yani g fonksiyonu

tek türlü belirlidir.

Biliyoruz ki bir f fonksiyonunun bire-bir olduğunu göstermek için iki yolvardır. Ya f(x1) = f(x2) olduğu kabul edilip x1 = x2 eşitliğinin doğruluğugösterilmelidir ya da x1 6= x2 için f(x1) 6= f(x2) olduğu kanıtlanmalıdır. EğerX kümesi R içinde bir aralık ve f diferansiyellenebilir ise f ’in X üzerindebire-bir olduğunu göstermenin daha kolay bir yolu vardır.

Açıklama 1.4.2. I bir aralık ve f : I → R bir foksiyon olsun. Eğer f ’in türevi

I üzerinde her zaman pozitif ya da her zaman negatif değerler alıyor ise f

fonksiyonu I aralığı üzerinde bire-birdir.

Kanıt. Simetriden ötürü f ’in türevi olan f ′ fonksiyonunun her x ∈ X için

f ′(x) > 0 koşulunu sağladığını, yani pozitif olduğunu farzedelim. Tek değişkenli

fonksiyonları daha önceden incelemiş olan herkes bilir ki bir I aralığında f ′ > 0

koşulunu sağlayan bir fonksiyon kesinlikle artandır. Yani x1 < x2 koşulunu

sağlayan x1, x2 ∈ I için f(x1) < f(x2) gerçeklenir (bu özelliğin ispatı daha

sonra verilecektir).

Yukarıdaki özelliğin bire-bir olmayı neden gerektirdiğini göstermek için x1,

x2 ∈ X olmak üzere f(x1) = f(x2) eşitliğinin sağlandığını düşünelim. Eğer

x1 6= x2 ise Trikotami Özelliği gereği ya x1 < x2 ya da x2 < x1’dir. f fonksiyonu

I üzerinde kesinlikle artan olduğundan ya f(x1) < f(x2) ya da f(x2) < f(x1)

sağlanır. Bu her iki durum da f(x1) = f(x2) olması varsayımı ile çelişir.

Teorem 1.4.1’e göre f : X → Y fonksiyonunun f−1 ters fonksiyonu olmasıiçin gerek ve yeter şart her x ∈ X için f−1(f(x)) = x ve her y ∈ Y içinf(f−1(y)) = y eşitliklerinin sağlanmasıdır. Buna göre eğer y = f(x) fonksiyonux’e göre çözülebiliyorsa f−1 için bir formül bulunabilir.

Örnek 1.4.3. f(x) = ex − e−x fonksiyonunun R’de bire-bir olduğunu gösterip

Ran(f) üzerinde f−1 için bir formül bulunuz.

Çözüm. Her x ∈ R için f ′(x) = ex + e−x > 0 olduğundan Açıklama 1.4.2’ye

göre f fonksiyonu R üzerinde bire-birdir.

y = ex + e−x olsun. Bu ifadenin her iki tarafını ex ile çarpar, sıfırdan farklı

tüm terimleri bir tarafa toplarsak ex’in

e2x − yex − 1 = 0

27

Page 32: MB1001 ANALİZ I - i kuweb.iku.edu.tr/~eyavuz/Dersler/Analiz I/AnalizI.pdfDers Notları Yrd. Doç. Dr. Emel YAVUZ DUMAN İstanbul Kültür Üniversitesi Matematik-Bilgisayar Bölümü

şeklinde kuadratik denklemini elde ederiz. İkinci derece denklemlerin çözümü

için bilinen formül kullanılarak

ex =y ±

y2 + 4

2(1.13)

sonucu elde edilir. ex ifadesi her zaman pozitif olduğundan negatif işaret göz

ardı edilmelidir. Son eşitlikten logaritma alınır ise x = log(y+√

y2 + 4)− log 2

elde edilir ki bu ise

f−1(x) = log(x+√

x2 + 4)− log 2

olduğu anlamına gelir. �

Tanım 1.4.4. X ve Y iki küme f : X → Y olsun. Buna göre E ⊆ X kümesinin

f altındaki görüntüsü (veya imajı)

f(E) := {y ∈ Y : y = f(x) olacak şekilde x ∈ E vardır},

E ⊆ Y kümesinin f altındaki ters görüntüsü (veya ters imajı)

f−1(E) := {x ∈ X : f(x) = y olacak şekilde y ∈ E vardır}

olarak tanımlanır.

E

f−1(H)

f(E)

H

f

E’nin bir aralık olması durumunda ekstra parantezleri ihmal ederiz. Örneğinf((a, b]) yerine f(a, b] ve f−1((a, b]) yerine f−1(a, b] yazılabilir.

Örnek 1.4.5. f : R → R fonksiyonu f(x) = x2 olarak tanımlansın. Buna göre

E = {x : 0 ≤ x ≤ 2} kümesinin görüntüsü f(E) = {y : 0 ≤ y ≤ 4} kümesidir.

G = {y : 0 ≤ y ≤ 4} olsun. Buna göre G kümesinin f altındaki ters

görüntüsü f−1(G) = {x : −2 ≤ x ≤ 2} kümesidir. Bu durumda f−1(f(E)) 6= E

olduğu sonucu elde edilir.

Diğer taraftan f(f−1(G)) = G eşitliği gerçeklenir. Fakat H = {y : −1 ≤y ≤ 1} olması durumunda f(f−1(H)) = {y : 0 ≤ y ≤ 1} 6= H sonucu elde

edilir.

28

Page 33: MB1001 ANALİZ I - i kuweb.iku.edu.tr/~eyavuz/Dersler/Analiz I/AnalizI.pdfDers Notları Yrd. Doç. Dr. Emel YAVUZ DUMAN İstanbul Kültür Üniversitesi Matematik-Bilgisayar Bölümü

Örnek 1.4.6. f(x) = x2 + x fonksiyonu altında I = (−1, 0) ve J = (0, 1]

kümelerinin görüntülerini ve ters görüntülerini bulunuz.

Çözüm. “Bulmak” demek “ispatlamak” anlamına gelmediğinden y = x2 + x

fonksiyonunun grafiğine bakarız.

Tanıma göre f(I) kümesi x’ler I = (−1, 0) aralığından değerler almak üzere

f(x)’in y-değerlerini içerir. f(x) = x2 + x = x(x+ 1) fonksiyonunun x = 0,−1

noktalarında kökleri vardır ve x = −0.5 noktasında −0.25 minimum değerini

alır. Grafiğe bakarak f(I) = [−0.25, 0) olduğu kolayca görülür. f−1(I) kü-

mesi görüntüsü I = (−1, 0) aralığına ait x-değerlerini içerdiğinden ve f fonk-

siyonunun grafiği −1 < x < 0 için x-ekseninin altında yer aldığından açıkça

f−1(I) = (−1, 0) olduğu görülür.

Benzer şekilde J = (0, 1] kümesinin görüntüsü f(J) = (0, 2] olmakla birlikte

f−1(J) =[−1−

√5

2,−1

)⋃(

0,−1 +

√5

2

)

.

sonucu elde edilir. �

DİKKAT. Ne yazık ki f−1’in üç tane anlamı bulunmaktadır: (1) f fonk-siyonunun reel değerleri ve f(x) 6= 0 olması durumunda f−1(x) = 1/f(x)ters fonksiyonu; (2) f ’in bire-bir ve üzerine olması durumunda f−1(x) tersfonksiyonu; (3) f altında E’nin f−1(E) ters görüntüsünü ifade etmede hep aynınotasyon kullanılmaktadır. Metin içerisinde bunlardan hangisinin kast edildiğianlaşılmalıdır.

29

Page 34: MB1001 ANALİZ I - i kuweb.iku.edu.tr/~eyavuz/Dersler/Analiz I/AnalizI.pdfDers Notları Yrd. Doç. Dr. Emel YAVUZ DUMAN İstanbul Kültür Üniversitesi Matematik-Bilgisayar Bölümü

Dikkat edilirse Tanım 1.4.4 bir asimetri içerir: y ∈ f(E) olması x ∈ E içiny = f(x) eşitliğinin sağlandığı anlamına gelir. Fakat x ∈ f−1(E) olması y ∈ Eiçin x = f−1(y) eşitliğinin sağlanacağı anlamına gelmez. Örneğin, f(x) = sinxolsun. Her k ∈ Z için sin(kπ) = 0 olduğundan f altında {0} kümesinin tersgörüntüsü f−1({0}) = {kπ : k ∈ Z} olmakla birlikte arcsinx fonksiyonunundeğer bölgesi [−π/2, π/2] olduğundan {0}’ın f−1 altındaki imajı arcsin{0} ={0}’dır.

Eğer göz önüne alınan kümelerin sayısı alfabenin harflerinden daha çokdeğil ise onlar A,B, · · · ,W gibi harflerle temsil edilebilir. Eğer alfabenin harf-lerinden daha çok ve sayıları n tane olan kümeler söz konusu ise bu küme-ler A1, A2, · · ·An simgeleri ile temsil edilebilir. Bu durumda, her bir Ai (i =1, 2, 3, · · · , n) kümesi i ile indislenmiştir denir. Şimdi bu kavramı biraz dahagenelleştirelim. Herhangi bir A kümesini düşünelim. Her α ∈ A elemanınakarşılık bir Eα kümesi var olsun. Bütün bu kümelerden oluşan topluluk E ilegösterilirse

E = {Eα : α ∈ A}yazılabilir. Buna göre E topluluğu, elemanları Eα kümeleri olan bir kümedir.Dolayısıyla E ’ye bir kümeler ailesi veya kümeler topluluğu denir. Burada Akümesine ailenin indis kümesi, her bir Eα kümesine α ile indislenmiş küme veher bir α ∈ A elemanına da bir indis adı verilir.

Yukarıda yapılan tanıma göre bir kümeler ailesinin bir A kümesi ile indislen-mesi için gerek ve yeter şart A’dan E üzerine bir F fonksiyonunun var olmasıdır(yani, her α ∈ A ile ilişkilendirilmiş E içerisinde bir ve yalnız bir küme vardır).A ile indislenmiş E kümeler ailesi çoğunlukla E = {Eα}α∈A olarak gösterilir.

Tanım 1.4.7. E = {Eα}α∈A bir kümeler ailesi olsun.

i) Bir E kümeler ailesinin birleşimi

α∈A

Eα := {x : x ∈ Eα olacak şekilde α ∈ A vardır}

şeklinde tanımlanan kümedir. Yani bir x elemanının bu birleşime ait ola-

bilmesi için gerek ve yeter şart en az bir α ∈ A için x ∈ Eα olmasıdır.

ii) Bir E kümeler ailesinin kesişimi

α∈A

Eα := {x : her α ∈ A için x ∈ Eα}

şeklinde tanımlanan kümedir. Yani bir x elemanının bu arakesite ait ola-

bilmesi için gerek ve yeter şart her bir α ∈ A için x ∈ Eα olmasıdır.

Örneğin,⋃

x∈(0,1]

[0, x) = [0, 1) ve⋂

x∈(0,1]

[0, x) = {0}

30

Page 35: MB1001 ANALİZ I - i kuweb.iku.edu.tr/~eyavuz/Dersler/Analiz I/AnalizI.pdfDers Notları Yrd. Doç. Dr. Emel YAVUZ DUMAN İstanbul Kültür Üniversitesi Matematik-Bilgisayar Bölümü

sağlanır.Aşağıdaki önemli ve çokça kullanılan sonuç birleşimden keşisime ve tersi

geçişlerde kolay bir yol olduğunu göstermektedir.

Teorem 1.4.8 (DeMorgan Kuralları). X bir küme ve {Eα}α∈A ise X’in alt

kümelerinin bir ailesi olsun. Her E ⊆ X için Ec ile X\E kümesi temsil edilmek

üzere (⋃

α∈A

)c

=⋂

α∈A

Ecα (1.14)

ve (⋂

α∈A

)c

=⋃

α∈A

Ecα (1.15)

eşitlikleri geçerlidir.

Kanıt. x elemanı (1.14) ifadesinin sol tarafında verilen kümeye ait olsun. Bu

durumda x ∈ X ve x /∈ ⋃α∈A Eα ifadeleri gerçeklenir. Tanıma göre x ∈ X ve

her α ∈ A için x /∈ Eα sağlanır. Dolayısıyla her α ∈ A için x ∈ Ecα gerçeklenir.

Bu ise x’in (1.14) ifadesinin sağ tarafında verilen kümeye ait olduğu anlamına

gelir. Bu adımlar terslenebilir olduğundan (1.14) eşitliğinin sağlandığı görülür.

Benzer şekilde hareket ederek (1.15) ifadesinin doğruluğu elde edilir.

Aşağıdaki sonuç kümelerin birleşim ve kesişimlerinin görüntü ve ters görün-tüleri hakkında yorum yapmamızı sağlaması bakımından önemlidir.

Teorem 1.4.9. X ve Y iki küme, f : X → Y olsun.

i) X’in alt kümelerinin bir ailesi {Eα}α∈A ise

f

(⋃

α∈A

)

=⋃

α∈A

f(Eα) ve f

(⋂

α∈A

)

⊆⋂

α∈A

f(Eα)

ifadeleri doğrudur.

ii) X’in herhangi iki B ve C alt kümeleri için

f(C\B) ⊇ f(C)\f(B)

içermesi gerçeklenir.

iii) Y ’nin alt kümelerinin bir ailesi {Eα}α∈A ise

f−1

(⋃

α∈A

)

=⋃

α∈A

f−1(Eα) ve f−1

(⋂

α∈A

)

=⋂

α∈A

f(Eα)

ifadeleri doğrudur.

31

Page 36: MB1001 ANALİZ I - i kuweb.iku.edu.tr/~eyavuz/Dersler/Analiz I/AnalizI.pdfDers Notları Yrd. Doç. Dr. Emel YAVUZ DUMAN İstanbul Kültür Üniversitesi Matematik-Bilgisayar Bölümü

iv) Y ’nin herhangi iki B ve C alt kümeleri için

f−1(C\B) = f−1(C)\f−1(B)

eşitliği gerçeklenir.

v) Eğer E ⊆ f(X) ise f(f−1(E)) = E gerçeklenir. Diğer taraftan, E ⊆ X

ise f−1(f(E)) ⊇ E içermesi doğrudur.

Kanıt. i) Tanıma göre y ∈ f (∪α∈AEα) ifadesinin sağlanması için gerek ve ye-

ter şart x ∈ Eα ve α ∈ A için y = f(x) eşitliğinin gerçeklenmesidir. Bu ise

y ∈ ∪α∈Af(Eα) olmasına denktir. Benzer şekilde, y ∈ f (∩α∈AEα) ifadesinin

sağlanması için gerek ve yeter şart x ∈ ∩α∈AEα için y = f(x) eşitliğinin ger-

çeklenmesidir. Buna göre her α ∈ A için y = f(xα) olacak şekilde bir xα ∈ Eα

elemanı vardır. Dolayısıyla, y ∈ ∩α∈Af(Eα) olduğu sonucu elde edilir.

ii) Eğer y ∈ f(C)\f(B) ise c ∈ C için y = f(c) ve her b ∈ B için y 6= f(b)

gerçeklenir. Dolayısıyla, y ∈ f(C\B) sağlanır. Benzer şekilde hareket ederek

iii), iv) ve v) ifadelerinin doğruluğu gösterilebilir.

i), ii) ve v) şıklarında verilen içermelerde f fonksiyonunun bire-bir olmamasıdurumunda eşitlik halinin hiçbir zaman gerçeklenmeyeceğini görmek önemlidir(bkz Alıştırma 1.4.7 ve 1.4.8). Örneğin, eğer f(x) = x2, E1 = {1} ve E2 = {−1}ise f(E1 ∩ E2) = ∅ kümesi f(E1) ∩ f(E2) = {1} kümesinin bir alt kümesidir.

Alıştırmalar

1.4.1. Aşağıda verilen ifadelerin hangilerinin doğru, hangilerinin yanlış olduğunutespit ediniz. Doğru olanları ispatlayıp yanlış olanlara ise birer ters örnek veriniz.

a) f(x) = sinx olsun. Bu durumda

f :

[

π

2,3π

2

]

→ [−1, 1]

fonksiyonu bir bijeksiyondur ve ters fonksiyonu arcsinx’dir.b) A,B,C verilen bir X kümesinin alt kümeleri olmak üzere f : X → X fonksiyonu

tanımlansın. Eğer A ∩B 6= ∅ ise f(A) ∩ f(B ∪ C) 6= ∅ sağlanır.c) A ve B verilen bir X kümesinin alt kümeleri olsun. Buna göre (A\B)c = B\A

eşitliği geçerlidir.d) Eğer f fonksiyonu [−1, 1] aralığını [−1, 1] üzerine resmediyor ise f−1(f({0})) =

{0} sağlanır.

1.4.2. a) Aşağıda verilen f fonksiyonlarının E üzerinde bire-bir olduklarını gös-terip f(E) kümesini tespit ediniz.

i) f(x) = 3x− 7, E = R

ii) f(x) = e1/x, E = (0,∞)

32

Page 37: MB1001 ANALİZ I - i kuweb.iku.edu.tr/~eyavuz/Dersler/Analiz I/AnalizI.pdfDers Notları Yrd. Doç. Dr. Emel YAVUZ DUMAN İstanbul Kültür Üniversitesi Matematik-Bilgisayar Bölümü

iii) f(x) = tanx, E = (π/2, 3π/2)iv) f(x) = x2 + 2x− 5, E = (−∞,−6)v) f(x) = 3x− |x|+ |x+ 2|, E = R

vi) f(x) = x/(x2 + 1), E = [−1, 1]

b) f(E) üzerinde f−1 için bir açık formül bulunuz.

1.4.3. Aşağıda verilen ifadelerin her biri için f(E) ve f−1(E) kümelerini teşkil ediniz.

a) f(x) = 2− 3x, E = (−1, 2)b) f(x) = x2 + 1, E = (−1, 2]c) f(x) = 2x− x2, E = [−2, 2)d) f(x) = log(x2 − 2x+ 1), E = (0, 3]e) f(x) = cosx, E = [0,∞)

1.4.4. Aşağıdaki şekilde tanımlanan her bir küme için basit bir tanımlama yapınız.

a)⋃

x∈[0,1][x− 2, x+ 1]

b)⋂

x∈[0,1](x− 1, x+ 1]

c)⋂

k∈N

[

− 1k, 1k

]

d)⋃

k∈N

[

− 1k, 0]

e)⋃

k∈N

[

−k, 1k

)

f)⋂

k∈N

[

k−1k

, k+1k

)

1.4.5. (1.15) ifadesini ispatlayınız.

1.4.6. Teorem 1.4.9 iii), iv) ve v) şıklarının doğruluğunu gösteriniz.

1.4.7. f(x) = x2 olsun.

a) R’nin f(C\B) 6= f(C)\f(B) eşitsizliğini gerçekleyen iki B ve C alt kümelerinibulunuz.

b) R’nin f−1(f(E)) 6= f(E) eşitsizliğini gerçekleyen bir E alt kümesini bulunuz.

1.4.8. X ve Y iki küme ve f : X → Y olsun. Aşağıdaki ifadelerin birbirine denkolduğunu gösteriniz.

a) f fonksiyonu X üzerinde bire-birdir.b) X’in her A ve B alt kümesi için f(A\B) = f(C)\f(B) eşitliği sağlanır.c) X’in her E alt kümesi için f−1(f(E)) = E’dir.d) X’in her A ve B alt kümesi için f(A ∩B) = f(A) ∩ f(B) ifadesi doğrudur.

33

Page 38: MB1001 ANALİZ I - i kuweb.iku.edu.tr/~eyavuz/Dersler/Analiz I/AnalizI.pdfDers Notları Yrd. Doç. Dr. Emel YAVUZ DUMAN İstanbul Kültür Üniversitesi Matematik-Bilgisayar Bölümü
Page 39: MB1001 ANALİZ I - i kuweb.iku.edu.tr/~eyavuz/Dersler/Analiz I/AnalizI.pdfDers Notları Yrd. Doç. Dr. Emel YAVUZ DUMAN İstanbul Kültür Üniversitesi Matematik-Bilgisayar Bölümü

2 Reel Değerli Diziler

2.1 Dizilerin Limitleri

Bir sonsuz dizi (ya da kısaca dizi) tanım bölgesi N doğal sayılar olan bir fonksi-yondur. Terimleri xn := f(n) olan bir f dizisi x1, x2, x3, · · · veya {xn}n∈N veya{xn}∞n=1 veya {xn} şeklinde gösterilebilir. Buna göre 1, 1/2, 1/4, 1/8, · · · ifadesi{1/2n−1}n∈N dizisini; −1, 1,−1, 1, · · · ifadesi {(−1)n}n∈N dizisini; ve 1, 2, 3, · · ·ifadesi ise {n}n∈N dizisini temsil eder.

Tamamen iki ayrı konsepte sahip {xn}n∈N dizisi ile {xn : n ∈ N} küme-sini birbirine karıştırmamak gerekir. Örneğin, dizi olarak göz önüne alındı-ğında 1, 2, 3, 4, · · · ile 2, 1, 3, 4, · · · birbirlerinden farklıdırlar. Fakat küme an-lamında {1, 2, 3, 4, · · · } ile {2, 1, 3, 4, · · · } kümeleri özdeştirler. Diğer taraftan1,−1, 1,−1, · · · sonsuz bir dizi iken {(−1)n : n ∈ N} kümesinin sadece iki taneelemanı vardır.

Limit kavramı analizin temel taşlarından birisidir. Temel matematik ders-lerinden biliyoruz ki bir {xn} reel sayı dizisinin bir a sayısına yakınsaması içinn sayısı büyüdükçe xn değerlerinin a’ya yaklaşması (yani a ile xn arasındakimesafenin kısalması) gerekir. Dolayısıyla, verilen bir ε > 0 için (ne kadar küçükolduğunun önemi olmaksızın), eğer n sayısı yeterince büyük ise, |xn − a| farklıε’dan küçüktür. Buna göre bir dizinin limiti için aşağıdaki biçimsel tanım ve-rilebilir:

Tanım 2.1.1. Reel sayıların bir {xn} dizisinin bir a ∈ R reel sayısına yakın-

saması için gerek ve yeter şart her ε > 0 sayısına karşılık

her n ≥ N için |xn − a| < ε

olacak şekilde bir N ∈ N (genellikle ε’a bağlı) sayısının var olmasıdır.

Aşağıdaki ifadeler ve notasyonlar sıkça birbirinin yerine kullanılır:a) {xn} dizisi a’ya yakınsar; b) xn dizisi a’ya yakınsar; c) a = limn→∞ xn;

d) n → ∞ iken xn → a; e) {xn} dizisinin limit i vardır ve a sayısına eşittir.n → ∞ iken xn → a ifadesinde, xn dizisini a değerine yapılan yaklaşımların

bir dizisi ve ε değerini ise bu yaklaşımda oluşan hata için bir üst sınır olarakdüşünmek mümkündür. Tanım 2.1.1’deki N değeri n ≥ N için hata değeriε’dan küçük olacak şekilde seçilir.

Page 40: MB1001 ANALİZ I - i kuweb.iku.edu.tr/~eyavuz/Dersler/Analiz I/AnalizI.pdfDers Notları Yrd. Doç. Dr. Emel YAVUZ DUMAN İstanbul Kültür Üniversitesi Matematik-Bilgisayar Bölümü

( )x1 x2x3 x4x5 x6. . .. . . a

a− ε a+ ε

Tanımdan anlaşılacağı üzere xn dizisinin a değerine yakınsaması için gerekve yeter şart n → ∞ iken |xn − a| → 0 olmasıdır. Özel olarak xn → 0 olmasıiçin gerek ve yeter şart n → ∞ iken |xn| → 0 sağlanmasıdır.

Tanım 2.1.1’e göre belirli bir limitin varlığını göstermek için öncelikle nekadar küçük olduğu önemli olmayan verilen bir ε > 0 sayısına karşılık n ≥ Niçin |xn − a| < ε eşitsizliğini gerçekleyecek N sayısının ne şekilde seçileceğinitanımlamak gerekir. Özellikle, ε sayısı N belirlenmeden tanımlanır ve N sayısıgenellikle ε’a bağlıdır. Her n ≥ N için |xn − a| < ε sağlandığından N sayısı n’ebağlı olamaz.

Limitin varlığı ile ilgili somut örneklere geçmeden önce bir terminoloji dahaverelim. Pn ifadesi N ile indislenmiş bir özelliği göstersin. Her n ≥ N içinPn özelliğinin doğru olduğu bir N ∈ N sayısı varsa büyük n değerleri için Pn

gerçeklenir denir. Dolayısıyla, Tanım 2.1.1’in bir informal özeti xn dizisinina değerine yakınsaması için gerek ve yeter şart n sayısı büyük olmak üzere|xn−a| farkının küçük olmasıdır şeklinde verilebilir. Bu ifadenin anlamı, verilenbir pozitif ε (ne kadar küçük olduğunun önemi olmaksızın) sayısına karşılık hern ≥ N için |xn − a| farkı ε’dan küçük olacak şekilde yeterince büyük bir Ndoğal sayısının seçilebileceğidir.

Örnek 2.1.2. i) n → ∞ iken 1/n → 0 olduğunu ispatlayınız.

ii) xn → 2 ise n → ∞ iken (2xn + 1)/xn → 5/2 olduğunu gösteriniz.

iii) limn→∞1

n2+1 = 0 olduğunu gösteriniz.

iv) limn→∞3n+2n+1 = 3 olduğunu ispatlayınız.

Çözüm. i) ε > 0 olsun. Archimedean Özelliği kullanılarak N > 1ε olacak şe-

kilde bir N ∈ N sayısı seçilsin. Bu eşitsizliğin tersi alındığında n ≥ N olmak

üzere 1/n ≤ 1/N < ε ifadesi elde edilir. 1/n oranının tüm değerleri pozitif

olduğundan her n ≥ N için |1/n| < ε eşitsizliğine ulaşılır. Buna göre n → ∞iken 1/n → 0 sağlanır.

ii) için Strateji: Tanıma göre gösterilmesi gereken büyük n değerleri için

2xn + 1

xn− 5

2=

2− xn

2xn

ifadesinin küçük olduğudur. Bu son yazılan kesrin payının değeri n → ∞ iken

xn → 2 olduğundan büyük n değerleri için küçük olacaktır. Peki payda için ne

söylenebilir? xn → 2 olduğundan büyük n değerleri için xn değeri 1’den büyük

olacaktır. Dolayısıyla, büyük n için 2xn değeri 2’den büyük olacaktır. n değe-

rini iki kere büyüttüğümüzden Tanım 2.1.1’de verilen ε değerine karşılık gelen

36

Page 41: MB1001 ANALİZ I - i kuweb.iku.edu.tr/~eyavuz/Dersler/Analiz I/AnalizI.pdfDers Notları Yrd. Doç. Dr. Emel YAVUZ DUMAN İstanbul Kültür Üniversitesi Matematik-Bilgisayar Bölümü

N sayısını belirlemede iki kısıtlama yapmamız gerekir. Tüm bu kısıtlamalar

altında aşağıdaki çözümü verebiliriz:

ii) ε > 0 olsun. xn → 2 olduğundan Tanım 2.1.1’e göre ε > 0 sayısına

karşılık n ≥ N1 için |xn − 2| < ε olacak şekilde bir N1 ∈ N sayısı vardır. Şimdi,

ε = 1 olmak üzere Tanım 2.1.1’i uygulayarak n ≥ N2 için |xn − 2| < 1 olacak

şekilde bir N2 sayısı seçelim. Mutlak Değerin Temel Teoremi’nden n ≥ N2 için

−1 < xn − 2 < 1 yani xn > 1, dolayısıyla 2xn > 2 olduğu sonucu elde edilir.

N = max{N1, N2} seçilsin ve n ≥ N olsun. n ≥ N1 olduğundan |2− xn| =|xn−2| < ε sağlanır. Diğer taraftan n ≥ N2 olduğundan 0 ≤ 1/(2xn) < 1/2 < 1

eşitsizliği elde edilir. Buna göre her n ≥ N için

∣∣∣∣

2xn + 1

xn− 5

2

∣∣∣∣=

|2− xn|2xn

2xn< ε

olduğu sonucuna ulaşılır.

iii) ε > 0 sayısı verilsin. N sayısını bulmak için n ∈ N olmak üzere

1

n2 + 1<

1

n2≤ 1

n

eşitsizliğini kullanırız. i) şıkkında olduğu gibi ε > 0 olduğundan 1/ε > 0’dir

ve Archimedean Özelliği’ne göre bir N = N(ε) doğal sayısı (burada N(ε) ile

N doğal sayısının ε’a bağlı olduğu ifade edilmektedir) 1/N < ε olacak şekilde

mevcuttur. Buna göre n ≥ N olması 1/n < ε eşitsizliğinin sağlandığı anlamına

gelir ve buradan∣∣∣∣

1

n2 + 1− 0

∣∣∣∣=

1

n2 + 1<

1

n< ε

elde edilir. Yani, verilen dizinin limiti sıfırdır.

iii) ε > 0 sayısı verilsin. Yeterince büyük n için

∣∣∣∣

3n+ 2

n+ 1− 3

∣∣∣∣< ε (2.1)

eşitsizliğinin sağlandığının gösterilmesi gerekmektedir. Öncelikle yukarıda ve-

rilen ifadenin sol tarafını sade halde yazalım:

∣∣∣∣

3n+ 2

n+ 1− 3

∣∣∣∣=

∣∣∣∣

3n+ 2− 3n− 3

n+ 1

∣∣∣∣=

∣∣∣∣

−1

n+ 1

∣∣∣∣=

1

n+ 1<

1

n.

Buna göre eğer 1/n < ε ifadesi gerçeklenir ise (2.1) eşitsizliği sağlanır. Archi-

medean Özelliği yukarıda anlatıldığı şekilde aynen uygulandığında aranan N

sayısının varlığı ve verilen dizinin limitinin 3 olduğu kolayca gösterilebilir. �

37

Page 42: MB1001 ANALİZ I - i kuweb.iku.edu.tr/~eyavuz/Dersler/Analiz I/AnalizI.pdfDers Notları Yrd. Doç. Dr. Emel YAVUZ DUMAN İstanbul Kültür Üniversitesi Matematik-Bilgisayar Bölümü

Örnek 2.1.2 ii)’de dikkat edilirse N sayısı N1 ve N2’nin maksimumu ola-cak şekilde seçildi. Bu seçim bize n ≥ Nj (j = 1, 2) için maksimum olmaözelliğinden n ≥ N eşitsizliğinin sağlanmasını garantiler. Benzer şekilde, her jiçin n ≥ Nj için N1, N2, · · · , Nq sayıları bir Pj özelliğini gerçeklesin. Eğer N =max{N1, N2, · · · , Nq} ise tüm q değerleri için n ≥ N olmak üzere P1,P2, · · · ,Pq

özellikleri aynı anda gerçeklenir. Bu olgu yapılan ispatlarda sıkça kullanılmaklabirlikte N değerinin Nj tamsayılarının maksimumu olduğu açık olarak kimi du-rumlarda belirtilmemektedir.

Aşağıdaki iki sonuç bir dizinin ya limiti olmadığını ya da tektürlü belirli birlimiti olduğunu gösterir.

Örnek 2.1.3. {(−1)n}n∈N dizisinin limiti yoktur.

Çözüm. a ∈ R için n → ∞ iken (−1)n → a olsun. Buna göre verilen ε = 1 için

bir N ∈ N sayısı n ≥ N olmak üzere |(−1)n − a| < ε eşitsizliğini sağlayacak

şekilde mevcuttur. n sayısının tek olması durumunda |1 + a| = | − 1 − a| < 1

ve n’nin çift olması dırımında ise |1− a| < 1 sağlanır. Buna göre

2 = |1 + 1| ≤ |1− a|+ |1 + a| < 1 + 1 < 2

yani 2 < 2 çelişkisi elde edilir. Dolayısıyla {(−1)n}n∈N dizisinin bir limiti yok-

tur. �

Açıklama 2.1.4. Bir dizi en fazla bir limit değerine sahip olabilir.

Kanıt. {xn} dizisi a ve b değerlerine yakınsasın. Tanıma göre verilen bir ε > 0

sayısına karşılık her n ≥ N için |xn − a| < ε/2 ve |xn − b| < ε/2 eşitsizliklerini

sağlayacak şekilde bir N ∈ N tamsayısı mevcuttur. Buna göre, üçgen eşitsizliği

kullanılarak

|a− b| = |a− b+ xn − xn| ≤ |xn − a|+ |xn − b| < ε

ifadesi elde edilir. Yani her ε > 0 sayısı için |a − b| < ε eşitsizliği sağlanır. Bu

ise Teorem 1.2.9’ya göre a = b olmasını gerektirir.

Tanım 2.1.5. Bir {xn}n∈N dizisi verilsin. Her nk ∈ N için n1 < n2 < · · ·özelliğini sağlayan {xnk

} dizisine {xn} dizisinin bir alt dizisi adı verilir.

Tanıma göre x1, x2, · · · şeklindeki bir dizinin xn1, xn2

, · · · alt dizisi x1, x2, · · ·dizisinden n = nk eşitliğini sağlayan indisler hariç tüm xn’lerin atılması ile eldeedilir. Örneğin 1, 1, · · · dizisi özel olarak (−1)n dizisinin nk = 2k eşitliğini sağla-yan terimler hariç diğer tüm terimlerinin silinmesi ile elde edilmiş bir alt dizidir.Benzer şekilde, 1/2, 1/4, · · · dizisi özel olarak 1/n dizisinin nk = 2k özelliğinisağlayan terimler hariç diğer tüm terimlerinin silinmesi ile elde edilmiş bir altdizisidir.

38

Page 43: MB1001 ANALİZ I - i kuweb.iku.edu.tr/~eyavuz/Dersler/Analiz I/AnalizI.pdfDers Notları Yrd. Doç. Dr. Emel YAVUZ DUMAN İstanbul Kültür Üniversitesi Matematik-Bilgisayar Bölümü

Görüldüğü üzere {1/n} dizisi, bir alt dizisi olan {1/2n} dizisine göre limitdeğeri olan sıfıra çok daha yavaş yakınsar. Diğer taraftan Örnek 2.1.3’te gös-terildiği gibi {(−1)n} dizisinin bir limiti yok iken bu dizinin bir alt dizisi olan1, 1, · · · dizisi 1’e yakınsar.

Eğer n → ∞ iken xn → a ise n büyüdükçe xn değerlerinin a’ya yaklaştığısöylenebilir. k büyüdükçe nk değeri de büyüyeceğinden yakınsak bir dizininherhangi bir alt dizisinin de yakınsak olacağı sonucu sezilebilir.

Açıklama 2.1.6. a değerine yakınsayan bir {xn}n∈N dizisi verilsin ve bu

{xn}n∈N dizisinin herhangi bir {xnk}n∈N alt dizisi göz önüne alınsın. Buna

göre k → ∞ için xnkdeğerleri de a’ya yakınsar.

Kanıt. ε > 0 olsun ve n ≥ N için |xn − a| < ε eşitsizliğini sağlayan N ∈ N

seçilsin. nk ∈ N ve n1 < n2 < · · · olduğundan her k ∈ N için nk ≥ k gerçeklenir.

Dolayısıyla, k ≥ N için |xnk− a| < ε sağlanır. Buna göre k → ∞ iken xnk

→ a

olduğu sonucu elde edilir.

Aşağıdaki tanım dizi teorisi içerisinde oldukça önemli bir yere sahiptir.

Tanım 2.1.7. Reel sayıların bir {xn} dizisi verilsin.

i) {xn} dizisinin üstten sınırlı olarak adlandırılması için gerek ve yeter şart

{xn : n ∈ N} kümesinin üstten sınırlı olmasıdır.

ii) {xn} dizisinin alttan sınırlı olarak adlandırılması için gerek ve yeter şart

{xn : n ∈ N} kümesinin alttan sınırlı olmasıdır.

iii) {xn} dizisinin sınırlı olarak adlandırılması için gerek ve yeter şart bu

dizinin üstten ve alttan sınırlı olmasıdır.

Tanım 2.1.7 ve Tanım 1.3.1 birlikte düşünüldüğünde {xn} dizisinin üsttensınırlı olması için gerek ve yeter şart her n ∈ N için xn ≤ M olacak şekildebir M ∈ R sayısının var olmasıdır. Benzer şekilde {xn} dizisinin alttan sınırlıolması için gerek ve yeter şart her n ∈ N için xn ≥ m olacak şekilde bir m ∈ R

sayısının var olmasıdır. Diğer taraftan açık olarak {xn} dizisinin sınırlı olmasıiçin gerek ve yeter şart her n ∈ N için |xn| ≤ C olacak şekilde bir C > 0sayısının var olmasıdır (bkz Alıştırma 2.1.5). Bu durumda {xn} dizisi C ilesınırlıdır veya domine edilmiştir denir.

Yakınsak ve sınırlı diziler arasında aşağıdaki önemli ilişki mevcuttur.

Teorem 2.1.8. Her yakınsak dizi sınırlıdır.

Strateji: n → ∞ iken xn → a olsun. Tanıma göre yeterince büyük N içinxN , xN+1, · · · değerleri a’ya yakın olmalıdır. Bu ise sınırlılığı gerektirir. Ayrıcax1, · · · , xN−1 sonlu dizisi de sınırlı olduğundan verilen dizi sınırlıdır.

39

Page 44: MB1001 ANALİZ I - i kuweb.iku.edu.tr/~eyavuz/Dersler/Analiz I/AnalizI.pdfDers Notları Yrd. Doç. Dr. Emel YAVUZ DUMAN İstanbul Kültür Üniversitesi Matematik-Bilgisayar Bölümü

Kanıt. limn→∞ xn = a olsun. Buna göre, verilen ε = 1 sayısına karşılık n ≥ N

için |xn − a| < 1 olacak şekilde bir N ∈ N sayısı vardır. Dolayısıyla, üçgen

eşitsizliği kullanılarak her n ≥ N için |xn|−|a| ≤ |xn−a| < 1 yani |xn| < 1+|a|ifadesi elde edilir. Diğer taraftan, 1 ≤ n ≤ N için

|xn| ≤ M := max{|x1|, |x2|, · · · , |xN |}

olduğundan {xn} dizisinin max{M, 1 + |a|} ile domine edildiği sonucu elde

edilir.

Örnek 2.1.3 göz önüne alındığında Teorem 2.1.8’in tersinin doğru olmadığısonucu elde edilir.

Yakınsak Dizi ⇒ Sınırlı Dizi, Sınırlı Dizi ; Yakınsak Dizi

Alıştırmalar

2.1.1. Aşağıdaki ifadelerin hangilerinin doğru hangilerinin yanlış olduğunu belirleyi-niz. Doğru olanları ispatlayıp yanlış olanlara ise ters örnek veriniz.

a) xn yakınsak ise xn/n dizisi de yakınsaktır.b) xn yakınsak değil ise xn/n dizisi de yakınsak değildir.c) xn yakınsak ve yn sınırlı ise xnyn dizisi yakınsaktır.d) xn dizisi sıfıra yakınsıyor ve her n ∈ N için yn > 0 ise xnyn dizisi de yakınsaktır.

2.1.2. Aşağıdaki limitlerin varlığını Örnek 2.1.2i), iii), iv)’de anlatılan metodu kul-lanarak gösteriniz.

a) n → ∞ iken 2− 1/n → 2.b) n → ∞ iken 1 + π/

√n → 1.

c) n → ∞ iken 3(1 + 1/n) → 3.d) n → ∞ iken (2n2 + 1)/(3n2) → 2/3.

2.1.3. Reel sayıların n → ∞ iken 1’e yakınsayan bir xn dizisi göz önüne alınsın.Tanım 2.1.1 kullanılarak aşağıdaki limitlerin varlığını ispatlayınız.

a) limn→∞(1 + 2xn) = 3.b) limn→∞(πxn − 2)/(xn) = π − 2.c) limn→∞(x2

n − e)/xn = 1− e.

2.1.4. Aşağıda verilen her bir diziye ait farklı limitlere sahip iki yakınsak alt dizibulunuz.

a) 3− (−1)n.b) (−1)3n + 2.c) (n− (−1)nn− 1)/n.

2.1.5. xn ∈ R olsun.

a) {xn} dizisinin sınırlı olması için gerek ve yeter şart her n ∈ N için |xn| ≤ C

olacak şekilde bir C > 0 sayısının var olmasıdır

40

Page 45: MB1001 ANALİZ I - i kuweb.iku.edu.tr/~eyavuz/Dersler/Analiz I/AnalizI.pdfDers Notları Yrd. Doç. Dr. Emel YAVUZ DUMAN İstanbul Kültür Üniversitesi Matematik-Bilgisayar Bölümü

b) {xn} dizisi sınırlı olsun. Buna göre her k ∈ N için n → ∞ iken xn/nk → 0

olduğunu gösteriniz.

2.1.6. C bir pozitif sabit olsun. {bn} negatif olmayan sayıların sıfıra yakınsayan birdizisi ve {xn} yeterince büyük n değerleri için |xn − a| < Cbn özelliğini sağlayan reelsayıların bir dizisi ise xn’in a’ya yakınsadığını ispatlayınız.

2.1.7. a bir reel sabit olmak üzere n ∈ N için xn := a olarak tanımlansın. Buna göre{xn} “sabit” dizisinin yakınsak olduğunu ispatlayınız.

2.1.8. a) {xn} ve {yn} dizileri aynı bir reel sayıya yakınsasınlar. Buna göre n →∞ iken xn − yn → 0 olduğunu gösteriniz.

b) {n} dizisinin yakınsamadığını ispatlayınız.c) a) şıkkının hükmünü gerçekleyen sınırsız xn 6= yn dizilerinin varlığını gösteriniz.

2.1.9. {xn} reel sayıların bir dizisi olsun. xn dizisinin a değerine yakınsaması içingerek ve yeter şartın xn’nin HER alt dizisinin a’ya yakınsaması olduğunu ispatlayınız.

2.2 Limit Teoremleri

Hem teoride hem de uygulamada karşılaşılan en büyük problemlerden birisiverilen bir dizinin yakınsak olduğu olmadığıdır. Eğer verilen dizinin yakınsakolduğu biliniyorsa limit değerine farklı teknikler kullanılarak yaklaşımda bulu-nulabilir veya bu limit hesaplanabilir.

Teorem 2.2.1 (Sıkıştırma Teoremi). {xn}, {yn} ve {wn} reel sayı dizileri

olsun.

i) Eğer n → ∞ iken xn → a ve yn → a (AYNI a değeri) ve

n ≥ N0 için xn ≤ wn ≤ yn

eşitliği sağlanacak şekilde bir N0 ∈ N var ise bu durumda n → ∞ iken

wn → a sağlanır.

ii) Eğer n → ∞ iken xn → 0 ve {yn} dizisi sınırlı ise n → ∞ iken xnyn → 0.

Kanıt. i) ε > 0 olsun. xn ve yn dizileri a değerine yakınsadığından Tanım 2.1.1

ve Teorem 1.2.6 kullanılarak n ≥ N1 için −ε < xn−a < ε ve n ≥ N2 için −ε <

yn−a < ε eşitsizliklerini sağlayan N1, N2 ∈ N seçilebilir. N = max{N0, N1, N2}olsun. n ≥ N için teorem hipotezine ve N1 ve N2’nin seçiminden

a− ε < xn ≤ wn ≤ yn < a+ ε

eşitsizliği sağlanır. Buna göre n ≥ N için |wn − a| < ε olduğu elde edilir.

Dolayısıyla n → ∞ için wn → a sonucuna ulaşılır.

41

Page 46: MB1001 ANALİZ I - i kuweb.iku.edu.tr/~eyavuz/Dersler/Analiz I/AnalizI.pdfDers Notları Yrd. Doç. Dr. Emel YAVUZ DUMAN İstanbul Kültür Üniversitesi Matematik-Bilgisayar Bölümü

ii) xn → 0 ve n ∈ N için |yn| ≤ M olacak şekilde bir M > 0 sayısı var

olsun. ε > 0 olmak üzere |xn| < ε/M eşitsizliğini n ≥ N için sağlayacak şekilde

N ∈ N seçilsin. Buna göre n ≥ N için

|xnyn| < Mε

M= ε

sağlanır. Yani n → ∞ iken xnyn → 0 gerçeklenir.

Aşağıdaki Sıkıştırma Teoremi’nin ne şekilde kullanıldığına ilişkin bir örnekverilmektedir.

Örnek 2.2.2. limn→∞ 2−n cos(n3 − n2 + n− 13) limit değerini bulunuz.

Çözüm. Her x ∈ R için | cosx| ≤ 1 olduğu kullanılırsa {2−n cos(n3 − n2 + n−13)} dizisinin 2−n ile domine edildiği sonucuna ulaşılır. Diğer taraftan 2n > n

olduğundan 2−n < 1n ’dir. Buna göre Örnek 2.1.2 i) ve Sıkıştırma Teoremi’ne

göre n → ∞ iken 1n → 0 olduğundan 2−n → 0 dolayısıyla 2−n cos(n3 − n2 +

n− 13) → 0 limit değeri elde edilir. �

Teorem 2.2.3. E ⊂ R olsun. Eğer E kümesinin sonlu bir supremumu varsa

n → ∞ iken xn → supE olacak şekilde bir xn ∈ E dizisi vardır. Benzer şekilde,

eğer E kümesinin sonlu bir infimumu varsa n → ∞ iken yn → inf E olacak

şekilde bir yn ∈ E dizisi vardır.

Kanıt. E kümesinin sonlu bir supremumu olsun. Buna göre Supremum için

Yaklaşım Özelliği’ne göre supE − 1n < xn ≤ supE eşitsizliğini sağlayacak

şekilde bir xn ∈ E vardır. Dolayısıyla, Sakıştırma Teoremi ve Örnek 2.1.2 i)’ye

göre n → ∞ iken xn → supE sağlanır. Benzer şekilde n → ∞ iken yn → inf E

olacak şekilde bir yn ∈ E dizisinin varlığı gösterilebilir.

Teorem 2.2.4. {xn} ve {yn} iki reel sayı dizisi ve α ∈ R olsun. Eğer {xn} ve

{yn} yakınsak ise

i) limn→∞(xn + yn) = limn→∞ xn + limn→∞ yn,

ii) limn→∞(αxn) = α limn→∞ xn,

ve

iii) limn→∞(xnyn) = (limn→∞ xn) (limn→∞ yn)

eşitlikleri gerçeklenir. Bunlara ek olarak yn 6= 0 ve limn→∞ yn 6= 0 ise

iv) limn→∞xn

yn= limn→∞ xn

limn→∞ yn

ifadesi gerçeklenir ve özellikle tüm bu limitler mevcuttur.

42

Page 47: MB1001 ANALİZ I - i kuweb.iku.edu.tr/~eyavuz/Dersler/Analiz I/AnalizI.pdfDers Notları Yrd. Doç. Dr. Emel YAVUZ DUMAN İstanbul Kültür Üniversitesi Matematik-Bilgisayar Bölümü

Kanıt. limn→∞ xn = x ve limn→∞ yn = y olsun.

i) ε > 0 olsun ve n ≥ N için |xn − x| < ε/2 ve |yn − y| < ε/2 eşitsizliklerini

sağlayacak şekilde N ∈ N seçilsin. Buna göre üçgen eşitsizliği kullanılarak n ≥N için

|(xn + yn)− (x+ y)| ≤ |xn − x|+ |yn − y| < ε

2+

ε

2= ε

elde edilir. Yani, n → ∞ iken (xn + yn) → (x+ y) sağlanır.

ii) n → ∞ iken αxn − αx → 0 olduğunu göstermek yeter. n → ∞ iken

xn−x → 0 olduğundan Sıkıştırma Teoremi’ne göre n → ∞ iken α(xn−x) → 0

sonucu elde edilir. Yani, limn→∞(αxn) = αx eşitliği bulunur.

iii) Teorem 2.1.8’e göre her yakınsak dizi sınırlı olduğundan yakınsak {xn}dizisi sınırlıdır. Dolayısıyla Sıkıştırma Teoremi’ne göre {xn{yn−y}} ve {{xn−x}y} dizilerinin her ikisi de 0 değerine yakınsar. Diğer taraftan

xnyn − xy = xn(yn − y) + (xn − y)y

olduğundan i) şıkkına göre n → ∞ iken xnyn → xy olduğu sonucu elde edilir.

Benzer argüman kullanılarak iv) ifadesinin gerçeklendiği gösterilebilir.

Örnek 2.2.5. limn→∞(n3 + n2 − 1)/(1− 3n3) limitini hesaplayınız.

Çözüm. Verilen ifadenin pay ve paydasını 1/n3 ile çarparsak

n3 + n2 − 1

1− 3n3=

1 + (1/n)− (1/n3)

(1/n3)− 3

elde edilir. Örnek 2.1.2 i) ve Teorem 2.2.4 iii) göz önüne alındığında her k ∈ N

için n → ∞ iken 1/nk(1/n)k → 0 olduğu sonucuna ulaşılır. Dolayısıyla Teorem

2.2.4 i), ii) ve iv) şıklarına göre

limn→∞

n3 + n2 − 1

1− 3n3=

1 + 0− 0

0− 3= −1

3

limit değeri bulunur. �

Tanım 2.2.6. {xn} reel sayıların bir dizisi olsun.

i) {xn} dizisinin +∞’a ıraksıyor (notasyon: n → ∞ iken xn → +∞ ya

da limn→∞ xn = +∞) olarak adlandırılması için gerek ve yeter şart her

M ∈ R için n ≥ N olmak üzere xn > M eşitsizliğini sağlayacak bir N ∈ N

sayısının var olmasıdır.

ii) {xn} dizisinin −∞’a ıraksıyor (notasyon: n → ∞ iken xn → −∞ ya

da limn→∞ xn = −∞) olarak adlandırılması için gerek ve yeter şart her

M ∈ R için n ≥ N olmak üzere xn < M eşitsizliğini sağlayacak bir N ∈ N

sayısının var olmasıdır.

43

Page 48: MB1001 ANALİZ I - i kuweb.iku.edu.tr/~eyavuz/Dersler/Analiz I/AnalizI.pdfDers Notları Yrd. Doç. Dr. Emel YAVUZ DUMAN İstanbul Kültür Üniversitesi Matematik-Bilgisayar Bölümü

Sıkıştırma Teoremi sonsuz limitlere genişletilebilir. Aşağıdaki sonuç Teorem2.2.4’ün bir genişletilmesidir.

Teorem 2.2.7. {xn} ve {yn} iki reel sayı dizisi olsun öyleki n → ∞ iken

xn → +∞ (sırası ile, xn → −∞) gerçeklensin.

i) Eğer yn alttan sınırlı (sırası ile, yn üstten sınırlı) ise

limn→∞

(xn + yn) = +∞ (sırası ile, limn→∞

(xn + yn) = −∞).

ii) Eğer α > 0 ise

limn→∞

(αxn) = +∞ (sırası ile, limn→∞

(αxn) = −∞).

iii) Eğer bir M0 > 0 ve her n ∈ N için yn > M0 ise

limn→∞

(xnyn) = +∞ (sırası ile, limn→∞

(xnyn) = −∞).

iv) Eğer {yn} sınırlı ve xn 6= 0 ise

limn→∞

xn

yn= 0.

Kanıt. Kolaylık sağlaması bakımından limn→∞ xn = +∞ olsun.

i) Hipotez koşulu gereği yn alttan sınırlı olduğundan bir M0 ∈ R için yn ≥M0 sağlanır. M ∈ R ve M1 = M − M0 olsun. xn → +∞ olduğundan n ≥ N

için xn > M1 eşitsizliğini sağlayacak şekilde bir N ∈ N sayısı vardır. Buna göre

n ≥ N için xn+yn > M1+M0 = M gerçeklenir. Bu ise limn→∞(xn+yn) = +∞olduğu anlamına gelir.

ii) M ∈ R ve M1 = M/α olsun. xn → +∞ olduğundan n ≥ N için xn > M1

eşitsizliğini sağlayacak şekilde bir N ∈ N sayısı vardır. Buna göre α > 0 olmak

üzere her n ≥ N için αxn > αM1 = M gerçeklenir. Bu ise limn→∞(αxn) = +∞olduğu anlamına gelir.

iii) M ∈ R ve M1 = M/M0 olsun. xn → +∞ olduğundan n ≥ N için

xn > M1 eşitsizliğini sağlayacak şekilde bir N ∈ N sayısı vardır. Ayrıca hipotez

koşulu gereği n ∈ N için yn > M0 olduğundan n ≥ N için xnyn > M1M0 = M

elde edilir. Bu ise limn→∞(xnyn) = +∞ olduğu anlamına gelir.

iv) ε > 0 olsun. {yn} sınırlı olduğundan |yn| ≤ M0 eşitsizliğini sağlayacak

şekilde bir M0 > 0 sayısı vardır. Diğer taraftan M0/M1 < ε olacak şekilde bir

M1 > 0 sayısı seçilsin. Ayrıca, xn → +∞ olduğundan n ≥ N için xn > M1

eşitsizliğini sağlayacak şekilde bir N ∈ N sayısı vardır. Tüm bu seçimler altında

n ≥ N için ∣∣∣∣

ynxn

∣∣∣∣=

|yn|xn

<M0

M1< ε

eşitsizliğ gerçeklenir. Bu ise limn→∞xn

yn= 0 olduğu anlamına gelir.

44

Page 49: MB1001 ANALİZ I - i kuweb.iku.edu.tr/~eyavuz/Dersler/Analiz I/AnalizI.pdfDers Notları Yrd. Doç. Dr. Emel YAVUZ DUMAN İstanbul Kültür Üniversitesi Matematik-Bilgisayar Bölümü

Eğer aşağıdaki kuralları kabul edersek

x ∈ R için x+∞ = ∞, x−∞ = −∞x > 0 için x · ∞ = ∞, x · (−∞) = −∞x < 0 için x · ∞ = −∞, x · (−∞) = ∞

∞ ·∞ = (−∞) · (−∞) = ∞∞ · (−∞) = (−∞) · (∞) = −∞

Teorem 2.2.7’nin Sonuç 2.2.8’i içerir.

Sonuç 2.2.8. {xn} ve {yn} reel sayı dizileri, α, x ve y genişletilmiş reel sayılar

olsun. n → ∞ iken xn → x ve yn → y ise aşağıdaki ifadenin sağ tarafının

∞−∞’dan farklı olma koşulu altında

limn→∞

(xn + yn) = x+ y

sağlanır. Ayrıca bundan fazla olarak aşağıdaki ifadenin sağ tarafının 0·±∞’dan

farklı olma koşulu altında

limn→∞

(αxn) = αx, limn→∞

(xnyn) = xy

gerçeklenir.

Dikkat edilirse ∞ − ∞ ve 0 · ±∞ durumlarından uzak durulmaktadır.Çünkü bu formlar “belirsiz”dir. Belirsizlik hallerinin incelemesi ileriki derslerdel’Hôpital Kuralı ile verilecektir.

Teorem 2.2.4 ve Teorem 2.2.7’de limit işleminin R’nin cebirsel yapısı ilene şekilde etkileşime girdiği ortaya konmaktadır (Bir toplamın limiti (çarpımı,bölümü) limitlerin toplamı (çarpımı, bölümü) olarak yazılabilir). Aşağıdaki te-orem limit işleminin R’nin bir diğer yapısı üzerindeki etkileşimini işaret etmek-tedir.

Teorem 2.2.9 (Karşılaştırma Teoremi). {xn} ve {yn} yakınsak diziler olsun.

Eğer

n ≥ N0 için xn ≤ yn (2.2)

eşitsizliğini sağlayan bir N0 ∈ N sayısı varsa

limn→∞

xn ≤ limn→∞

yn

eşitsizliği sağlanır. Özel olarak, eğer xn ∈ [a, b] dizisi bir c noktasına yakınsıyor

ise bu c sayısı [a, b] aralığında olmalıdır.

45

Page 50: MB1001 ANALİZ I - i kuweb.iku.edu.tr/~eyavuz/Dersler/Analiz I/AnalizI.pdfDers Notları Yrd. Doç. Dr. Emel YAVUZ DUMAN İstanbul Kültür Üniversitesi Matematik-Bilgisayar Bölümü

Kanıt. Teoremin ifadesinin yanlış olduğunu kabul edelim. Yani, (2.2) sağlanır-

ken x := limn→∞ xn limit değeri y := limn→∞ yn limit değerinden büyük olsun.

ε = (x − y)/2 verilsin. Buna göre n ≥ N1 için |xn − x| < ε ve |yn − y| < ε

olacak şekilde bir N1 > N0 seçilebilir. Dolayısıyla bu n sayısı için

xn > x− ε = x−(x− y

2

)

= y +

(x− y

2

)

= y + ε > yn

sağlanır. Bu ise (2.2) ile çelişir. Dolayısıyla teoremde yer alan ilk ifadenin doğ-

ruluğu gösterilmiş olur.

a ≤ xn ≤ b olduğundan yukarıda elde edilen sonuç kullanılarak a ≤ c ≤ b

eşitsizliğinin sağlandığı görülür.

Yukarıdaki teoremi hatırlamanın bir yolu, söz konusu limitlerin varlığınıngarantisi altında, bir eşitsizliğin limitinin, limitlerin eşitsizliği olduğudur. Buprosedür “verilen eşitsizliğin limitini almak” şeklinde isimlendirilir. xn < yneşitsizliğinden xn ≤ yn olduğu anlaşılacağından Karşılaştırma Teoremi şu so-nucu içerir: Eğer {xn} ve {yn} yakınsak reel sayı dizileri ise

n ≥ N0 için xn < yn ise limn→∞

xn ≤ limn→∞

yn olduğu anlamına gelir.

Burada dikkat edilmesi gereken bir husus ≤ işaretinin < ile değiştirilmesi du-rumunda elde edilecek sonucun doğru olmadığıdır. Yani

n ≥ N0 için xn < yn ise limn→∞

xn < limn→∞

yn olduğu anlamına GELMEZ.

Örneğin, 1/n2 < 1/n olmasına karşın bu dizilerin limitleri eşittir.

Alıştırmalar

2.2.1. Aşağıdaki ifadelerin hangilerinin doğru hangilerinin yanlış olduğunu belirleyi-niz. Doğru olanları ispatlayıp yanlış olanlara ise ters örnek veriniz.

a) n → ∞ iken xn → ∞ ve xn → −∞ ise xn + yn → 0 sağlanır.b) n → ∞ iken xn → −∞ ise 1/xn → 0 sağlanır.c) n → ∞ iken xn → 0 ise 1/xn → ∞ sağlanır.d) n → ∞ iken xn → ∞ ise (1/2)xn → 0 sağlanır.

2.2.2. Aşağıdaki dizilerin sıfıra yakınsadığını ispatlayınız.

a) xn = sin(log n+ n5 + en2

)/nb) xn = 2n/(n2 + π)c) xn = (

√2n+ 1)/(n+

√2)

d) xn = n/2n

2.2.3. Tanım 2.2.6’yı kullanarak aşağıdaki ifadelerin +∞ veya −∞ değerlerine ırak-sadığını gösteriniz.

a) xn = n2 − n

46

Page 51: MB1001 ANALİZ I - i kuweb.iku.edu.tr/~eyavuz/Dersler/Analiz I/AnalizI.pdfDers Notları Yrd. Doç. Dr. Emel YAVUZ DUMAN İstanbul Kültür Üniversitesi Matematik-Bilgisayar Bölümü

b) xn = n− 3n2

c) xn = (n2 + 1)/nd) xn = n2(2 + sin(n3 + n+ 1))

2.2.4. Eğer varsa, aşağıdaki dizilerin limitlerini hesaplayınız.

a) xn = (2 + 3n− 4n2)/(1− 2n+ 3n2)b) xn = (n3 + n− 2)/(2n3 + n− 2)c) xn =

√3n+ 2−√

nd) xn = (

√4n+ 1−

√n− 1)/(

√9n+ 1−

√n+ 2)

2.2.5. a) Teorem 2.2.4 iv) ifadesini ispatlayınız.b) Sonuç 2.2.8 ifadesini ispatlayınız.

2.2.6. x ∈ R ve xn ≥ 0 olmak üzere n → ∞ iken xn → x sağlansın. Buna görelimn→∞

√xn =

√x olduğunu ispatlayınız.

2.2.7. Verilen x ∈ R sayısına karşılık n → ∞ iken rn → ∞ olacak şekilde bir rn ∈ Q

dizisinin varlığını gösteriniz.

2.2.8. x ve y genişletilmiş reel sayılar, {xn}, {yn} ve {wn} reel sayı dizileri olsun.

a) [R için Sıkıştırma Teoremi] Eğer n → ∞ iken xn → x, yn → x ve n ∈ N

için xn ≤ wn ≤ yn eşitliği sağlanıyor ise bu durumda n → ∞ iken wn → x

gerçeklenir.b) [R için Karşılaştırma Teoremi] Eğer n → ∞ iken xn → x, yn → x ve n ∈ N için

xn ≤ yn eşitliği sağlanıyor ise bu durumda x ≤ y gerçeklenir.

2.2.9. Alıştırma 2.2.6’yı kullanarak aşağıdaki ifadelerin doğru olduğunu ispatlayınız.

a) 0 ≤ x1 ≤ 1 ve n ∈ N için xn+1 = 1 −√1− xn olsun. Eğer limn→∞ xn = x ise

x = 0 ya da 1’dir.b) x1 > 3 ve n ∈ N için xn+1 = 2 +

√xn − 2 olsun. Eğer limn→∞ xn = x ise

x = 3’tür.c) x1 ≥ 0 ve n ∈ N için xn+1 =

√2 + xn olsun. Eğer limn→∞ xn = x ise x = 2’dir.

x1 > −2 olması durumunu inceleyiniz.

2.2.10. a) n ≥ 0 için 0 ≤ y < 1/10n olsun. Buna göre

w

10n+1≤ y <

w

10n+1+

1

10n+1

eşitsizliğini sağlayacak şekilde bir 0 ≤ w ≤ 9 tamsayısının varlığını gösteriniz.b) Verilen bir x ∈ [0, 1) sayısısına karşılık her n ∈ N için

n∑

k=1

xk

10k≤ x <

n∑

k=1

xk

10k+

1

10n

eşitsizliğini sağlayacak şekilde 0 ≤ xk ≤ 9 tamsayılarının varlığını gösteriniz.c) Verilen bir x ∈ [0, 1) sayısısına karşılık her k ∈ N için

x = limn→∞

n∑

k=1

xk

10k

eşitsizliğini sağlayacak şekilde 0 ≤ xk ≤ 9 tamsayılarının varlığını gösteriniz.d) c) şıkkını kullanarak 0.5 = 0.4999 · · · ve 1 = 0.999 · · · olduğunu ispatlayınız.

47

Page 52: MB1001 ANALİZ I - i kuweb.iku.edu.tr/~eyavuz/Dersler/Analiz I/AnalizI.pdfDers Notları Yrd. Doç. Dr. Emel YAVUZ DUMAN İstanbul Kültür Üniversitesi Matematik-Bilgisayar Bölümü

2.3 Bolzano-Weierstrass Teoremi

Her ne kadar {(−1)n} dizisi yakınsak olmasa da, yakınsak bir alt diziye sahipolduğunu biliyoruz. Bu bölümde, bu olgu ile alakalı genel bir kaide ispatlana-caktır. Bolzano-Weierstrass Teoremi adı verilen ve her sınırlı dizinin yakınsakbir alt diziye sahip olduğunu belirten bu prensibi en genel halde ele almadanönce söz konusu teoremin aşıkar olarak gerçeklendiği monotonluk kavramınıortaya koyalım:

Tanım 2.3.1. Reel sayıların bir {xn}n∈N dizisi göz önüne alınsın.

i) {xn} dizisinin artan (sırası ile, kesinlikle artan) olarak isimlendirilmesi

için gerek ve yeter şart x1 ≤ x2 ≤ · · · (sırası ile, x1 < x2 < · · · ) eşitsizli-

ğinin gerçeklenmesidir.

ii) {xn} dizisinin azalan (sırası ile, kesinlikle azalan) olarak isimlendirilmesi

için gerek ve yeter şart x1 ≥ x2 ≥ · · · (sırası ile, x1 > x2 > · · · ) eşitsizli-

ğinin gerçeklenmesidir.

iii) {xn} dizisinin monoton olarak isimlendirilmesi için gerek ve yeter şart

dizinin artan veya azalan olmasıdır.

Bazı kaynaklarda azalan dizi yerine artmayan ve artan dizi yerine de azal-

mayan terimleri kullanılmaktadır.

Eğer {xn} dizisi artan (sırası ile, azalan) ise ve bir a değerine yakınsıyorsan → ∞ iken xn ↑ a (sırası ile, xn ↓ a) yazılacaktır. Açık olarak, kesinlikle artanher dizi artandır ve kesinlikle azalan her dizi azalandır. Ayrıca, {xn} dizisininartan olması için gerek ve yeter şart {−xn} dizisinin azalan olmasıdır.

Teorem 2.1.8’e göre her yakınsak dizi sınırlıdır. Şimdi bu sonucun tersinimonoton diziler için kanıtlayalım.

Teorem 2.3.2 (Monoton Yakınsaklık Teoremi). Eğer {xn} dizisi artan ve

üstten sınırlı veya {xn} dizisi azalan ve alttan sınırlı ise {xn} sonlu bir limit

değerine yakınsar.

Kanıt. {xn} dizisi artan ve üstten sınırlı olsun. Tamlık Aksiyomu gereği sonlu

bir a := sup{xn : n ∈ N} supremumu vardır. ε > 0 olsun. Supremum için

Yaklaşım Özelliği kullanılarak

a− ε < xN ≤ a

olacak şekilde bir N ∈ N seçilsin. Dizi monoton artan olduğundan n ≥ N için

xN ≤ xn sağlanır. Ayrıca a verilen dizinin supremumu, dolayısıyla bir üst sınırı

olduğundan her n ∈ N için xn ≤ a gerçeklenir. Buna göre her n ≥ N için

a − ε < xN ≤ xn ≤ a < a + ε yani a − ε < xn ≤ a + ε eşitsizliği elde edilir.

48

Page 53: MB1001 ANALİZ I - i kuweb.iku.edu.tr/~eyavuz/Dersler/Analiz I/AnalizI.pdfDers Notları Yrd. Doç. Dr. Emel YAVUZ DUMAN İstanbul Kültür Üniversitesi Matematik-Bilgisayar Bölümü

Dolayısıyla n ≥ N için |xn − a| ≤ ε sağlanır. ε > 0 herhangi bir pozitif reel

sayı olduğundan {xn} dizisinin a’ya yakınsadığı sonucu elde edilir. Özel olarak,

{xn} artan olduğundan n → ∞ iken xn ↑ a yazılır.

{xn} dizisi azalan, alttan sınırlı ve b := inf{xn : n ∈ N} olsun. Buna göre

{−xn} dizisi artandır ve supremumu −b’dir (bkz Teorem 1.3.11). Yukarıda

verilen ilk durumdan ve Teorem 2.2.4 ii)’ye göre

b = −(−b) = − limn→∞

(−xn) = limn→∞

xn

elde edilir.

Monoton Yakınsaklık Teoremi genellikle verilen bir dizinin limitinin varlığı-nın gösterilmesi için kullanılır. Limitin varlığı bir kere gösterildiğinde Teorem2.2.1 ve Teorem 2.2.4 kullanılarak bu limitin değerinin bulunması kolaydır.Aşağıdaki örnek bu durumu ortaya koymaktadır.

Örnek 2.3.3. Eğer |a| < 1 ise n → ∞ iken an → 0’dır.

Çözüm. limn→∞ |a|n = 0 olduğunu göstermek yeterlidir. |a|n ifadesi Çarpma

Özelliği’ne göre monoton azalandır ve |a| < 1 olduğundan her n ∈ N için

|a|n+1 < |a|n sağlanır. Ayrıca mutlak değerin özelliğinden dolayı |a|n dizisi alt-

tan (0 ile) sınırlıdır. Monoton azalan ve alttan sınırlı bir dizinin Monoton Ya-

kınsaklık Teoremi’ne göre L := limn→∞ |a|n limiti mevcuttur. |a|n+1 = |a||a|ncebirsel özdeşliğinin n → ∞ için limiti alınırsa Açıklama 2.1.6 ve Teorem 2.2.4’e

göre L = |a| · L olduğu sonucu elde edilir ki bu ise ya L = 0 ya da |a| = 1 de-

mektir. Teorem hipotezine göre |a| < 1 eşitsizliği sağlandığından L = 0 olmak

zorundadır. �

Örnek 2.3.4. Eğer a > 0 ise n → ∞ iken a1/n → 1’dir.

Çözüm. Problemi üç durumda ele alalım:

Durum 1. a = 1 olsun. Her n ∈ N için a1/n = 1 olduğundan n → ∞ iken

a1/n → 1 limit değeri elde edilir.

Durum 2. a > 1 olsun. Bu durumda Monoton Yakınsaklık Teoremi’ni kullan-

mak için {a1/n} dizisinin azalan ve alttan sınırlı olduğunu göstermek gerekir.

Bir n ∈ N sabitlensin. a > 1 olduğundan an+1 > an sağlanır. Bu eşitsizliğin her

iki tarafının n(n + 1). kökü alınırsa a1/n > a1/(n+1) sonucu elde edilir. Buna

göre a1/n azalandır. a > 1 olduğundan a1/n > 1 gerçeklenir ki bu ise a1/n

dizisinin alttan sınırlı olduğu anlamına gelir. Alttan sınırlı monoton azalan bir

dizinin Monoton Yakınsaklık Teoremi gereği L := limn→∞ a1/n limiti mevcut-

tur. Limit değerini bulmak için n → ∞ iken (a1/(2n))2 = a1/n özdeşliğinin

her iki tarafının limitini alırsak L2 = L olduğu sonucu elde edilir. Buna göre

49

Page 54: MB1001 ANALİZ I - i kuweb.iku.edu.tr/~eyavuz/Dersler/Analiz I/AnalizI.pdfDers Notları Yrd. Doç. Dr. Emel YAVUZ DUMAN İstanbul Kültür Üniversitesi Matematik-Bilgisayar Bölümü

L = 0 ya da 1’dir. a1/n > 1 olduğundan Karşılaştırma Teoremi’ne göre L ≥ 1

sağlanacağından L = 1 olduğu sonucuna ulaşılır.

Durum 3. 0 < a < 1 olsun. Buna göre 1/a > 1’dir. Dolayısıyla Teorem 2.2.4 ve

Durum 2’den

limn→∞

a1/n = limn→∞

1

1/a1/n=

1

limn→∞(1/a)1/n= 1

sonucu elde edilir. �

Tanım 2.3.5. Bir {In}n∈N kümeler dizisinin iç içe geçmiş olarak isimlendiril-

miş olması için gerek ve yeter şart

I1 ⊇ I2 ⊇ · · ·

şeklinde yazılabilmesidir.

Teorem 2.3.6 (İç İçe Geçmiş Aralık Özelliği). Eğer {In}n∈N boştan farklı ka-

palı sınırlı aralıkların iç içe geçmiş bir dizisi ise E :=⋂∞

n=1 In boştan farklıdır.

Ayrıca, n → ∞ için bu aralıkların uzunlukları |In| → 0 oluyor ise E tek bir

noktadır.

Kanıt. In = [an, bn] olsun. {In} iç içe geçmiş olduğundan {an} reel sayı dizisi

artandır ve üstten b1 ile sınırlıdır. Benzer şekilde {bn} dizisi azalandır ve alttan

a1 ile sınırlıdır. Dolayısıyla, Teorem 2.3.2’a göre n → ∞ iken an ↑ a ve bn ↓ b

olacak şekilde a, b ∈ R sayıları vardır. Her n ∈ N için an ≤ bn olduğundan

Karşılaştırma Teoremi’ne göre an ≤ a ≤ b ≤ bn sağlanır. Buna göre, bir x

sayısının her n ∈ N için In aralığına ait olması için gerek ve yeter şart a ≤ x ≤ b

eşitsiliğinin sağlanması, yani x ∈ [a, b] olmasıdır. Özel olarak, [a, b] aralığında

yer alan her x, aynı zamanda tüm In aralıklarına aittir.

a1 a2 a3 a4 a b1b2b3b4b . . .. . .

İspatın şimdiye kadar yapılan kısmında gösterildi ki tüm In’lere ait tam olarak

bir elemanın varlığı için gerek ve yeter şart a = b eşitliğinin sağlanmasıdır.

Fakat, n → ∞ iken |In| → 0 olması demek bn − an → 0 anlamına gelir.

Dolayısıyla, Teorem 2.2.4’e göre n → ∞ iken |In| → 0 ise a sayısı b’ye eşittir.

50

Page 55: MB1001 ANALİZ I - i kuweb.iku.edu.tr/~eyavuz/Dersler/Analiz I/AnalizI.pdfDers Notları Yrd. Doç. Dr. Emel YAVUZ DUMAN İstanbul Kültür Üniversitesi Matematik-Bilgisayar Bölümü

Açıklama 2.3.7. İç İçe Geçmiş Aralık Özelliği’nde göz önüne alınan aralıkların

“kapalı” olma durumu ihmal edildiğinde Teorem 2.3.6 doğru olmayabilir.

Kanıt. Her n ∈ N için In = (0, 1/n) şeklinde tanımlanan aralıklar sınırlı ve iç

içe geçmiş olmakla birlikte kapalı değillerdir. Eğer her n ∈ N için bir x ∈ In

elemanı var olsaydı 0 < x < 1/n, yani her n ∈ N için n < 1/x sağlanırdı. Bu

ise Archimedean Özelliği ile çelişir. Buna göre In aralıkları ortak bir noktaya

sahip olamaz.

Açıklama 2.3.8. İç İçe Geçmiş Aralık Özelliği’nde göz önüne alınan aralıkların

“sınırlı” olma durumu ihmal edildiğinde Teorem 2.3.6 doğru olmayabilir.

Kanıt. n ∈ N olmak üzere In = [n,∞) şeklinde tanımlanan kapalı ve iç içe

geçmiş sınırlı olmayan aralıklara ait ortak bir nokta yoktur.

Teorem 2.3.9 (Bolzano-Weierstrass Teoremi). Reel sayıların her sınırlı dizisi

yakınsak bir alt diziye sahiptir.

Strateji: Göstermemiz gereken {xn} dizisinin bir limit değerine yakınsayanbir alt dizisinin olduğunur. Bunun için iç içe geçmiş In aralıkları kullanılacak-tır. Özel olarak bu In aralıklarının uzunlukları n → ∞ iken 0’a yaklaşacakşekilde seçilecektir. Bu seçimden ötürü aralıklar bir noktaya yaklaşacaktır. Buaşamada her bir adımda seçilen iç içe geçmiş aralığın verilen dizinin sonsuz sa-yıda terimini içerdiğinden emin olunması gerekir. Daha sonra her bir aralıktanbir terim seçilerek yakınsak bir dizi formu elde edilecektir.

Kanıt. İspata genel bir gözlem ile başlayalım. {xn} herhangi bir dizi olsun.

Eğer A ve B kümelerinin birleşimi E = A ∪ B kümesi, n’nin sonsuz sayıda

değeri için xn içeriyor ise A veya B kümelerinin en az biri n’nin sonsuz sayıda

değeri için xn değerlerini içerir (Eğer içermeseydi bu durumda E kümesi, n’nin

sonlu sayıda değeri için xn sayılarını içerirdi ki bu ise çelişkiye neden olurdu).

{xn} reel sayıların herhangi sınırlı bir dizi olduğundan her n doğal sayısı

için |xn| ≤ C olacak şekilde bir C > 0 reel sayısı vardır. I1 = [a1, b1] = [−C,C]

olsun. Sınırlılıktan ötürü her n ∈ N için a1 ≤ xn ≤ b1 olacak şekilde bir [a1, b1]

aralığı vardır. I1 aralığı iki yarı-aralığa bölünsün ve c1 = (a1 + b1)/2 denilsin.

Yukarıda anlatılanlardan ötürü [a1, c1] veya [c1, b1] aralıklarından (en az) biri

{xn} dizisinin sonsuz sayıdaki terimini içerir. Genelliği bozmadan [a1, c1] kapalı

aralığının verilen dizinin sonsuz sayıda terimini içerdiği farz edilsin ve a2 =

a1 ve b2 = c1 olarak isimlendirilsin. Buna göre I2 = [a2, b2] aralığında {xn}dizisinin sonsuz sayıda terimi mevcuttur.

Yukarıdaki prosedürü tekrarlayarak I2 = [a2, b2] aralığı iki eşit yarı-aralığa

bölünsün ve c2 = a2+b22 denilsin. Buna göre bu yarı-aralıklardan (en az) birisi,

51

Page 56: MB1001 ANALİZ I - i kuweb.iku.edu.tr/~eyavuz/Dersler/Analiz I/AnalizI.pdfDers Notları Yrd. Doç. Dr. Emel YAVUZ DUMAN İstanbul Kültür Üniversitesi Matematik-Bilgisayar Bölümü

[a2, c2] veya [c2, b2] aralığı, {xn} dizisinin sonsuz sayıda terimini içerecektir. Bu

özelliğe sahip olan aralık seçilsin ve I3 = [a3, b3] olarak isimlendirilsin.

Benzer şekilde elde edilen In = [an, bn] iç içe geçmiş aralıkları, {xn} dizisinin

sonsuz sayıda terimini içerecek şekilde teşkil edilsin. İç İçe Geçmiş Aralık Özel-

liği’nden a = limn→∞ an ve b = limn→∞ bn limitlerinin var olduğunu biliyoruz.

Diğer taraftan, [a1, b1] = [−C,C] aralığının uzunluğu |I1| = 2C, [a2, b2] aralı-

ğının uzunluğu |I2| = 2C/2 = C, [a3, b3] aralığının uzunluğu |I3| = 2C/22 =

C/2 ve genel olarak [an, bn] aralığının uzunluğu |In| = C/2n−1 olduğundan

limn→∞(bn − an) = 0 yani a = b’dir.

I1 aralığı {xn} dizisinin en az bir xn1terimini içerir. I2 aralığı {xn} dizisinin

sonsuz sayıda terimini içerdiğinden n2 > n1 özelliğini sağlayacak şekilde I2

aralığından bir xn2seçilsin. Benzer şekilde, I3 aralığı {xn} dizisinin sonsuz

sayıda terimini içerdiğinden n3 > n2 > n1 özelliğini sağlayacak şekilde I3

aralığından bir xn3terimi seçilsin. Bu prosedüre tekrar edilerek a değerine

yakınsayan {xn} dizisinin bir {xnk} alt dizisini elde edilir.

Alıştırmalar

2.3.1. Aşağıda verilen ifadelerin hangilerinin doğru, hangilerinin yanlış olduğunutespit ediniz. Doğru olanları ispatlayıp yanlış olanlara ise birer ters örnek veriniz.

a) xn kesinlikle azalan ve 0 ≤ xn < 1/2 ise n → ∞ iken xn → 0 sağlanır.b) Eğer

xn =(n− 1) cos(n2 + n+ 1)

2n− 1

ise xn’nin yakınsak bir alt dizisi vardır.c) Eğer xn kesinkile artan bir dizi ve her n = 1, 2, 3 · · · için

|xn| < 1 +1

n

ise limn→∞ xn = 1 gerçeklenir.d) Eğer xn dizisinin yakınsak bir alt dizisi varsa, xn sınırlıdır.

2.3.2. x0 ∈ (−1, 0) ve n ∈ N için xn =√xn−1 + 1− 1 olsun. Buna göre n → ∞ iken

xn ↑ 0 olduğunu ispatlayınız. x0 ∈ [0, 1] olması durumu için yorum yapınız.

2.3.3. 0 ≤ x1 < 1 ve n ∈ N için xn+1 = 1 −√1− xn olsun. Buna göre n → ∞ iken

xn ↓ 0 ve n → ∞ iken xn+1/xn → 1/2 olduğunu gösteriniz.

2.3.4. x0 ≥ 2 ve n ∈ N için xn = 2 +√xn−1 − 2 olsun. Monoton Yakınsaklık

Teoremi’ni kullanarak n → ∞ iken ya xn → 2 ya da xn → 3 olduğunu gösteriniz.

2.3.5. x0 ∈ R ve n ∈ N için xn = (1+xn−1)/2 olsun. Monoton Yakınsaklık Teoremi’nikullanarak n → ∞ iken xn → 1 olduğunu gösteriniz.

52

Page 57: MB1001 ANALİZ I - i kuweb.iku.edu.tr/~eyavuz/Dersler/Analiz I/AnalizI.pdfDers Notları Yrd. Doç. Dr. Emel YAVUZ DUMAN İstanbul Kültür Üniversitesi Matematik-Bilgisayar Bölümü

2.3.6. Aşağıdaki limit değerlerinin doğruluğunu gösteriniz:

limn→∞

x1/(2n−1) =

1 x > 0

0 x = 0

−1 x < 0.

2.3.7. a) {xn} reel sayıların monoton artan bir dizisi olsun (üstten sınırlı olmasınagerek olmaksızın). n → ∞ iken xn → x olacak şekilde bir x genişletilmiş reelsayısının varlığını gösteriniz.

b) Yukarıdaki özelliği azalan diziler için ifade edip ve ispatlayınız.

2.3.8. E ⊂ R boştan farklı sınırlı bir küme olsun ve supE /∈ E sağlansın. Her n ∈ N

için xn ∈ E olacak şekilde kesinlikle artan ve supE değerine yakınsayan bir {xn}dizisinin varlığını gösteriniz.

2.3.9. 0 < y1 < x1 olsun ve n ∈ N için

xn+1 =xn + yn

2ve yn+1 =

√xnyn

olarak tanımlansın.

a) Her n ∈ N için 0 < yn < xn olduğunu gösteriniz.b) yn dizisinin artan ve üstten sınırlı, xn dizisinin azalan ve alttan sınırlı olduğunu

ispatlayınız.c) n ∈ N için 0 < xn+1 − yn+1 < (x1 − y1)/2

n olduğunu gösteriniz.d) limn→∞ xn = limn→∞ yn olduğunu gösteriniz (Bu ortak değere x1 ve y1’in

aritmetik-geometrik ortalaması adı verilir).

2.3.10. x0 = 1 ve y0 = 0 olsun ve n ∈ N için

xn = xn−1 + 2yn−1 ve yn = xn−1 + yn−1

olarak tanımlansın. Buna göre n ∈ N için x2n − 2y2

n = ±1 ve

n → ∞ ikenxn

yn→

√2

olduğunu gösteriniz.

2.3.11. (Archimedes) x0 = 2√3 ve y0 = 3 olsun ve n ∈ N için

xn =2xn−1yn−1

xn−1 + yn+1ve yn =

√xnyn−1

olarak tanımlansın.

a) n → ∞ iken x, y ∈ R için xn ↓ x ve yn ↑ y olduğunu gösteriniz.b) x = y ve

3.14155 < x < 3.14161

olduğunu gösteriniz (x’in gerçek değeri π’dir).

53

Page 58: MB1001 ANALİZ I - i kuweb.iku.edu.tr/~eyavuz/Dersler/Analiz I/AnalizI.pdfDers Notları Yrd. Doç. Dr. Emel YAVUZ DUMAN İstanbul Kültür Üniversitesi Matematik-Bilgisayar Bölümü

2.4 Cauchy Dizileri

Bu bölümde oldukça etkili ve fazlaca kullanılan bir olgu üzerinde durulacaktır.Tanıma göre, eğer {xn} yakınsak bir dizi ise büyük n değerleri için xn

terimlerinin yakınında yer alacağı bir a ∈ R noktası vardır. Eğer xn’ler a’nınyakınında ise doğal olarak birbirlerine de yakındırlar. Buna göre aşağıdaki kon-sept ortaya çıkar.

Tanım 2.4.1. xn ∈ R noktalar dizisinin (R’de) bir Cauchy dizisi olarak isim-

lendirilmesi için gerek ve yeter şart her ε > 0 sayısına karşılık

n,m ≥ N için |xn − xm| < ε (2.3)

olacak şekilde bir N ∈ N doğal sayısının var olmasıdır.

Örnek 2.4.2.{

3n−79n+2

}∞

n=1dizisinin bir Cauchy dizisi olduğunu tanımı kulla-

narak gösteriniz.

Çözüm. Gösterilmesi gereken her ε > 0 sayısına karşılık bir N pozitif tamsayı-

sının n,m ≥ N için∣∣∣∣

3n− 7

9n+ 2− 3m− 7

9m+ 2

∣∣∣∣< ε

eşitsizliğini sağlayacak şekilde var olduğudur. ε > 0 olsun. Bir N tamsayısı 4627ε

değerinden daha büyük olacak şekilde seçilsin (bu seçimin nedeni aşağıda izah

edilmektedir). Herhangi n,m ≥ N pozitif tamsayıları göz önüne alınsın. Buna

göre∣∣∣∣

3n− 7

9n+ 2− 3m− 7

9m+ 2

∣∣∣∣=

∣∣∣∣

(27nm+ 6n− 63m− 14)− (27mn+ 6m− 63n− 14)

(9n+ 2)(9m+ 2)

∣∣∣∣

=

∣∣∣∣

69m− 69n

81mn+ 18n+ 18m+ 4

∣∣∣∣<

69

81

|m− n|mn

≤ 69

81

m+ n

mn

=23

27

(1

n+

1

m

)

<23

27

(1

N+

1

N

)

=46

27N< ε

sağlandığından verilen dizinin bir Cauchy dizisi olduğu sonucu elde edilir. �

Örnek 2.4.3. {xn}n∈N ={(−1)n n+1

n

}

n∈Ndizisinin bir Cauchy dizisi olmadı-

ğını tanımı kullanarak gösteriniz.

Çözüm. Gösterilmesi gereken bir ε > 0 sayısına karşılık her N pozitif tamsayı-

sının m,n ≥ N için

|xn − xm| =∣∣∣∣(−1)n

n+ 1

n− (−1)m

m+ 1

m

∣∣∣∣≥ ε

54

Page 59: MB1001 ANALİZ I - i kuweb.iku.edu.tr/~eyavuz/Dersler/Analiz I/AnalizI.pdfDers Notları Yrd. Doç. Dr. Emel YAVUZ DUMAN İstanbul Kültür Üniversitesi Matematik-Bilgisayar Bölümü

eşitsizliğini sağladığıdır. ε = 2 olsun. Herhangi bir N pozitif tamsayısı göz

önüne alınsın ve n = 2N ve m = 2N + 1 olsun. Buna göre istenildiği üzere

n ≥ N ve m ≥ N sağlanır. Diğer taraftan

|xn − xm| =∣∣∣∣(−1)n

n+ 1

n− (−1)m

m+ 1

m

∣∣∣∣

=

∣∣∣∣(−1)2N

2N + 1

2N− (−1)2N+1 (2N + 1) + 1

2N + 1

∣∣∣∣

=

∣∣∣∣

2N + 1

2N+

(2N + 1) + 1

2N + 1

∣∣∣∣=

∣∣∣∣1 +

1

2N+ 1 +

1

2N + 1

∣∣∣∣

= 2 +1

2N+

1

2N + 1> 2 = ε

gerçeklendiğinden verilen dizinin bir Cauchy dizisi olmadığı sonucu elde edilir.

Aşağıdaki iki netice Cauchy dizisi olmanın süreklilik ile ne şekilde bağlantılıolduğunu ortaya koymaktadır.

Açıklama 2.4.4. Eğer {xn} dizisi yakınsak ise bir Cauchy dizisidir.

Kanıt. {xn} dizisi yakınsak olduğundan n → ∞ iken xn → a sağlanır. Tanıma

göre, verilen bir ε > 0 sayısına karşılık n ≥ N için |xn−a| < ε/2 olacak şekilde

bir N ∈ N sayısı vardır. Dolayısıyla eğer n,m ≥ N ise üçgen eşitsizliğine göre

|xn−xm| = |xn−xm+a−a| = |(xn−a)−(xm−a)| ≤ |xn−a|+|xm−a| < ε

2+ε

2= ε

sağlanır. Yani, {xn} bir Cauchy dizisidir.

Aşağıdaki teorem, Açıklama 2.4.4’nin tersinin de (reel değerli diziler için)doğru olduğunu göstermektedir.

Teorem 2.4.5 (Cauchy). {xn} reel sayıların bir dizisi olsun. Buna göre {xn}dizisinin Cauchy dizisi olabilmesi için gerek ve yeter şart {xn}’nin (bir a ∈ R

noktasına) yakınsamasıdır.

Strateji: Açıklama 2.4.4’den ötürü sadece her Cauchy dizisinin yakınsak ol-duğunu göstermek gerekir. {xn} bir Cauchy dizisi olsun. Buna göre xn terim-leri birbirlerine yakın olduklarından {xn} dizisi sınırlı olmalıdır. Dolayısıyla,Bolzano-Weierstrass Teoremi’ne göre {xn} dizisinin xnk

gibi bir yakınsak altdizisi vardır. Yani, k’nın büyük değerleri için xnk

’lar bir a ∈ R noktasının yakı-nında yer alırlar. Fakat {xn} bir Cauchy dizisi olduğundan yeterince büyük ndeğerleri için xn terimleri ile xnk

’lar yakındırlar. Dolayısıyla büyük n değerleriiçin xn terimleri a noktasının yakınında yer alır. Buna göre tüm dizi aynı bira noktasına yakınsar.

55

Page 60: MB1001 ANALİZ I - i kuweb.iku.edu.tr/~eyavuz/Dersler/Analiz I/AnalizI.pdfDers Notları Yrd. Doç. Dr. Emel YAVUZ DUMAN İstanbul Kültür Üniversitesi Matematik-Bilgisayar Bölümü

Kanıt. {xn} bir Cauchy dizisi olsun ve ε = 1 verilsin. Cauchy dizisi olma

tanımına göre

n,m ≥ N için |xn − xm| < 1

olacak şekilde bir N ∈ N doğal sayısı vardır. Özel olarak bu ifade her m ≥ N

için |xN − xm| < 1 olacak şekilde bir N ∈ N sayısı vardır formunda yazılabilir.

Dolayısyla, üçgen eşitsizliği kullanılarak m ≥ N için

|xm| − |xN | ≤ |xm − xN | = |xN − xm| < 1 olduğundan |xm| < 1 + |xN |

elde edilir. Buna göre {xn} dizisi M = max{|x1|, |x2|, · · · , |xN−1|, 1 + |xN |}ile sınırlıdır (Her Cauchy dizisi sınırlıdır). Yani her n için |xn| ≤ M sağlanır.

Gerçekten, eğer n < N ise |xn| yukarıdaki maksimumu elde etmede kullanılan

terimlerden bir tanesidir. Diğer taraftan n ≥ N olması durumunda |xn| ≤1 + |xN | eşitsizliği sağlandığından 1 + |xN | bir sınırdır.

Bolzano-Weierstrass Teoremi’ne göre {xn} dizisi n → ∞ iken xnk→ a

olacak şekilde yakınsak bir alt diziye sahiptir. xn bir Cauchy dizisi olduğundan,

n,m ≥ N1 için |xn − xm| < ε

2

eşitsizliğini sağlayacak şekilde bir N1 ∈ N sayısı seçilebilir. n → ∞ iken xnk→ a

olduğundan

k ≥ N2 için |xnk− a| < ε

2ifadesini gerçekleyen bir N2 ∈ N vardır. nk ≥ N1 olacak şekilde k ≥ N2 sayısı

sabitlensin. Buna göre her n ≥ N1 için

|xn − a| ≤ |xn − xnk|+ |xnk

− a| < ε

elde edilir. Dolayısıyla, n → ∞ iken xn → a olduğu sonucuna ulaşılır.

Genellikle bir dizinin Cauchy dizisi olduğunu göstermek verilen dizinin ya-kınsak olduğunu göstermekten daha kolay olduğundan bu sonuç teoride önemlibir yer teşkil eder. Aşağıdaki örnek bu durumun bir uygulamasıdır.

Örnek 2.4.6. n ∈ N için

|xn − xn+1| ≤1

2n

eşitsizliğini sağlayan her {xn} reel sayı dizisinin yakınsak olduğunu gösteriniz.

Çözüm. Eğer m > n ise

|xn − xm| = |xn − xn+1 + xn+1 − xn+2 + · · ·+ xm−1 − xm|≤ |xn − xn+1|+ |xn+1 − xn+2|+ · · ·+ |xm−1 − xm|

≤ 1

2n+

1

2n+1+ · · ·+ 1

2m−1

56

Page 61: MB1001 ANALİZ I - i kuweb.iku.edu.tr/~eyavuz/Dersler/Analiz I/AnalizI.pdfDers Notları Yrd. Doç. Dr. Emel YAVUZ DUMAN İstanbul Kültür Üniversitesi Matematik-Bilgisayar Bölümü

elde edilir. Şimdi 12n + 1

2n+1 + · · ·+ 12m−1 toplamının değerini hesaplayalım. Bu

toplam değerine T dersek ve T ’yi 12 ile çarpar kendisinden çıkartırsak

T =1

2n+

1

2n+1+ · · ·+ 1

2m−1

−1

2T = − 1

2n+1− · · · − 1

2m−1− 1

2m

1

2T =

1

2n− 1

2m⇒ T = 2

(1

2n− 1

2m

)

elde edilir. Burada 1/2m ifadesi pozitif olduğundan

1

2n+

1

2n+1+ · · ·+ 1

2m−1= 2

(1

2n− 1

2m

)

≤ 21

2n=

1

2n−1,

yani tüm m > n ≥ 1 tamsayıları için

|xn − xm| ≤ 1

2n−1

sağlanır. Diğer taraftan biliyoruz ki Archimedean Özelliği’ne göre verilen her

ε > 0 sayısına karşılık n ≥ N için 1/2n−1 < ε eşitsizliğini sağlayacak şekilde

bir N ∈ N doğal sayısı vardır. Buna göre {xn} bir Cauchy dizisidir. Teorem

2.4.5’e göre her Cauchy dizisi yakınsak olduğundan verilen dizinin yakınsadığı

bir reel sayının varlığı garantidir. �

Aşağıdaki sonuç yeterince büyük n değerleri için xn ile xn+1 terimlerininyakın olmasının, verilen dizinin bir Cauchy dizisi olmasını gerektirmediğini vur-gulamaktadır.

Açıklama 2.4.7. xn+1 − xn → 0 özelliğini sağlayan her dizinin bir Cauchy

dizisi olması şart değildir.

Kanıt. xn := log n olsun. Logaritmanın temel özelliklerinden biliyoruz ki

xn+1 − xn = log(n+ 1)− log n = logn+ 1

n

n→∞→ log 1 = 0

sağlanır. Diğer taraftan {xn} bir Cauchy dizisi olamaz. Çünkü n → ∞ iken

dizi +∞ değerine ıraksar.

Alıştırmalar

2.4.1. Aşağıda verilen ifadelerin hangilerinin doğru, hangilerinin yanlış olduğunutespit ediniz. Doğru olanları ispatlayıp yanlış olanlara ise birer ters örnek veriniz.

a) Eğer {xn} bir Cauchy dizisi ve {yn} sınırlı ise {xnyn} bir Cauchy dizisidir.

57

Page 62: MB1001 ANALİZ I - i kuweb.iku.edu.tr/~eyavuz/Dersler/Analiz I/AnalizI.pdfDers Notları Yrd. Doç. Dr. Emel YAVUZ DUMAN İstanbul Kültür Üniversitesi Matematik-Bilgisayar Bölümü

b) Eğer {xn} ve {yn} Cauchy dizileri ve her n ∈ N için yn 6= 0 ise {xn/yn} birCauchy dizisidir.

c) Eğer {xn} ve {yn} Cauchy dizileri ve her n ∈ N için xn+yn > 0 ise {1/(xn/yn)}sıfır değerine yakınsamaz.

d) Reel sayıların k → ∞ iken x2k −x2k−1 → 0 ve her k ∈ N için n 6= 2k koşullarınısağlayan bir {xn} dizisi Cauchy dizisidir.

2.4.2. Her n ∈ N için

|xn| ≤ 2n2 + 3

n3 + 5n2 + 3n+ 1

eşitsizliğini sağlayan {xn} dizisinin bir Cauchy dizisi olduğunu gösteriniz.

2.4.3. Her n ∈ N için xn ∈ Z olsun. Buna göre {xn} bir Cauchy dizisi ise xn’ninsonuçta bir sabit olduğunu, yani her n ≥ N için xn = a olacak şekilde bir a ∈ Z ven ∈ N sayılarının varlığını gösteriniz.

2.4.4. {xn} ve {yn} herhangi iki Cauchy dizisi ve a ∈ R olsun.

a) Teorem 2.4.5’ü kullanmadan axn dizisinin de bir Cauchy dizisi olduğunu gös-teriniz.

b) Teorem 2.4.5’ü kullanmadan xn + yn dizisinin de bir Cauchy dizisi olduğunugösteriniz.

c) Teorem 2.4.5’ü kullanmadan xnyn dizisinin de bir Cauchy dizisi olduğunu gös-teriniz.

2.4.5. {xn} bir reel sayı dizisi olsun. Farz edelim ki her ε > 0 sayısına karşılıkm ≥ n ≥ N için

∑mk=n zk

∣ < ε olacak şekilde bir N ∈ N sayısı var olsun. Buna göre

limn→∞

n∑

k=1

xk

limitinin var ve sonlu olduğunu gösteriniz.

2.4.6. Gösteriniz ki limn→∞∑n

k=1(−1)k/k limiti vardır ve sonludur.

2.4.7. {xn} bir dizisi olsun. Eğer her n ∈ N için

|xn+1 − xn| ≤ an

eşitsizliğini sağlayan bir a ∈ (0, 1) reel sayı var ise xn → x olacak şekilde bir x ∈ R

sayısının varlığını gösteriniz.

2.4.8. a) Reel sayıların bir E alt kümesi göz önüne alınsın. Her r > 0 için E ∩(a− r, a+ r) arakesiti sonsuz sayıda nokta içeriyor ise a ∈ R sayısına E’nin birkapanış noktası adı verilir. İspatlayınız ki, a sayısının E kümesinin bir kapanışnoktası olması için gerek ve yeter şart her r > 0 için E ∩ (a − r, a + r)\{a}kümesinin boştan farklı olmasıdır.

b) R’nin her sınırlı sonsuz alt kümesinin en az bir kapanış noktası olduğunu ispat-layınız.

58

Page 63: MB1001 ANALİZ I - i kuweb.iku.edu.tr/~eyavuz/Dersler/Analiz I/AnalizI.pdfDers Notları Yrd. Doç. Dr. Emel YAVUZ DUMAN İstanbul Kültür Üniversitesi Matematik-Bilgisayar Bölümü

2.4.9. a) R’nin bir E alt kümesinin dizisel kompakt olarak adlandırılması içingerek ve yeter şart her xn ∈ E dizisinin, limit değeri E’nin elemanı olan biryakınsak alt diziye sahip olmasıdır. Her kapalı sınırlı aralığın dizisel kompaktolduğunu ispatlayınız.

b) R içerisinde dizisel kompakt olmayan sınırlı aralıkların varlığını gösteriniz.c) R içerisinde dizisel kompakt olmayan kapalı aralıkların varlığını gösteriniz.

2.5 Limit Supremum ve Limit İnfimum

Formal tanımı vermeden önce açıklayıcı olması bakımından aşağıdaki irdele-meyi yapalım:

{xn} terimleri R kümesine ait bir dizi olsun. Buna göre her n ∈ N için

Xn = {xk : k ≥ n}

kümesinin R’de infimumu vardır. Yani her k ≥ n için

infXn ≤ xk

sağlanır.

..

PSfrag

RinfXn

−∞ +∞her k ≥ n için xk elemanları burada yer alır

Her n için Xn ⊇ Xn+1 olduğundan {tn} = {infXn} artan bir dizidir.

..

RinfX1

infX2

infX3

infX4−∞ +∞

Benzer şekilde Xn kümesinin supremumu vardır. Buna göre her k ≥ n için

xk ≤ supXn

sağlanır.

59

Page 64: MB1001 ANALİZ I - i kuweb.iku.edu.tr/~eyavuz/Dersler/Analiz I/AnalizI.pdfDers Notları Yrd. Doç. Dr. Emel YAVUZ DUMAN İstanbul Kültür Üniversitesi Matematik-Bilgisayar Bölümü

..

RsupXn

−∞ +∞her k ≥ n için xk elemanları burada yer alır

Ayrıca her n için Xn+1 ⊆ Xn+1 olduğundan {sn} = {supXn} azalan bir dizidir.Sonuç olarak k ≥ n için

infXn ≤ xk ≤ supXn

eşitsizliği sağlanır.

..

R

supX1

supX2

supX3

supX4

−∞ +∞

..

infXn R ∪ {−∞,∞}supXn

−∞ +∞her k ≥ n için xk elemanları burada yer alır

n değerleri büyüdükçe [infXn, supXn] kapalı aralığı küçülür. Dolayısıyla dizi-nin sonlu kısmı hariç bizim asıl ilgilendiğimiz bölümünün ne kadar küçük biraralığa sıkışacağını gözlemleyebiliriz.

..

R ∪ {−∞,∞}supXninfXn

n′ > n

infXn′ supXn′

−∞ +∞

Tanım 2.5.1. {xn} bir reel sayı dizisi olsun. Buna göre {xn} dizisinin limit

supremumu

lim supn→∞

xn := limn→∞

(

supk≥n

xk

)

(2.4)

60

Page 65: MB1001 ANALİZ I - i kuweb.iku.edu.tr/~eyavuz/Dersler/Analiz I/AnalizI.pdfDers Notları Yrd. Doç. Dr. Emel YAVUZ DUMAN İstanbul Kültür Üniversitesi Matematik-Bilgisayar Bölümü

ve {xn} dizisinin limit infimumu

lim infn→∞

xn := limn→∞

(

infk≥n

xk

)

genişletilmiş reel sayılarıdır.

Tanım 2.5.1’de verilen limitlerin genişletilmiş reel sayı olarak varlığının gös-terilmesi gerekir. Bunun için {xn} reel sayı dizisi ve

sn = supk≥n

xk := sup{xk : k ≥ n} ve tn = infk≥n

xk := inf{xk : k ≥ n}

dizileri göz önüne alınsın. Yukarıda anlatıldığı üzere sn ve tn’lerin her birigenişletilmiş reel sayılardır ve Monotonluk Özelliğine göre sn genişletilmiş reelsayıların azalan ve tn ise artan bir dizisi olduğundan n → ∞ iken sn ↓ s vetn ↑ t olacak şekilde s ve t genişletilmiş reel sayıları vardır (bkz Alıştırma 2.3.7).Bu genişletilmiş reel sayılar, sırası ile, Tanım 2.5.1’e göre {xn} dizisinin limitsupremum ve limit infimum değerleridir.

Aşağıdaki üç örnekte limit supremum ve limit infimumun ne şekilde hesap-landığı gösterilmektedir.

Örnek 2.5.2. xn = (−1)n olsun. lim supn→∞ xn ve lim infn→∞ xn değerlerini

tespit ediniz.

Çözüm. Her n ∈ N için supk≥n(−1)k = 1 olduğundan Tanım 2.5.1’e göre

lim supn→∞ xn = 1’dir. Benzer şekilde lim infn→∞ xn = −1 olarak bulunur. �

Örnek 2.5.3. xn = 1+1/n olsun. lim supn→∞ xn ve lim infn→∞ xn değerlerini

tespit ediniz.

Çözüm. Her n ∈ N için supk≥n(1 + 1/k) = 1 + 1/n olduğundan Tanım 2.5.1’e

göre lim supn→∞ xn = 1’dir. Diğer taraftan, her n ∈ N için infk≥n(1+1/k) = 1

olduğundan lim infn→∞ xn = 1 şeklinde elde edilir. �

Örnek 2.5.4. xn = (−1)nn olsun. lim supn→∞ xn ve lim infn→∞ xn değerlerini

tespit ediniz.

Çözüm. Verilen dizi {−1, 2,−3, 4,−5, 6,−7, · · · } şeklinde yazılabilir. Buna göre

her n ∈ N için supk≥n(−1)nn = ∞ olduğundan lim supn→∞ xn = ∞’dir. Diğer

taraftan, her n ∈ N için infk≥n(−1)nn = −∞ olduğundan lim infn→∞ xn =

−∞ şeklinde elde edilir. �

Teorem 2.5.5. {xn} bir reel sayı dizisi, s = lim supn→∞ xn ve t = lim infn→∞ xn

olsun. Buna göre k → ∞ iken xnk→ s ve j → ∞ iken xℓj → s olacak şekilde

{xnk}k∈N ve {xℓj}j∈N alt dizileri vardır.

61

Page 66: MB1001 ANALİZ I - i kuweb.iku.edu.tr/~eyavuz/Dersler/Analiz I/AnalizI.pdfDers Notları Yrd. Doç. Dr. Emel YAVUZ DUMAN İstanbul Kültür Üniversitesi Matematik-Bilgisayar Bölümü

Kanıt. İspatı sadece limit supremum için vereceğiz. Benzer argüman kullanı-

larak teoremin doğruluğu limit infimum için de gösterilebilir. sn = supk≥n xk

olsun. Buna göre n → ∞ iken sn ↓ s gerçeklenir.

Durum 1. s = ∞ olsun. Tanıma göre her n ∈ N için sn = ∞’dir. s1 = ∞olduğundan xn1

> 1 olacak şekilde bir n1 ∈ N sayısı vardır. sn1+1 = ∞olduğundan xn2

> 2 olacak şekilde bir n2 ≥ n1 + 1 > n1 sayısı mevcuttur. Bu

şekilde devam ederek, her k ∈ N için xnk> k olacak şekilde bir {xnk

} alt dizisi

seçilebilir. Dolayısıyla, R için Sıkıştırma Teoremi’ne (bkz Alıştırma 2.2.8) göre

k → ∞ iken xnk→ ∞ = s olur.

Durum 2. s = −∞ olsun. Her n ∈ N için sn ≥ xn ve n → ∞ iken sn → −∞olduğundan R için Sıkıştırma Teoremi’ne göre n → ∞ iken xn → −∞ = s

sağlanır.

Durum 3. −∞ < s < ∞ olsun. n0 = 0 alınsın. Teorem 1.3.5’e (Supremum için

Yaklaşım Teoremi) göre sn0+1 − 1 < xn1≤ sn0+1 eşitsizliğini sağlayacak bir

n1 ∈ N tamsayısı vardır. Benzer şekilde, sn1+1−1/2 < xn2≤ sn1+1 eşitsizliğini

sağlayacak bir n2 ≥ n1 + 1 > n1 tamsayısı mevcuttur. Bu anlamda devam

ederek her k ∈ N için

snk−1+1 −1

k< xnk

≤ snk−1+1 (2.5)

eşitsizliğini sağlayacak şekilde n1 < n2 < · · · tamsayıları seçilebilir. k → ∞iken snk−1+1 → s olduğundan Sıkıştırma Teoremi’ne göre k → ∞ iken xnk

→ s

elde edilir.

Teorem 2.5.6. {xn} bir reel sayı dizisi ve x bir genişletilmiş reel sayı olsun.

Buna göre n → ∞ iken xn → x olması için gerek ve yeter şart

lim supn→∞

xn = lim infn→∞

xn (2.6)

eşitliğinin sağlanmasıdır.

Kanıt. n → ∞ iken xn → x olsun. {xn} dizisinin her {xnk} alt dizisi için n →

∞ iken xnk→ x yazılabilir. Buna göre, Teorem 2.5.5’den lim supn→∞ xn = x

ve lim infn→∞ xn = x ifadeleri gerçeklenir. Dolayısıyla, (2.6) eşitliği doğrudur.

Tersine, (2.6) ifadesi doğru olsun.

Durum 1. x = ±∞ olsun. Eğer terimler ±xn şeklinde göz önüne alınırsa x =

∞ olduğunu söyleyebiliriz. Buna göre, verilen bir M ∈ R için infk≥N xk >

M olacak şekilde bir N ∈ N vardır. Dolayısıyla, her n ≥ N için xn > M

gerçeklenir. Bu ise n → ∞ iken xn → x olduğu anlamına gelir.

62

Page 67: MB1001 ANALİZ I - i kuweb.iku.edu.tr/~eyavuz/Dersler/Analiz I/AnalizI.pdfDers Notları Yrd. Doç. Dr. Emel YAVUZ DUMAN İstanbul Kültür Üniversitesi Matematik-Bilgisayar Bölümü

Durum 2. −∞ < x < ∞ ve ε > 0 olsun. Ayrıca

supk≥N

xk − x <ε

2ve x− inf

k≥Nxk <

ε

2

olacak şekilde bir N ∈ N seçilsin.

n,m ≥ N olsun ve basitlik sağlaması bakımından xn > xm eşitsizliğinin

doğruluğu kabul edilsin. Buna göre

|xn − xm| = xn − xm ≤ supk≥N

xk − x+ x− infk≥N

xk <ε

2+

ε

2= ε

elde edilir. Dolayısıyla, {xn} dizisi bir Cauchy dizisidir ve sonlu bir reel sayıya

yakınsar. Bununla beraber, Teorem 2.5.5’e göre {xn} dizisinin x’e yakınsayan

bir alt dizisi mevcuttur. Bu ise n → ∞ iken xn → x olduğu anlamına gelir.

Teorem 2.5.5 bize limit supremum ve limit infimum hakkında aşağıdakigeometrik yorumu yapma imkânı tanır.

Teorem 2.5.7. {xn} bir reel sayı dizisi olsun. Buna göre lim supn→∞ xn (sırası

ile, lim infn→∞ xn) değeri, {xn} dizisinin bazı alt dizilerinin yakınsadığı (veya

değerin ∞ olması durumunda ıraksadığı) en büyük (sırası ile, en küçük) geniş-

letilmiş sayıdır. Yani, k → ∞ iken xnk→ x ise

lim infn→∞

xn ≤ x ≤ lim supn→∞

xn (2.7)

eşitsizliği gerçeklenir.

Kanıt. k → ∞ iken xnk→ x olsun. Bir N ∈ N sayısı sabitlensin ve k ≥ K

iken nk ≥ N olacak şekilde yeterince büyük bir K sayısı seçilsin. Buna göre

her k ≥ K için

infj≥N

xj ≤ xnk≤ sup

j≥Nxj

eşitsizliği doğrudur. k → ∞ iken yukarıdaki ifadenin limiti alınırsa

infj≥N

xj ≤ x ≤ supj≥N

xj

elde edilir. Son eşitsizlikten bu kez N → ∞ iken limit alır ve Tanım 2.5.1

kullanılırsa (2.7) ifadesi elde edilir.

Açıklama 2.5.8. Reel sayıların herhangi bir {xn} dizisi için

lim infn→∞

xn ≤ lim supn→∞

xn

eşitsizliği gerçeklenir.

63

Page 68: MB1001 ANALİZ I - i kuweb.iku.edu.tr/~eyavuz/Dersler/Analiz I/AnalizI.pdfDers Notları Yrd. Doç. Dr. Emel YAVUZ DUMAN İstanbul Kültür Üniversitesi Matematik-Bilgisayar Bölümü

Kanıt. Her n ∈ N için infk≥n xk ≤ x ≤ supk≥n xk eşitsizliği gerçeklendiğinden

Teorem 2.2.9 (Karşılaştırma Teoremi) kullanılarak verilen ifadenin doğruluğu

görülür.

Aşağıdaki ifadenin doğruluğu Tanım 2.5.1, Karşılaştırma Teoremi ve Mo-noton Yakınsaklık Teoremi kullanılarak gösterilebilir.

Açıklama 2.5.9. Bir {xn} dizisinin alttan sınırlı olması için gerek ve ye-

ter şart lim supn→∞ xn < ∞ ve üstten sınırlı olması için gerek ve yeter şart

lim infn→∞ xn > −∞ ifadelerinin gerçeklenmesidir.

Aşağıdaki sonuç bize eşitsizliklerin limit supremum ve limit infimumlarınıalabileceğimizi belirtir.

Teorem 2.5.10. Büyük n değerleri için xn ≤ yn eşitsizliği sağlanıyor ise

lim supn→∞

xn ≤ lim supn→∞

yn ve lim infn→∞

xn ≤ lim infn→∞

yn (2.8)

ifadeleri doğrudur.

Kanıt. Her k ≥ N için xk ≤ yk ise her n ≥ N için supk≥n xk ≤ supk≥n yk

ve infk≥n xk ≤ infk≥n yk eşitsizlikleri gerçeklenir. Eğer bu ifadelerden n → ∞iken limit alınırsa (2.8) elde edilir.

Alıştırmalar

2.5.1. Aşağıdaki dizilerin limit supremum ve limit infimum değerlerini hesaplayınız.

a) xn = 3− (−1)n

b) xn = cos(nπ/2)

c) xn = (−1)n+1 + (−1)n/n

d) xn =√1 + n2/(2n− 5)

e) xn = yn/n, burada yn üstten sınırlı bir dizidirf) xn = n(1 + (−1)n) + n−1((−1)n − 1)

g) xn = (n3 + n2 − n+ 1)/(n2 + 2n+ 5)

2.5.2. {xn} bir reel sayı dizisi olsun. Buna göre

− lim supn→∞

xn = lim infn→∞

(−xn)

ve− lim inf

n→∞xn = lim inf

n→∞(−xn)

olduğunu gösteriniz.

2.5.3. {xn} bir reel sayı dizisi ve r ∈ R olsun.

64

Page 69: MB1001 ANALİZ I - i kuweb.iku.edu.tr/~eyavuz/Dersler/Analiz I/AnalizI.pdfDers Notları Yrd. Doç. Dr. Emel YAVUZ DUMAN İstanbul Kültür Üniversitesi Matematik-Bilgisayar Bölümü

a) Büyük n değerleri için

lim supn→∞

xn < r iken xn < r

olduğunu ispatlayınız.b) Sonsuz çoklukta n ∈ N için

lim supn→∞

xn > r iken xn > r

olduğunu ispatlayınız.

2.5.4. {xn} ve {yn} reel sayıların herhangi iki dizisi olsun.

a) Aşağıdaki toplamların hiç birinin ∞−∞ formunda olmaması koşulu altında

lim infn→∞

xn + lim infn→∞

yn ≤ lim infn→∞

(xn + yn)

≤ lim supn→∞

xn + lim infn→∞

yn

≤ lim supn→∞

(xn + yn) ≤ lim supn→∞

xn + lim supn→∞

yn

olduğunu ispatlayınız.b) Eğer limn→∞ xn limiti mevcut ise

lim infn→∞

(xn + yn) = limn→∞

xn + lim infn→∞

yn

velim supn→∞

(xn + yn) = limn→∞

xn + lim supn→∞

yn

eşitliklerini ispatlayınız.

2.5.5. {xn} ve {yn} reel sayıların herhangi iki dizisi olsun.

a) Her n ∈ N için xn ≥ 0 ve yn ≥ 0 olsun. Aşağıdaki eşitsizliğin sağındaki çarpım0 · ∞ formunda olmamak üzere

lim supn→∞

(xnyn) ≤ (lim supn→∞

xn)(lim supn→∞

yn)

olduğunu gösteriniz.b) Her n ∈ N için xn ≤ 0 ≤ yn olsun. Aşağıdaki eşitsizlikte bulunan çarpımların

hiç biri 0 · ∞ formunda olmamak üzere

(lim infn→∞

xn)(lim supn→∞

yn) ≤ lim infn→∞

(xnyn)

olduğunu gösteriniz.

2.5.6. Her n ∈ N için xn ≥ 0 ve yn ≥ 0 olsun. n → ∞ iken xn → x (burada x birgenelleştirilmiş reel sayı da olabilir) ise aşağıdaki eşitlikte bulunan çarpımların hiçbiri 0 · ∞ formunda olmamak üzere

lim supn→∞

(xnyn) = x lim supn→∞

yn

olduğunu gösteriniz.

65

Page 70: MB1001 ANALİZ I - i kuweb.iku.edu.tr/~eyavuz/Dersler/Analiz I/AnalizI.pdfDers Notları Yrd. Doç. Dr. Emel YAVUZ DUMAN İstanbul Kültür Üniversitesi Matematik-Bilgisayar Bölümü

2.5.7. Herhangi bir reel {xn} dizisi için

lim supn→∞

xn = infn∈N

(

supk≥n

xk

)

ve lim infn→∞

xn = supn∈N

(

infk≥n

xk

)

olduğunu gösteriniz.

2.5.8. Her n ∈ N için xn ≥ 0 olsun. 1/0 = ∞ ve 1/∞ = 0 yorumları altında

lim supn→∞

1

xn=

1

lim infn→∞ xnve lim inf

n→∞

1

xn=

1

lim supn→∞ xn

olduğunu gösteriniz.

66

Page 71: MB1001 ANALİZ I - i kuweb.iku.edu.tr/~eyavuz/Dersler/Analiz I/AnalizI.pdfDers Notları Yrd. Doç. Dr. Emel YAVUZ DUMAN İstanbul Kültür Üniversitesi Matematik-Bilgisayar Bölümü

3 R Üzerinde Fonksiyonlar

3.1 İki-Yönlü Limitler

Bölüm 2’de reel sayıların limitlerini inceledik. Bu bölümde ise tanım ve değerkümeleri R’nin bir alt kümesi olan reel fonksiyonların limitleri üzerinde dura-cağız. Bu formdaki fonksiyonları, değer kümesi aynı zamanda ∞ ve/veya −∞değerlerini içeren fonksiyonlardan ayırmak için reel fonksiyonları kimi zamansonlu değerli olarak isimlendireceğiz.

Tanım 3.1.1. a ∈ R, I reel sayıların a noktasını içeren bir açık aralığı ve f

muhtemelen a noktasında olmasa da bu I aralığı üzerindeki diğer tüm nokta-

larda tanımlı bir reel fonksiyon olsun. Buna göre x noktası a noktasına yakla-

şırken f(x) fonksiyonunun L’ye yakınsıyor olarak adlandırılması için gerek ve

yeter şart her ε > 0 sayısına karşılık

0 < |x− a| < δ olduğu müddetçe |f(x)− L| < ε (3.1)

eşitsizliğini sağlayan bir δ > 0 (bu sayı genellikle ε, f , I ve a niceliklerine

bağlıdır) sayısının var olmasıdır.

Bu durumda

L = limx→a

f(x) veya x → a iken f(x) → L

yazılır ve x noktası a noktasına yaklaşırken f(x) fonksiyonunun limit i L’dir

şeklinde okunur.

Tanım 3.1.1’e göre verilen bir fonksiyonun limiti olduğunu göstermek içingenel bir ε > 0 değeri ile başlayıp (3.1) ifadesini sağlayan δ sayısının nasılseçilmesi gerektiği ortaya konmalıdır.

Örnek 3.1.2. m, b ∈ R olmak üzere f(x) = mx+ b olarak tanımlansın. Buna

göre her a ∈ R için

f(a) = limx→a

f(x)

olduğunu ispatlayınız.

Page 72: MB1001 ANALİZ I - i kuweb.iku.edu.tr/~eyavuz/Dersler/Analiz I/AnalizI.pdfDers Notları Yrd. Doç. Dr. Emel YAVUZ DUMAN İstanbul Kültür Üniversitesi Matematik-Bilgisayar Bölümü

xaa

L

L+ ε

L− ε

a+ δ a− δa− δ

y = f(x)

y

Kanıt. Eğer m = 0 ise ispat gerektiren bir durum yoktur. Diğer durumda, ε > 0

sayısı verilsin ve δ = ε/|m| olarak seçilsin. Eğer |x− a| < δ ise bu durumda

|f(x)− f(a)| = |mx+ b− (ma+ b)| = |m||x− a| < |m|δ = ε

ifadesi sağlanacağından δ sayısının bu seçimi ile x → a iken f(x) → f(a) olduğu

elde edilir.

Kimi durumlarda δ sayısını belirlemek için f(x) − L ifadesini iki çarpanşeklinde yazmamız gerekebilir. Daha sonra önemsiz olduğu düşünülen çarpanbir üst sınırı ile değiştirilerek istenilen elde edilir.

Örnek 3.1.3. f(x) = x2 + x − 3 olarak tanımlansın. Buna göre x → 1 iken

f(x) → −1 olduğunu ispatlayınız.

Kanıt. ε > 0 ve L = −1 olsun. Buna göre

f(x)− L = x2 + x− 3− (−1) = x2 + x− 2 = (x− 1)(x− 2)

bulunur. Eğer 0 < δ ≤ 1 ise |x−1| < δ olduğundan |x−1| < 1 yani −1 < x−1 <

1 dolayısıyla 0 < x < 2 elde edilir. Buna göre üçgen eşitsizliği kullanılarak

|x+ 2| ≤ |x|+ 2 < 4 eşitsizliğine ulaşılır. δ = min{1, ε/4} olsun. δ sayısının bu

seçimi ile eğer |x− 1| < δ ise

|f(x)− L| = |x− 1||x− 2| < 4|x− 1| < 4δ ≤ ε

elde edilir. Bu ise tanıma göre x → 1 iken f(x) → −1 demektir.

Örnek 3.1.4. limx→a x2 = a2 olduğunu ispatlayınız.

Kanıt. Her x ∈ R için f(x) := x2 olsun. Gösterilmesi gereken

|f(x)− L| = |f(x)− a2| = |x2 − a2|

68

Page 73: MB1001 ANALİZ I - i kuweb.iku.edu.tr/~eyavuz/Dersler/Analiz I/AnalizI.pdfDers Notları Yrd. Doç. Dr. Emel YAVUZ DUMAN İstanbul Kültür Üniversitesi Matematik-Bilgisayar Bölümü

farkının, x değerleri a’ya yeterince yakın olmak üzere, önceden atanmış bir ε

değerinden küçük olduğudur. Buna göre x2 − a2 = (x− a)(x+ a) olduğundan,

eğer |x−a| < 1 ise üçgen eşitsizliği kullanılarak |x|−|a| ≤ |x−a| < 1 yani |x| <1 + |a| dolayısıyla |x+ a| ≤ |x|+ |a| < 1 + 2|a| elde edilir. δ = min

{

1, ε2|a|+1

}

olsun. δ sayısının bu seçimi ile |x− a| < δ ise

|f(x)− L| = |x− a||x+ a| < |x− a|(1 + 2|a|) < (1 + 2|a|)δ ≤ ε

sonucuna ulaşılır. Bu ise tanıma göre x → a iken f(x) → a2 demektir.

Örnek 3.1.5. a > 0 için x → a iken 1x → 1

a olduğunu ispatlayınız.

Kanıt. Her x > 0 için f(x) := 1/x ve a > 0 olsun. Gösterilmesi gereken

|f(x)− L| =∣∣∣∣f(x)− 1

a

∣∣∣∣=

∣∣∣∣

1

x− 1

a

∣∣∣∣

farkının, x değerleri a > 0’ya yeterince yakın olmak üzere, önceden atanmış bir

ε değerinden küçük olduğudur. Buna göre x > 0 için∣∣∣∣

1

x− 1

a

∣∣∣∣=

∣∣∣∣

1

ax(a− x)

∣∣∣∣=

1

ax|x− a|

olduğundan 1/(ax) ifadesi için bir üst sınır bulmak gerekir. Özel olarak eğer

|x − a| < 12a ise − 1

2a < x − a < 12a olduğundan a − 1

2a < x < a + 12a yani

12a < x < 3

2a sonuçta 1x < 2

a elde edilir. Dolayısıyla

|x− a| < 1

2a için 0 <

1

ax<

2

a2

sonucuna ulaşılır. Buna göre x’in bu değerleri için∣∣∣∣f(x)− 1

a

∣∣∣∣<

2

a2|x− a|

elde edilir. Yukarıdaki eşitsizliğin sağ tarafının ε’dan küçük kalmasını garantile-

mek için |x− a| < 12a

2ε alınmalıdır. Sonuç olarak δ = min{

12a,

12a

2ε}

şeklinde

seçilirse eğer |x− a| < δ ise

|f(x)− L| = 2

a2|x− a| < 2

a2δ ≤ ε

sonucuna ulaşılır. Bu ise tanıma göre x → a iken f(x) → 1/a demektir.

Devam etmeden önce Tanım 3.1.1’in iki önemli özelliğine değinelim: Kabul1. I bir açık aralıktır; Kabul 2. 0 < |x − a| sağlanır. Eğer I = (c, d) bir açıkaralık ve δ0 := min{a − c, d − a} olarak belirlenirse |x − a| < δ0 için x ∈ Isağlanır. Dolayısıyla, Kabul 1 yeterince küçük δ > 0 için |x − a| < δ (a’nın

69

Page 74: MB1001 ANALİZ I - i kuweb.iku.edu.tr/~eyavuz/Dersler/Analiz I/AnalizI.pdfDers Notları Yrd. Doç. Dr. Emel YAVUZ DUMAN İstanbul Kültür Üniversitesi Matematik-Bilgisayar Bölümü

her iki tarafında) koşulunu sağlayan her x 6= a noktasında f(x) fonksiyonutanımlıdır. |x − a| > 0 olduğundan x 6= a’dır ve Kabul 2 f fonksiyonu bunoktada tanımlı olmasa dahi f ’in limitinin a olabileceğini garantiler (Bu olgudaha sonra türevleri tanımlarken kritik bir rol oynayacaktır).

Aşağıdaki sonuç f(x) fonksiyonu a noktasında tanımlı olsa dahi a nokta-sında f ’in limitinin değerinin f(a) değerinden genellikle bağımsız olduğunuortaya koymaktadır.

Açıklama 3.1.6. a ∈ R, I reel sayıların a noktasını içeren bir açık aralığı

ve f, g muhtemelen a noktasında olmasa da bu I aralığı üzerindeki diğer tüm

noktalarda tanımlı birer reel fonksiyon olsun. Eğer her x ∈ I\{a} için f(x) =

g(x) ve x → a iken f(x) → L ise bu durumda x → a iken g(x) fonksiyonunun

da bir limit değeri vardır ve

limx→a

g(x) = limx→a

f(x)

sağlanır.

Kanıt. ε > 0 olsun. (3.1) ve |x−a| < δ için x ∈ I koşullarını sağlayacak şekilde

yeterince bir küçük δ > 0 sayısı seçilsin. 0 < |x−a| < δ eşitsizliğinin sağlandığı

kabul edilsin. Teorem hipotezine göre f(x) = g(x) ve (3.1)’den |f(x) − L| < ε

olduğundan |g(x)− L| < ε sonucu elde edilir.

Örnek 3.1.7. x → 1 iken

g(x) =x3 + x2 − x− 1

x2 − 1

fonksiyonunun bir limit değeri olduğunu ispatlayınız.

Kanıt. f(x) = x+ 1 olsun. Örnek 3.1.2’ye göre x → 1 iken f(x) → 2 sağlanır.

x 6= ±1 için

g(x) =x3 + x2 − x− 1

x2 − 1=

(x+ 1)(x2 − 1)

x2 − 1= x+ 1 = f(x)

olduğundan Açıklama 3.1.6’ya göre x → 1 iken g(x) fonksiyonunun limiti vardır

(ve bu limit değeri 2’dir).

Dizilerin limitleri ile fonksiyonların limitleri arasında yakın bir ilişki vardır.

Teorem 3.1.8 (Limitlerin Dizisel Karakterizasyonu). a ∈ R, I reel sayıların a

noktasını içeren bir açık aralığı ve f muhtemelen a noktasında olmasa da bu I

aralığı üzerindeki diğer tüm noktalarda tanımlı bir reel fonksiyon olsun. Buna

göre

L = limx→a

f(x)

70

Page 75: MB1001 ANALİZ I - i kuweb.iku.edu.tr/~eyavuz/Dersler/Analiz I/AnalizI.pdfDers Notları Yrd. Doç. Dr. Emel YAVUZ DUMAN İstanbul Kültür Üniversitesi Matematik-Bilgisayar Bölümü

limitinin mevcut olması için gerek ve yeter şart n → ∞ iken a değerine yakın-

sayan her xn ∈ I\{a} dizisi için n → ∞ iken f(xn) → L olmasıdır.

Kanıt. x noktası a’ya yaklaşırken f fonksiyonu L değerine yakınsasın. Buna

göre verilen ε > 0 için (3.1) ifadesini sağlayacak şekilde bir δ > 0 sayısı vardır.

Diğer taraftan eğer xn ∈ I\{a} dizisi n → ∞ iken a değerine yakınsıyor ise

n ≥ N için |xn−a| < δ eşitsizliğini sağlayan bir N ∈ N sayısı seçilebilir. xn 6= a

olduğundan (3.1)’e göre her n ≥ N için |f(xn)−L| < ε sağlanır. Bu ise n → ∞iken f(xn) → L demektir.

Tersine, n → ∞ iken a değerine yakınsayan her xn ∈ I\{a} dizisi için

n → ∞ iken f(xn) → L olsun. Bu durumda, eğer x noktası a’ya yaklaşırken

f fonksiyonu L değerine yakınsamıyor ise bir ε > 0 sayısı için (biz bu sayıya

ε0 diyelim) “0 < |x − a| < δ olduğu müddetçe x ∈ I\{a} için |f(x) − L| < ε”

eşitsizliğini sağlayan hiç bir δ > 0 sayısı yoktur. Dolayısıyla n ∈ N olmak üzere

her δ = 1/n için 0 < |xn − a| < 1/n ve |f(xn)−L| ≥ ε koşullarını sağlayan bir

xn ∈ I noktası vardır. Bu ise birinci koşul ve Sakıştırma Teoremi (Teorem 2.2.1)

gereği xn 6= a ve xn → a demektir. Sonuç olarak hipotez koşuluna göre n → ∞iken f(xn) → L sağlanır. Özel olarak, büyük n değerleri için |f(xn) − L| < ε

olması ikinci koşul ile çelişir.

Yukarıdaki teorem gereği bir fonksiyonun x → a iken limit değerinin olma-dığını göstermek için f altındaki görüntülerinin farklı limit değerlerine sahipolduğu a değerine yakınsayan iki dizinin varlığını göstermek gerekir.

Örnek 3.1.9.

f(x) =

sin 1x x 6= 0

0 x = 0

şeklinde tanımlanan fonksiyonun x → 0 iken limitinin olmadığını gösteriniz.

Kanıt. n ∈ N için

an :=2

(4n+ 1)πve bn :=

2

(4n+ 3)π

olarak tanımlansın. Açıktır ki her iki dizi de n → ∞ iken 0 değerine yakınsar.

Diğer taraftan her n ∈ N için f(an) = 1 ve f(bn) = −1 olduğundan n → ∞iken f(an) → 1 ve f(bn) → −1 gerçeklenir. Bu ise Teorem 3.1.8’e göre x → 0

iken f(x) fonksiyonunun limitinin olmadığı anlamına gelir.

f, g : E → R olsun. Her x ∈ E için f ve g fonksiyonlarının noktasal toplamı,f + g

(f + g)(x) := f(x) + g(x),

71

Page 76: MB1001 ANALİZ I - i kuweb.iku.edu.tr/~eyavuz/Dersler/Analiz I/AnalizI.pdfDers Notları Yrd. Doç. Dr. Emel YAVUZ DUMAN İstanbul Kültür Üniversitesi Matematik-Bilgisayar Bölümü

bir α ∈ R skaleri ile f fonksiyonunun skaler çarpımı, αf

(αf)(x) := αf(x),

f ve g fonksiyonlarının noktasal çarpımı, fg

(fg)(x) := f(x)g(x)

ve son olarak da f ve g’nin (g(x) 6= 0 olmak üzere) noktasal bölümü, f/g(f

g

)

(x) =f(x)

g(x)

şeklinde tanımlanır.Aşağıdaki sonuç Teorem 2.2.4’ün fonksiyon analoğudur.

Teorem 3.1.10. a ∈ R, I reel sayıların a noktasını içeren bir açık aralığı

ve f, g muhtemelen a noktasında olmasa da bu I aralığı üzerindeki diğer tüm

noktalarda tanımlı birer reel fonksiyon olsun. x değerleri a’ya yaklaşırken f(x)

ve g(x) yakınsak ise (f +g)(x), (fg)(x), (αf)(x) ve (g(x) fonksiyonunun limiti

sıfırdan farklı olmak üzere) (f/g)(x) fonksiyonları da yakınsaktırlar. Aslında,

limx→a

(f + g)(x) = limx→a

f(x) + limx→a

g(x),

limx→a

(αf)(x) = α limx→a

f(x),

limx→a

(fg)(x) = limx→a

f(x) limx→a

g(x)

ve (g(x) fonksiyonunun limiti sıfırdan farklı olmak üzere)

limx→a

(f

g

)

(x) =limx→a f(x)

limx→a g(x)

eşitlikleri gerçeklenir.

Kanıt. i)

L := limx→a

f(x) ve M := limx→a

g(x)

olsun. Eğer xn ∈ I\{a} dizisi a değerine yakınsıyor ise Teorem 3.1.8’e göre n →∞ iken f(xn) → L ve g(xn) → M sağlanır. Bu ise Teorem 2.2.4 ii) şıkkına göre

n → ∞ iken f(xn)+ g(xn) → L+M demektir. Bu ifade a değerine yakınsayan

her xn ∈ I\{a} dizisi için doğru olduğundan Teorem 3.1.8 kullanılarak

limx→a

(f + g)(x) = L+M = limx→a

f(x) + limx→a

g(x)

sonucu elde edilir. Diğer sonuçlar, Teorem 2.2.4 ii)-iv) neticeleri benzer şekilde

kullanılarak ispatlanır.

72

Page 77: MB1001 ANALİZ I - i kuweb.iku.edu.tr/~eyavuz/Dersler/Analiz I/AnalizI.pdfDers Notları Yrd. Doç. Dr. Emel YAVUZ DUMAN İstanbul Kültür Üniversitesi Matematik-Bilgisayar Bölümü

Diziler için verilen Sıkıştırma ve Karşılaştırma Teoremleri ile Limitlerin Di-zisel Karakterizasyonu beraber düşünüldüğünde aşağıdaki sonuçlar elde edilir.

Teorem 3.1.11 (Fonksiyonlar için Sıkıştırma Teoremi). a ∈ R, I reel sayıların

a noktasını içeren bir açık aralığı ve f, g, h muhtemelen a noktasında olmasa da

bu I aralığı üzerindeki diğer tüm noktalarda tanımlı birer reel fonksiyon olsun.

i) Her x ∈ I\{a} için g(x) ≤ h(x) ≤ f(x) sağlanıyor ve

limx→a

f(x) = limx→a

g(x) = L

ise bu durumda x → a iken h(x) fonksiyonunun limiti vardır ve

limx→a

h(x) = L

gerçeklenir.

ii) Her x ∈ I\{a} için |g(x)| ≤ M ve x → a iken f(x) → 0 ise

limx→a

f(x)g(x) = 0

sağlanır.

.

xa

L

yy = f(x)

y = g(x)

y = h(x)

Teorem 3.1.12 (Fonksiyonlar için Karşılaştırma Teoremi). a ∈ R, I reel sayı-

ların a noktasını içeren bir açık aralığı ve f, g muhtemelen a noktasında olmasa

da bu I aralığı üzerindeki diğer tüm noktalarda tanımlı birer reel fonksiyon ol-

sun. Eğer f ve g fonksiyonlarının x değerleri a’ya yaklaşırken limitleri varsa

ve her x ∈ I\{a} için f(x) ≤ g(x) sağlanıyor ise

limx→a

f(x) ≤ limx→a

g(x)

eşitsizliği gerçeklenir.

73

Page 78: MB1001 ANALİZ I - i kuweb.iku.edu.tr/~eyavuz/Dersler/Analiz I/AnalizI.pdfDers Notları Yrd. Doç. Dr. Emel YAVUZ DUMAN İstanbul Kültür Üniversitesi Matematik-Bilgisayar Bölümü

Yukarıdaki limit teoremleri (Teorem 3.1.10, 3.1.11 ve 3.1.12) sayesinde ε veδ’ya başvurmadan limitlerin var olduğu ispatlanabilir.

Örnek 3.1.13.limx→1

x− 1

3x+ 1= 0

olduğunu ispatlayınız.

Kanıt. Örnek 3.1.2’ye göre x → 1 iken x − 1 → 0 ve 3x + 1 → 4 elde edilir.

Teorem 3.1.10 kullanılarak x → 1 iken (x − 1)/(3x + 1) → 0/4 = 0 sonucuna

ulaşılır.

Alıştırmalar

3.1.1. a ∈ R, f ve g muhtemelen x = a noktasında olmasa da reel sayıların a

noktasını içeren bir açık aralığı üzerindeki diğer tüm noktalarda tanımlı birer reelfonksiyon olsun. Buna göre aşağıdaki ifadelerin hangilerinin doğru hangilerinin yanlışolduğunu belirleyiniz. Doğru olanları ispatlayıp yanlış olanlara ise ters örnek veriniz.

a) Her n ∈ N için x → a iken (x − a)n sin(f(x)(x − a)−n) fonksiyonunun limitivardır.

b) xn 6= a olmak üzere {xn} dizisi a değerine yakınsasın. Eğer n → ∞ ikenf(xn) → L ise x → a iken f(x) → L sağlanır.

c) f ve g fonksiyonları (a− 1, a+ 1) açık aralığı üzerinde sonlu değerli ve x → a

iken f(x) → 0 ise x → a iken f(x)g(x) → 0 sağlanır.d) a noktasını içeren bir I aralığı içerisindeki her x değeri için f(x) ≤ g(x) ve

limx→a f(x) limiti yoksa limx→a g(x) limiti de yoktur.

3.1.2. Tanım 3.1.1’i kullanarak aşağıdaki limitlerin herbirinin varlığını ispatlayınız.

a) limx→2 x2 + 2x− 5 = 3

b) limx→1x2+x−2

x−1= 3

c) limx→2 x3 + 2x+ 1 = 4

d) limx→0 x3 sin(ex

2

) = 0

3.1.3. Aşağıdaki limitlerin hangilerinin var hangilerinin var olmadığına karar veriniz.Cevabınızın doğruluğunu ispatlayınız.

a) limx→0 tan(

1x

)

b) limx→0 x cos(

x2+1x3

)

c) limx→11

log x

3.1.4. Aşağıdaki limitlerin hangilerinin var hangilerinin var olmadığına karar veriniz.Cevabınızın doğruluğunu ispatlayınız.

a) limx→1x2+2x−3

x3−x

b) limx→1xn−1x−1

n ∈ N

74

Page 79: MB1001 ANALİZ I - i kuweb.iku.edu.tr/~eyavuz/Dersler/Analiz I/AnalizI.pdfDers Notları Yrd. Doç. Dr. Emel YAVUZ DUMAN İstanbul Kültür Üniversitesi Matematik-Bilgisayar Bölümü

c) limx→1

3√

x4−1

cos(1−x)

d) limx→02 sin2 x+2x−2x cos2 x

1−cos2(2x)

e) limx→0 tanx sin(

1x2

)

3.1.5. Teorem 3.1.11’i ispat ediniz.

3.1.6. Teorem 3.1.12’yi ispat ediniz.

3.1.7. f reel değerli bir fonksiyon olsun.

a) EğerL = lim

x→af(x)

limiti varsa x → a iken |f(x)| → |L| olduğunu ispatlayınız.b) x → a iken |f(x)| → |L| olduğu halde f(x)’in limitinin olmadığı f fonksiyonla-

rının varlığını gösteriniz.

3.1.8. Her reel değerli f fonksiyonu için f ’in pozitif kısmı

f+(x) =|f(x)|+ f(x)

2, x ∈ Dom(f)

ve f ’in negatif kısmı

f−(x) =|f(x)| − f(x)

2, x ∈ Dom(f)

olarak tanımlanır.

a) Her x ∈ Dom(f) için f+(x) ≥ 0, f−(x) ≥ 0, f(x) = f+(x)− f−(x) ve |f(x)| =f+(x) + f−(x) olduğunu kanıtlayınız (Alıştırma 1.2.4 ile kıyaslayınız).

b) EğerL = lim

x→af(x)

limiti varsa x → a iken f+(x) → L+ ve f−(x) → L− olduğunu ispatlayınız.

3.1.9. f ve g reel değerli fonksiyonlar ve her x ∈ Dom(f) ∩Dom(g) için

(f ∨ g)(x) := max{f(x), g(x)} ve (f ∧ g)(x) := min{f(x), g(x)}

olarak tanımlansın.

a) Her x ∈ Dom(f) ∩Dom(g) için

(f ∨ g)(x) =(f + g)(x) + |(f − g)(x)|

2

ve

(f ∧ g)(x) =(f + g)(x)− |(f − g)(x)|

2olduğunu ispatlayınız.

b) EğerL = lim

x→af(x) ve M = lim

x→ag(x)

limitleri varsa x → a iken (f ∨ g)(x) → L∨M ve (f ∧ g)(x) → L∧M sağlanır.

75

Page 80: MB1001 ANALİZ I - i kuweb.iku.edu.tr/~eyavuz/Dersler/Analiz I/AnalizI.pdfDers Notları Yrd. Doç. Dr. Emel YAVUZ DUMAN İstanbul Kültür Üniversitesi Matematik-Bilgisayar Bölümü

3.1.10. a ∈ R ve a noktasını içeren bir açık aralık I olsun. Eğer f : I → R fonksiyonux → a iken f(x) → f(a) oluyor ve m < f(a) < M eşitsizliğini sağlayan m ve M

sayıları varsa |x− a| < δ koşulunu sağlayan x değerleri için

m+ ε < f(x) < M − ε

ifadesini gerçekleyen ε ve δ sayıları vardır.

3.2 Tek-Yönlü Limitler ve Sonsuzda Limit Kavramı

Bir önceki kısımda reel değerli bir fonksiyonun limitini tanımladık. Şimdi butanımı daha gelen durumlarda kullanılmak üzere genişletelim.

x → 1 iken f(x) :=√x− 1 fonksiyonunun limiti nedir? Makul bir cevap

limitin sıfır olduğu yönündedir. Fakat, bu fonksiyon a = 1 noktasını içeren birAÇIK aralıkta tanımlı olmadığından Tanım 3.1.1’in koşullarını gerçeklemez.Aslında f fonksiyonu sadece x ≥ 1 için tanımlıdır. Bu tip problemlerle başaçıkmak için “tek-yönlü limitler” kavramı kullanılmaktadır.

Tanım 3.2.1. a ∈ R ve f reel değerli bir fonksiyon olsun.

i) x noktası a noktasına sağdan yaklaşırken f(x) fonksiyonunun L’ye ya-

kınsıyor olarak adlandırılması için gerek ve yeter şart, f fonksiyonu sol

uç-noktası a olan bir I açık aralığında tanımlı ve her ε > 0 sayısına

karşılık

a+ δ ∈ I ve a < x < a+ δ olduğu müddetçe |f(x)− L| < ε (3.2)

eşitsizliğini sağlayan bir δ > 0 (bu sayı genellikle ε, f , I ve a niceliklerine

bağlıdır) sayısının var olmasıdır. Bu durumda

f(a+) := L =: limx→a+

f(x)

yazılır ve fonksiyonunun a noktasındaki sağdan-limit i L’dir şeklinde oku-

nur.

ii) x noktası a noktasına soldan yaklaşırken f(x) fonksiyonunun L’ye ya-

kınsıyor olarak adlandırılması için gerek ve yeter şart, f fonksiyonu sağ

uç-noktası a olan bir I açık aralığında tanımlı ve her ε > 0 sayısına karşı-

lık a−δ ∈ I ve a−δ < x < a olduğu müddetçe |f(x)−L| < ε eşitsizliğini

sağlayan bir δ > 0 (bu sayı genellikle ε, f , I ve a niceliklerine bağlıdır)

sayısının var olmasıdır. Bu durumda

f(a−) := L =: limx→a−

f(x)

yazılır ve fonksiyonunun a noktasındaki soldan-limit i L’dir şeklinde oku-

nur.

76

Page 81: MB1001 ANALİZ I - i kuweb.iku.edu.tr/~eyavuz/Dersler/Analiz I/AnalizI.pdfDers Notları Yrd. Doç. Dr. Emel YAVUZ DUMAN İstanbul Kültür Üniversitesi Matematik-Bilgisayar Bölümü

İki-yönlü limitler için bir önceki kısımda verilen tüm limit teoremlerinin tek-yönlü limit söz konusu olduğunda da doğruluğu kolayca gösterilir. Bu anlamdagerektiğinde söz konusu teoremleri tek-yönlü limitler için kullanma hakkınasahibiz.

Tek-yönlü limitlerin varlığı limit teoremlerinden veya doğrudan tanımı kul-lanılarak gösterilebilir.

Örnek 3.2.2. i) a = 0 noktasında

f(x) =

x+ 1 x ≥ 0

x− 1 x < 0

şeklinde tanımlanan fonksiyonun tek-yönlü limitleri olduğunu fakat limx→0 f(x)

limitinin mevcut olmadığını gösteriniz.

ii) Aşağıdaki limitin varlığını ispatlayınız:

limx→0+

√x = 0.

Kanıt. i) ε > 0 ve δ = ε olsun. Eğer 0 < x < δ ise |x − 0| = |x| < δ ol-

duğundan |f(x) − 1| = |x + 1 − 1| = |x| < δ = ε gerçeklenir. Buna göre

limx→0+ f(x) limit değeri vardır ve 1’e eşittir. Benzer şekilde −δ < x < 0 ise

|f(x) − (−1)| = |x − 1 + 1| = |x| < δ = ε sağlandığından limx→0− f(x) limiti

var ve −1’e eşittir. Bununla beraber n → ∞ iken xn = (−1)n/n → 0 sağlanır,

fakat f(xn) = (−1)n(1+ 1/n) yakınsak değildir. Dolayısıyla, Limitlerin Dizisel

Karakteristiği’nden ötürü limx→0 f(x) limiti mevcut değildir.

ii) ε > 0 ve δ = ε2 olsun. Eğer 0 < x < δ ise |f(x) − L| = |√x| = √x <√

δ = ε elde edilir. Bu ise limx→0+√x = 0 demektir.

Her fonksiyonun tek-yönlü limitleri var olmak zorunda değildir (bkz Alıştır-ma 3.1.9). Alıştırma 3.2.2’de bir fonksiyonun tek yönlü limitleri olsa da iki-yönlülimitinin olmayabileceği gösterilmektedir. Bununla beraber, aşağıdaki sonuç bira noktasında tek-yönlü limitler var ve birbirine EŞİT ise a noktasında fonksi-yonun iki-yönlü limitinin var olduğunu ortaya koymaktadır.

Teorem 3.2.3. f bir reel değerli fonksiyon olsun. Buna göre

limx→a

f(x)

limitinin var ve L değerine eşit olması için gerek ve yeter şart

L = limx→a+

f(x) = limx→a−

f(x) (3.3)

ifadesinin sağlanmasıdır.

77

Page 82: MB1001 ANALİZ I - i kuweb.iku.edu.tr/~eyavuz/Dersler/Analiz I/AnalizI.pdfDers Notları Yrd. Doç. Dr. Emel YAVUZ DUMAN İstanbul Kültür Üniversitesi Matematik-Bilgisayar Bölümü

Kanıt. x → a iken f(x) fonksiyonunun limiti var ve L olsun. Verilen bir ε > 0

sayısı için 0 < |x−a| < δ olduğu müddetçe |f(x)−L| < ε eşitsizliğini sağlayan

bir δ > 0 sayısı seçilsin. Ayrıca a < x < a + δ ve a − δ < x < a eşitsizliklerini

sağlayan her x değeri için a− δ < x < a+ δ yani −δ < x− a < δ olduğundan

0 < |x− a| < δ gerçeklenir. Buna göre f(x) fonksiyonunun x → a iken sağdan

ve soldan limitlerinin her ikiside vardır ve (3.3) ifadesi doğrudur.

Tersine (3.3) ifadesi doğru olsun ve bir ε > 0 sayısı verilsin. Buna göre

a < x < a + δ1 (sırası ile, a − δ2 < x < a) olduğu müddetçe |f(x) − L| < ε

eşitsizliğini sağlayan bir δ1 (sırası ile, δ2) sayısı vardır. δ = min{δ1, δ2} olsun.

0 < |x− a| < δ ise ya a < x < a+ δ1 ya da 1− δ2 < x < a (x noktasının a’nın

sağında ya da solunda yer almasına bağlı) sağlanır. Dolayısıyla (3.1) ifadesi

gerçeklenir. Yani, x → a iken f(x) → L’dir.

Reel değerli fonksiyonların limitleri kavramı genişletilmiş reel sayılara aşa-ğıdaki şekilde uygulanabilir.

Tanım 3.2.4. a, L ∈ R ve f reel değerli bir fonksiyon olsun.

i) x → ∞ iken f(x) fonksiyonu L değerine yakınsıyor olarak adlandırılması

için gerek ve yeter şart (c,∞) ⊂ Dom(f) içermesini sağlayan bir c > 0

sayısının ve verilen ε > 0 sayısına karşılık x > M olduğu müddetçe

|f(x)− L| < ε eşitsizliğini gerçekleyecek şekilde bir M ∈ R sayısının var

olmasıdır. Bu durumda

limx→∞

f(x) = L veya x → ∞ iken f(x) → L

yazılır. Benzer şekilde x → −∞ iken f(x) fonksiyonu L değerine yakın-

sıyor olarak adlandırılması için gerek ve yeter şart (−∞,−c) ⊂ Dom(f)

içermesini sağlayan bir c > 0 sayısının ve verilen ε > 0 sayısına karşılık

x < M olduğu müddetçe |f(x)−L| < ε eşitsizliğini gerçekleyecek şekilde

bir M ∈ R sayısının var olmasıdır. Bu durumda

limx→−∞

f(x) = L veya x → −∞ iken f(x) → L

yazılır.

ii) x → a iken f(x) fonksiyonu ∞ değerine yakınsıyor olarak adlandırılması

için gerek ve yeter şart I\{a} ⊂ Dom(f) içermesini sağlayan a noktasını

da içeren bir I açık aralığının ve verilen M ∈ R sayısına karşılık 0 <

|x− a| < δ olduğu müddetçe f(x) > M eşitsizliğini gerçekleyecek şekilde

bir δ > 0 sayısının var olmasıdır. Bu durumda

limx→a

f(x) = ∞ veya x → a iken f(x) → ∞

78

Page 83: MB1001 ANALİZ I - i kuweb.iku.edu.tr/~eyavuz/Dersler/Analiz I/AnalizI.pdfDers Notları Yrd. Doç. Dr. Emel YAVUZ DUMAN İstanbul Kültür Üniversitesi Matematik-Bilgisayar Bölümü

yazılır. Benzer şekilde, x → a iken f(x) fonksiyonu −∞ değerine ya-

kınsıyor olarak adlandırılması için gerek ve yeter şart I\{a} ⊂ Dom(f)

içermesini sağlayan a noktasını da içeren bir I açık aralığının ve verilen

M ∈ R sayısına karşılık 0 < |x − a| < δ olduğu müddetçe f(x) < M

eşitsizliğini gerçekleyecek şekilde bir δ > 0 sayısının var olmasıdır. Bu

durumda

limx→a

f(x) = −∞ veya x → a iken f(x) → −∞

yazılır.

Tanım 3.2.4 kullanılarak x → a+ ve x → a− iken f(x) → ±∞ ve x → ±∞iken f(x) → ±∞ limitleri de tanımlanabilir ki bu durumlar öğrenciye ödevolarak bırakılmıştır.

Örnek 3.2.5. i) x → ∞ iken 1/x → 0 olduğunu ispatlayınız.

ii) limx→1− f(x) := limx→1−x+ 2

2x2 − 3x+ 1= −∞ olduğunu ispatlayınız.

Kanıt. i) ε > 0 verilsin ve M = 1/ε olsun. Eğer x > M ise |1/x| = 1/x <

1/M = ε sağlanır. Buna göre x → ∞ iken 1/x → 0 gerçeklenir.

ii) M ∈ R olsun. Göstermemiz gereken 1’in civarında fakat solunda yer alan

x değerleri için f(x) < M (M sayısının ne kadar büyük ve negatif olduğu-

nun önemi olmaksızın) eşitsizliğinin sağlandığıdır. Genelliği bozmadan M < 0

olduğu kabul edilsin. x, 1’e soldan yaklaşırken 2x2 − 3x + 1 negatif değerler

alır ve 0’a yakınsar (dikkat edilirse aslında 2x2 − 3x + 1 kolları yukarı doğru

uzanmış x eksenin 1/2 ve 1 noktalarında kesen bir paraboldür). Buna göre

1− δ < x < 1 aralığındaki x değerleri için 2/M < 2x2 − 3x+ 1 < 0 olacak şe-

kilde bir δ ∈ (0, 1) sayısı seçilebilir. Dolayısıyla −1/(2x2−3x+1) > −M/2 > 0

gerçeklenir. Diğer taraftan 0 < x < 1 olduğundan 2 < x + 2 < 3 sağlanır. Bu

ise −(x+ 2)/(2x2 − 3x+ 1) > −M yani her 1− δ < x < 1 için

f(x) =x+ 2

2x2 − 3x+ 1< M

sonucu elde edilir.

Tek-yönlü, çift-yönlü ve sonsuz limitleri tek türlü belirli bir şekilde göster-mek için aşağıdaki notasyonu tanımlayalım. a bir genişletilmiş reel sayı, I ya anoktasını içeren ya da bir uç noktası a olan dejenere olmayan bir açık aralık vef muhtemelen a noktasında olmasa da I açık aralığı üzerinde tanımlanmış reeldeğerli bir fonksiyon olsun. Eğer a sonlu ve I aralığı a noktasını içeriyor ise

limx→ax∈I

f(x) (3.4)

79

Page 84: MB1001 ANALİZ I - i kuweb.iku.edu.tr/~eyavuz/Dersler/Analiz I/AnalizI.pdfDers Notları Yrd. Doç. Dr. Emel YAVUZ DUMAN İstanbul Kültür Üniversitesi Matematik-Bilgisayar Bölümü

noktasyonu limx→a f(x) (limitin olması durumunda); eğer a değeri sonlu veI aralığının sol uç noktası ise (3.4) notasyonu limx→a− f(x) (limitin olmasıdurumunda); eğer a değeri sonlu ve I aralığının sağ uç noktası ise (3.4) notas-yonu limx→a+ f(x) (limitin olması durumunda); eğer a = ±∞ ve I aralığınınbir uç noktası ise (3.4) notasyonu limx→±∞ f(x) (limitin olması durumunda)limitlerini temsil edecektir.

Yukarıdaki şekilde tanımlanan notasyon kullanılarak Limitlerin Dizisel Ka-rakterizasyonu çift-yönlü, tek-yönlü ve sonsuz limitler için aşağıdaki şekildeverilir.

Teorem 3.2.6. a bir genişletilmiş reel sayı ve I ya a noktasını içeren ya da bir

uç noktası a olan dejenere olmayan bir açık aralık ve f muhtemelen a nokta-

sında olmasa da I açık aralığı üzerinde tanımlanmış reel değerli bir fonksiyon

olsun. Buna göre

limx→ax∈I

f(x)

limitinin var ve L değerine eşit olması için gerek ve yeter şart xn 6= a ve n → ∞iken xn → a olan her xn ∈ I dizisi için f(xn) → L limitinin gerçeklenmesidir.

Kanıt. Bu teoremin doğruluğu hali hazırda iki-yönlü limitler için gösterildi-

ğinden (3.4) ifadesinin temsil ettiği diğer limit durumları için ispatı yapmak

yeter. Tüm durumlara ait kanıtlar benzer tarzda hareket ederek ortaya koyu-

labileceğinden biz sadece a noktasının I aralığına ait ve L = ∞ olması halini

inceleyeceğiz. Gösterilmesi gereken x → a iken f(x) → ∞ limitinin gerçeklen-

mesi için gerek ve yeter şartın her n ∈ N için xn 6= a ve a değerine yakınsayan

tüm xn ∈ I dizileri için f(xn) → ∞ olduğudur.

x → a iken f(x) → ∞ olsun. Eğer xn ∈ I, n → ∞ iken xn → a ve xn 6= a ise

verilen bir M ∈ R sayısına karşılık 0 < |x− a| < δ olduğu müddetçe f(x) > M

eşitsizliğini sağlayacak şekilde bir δ > 0 sayısı ve n ≥ N için |xn − a| < δ

eşitsizliğini sağlayacak şekilde bir n ∈ N sayısı vardır. Sonuç olarak, n ≥ N

eşitsizliğini sağlayan xn terimleri için f(xn) > M gerçeklenir. Bu ise istenildiği

gibi n → ∞ iken f(xn) → ∞ olduğu anlamına gelir.

Tersine, xn 6= a olan ve a değerine yakınsayan tüm xn ∈ I dizileri için

f(xn) → ∞ limiti sağlansın, fakat x → a iken f(x) fonksiyonu ∞ değerine

yakınsamasın. ∞’a “yakınsamanın” tanımına göre her n ∈ N için f(xn) ≤ M0

ve |xn − a| < 1/n eşitsizliklerini gerçekleyen M0 ∈ R ve xn ∈ I sayıları vardır.

Dolayısıyla, n → ∞ iken xn → a sağlanır fakat f(xn) fonksiyonu ∞ değerine

yakınsamaz. Bu ise a ∈ I ve L = ∞ durumunda Teorem 3.2.6’te elde edilen

sonuç ile çelişir.

80

Page 85: MB1001 ANALİZ I - i kuweb.iku.edu.tr/~eyavuz/Dersler/Analiz I/AnalizI.pdfDers Notları Yrd. Doç. Dr. Emel YAVUZ DUMAN İstanbul Kültür Üniversitesi Matematik-Bilgisayar Bölümü

Teorem 3.2.6 kullanılarak Teorem 2.2.7 ve Sonuç 2.2.8 ile verilen limit te-oremlerinin fonksiyonlar için analogları ispatlanabilir. Bu limit teoremleri kul-lanılarak sonsuz limitler ve ±∞’da limitler hesaplanır.

Örnek 3.2.7. limx→∞2x2 − 1

1− x2= −2 olduğunu ispatlayınız.

Kanıt. Çarpımın limiti limitlerin çarpımı olduğundan her m ∈ N için Örnek

3.2.5 i)’ye göre x → ∞ iken 1/xm → 0 sağlanır. Yukarıda verilen ifadenin payı

ve paydası 1/x2 ile çarpılırsa

limx→∞

2x2 − 1

1− x2= lim

x→∞2− 1/x2

−1 + 1/x2=

limx→∞(2− 1/x2)

limx→∞(−1 + 1/x2)=

2

−1= −2

elde edilir.

Alıştırmalar

3.2.1. Aşağıda verilen ifadelerin hangilerinin doğru, hangilerinin yanlış olduğunutespit ediniz. Doğru olanları ispatlayıp yanlış olanlara ise birer ters örnek veriniz.

a) Eğer x → ∞ iken f(x) → ∞ ve g(x) > 0 ise x → ∞ iken g(x)/f(x) → 0

sağlanır.b) Eğer x → a+ iken f(x) → 0 ve her x ∈ R için g(x) ≥ 1 ise x → a+ iken

g(x)/f(x) → ∞ sağlanır.c) Eğer x → ∞ iken f(x) → ∞ ise x → ∞ iken sin(x2+x+1)/f(x) → 0 sağlanır.d) Eğer P derecesi Q’nün derecesine eşit ya da küçük iki polinom ise (bkz Alıştırma

3.2.4)

limx→∞

P (x)

Q(x)= lim

x→−∞

P (x)

Q(x)= L

olacak şekilde bir L ∈ R sayısı vardır.

3.2.2. Aşağıda verilen ifadelerin her biri için tanımları kullanarak (limit teoremleriyerine) limitlerin varlığını ispatlayınız. Limit değerlerini belirleyiniz.

a) limx→0−√x2/x

b) limx→∞ sinx/x2

c) limx→−1+ 1/(x2 − 1)d) limx→1+(x− 3)/(3− x− 2x2)e) limx→−∞(cos(tanx))/(x+ 1)

3.2.3. Her a ∈ R için x → a iken ex → ea, sinx → sin a ve cosx → cos a olduğunukullanarak aşağıdaki limitleri eğer varsa hesaplayınız.

a) limx→2−(x3 − x2 − 4)/(x2 − 4)

b) limx→∞(5x2 + 3x− 2)/(3x2 − 2x+ 1)c) limx→−∞ e−1/x2

d) limx→0+ ex2+2x−1/ sinx

e) limx→0− sin(x+ π/2)/ 3√cosx− 1

f) limx→0+

√1− cosx/ sinx

81

Page 86: MB1001 ANALİZ I - i kuweb.iku.edu.tr/~eyavuz/Dersler/Analiz I/AnalizI.pdfDers Notları Yrd. Doç. Dr. Emel YAVUZ DUMAN İstanbul Kültür Üniversitesi Matematik-Bilgisayar Bölümü

3.2.4. Her j = 0, 1, 2, · · · , n için aj ∈ R ve an 6= 0 olmak üzere

P (x) = anxn + an−1x

n−1 + · · ·+ a1x+ a0

formundaki bir fonksiyona n. dereceden polinom adı verilir.

a) Eğer 00 = 1 ise her n = 0, 1, · · · ve a ∈ R için limx→a xn = an olduğunu

ispatlayınız.b) Eğer P bir polinom ise her a ∈ R için

limx→a

P (x) = P (a)

olduğunu ispatlayınız.

3.2.5. a ∈ R olmak üzere f ve g reel değerli fonksiyonlar için aşağıdaki karşılaştırmateoremlerini ispatlayınız.

a) Eğer x → a iken g(x) → ∞ ve f(x) ≥ g(x) ise x → a iken f(x) → ∞ sağlanır.b) Eğer f(x) ≤ g(x) ≤ h(x) ve

L := limx→∞

f(x) = limx→∞

h(x)

ise x → ∞ iken g(x) → L sağlanır.

3.2.6. Teorem 3.2.6’ün şu özel durumunu ispatlayınız: a ∈ R için f : [a,∞) → R

olsun. x → ∞ iken f(x) → L limitinin gerçeklenmesi için gerek ve yeter şart n → ∞iken ∞ değerine yakınsayan her xn ∈ (a,∞) dizisi için f(xn) → L olmasıdır.

3.2.7. f : [0, 1] → R ve her a ∈ [0, 1] için f(a) = limx→a f(x) olsun. Buna göreher q ∈ Q ∩ [0, 1] için f(q) = 0 eşitliğinin sağlanması için gerek ve yeter şartın herx ∈ [0, 1] için f(x) = 0 ifadesinin gerçeklenmesi olduğunu ispatlayınız.

3.2.8. P bir polinom ve bir a ∈ R sabiti için P (a) > 0 olsun. Buna göre x → a+

iken P (x)/(x− a) → ∞ ve x → a− iken P (x)/(x− a) → −∞ olduğunu fakat

limx→a

P (x)

x− a

limitinin var olmadığını ispatlayınız.

3.2.9. [Cauchy] f : N → R olsun. Eğer

limn→∞

f(n+ 1)− f(n) = L

ise limn→∞ f(n)/n limitinin var ve L değerine eşit olduğunu ispatlayınız.

82

Page 87: MB1001 ANALİZ I - i kuweb.iku.edu.tr/~eyavuz/Dersler/Analiz I/AnalizI.pdfDers Notları Yrd. Doç. Dr. Emel YAVUZ DUMAN İstanbul Kültür Üniversitesi Matematik-Bilgisayar Bölümü

3.3 Süreklilik

Biliyoruz ki bir fonksiyonun a noktasında sürekli olması için a ∈ Domf vex → a iken f(x) → f(a) sağlanmalıdır. Aslında burada üstü kapalı bir şekildede olsa f ’in a noktasının her iki tarafında tanımlı olduğu kabul edilmektedir.Şimdi daha genel halde x = 0 noktasında

√x gibi, verilen bir noktanın sadece

bir yönünde tanımlı olan bir fonksiyonun sürekliliğinin de içerildiği aşağıdakitanımı verelim.

Tanım 3.3.1. R’nin boştan farklı bir alt kümesi E ve f : E → R olsun.

i) f fonksiyonunun bir a ∈ E noktasında sürekli olarak adlandırılması için

gerek ve yeter şart verilen ε > 0 sayısına karşılık

|x− a| < δ ve x ∈ E olduğu müddetçe |f(x)− f(a)| < ε (3.5)

eşitsizliğini sağlayacak şekilde bir δ > 0 (genellikle bu sayı ε, f ve a

niceliklerine bağlıdır) sayısının var olmasıdır.

ii) f fonksiyonunun E üzerinde sürekli (notasyon: f : E → R sürekli) olarak

adlandırılması için gerek ve yeter şart f ’in her x ∈ E noktasında sürekli

olmasıdır.

Aşağıdaki sonuç eğer E kümesi a noktasını içeren bir açık aralık ise “f fonk-siyonu a noktasında süreklidir” ifadesinin “x → a iken f(x) → f(a)” yazmayadenk olduğunu göstermektedir. Dolayısıyla, E’nin bir açık aralık olması duru-munda “f fonksiyonu a ∈ E noktasında süreklidir” yerine kısaca “f fonksiyonua noktasında süreklidir” şeklinde belirtiriz.

Açıklama 3.3.2. a noktasını içeren bir açık aralık I ve f : I → R olsun. f

fonksiyonunun a ∈ I noktasında sürekli olması için gerek ve yeter şart

f(a) = limx→a

f(x)

ifadesinin sağlanmasıdır.

Kanıt. I = (c, d) ve δ0 := min{|c−a|, |d−a|} olsun. Eğer δ < δ0 ise |x−a| < δ

eşitsizliğini sağlayan x değerleri için x ∈ I sağlanır. Dolayısıyla f(a) = L,

E = I ve δ < δ0 için (3.5) ifadesi (3.1)’e denk olur. Buna göre f fonksiyonunun

a noktasında sürekli olması için gerek ve yeter şart x → a iken f(x) → f(a)

sağlanmasıdır.

Teorem 3.1.8’in ispatındaki şekilde hareket ederek herhangi boştan farklıbir kümenin üzerinde sürekliliğin dizisel karakterizasyonunu aşağıdaki şekildeverebiliriz.

83

Page 88: MB1001 ANALİZ I - i kuweb.iku.edu.tr/~eyavuz/Dersler/Analiz I/AnalizI.pdfDers Notları Yrd. Doç. Dr. Emel YAVUZ DUMAN İstanbul Kültür Üniversitesi Matematik-Bilgisayar Bölümü

Teorem 3.3.3. R’nin boştan farklı bir alt kümesi E, a ∈ E ve f : E → R

olsun. Buna göre aşağıdaki ifadeler birbirine denktir.

i) a ∈ E noktasında f süreklidir.

ii) Eğer xn dizisi a değerine yakınsıyor ve xn ∈ E ise n → ∞ iken f(xn) →f(a)’dır.

Özel olarak√x fonksiyonu Alıştırma 2.2.6’ya göre I = [0,∞) aralığında

süreklidir.Teorem 3.3.3 ve Teorem 2.2.4 birlikte düşünüldüğünde aşağıdaki sonuç elde

edilir.

Teorem 3.3.4. R’nin boştan farklı bir alt kümesi E ve f, g : E → R olsun.

Eğer f , g fonksiyonları bir a ∈ E noktasında (sırası ile, E kümesi üzerinde)

sürekli ise f + g, fg ve αf (α ∈ R) fonksiyonları da a noktasında (sırası ile,

E üzerinde) süreklidir. Ayrıca, g(a) 6= 0 (sırası ile, her x ∈ E için g(x) 6= 0)

olmak üzere f/g fonksiyonu da a noktasında (sırası ile, E üzerinde) süreklidir.

Alıştırma 3.1.7, 3.1.8 ve 3.1.9 göz önüne alındığında eğer f ve g fonksiyonlarısırası ile, bir a ∈ E noktasında ya da E kümesi üzerinde sürekli ise |f |, f+, f−,f ∨ g ve f ∧ g fonksiyonları da söz konusu a ∈ E noktasında ya da E kümesiüzerinde süreklidir. Ayrıca Alıştırma 3.2.4’e göre her polinom R’de süreklidir.

Pek çok komplike fonksiyon toplamlar, çarpımlar, bölümler ve aşağıda ta-nımlanan operasyon ile basit kısımlara ayrılabilir.

Tanım 3.3.5. R’nin iki alt kümesi A ve B, f : A → R ve g : B → R olsun.

Buna göre eğer f(A) ⊆ B ise g ile f ’in bileşkesi g ◦f : A → R fonksiyonu x ∈ A

olmak üzere

(g ◦ f)(x) := g(f(x))

şeklinde tanımlanır.

Teorem 3.3.6. R’nin iki alt kümesi A ve B, f : A → R, g : B → R ve her

x ∈ A için f(x) ∈ B olsun.

i) I ya a noktasını içeren ya da bir uç noktası a olan dejenere olmayan bir

açık aralık, A := I\{a} olsun. Eğer

L := limx→ax∈I

f(x)

limiti var ve B kümesine ait ve g fonksiyonu L ∈ B noktasında sürekli

ise

limx→ax∈I

(g ◦ f)(x) = g

(

limx→ax∈I

f(x)

)

sağlanır.

84

Page 89: MB1001 ANALİZ I - i kuweb.iku.edu.tr/~eyavuz/Dersler/Analiz I/AnalizI.pdfDers Notları Yrd. Doç. Dr. Emel YAVUZ DUMAN İstanbul Kültür Üniversitesi Matematik-Bilgisayar Bölümü

ii) Eğer f fonksiyonu a ∈ A noktasında ve g fonksiyonu f(a) ∈ B noktasında

sürekli ise g ◦ f bileşke fonksiyonu da a ∈ A noktasında süreklidir.

Kanıt. i) xn ∈ I\{a} ve n → ∞ iken xn → a olsun. Açıkça f(A) ⊆ B olduğun-

dan f(xn) ∈ B gerçeklenir. Ayrıca, Limitlerin Dizisel Karakterizasyonu (Te-

orem 3.2.6) ötürü n → ∞ iken f(xn) → L’dir. g fonksiyonu L ∈ B noktasında

sürekli olduğundan Teorem 3.3.3’e göre n → ∞ iken f(xn) := g(f(xn)) → L

sağlanır. Bu ise Teorem 3.2.6’ya göre I aralığında x → a iken g ◦ f(x) → L

demektir. Yani i) ifadesi gerçeklenir. Benzer tarzda hareket ederek ii) şıkkının

doğruluğu gösterilebilir.

Pek çok uygulamada verilen bir fonksiyonun maksimum ve minimum de-ğerlerini belirlemek önemli bir yer tutar. Bu amaçla ilk adım olarak aşağıdakikonsepti ortaya koyalım.

Tanım 3.3.7. R’nin boştan farklı bir alt kümesi E olsun. Bir f : E → R

fonksiyonunun E üzerinde sınırlı olarak adlandırılması için gerek ve yeter şart

her x ∈ E için |f(x)| ≤ M eşitsizliğini sağlayacak şekilde bir M ∈ R sayısının

var olmasıdır. Bu durumda f fonksiyonu E üzerinde M ile domine edilmiştir

denir.

Dikkat edilirse bir f fonksiyonun E kümesi üzerinde sınırlı olup olmamasıE ve f ifadelerine bağlıdır. Örneğin, [1,∞) aralığından f(x) = 1/x fonksiyonu1 ile domine edilmiştir. Fakat aynı fonksiyon (0, 2) aralığında sınırsızdır. Diğertaraftan, (−2, 2) aralığında f(x) = x2 fonksiyonu 4 ile domine edilmiş olmaklabirlikte [0,∞) üzerinde sınırsızdır.

Sıkça kullanılacak aşağıdaki sonçta kapalı ve sınırlı bir aralıkta sürekli olanfonksiyonların her zaman sınırlı olduğu gösterilmektedir.

Teorem 3.3.8 (Ekstremum Değer Teoremi). Eğer I aralığı kapalı, sınırlı ve f :

I → R fonksiyonu I üzerinde sürekli ise bu durumda f fonksiyonu I üzerinde

sınırlıdır. Ayrıca,

M = supx∈I

f(x) ve m = infx∈I

f(x) (3.6)

ise

f(xM ) = M ve f(xm) = m

olacak şekilde xm, xM ∈ I noktaları vardır.

Kanıt. Farzedelim ki f fonksiyonu I üzerinde sınırlı olmasın. Buna göre

|f(xn)| > n, n ∈ N (3.7)

eşitsizliğini sağlayan xn ∈ I vardır. I aralığı sınırlı olduğundan Bolzano-Weier-

strass Teoremi’ne (Teorem 2.3.9) göre {xn} dizisinin yakınsak bir alt dizisi

85

Page 90: MB1001 ANALİZ I - i kuweb.iku.edu.tr/~eyavuz/Dersler/Analiz I/AnalizI.pdfDers Notları Yrd. Doç. Dr. Emel YAVUZ DUMAN İstanbul Kültür Üniversitesi Matematik-Bilgisayar Bölümü

vardır. Bu yakınsak alt dizi xnkolsun. Buna göre k → ∞ iken xnk

→ a gerçek-

lenir. Ayrıca, yine I sınırlı olduğundan Karşılaştırma Teoremi (Teorem 2.2.9)

gereği a ∈ I’dır ve özel olarak f(a) ∈ R sağlanır. Diğer taraftan, (3.7) ifadesinde

n yerine nk yazar ve bu eşitsizlikten k → ∞ iken limit alınırsa |f(a)| = ∞ elde

edilir ki bu ise f(a) ∈ R olması ile çelişir. Şu durumda f fonksiyonu I üzerinde

sınırlı olmalıdır.

Yukarıda gösterildi ki M ve m sonlu reel sayılardır. Şimdi f(xM ) = M

eşitliğini sağalayan bir xM ∈ I sayısının var olduğunu göstermek için ifadenin

tersinin, yani her x ∈ I için f(x) < M sağlandığını farz edelim. Buna göre

g(x) =1

M − f(x)

şeklinde tanımlanan fonksiyon I’da sürekli ve dolayısıyla I üzerinde sınırlıdır.

Özel olarak, |g(x)| = g(x) ≤ C eşitsizliğini sağlayacak şekilde C > 0 sayısı

mevcuttur. Dolayısıyla her x ∈ I için

f(x) ≤ M − 1

C(3.8)

ifadesi gerçeklenir. Tüm x ∈ I üzerinden (3.8) eşitsizliğinin supremumu alınır

ise

M ≤ M − 1

Celde edilir ki bu ise çelişkidir. Şu durumda f(xM ) = M olacak şekilde bir

xM ∈ I vardır. Benzer argüman kullanılarak f(xm) = m eşitliğini sağlayan bir

xm ∈ I olduğu gösterilebilir.

Teorem 3.3.8’de verilen M değerine I üzerinde f fonksiyonunun maksi-mumu, m değerine ise minimumu adı verilir.

Açıklama 3.3.9. Ekstremum Değer Teoremi’nin hipotezinden “kapalı” veya

“sınırlı” olma koşulları çıkarıldığında teorem doğru olmaz.

Kanıt. İsteneni göstermek için bir ters örnek vermek yeter. Sınırlı fakat kapalı

olmayan (0, 1) aralığı üzerinde f(x) = 1/x fonksiyonu süreklidir fakat sınırlı

değildir. Diğer taraftan sınırlı olmayan kapalı [0,∞) aralığı üzerinde f(x) = x

fonksiyonu süreklidir fakat sınırlı değildir.

Bir aralıkta sürekli olan fonksiyonların grafiklerinde delikler veya sıçrama-lar yoktur (bkz Teorem 3.3.11). Bu olgu kullanılarak aşağıdaki basit gözlemverilebilir.

Lemma 3.3.10. a < b ve f : [a, b) → R olsun. Eğer bir x0 ∈ [a, b) noktasında

f sürekli ve f(x0) > 0 ise buna göre x1 > x0 ve her x ∈ [x0, x1] için f(x) > ε

eşitsizliğini sağlayacak şekilde bir ε pozitif sayısı ve x1 ∈ [a, b) noktası vardır.

86

Page 91: MB1001 ANALİZ I - i kuweb.iku.edu.tr/~eyavuz/Dersler/Analiz I/AnalizI.pdfDers Notları Yrd. Doç. Dr. Emel YAVUZ DUMAN İstanbul Kültür Üniversitesi Matematik-Bilgisayar Bölümü

Strateji: İspatın dayanak fikri gayet basittir. Eğer f(x0) > 0 ise bu durumdax0’ın civarındaki x değerleri için f(x) > f(x0)/2 gerçeklenir. Şimdi detaylarıverelim.

Kanıt. ε = f(x0)/2 olsun. x0 < b olduğundan δ0 := (b− x0)/2 sayısı pozitiftir

ve a ≤ x < x0 + δ0 eşitsizliğini sağlayan x değerleri için x ∈ [a, b) gerçeklenir.

Tanım 3.3.1 kullanılarak x ∈ [a, b) ve |x − x0| < δ olduğu müddetçe |f(x) −f(x0)| < ε eşitsizliğini gerçekleyecek şekilde 0 < δ < δ0 sayısını seçelim.

Bir x1 ∈ (x0, x0 + δ) sabitlensin ve x ∈ [x0, x1] olsun. ε ve δ sayılarının

seçimlerinden ötürü açıkça

−f(x0)

2< f(x)− f(x0) <

f(x0)

2

gerçeklenir. Yukarıdaki eşitsizliğin sol tarafı f(x)’e göre çözülür ise f(x) >

f(x0)/2 = ε elde edilir.

Bir y0 reel sayısının c ve d sayıları arasında yer alması için gerek ve yeterşart c < y0 < d ya da d < y0 < c eşitsizliğinin gerçeklenmesidir.

Teorem 3.3.11 (Ara Değer Teoremi). a < b ve f : [a, b] → R sürekli bir

fonksiyon olsun. Eğer y0 sayısı f(a) ile f(b) arasında yer alıyor ise bu durumda

f(x0) = y0 olacak şekilde bir x0 ∈ (a, b) sayısı vardır.

Kanıt. f(a) < y0 < f(b) olsun. Aşağıdaki şekilde gösterildiği gibi bir E = {x ∈[a, b] : f(x) < y0} kümesi göz önüne alınsın. a ∈ E ve E ⊆ [a, b] olduğundan

E kümesi boştan farklıdır ve R’nin sınırlı bir alt kümesidir. Dolayısıyla Tamlık

Aksiyomu gereği x0 := supE değeri sonlu bir reel sayı olarak mevcuttur. Buna

göre x0 ∈ (a, b) ve f(x0) = y0 olduğunu göstermek yeter.

.

.

.

xa

y

f(b)

f(a)

y0

x0 b

87

Page 92: MB1001 ANALİZ I - i kuweb.iku.edu.tr/~eyavuz/Dersler/Analiz I/AnalizI.pdfDers Notları Yrd. Doç. Dr. Emel YAVUZ DUMAN İstanbul Kültür Üniversitesi Matematik-Bilgisayar Bölümü

Teorem 2.2.3 göz önüne alınarak n → ∞ iken xn → x0 olan bir xn ∈ E dizisi

seçilsin. E ⊆ [a, b] olduğundan Teorem 2.2.9 (Karşılaştırma Teoremi) gereği

x0 ∈ [a, b] gerçeklenir. Dolayısıyla f fonksiyonunun sürekliliği ve E kümesinin

tanımı göz önüne alındığında f(x0) = limn→∞ f(xn) ≤ y0 elde edilir.

f(x0) = y0 olduğunu göstermek için ifadenin doğru olmadığını yani f(x0) <

y0 eşitsizliğinin sağlandığını farz edelim. Buna göre y0 − f(x) ifadesi [a, b) ara-

lığında süreklidir ve x = x0 noktasında pozitif değer alır. Dolayısıyla, Lemma

3.3.10’a göre y0 − f(x1) > ε > 0 olacak şekilde x1 > x0 ve ε sayıları seçilebilir.

Buradan x1 ∈ E ve x1 > supE çelişkisi elde edilir.

x0 ∈ [a, b] ve y0 = f(x0) olduğunu ispatladık. Kanıtın başında yaptığımız

f(a) < y0 < f(b) varsayımından ötürü x0 sayısı a veya b’ye eşit olamaz. Buna

göre x0 ∈ (a, b) sonucu elde edilir.

Yukarıdaki teorem gereği, eğer f fonksiyonu bir [a, b] aralığında sürekli vef(a) ≤ y0 ≤ f(b) ise f(x0) = y0 olacak şekilde bir x0 ∈ [a, b] sayısı vardır.

Eğer f fonksiyonu bir a noktasında sürekli değil ise f fonksiyonu a’da sü-reksizdir denir ve a noktasına f ’in bir süreksizlik noktası adı verilir. Bir fonk-siyonun bir süreksizlik noktası etrafındaki davranışı aşağıdaki örnekte incelen-mektedir.

Örnek 3.3.12.

f(x) =

|x|x x 6= 0

1 x = 0

şeklinde tanımlanan fonksiyonun (−∞, 0) ve [0,∞) aralıklarında sürekli ve 0

noktasında süreksiz olduğunu gösterip f(0+) ve f(0−) limit değerlerinin var

olduğunu ispatlayınız.

Kanıt. x ≥ 0 için |x| = x dolayısıyla f(x) = 1 olduğundan açıkça f(0+) = 1

limit değeri vardır ve her a > 0 için x → a iken f(x) → f(a) sağlanır. Buna

göre, f fonksiyonu [0,∞) aralığında süreklidir. Benzer şekilde f(0−) = −1

limit değeri vardır ve f fonksiyonu (−∞, 0) aralığında süreklidir. Diğer taraftan,

f(0+) 6= f(0−) olduğundan Teorem 3.2.3’e göre x → 0 iken f(x) fonksiyonunun

limiti yoktur. Dolayısıyla f fonksiyonu 0 noktasında süreksizdir.

Örnek 3.3.13. sinx fonksiyonunun R’de sürekli olduğu kabulü altında

f(x) =

sin 1x x 6= 0

1 x = 0

şeklinde tanımlanan fonksiyonun (−∞, 0) ve (0,∞) aralıklarında sürekli ve 0

noktasında süreksiz olduğunu gösterip ne f(0+) ne de f(0−) limitlerinin var

olmadığını ispatlayınız.

88

Page 93: MB1001 ANALİZ I - i kuweb.iku.edu.tr/~eyavuz/Dersler/Analiz I/AnalizI.pdfDers Notları Yrd. Doç. Dr. Emel YAVUZ DUMAN İstanbul Kültür Üniversitesi Matematik-Bilgisayar Bölümü

Kanıt. Teorem 3.1.10’a göre 1/x fonksiyonu x 6= 0 için süreklidir. Dolayı-

sıyla Teorem 3.3.6 kullanılarak f fonksiyonunun (−∞, 0) ve (0,∞) üzerinde

sürekli olduğu sonucu elde edilir. f(0+) limitinin var olmadığını göstermek için

xn = 2/((2n + 1)π) olarak tanımlansın. Buna göre n ∈ N için sin(1/xn) =

(−1)n’dir. xn ↓ 0 olmakla birlikte (−1)n dizisi yakınsak değildir. Dolayısıyla

Teorem 3.3.3’e (Sürekliliğin Dizisel Karakterizasyonu) göre f(0+) limiti mevcut

değildir. Benzer argüman kullanılarak f(0−) değerinin var olmadığı gösterile-

bilir.

Örnek 3.3.14. R üzerinde

f(x) :=

1 x ∈ Q

0 x /∈ Q

şeklinde tanımlanan fonksiyona Dirichlet fonksiyonu adı verilir. Dirichlet fonk-

siyonunun her x ∈ R noktasında süreksiz olduğunu gösteriniz (Bu tip fonksi-

yonlara hiçbir yerde sürekli fonksiyon adı verilir).

Kanıt. a bir rasyonel sayı ve {xn} irrasyonel sayıların a noktasına yakınsayan

bir dizisi olsun (Bu dizinin varlığı Teorem 1.3.9 ve Alıştırma 1.3.4 (Rasyonel ve

İrrasyonel Sayıların Yoğunluğu) göz önüne alındığında garantidir). Her n ∈ N

için f(xn) = 0 olduğundan f(a) = 1 olmasına karşın f(xn) → 0 gerçeklenir.

Buna göre f fonksiyonu herhangi bir rasyonel a noktasında sürekli olamaz.

Diğer taraftan b bir irrasyonel sayı ve {yn} rasyonel sayıların bu b değerine

yakınsayan bir dizisi olsun (Bu dizinin varlığı Teorem 1.3.9 (Rasyonel Sayıla-

rın Yoğunluğu) göz önüne alındığında garantidir). Her n ∈ N için f(yn) = 1

olduğundan f(yn) → 1 sağlanır. Fakat f(b) = 0 olduğundan f fonksiyonunun

herhangi bir irrasyonel b noktasında sürekli olmadığı sonucu elde edilir.

Her reel sayı ya rasyonel ya da irrasyonel olduğundan f fonksiyonunun R’de

hiç bir yerde sürekli olmadığı neticesine ulaşılır.

Örnek 3.3.15.

f(x) =

1q x = p

q ∈ Q (indirgenmiş formda)

0 x /∈ Q

şeklinde tanımlanan fonksiyonun (0, 1) aralığındaki tüm irrasyonellerde sürekli

fakat (0, 1) aralığındaki tüm rasyoneller üzerinde süreksiz olduğunu kanıtlayı-

nız.

89

Page 94: MB1001 ANALİZ I - i kuweb.iku.edu.tr/~eyavuz/Dersler/Analiz I/AnalizI.pdfDers Notları Yrd. Doç. Dr. Emel YAVUZ DUMAN İstanbul Kültür Üniversitesi Matematik-Bilgisayar Bölümü

Kanıt. a noktası (0, 1) aralığından bir rasyonel sayı ve farz edelim ki f fonksi-

yonu bu a noktasında sürekli olsun. Eğer xn irrasyonellerin a noktasına yakın-

sayan bir dizisi ise süreklilikten f(xn) → f(a) yani f(a) = 0 gerçeklenir. Fakat

tanıma göre f(a) 6= 0 olduğundan çelişki elde edilir. Buna göre f fonksiyonu

(0, 1) aralığındaki tüm rasyoneller için süreksizdir.

(0, 1) aralığına ait bir irrasyonel sayı a olsun. Gösterilmesi gereken n → ∞iken xn → a koşulunu sağlayan tüm xn ∈ (0, 1) dizilerinin aynı zamanda

f(xn) → f(a) limitini de gerçeklediğidir. xn ∈ Q olsun. Her n ∈ N için di-

zinin terimleri indirgenmiş formda xn = pn/qn şeklinde yazılsın. f(a) = 0

olduğundan n → ∞ iken qn → ∞ limitini göstermek yeter. Tersine, her k ∈ N

için |qnk| ≤ M < ∞ eşitsizliğini sağlayacak şekilde n1 < n2 < · · · tamsayıları

var olsun. xnk∈ (0, 1) olduğundan

E :=

{

xnk=

pnk

qnk

: k ∈ N

}

şeklinde tanımlanan küme sadece sonlu sayıda eleman içerir. Buna göre E kü-

mesinden alınan her dizinin limiti yine E kümesine ait olmalıdır. a bu limit

değerlerinden birisidir fakat a irrasyonel olduğundan kümeye ait olamaz. Dola-

yısıyla n → ∞ iken qn → ∞ ve buna göre f fonksiyonunun (0, 1) aralığındaki

tüm irrasyonellerde sürekli olduğu sonucu elde edilir.

Açıklama 3.3.16. f fonksiyonu sadece Q üzerinde ve g fonksiyonu da sadece

bir noktada süreksiz iki fonksiyon ise bu fonksiyonların g ◦ f bileşkeleri hiçbir

yerde sürekli olabilir.

Kanıt. f fonksiyonu Örnek 3.3.15’te göz önüne alınan fonksiyon ve

g(x) =

1 x 6= 0

0 x = 0

olsun. Buna göre

(g ◦ f)(x) =

1 x ∈ Q

0 x /∈ Q

sağlanır. g ◦ f bileşke fonksiyonu Örnek 3.3.14 ile verilen hiçbir yerde sürekli

Dirichlet fonksiyonudur.

Aşağıdaki örneklerde gerektiğinde sinx, cosx ve ex fonksiyonlarının R’desürekli olduğu kabul edilecektir.

90

Page 95: MB1001 ANALİZ I - i kuweb.iku.edu.tr/~eyavuz/Dersler/Analiz I/AnalizI.pdfDers Notları Yrd. Doç. Dr. Emel YAVUZ DUMAN İstanbul Kültür Üniversitesi Matematik-Bilgisayar Bölümü

Alıştırmalar

3.3.1. Aşağıda verilen ifadelerin hangilerinin doğru, hangilerinin yanlış olduğunutespit ediniz. Doğru olanları ispatlayıp yanlış olanlara ise birer ters örnek veriniz.

a) Eğer f fonksiyonu [a, b] üzerinde sürekli ve J := f([a, b]) ise J sınırlı ve kapalıbir aralıktır.

b) Eğer [a, b] üzerinde f ve g sürekli, f(a) < g(a) ve f(b) > g(b) ise f(c) = g(c)

eşitsizliğini sağlayan bir c ∈ [a, b] sayısı vardır.c) a noktasında f fonksiyonu sürekli ve f(a) 6= 0 olmak üzere a noktasını içeren bir

I aralığı üzerinde tanımlı sonlu değerli f ve g fonksiyonları göz önüne alınsın.Buna göre g fonksiyonunun a noktasında sürekli olması için gerek ve yeter şartfg fonksiyonunun a’da sürekli olmasıdır.

d) f ve g fonksiyonları R üzerinde tanımlı ve sonlu değerli olsun. Eğer f ve g ◦ ffonksiyonları R üzerinde sürekli ise g’nin de R üzerinde süreklidir.

3.3.2. Limit teoremlerini kullanarak aşağıdaki fonksiyonların [0, 1] üzerinde sürekliolduğunu gösteriniz.

a) f(x) = ex2√

sin xcos x

b) f(x) =

x2+x−2x−1

x 6= 1

3 x = 1

c) f(x) =

e−1/x x 6= 0

0 x = 0

d) f(x) =

√x sin 1

xx 6= 0

0 x = 0

3.3.3. Aşağıda verilen denklemleri gerçekleyen en az bir x ∈ R sayısının var olduğunugösteriniz.

a) ex = x3

b) ex = 2 cosx+ 1c) 2x = 2− 3x

3.3.4. Eğer f : [a, b] → R fonksiyonu sürekli ise supx∈[a,b] |f(x)| değerinin sonluolduğunu ispatlayınız.

3.3.5. Eğer f : [a, b] → [a, b] fonksiyonu sürekli ise f ’in bir sabit noktasının, yanif(c) = c eşitliğini sağlayan bir c ∈ [a, b] sayısının varlığını gösteriniz.

3.3.6. Eğer reel değerli f fonksiyonu bir a ∈ R noktasında sürekli bazı M ∈ R

noktalarında f(a) < M ise her x ∈ I için f(x) < M eşitsizliğini gerçekleyecek şekildea’yı içeren bir I açık aralığı vardır.

3.3.7. f + g toplam fonksiyonu R üzerinde sürekli olan f ve g hiçbir yerde süreklifonksiyonlarının varlığını gösteriniz. Bu fonksiyonların çarpımı için de benzer duru-mun söz konusu olduğunu gösteriniz.

91

Page 96: MB1001 ANALİZ I - i kuweb.iku.edu.tr/~eyavuz/Dersler/Analiz I/AnalizI.pdfDers Notları Yrd. Doç. Dr. Emel YAVUZ DUMAN İstanbul Kültür Üniversitesi Matematik-Bilgisayar Bölümü

3.3.8. a ∈ R, bu a noktasını içeren bir açık aralık I, f, g : I → R ve f fonksiyonua’da sürekli olsun. İspatlayınız ki g fonksiyonunun a noktasında sürekli olması içingerek ve yeter şart f + g toplam fonksiyonunun a’da sürekli olmasıdır.

3.3.9. f : R → R fonksiyonu her x, y ∈ R için f(x + y) = f(x) + f(y) eşitliğinigerçeklesin.

a) Her x ∈ R ve n ∈ Z için f(nx) = nf(x) olduğunu gösteriniz.b) Her x ∈ R ve q ∈ Q için f(qx) = qf(x) olduğunu gösteriniz.c) İspatlayınız ki f fonksiyonunun 0 noktasında sürekli olması için gerek ve yeter

şart f ’in R üzerinde sürekli olmasıdır.d) İspatlayınız ki f fonksiyonu 0 noktasında sürekli ise her x ∈ R için f(x) = mx

eşitliğini sağlayacak şekilde bir m ∈ R sayısı vardır.

3.3.10. f : R → (0,∞) fonksiyonu f(x + y) = f(x)f(y) eşitliğini gerçeklesin. İspat-layınız ki f fonksiyonu 0 noktasında sürekli ise her x ∈ R için f(x) = ax eşitliğinisağlayacak şekilde bir a ∈ (0,∞) sayısı vardır (Burada ax fonksiyonunun R üzerindeolduğunu kabul ediyoruz).

3.3.11. f : R → R fonksiyonu R üzerinde sürekli ve

limx→∞

f(x) = limx→−∞

f(x) = ∞

ise f ’in R üzerinde bir minimumunun, yani

f(xm) = infx∈R

f(x) < ∞

ifadesini sağlayan bir xm ∈ R sayısının var olduğunu gösteriniz.

3.4 Düzgün Süreklilik

Tanım 3.4.1. R’nin boştan farklı bir alt kümesi E ve f : E → R bir fonksiyon

olsun. Buna göre f fonksiyonunun E üzerinde düzgün sürekli (notasyon: f :

E → R düzgün sürekli) olarak isimlendirilmesi için gerek ve yeter şart her

ε > 0 sayısına karşılık

|x− a| < δ ve x, a ∈ E olduğu müddetçe |f(x)− f(a)| < ε (3.9)

eşitsizliğini sağlayacak şekilde δ > 0 sayısının var olmasıdır.

Dikkat edilirse Tanım 3.4.1’de söz konusu δ sayısı ε ve f niceliklerine bağlıfakat a ve x değerlerine bağlı değildir. Bu durum bir küme üzerinde verilen birfonksiyonun düzgün sürekliliğini göstermek istendiğinde özellikle vurgulanmasıgereken temel noktadır.

Örnek 3.4.2. (0, 1) aralığında f(x) = x2 fonksiyonunun düzgün sürekli oldu-

ğunu ispatlayınız.

92

Page 97: MB1001 ANALİZ I - i kuweb.iku.edu.tr/~eyavuz/Dersler/Analiz I/AnalizI.pdfDers Notları Yrd. Doç. Dr. Emel YAVUZ DUMAN İstanbul Kültür Üniversitesi Matematik-Bilgisayar Bölümü

Kanıt. ε > 0 verilsin ve δ = ε/2 olsun. Eğer x, a ∈ (0, 1) ise |x+a| ≤ |x|+|a| ≤ 2

sağlanır. Dolayısıyla x, a ∈ (0, 1) ve |x− a| < δ ise

|f(x)− f(a)| = |x2 − a2| = |x− a||x+ a| ≤ 2|x− a| < 2δ = ε

elde edilir.

Görüldüğü üzere süreklilik ve düzgün süreklilik tanımları birbirine benzer.Tek fark, sürekli fonksiyonlarda δ parametresi a sayısına bağlı olabilirken düz-gün sürekli fonksiyonlarda δ parametresi kesinlikle a’dan bağımsız seçilmelidir.Tanımdan hemen anlaşılan bir sonuç E kümesi üzerinde düzgün sürekli tümfonksiyonların aynı zamanda E üzerinde sürekli olduğudur. Aşağıdaki örnek budurumun tersinin, bazı kısıtlamalar yapılmaksızın, her zaman doğru olmadığınıortaya koymaktadır.

Örnek 3.4.3. Gösteriniz ki f(x) = x2 fonksiyonu R üzerinde düzgün sürekli

değildir.

Kanıt. f fonksiyonu R üzerinde düzgün sürekli olsun. Buna göre her x, a ∈ R

için |x−a| < δ olduğu müddetçe |f(x)−f(a)| < 1 eşitsizliğini sağlayan bir δ > 0

sayısı vardır. Archimedean Özelliği’ne göre nδ > 1 olacak şekilde yeterince

büyük bir n ∈ N sayısı seçilebilir. a = n ve x = n + δ/2 olsun. Dolayısıyla

|x− a| < δ ve

1 > |f(x)− f(a)| = |x2 − a2| =(

n+δ

2

)2

− n2

= n2 + nδ +δ2

4− n2 = nδ +

δ2

4> nδ > 1

çelişkisi elde edilir. Bu çelişki f fonksiyonunun R üzerinde düzgün sürekli ol-

madığını ortaya koymaktadır.

Aşağıdaki sonuç süreklilik ve düzgün süreklilik arasında kilit rol oynamak-tadır.

Lemma 3.4.4. E ⊆ R ve f : E → R düzgün sürekli olsun. Eğer xn ∈ E bir

Cauchy dizisi ise f(xn)’de bir Cauchy dizisidir.

Kanıt. ε > 0 olsun ve (3.9) ifadesini gerçekleyen bir δ > 0 sayısı seçilsin.

{xn} bir Cauchy dizisi olduğundan n,m ≥ N için |xn − xm| < δ eşitsizliğini

sağlayan bir N ∈ N sayısı vardır. Buna göre n,m ≥ N için aynı zamanda

|f(xn)− f(xm)| < ε ifadesi gerçeklenir.

93

Page 98: MB1001 ANALİZ I - i kuweb.iku.edu.tr/~eyavuz/Dersler/Analiz I/AnalizI.pdfDers Notları Yrd. Doç. Dr. Emel YAVUZ DUMAN İstanbul Kültür Üniversitesi Matematik-Bilgisayar Bölümü

Dikkat edilirse (0, 1) aralığında f(x) = 1/x fonksiyonu sürekli ve xn =1/n bir Cauchy dizisi olmasına karşın f(xn) = n bir Cauchy dizisi değildir.Aslında, (0, 1) aralığında 1/x sürekli fakat düzgün sürekli değildir. Bu durumuy = 1/x fonksiyonunun grafiği doğrular. Aşağıdaki şekilde görüldüğü üzere adeğeri 0’a yaklaştıkça δ değerleri küçülür (δ0 ve δ1 değerlerini mukayese ediniz).Dolayısıyla δ sayısı a’dan bağımsız seçilemez.

.

.

.

.

.

.

}} x

y

δ1δ0

f(x0)− ε

f(x0) + ε

f(x1) + ε

f(x1)− ε

x1x0

Bir açık aralık üzerinde süreklilik ve düzgün süreklilik, her ne kadar ara-lık sınırlı olsa da, farklıdır. Aşağıdaki sonuç sınırlı kapalı aralıklar üzerindedurumun bu şekilde olmadığını göstermektedir.

Teorem 3.4.5. I kapalı ve sınırlı bir aralık olsun. Bu durumda eğer f : I → R

fonksiyonu I üzerinde sürekli ise I üzerinde düzgün süreklidir.

Kanıt. Tersine, I üzerinde f fonksiyonu sürekli olsun fakat düzgün sürekli ol-

masın. Buna göre bir ε0 > 0 sayısı ve xn, yn ∈ I noktaları |xn − yn| < 1/n

ve

|f(xn)− f(yn)| ≥ ε0, n ∈ N (3.10)

eşitsizliğini sağlayacak şekilde mevcuttur. Bolzano-Weierstrass Teoremi ve Kar-

şılaştırma Teoremi’ne göre xn dizisinin xnkşeklinde k → ∞ iken bir x ∈ I

değerine yakınsayan bir alt dizisi mevcuttur. Benzer şekilde {ynk}k∈N dizisinin

ynkjşeklinde j → ∞ iken bir y ∈ I değerine yakınsayan bir alt dizisi mevcuttur.

j → ∞ iken xnkj→ x ve f sürekli olduğundan (3.10) ifadesine göre |f(x) −

f(y)| ≥ ε0, yani f(x) 6= f(y) sağlanır. Diğer taraftan her n ∈ N için |xn−yn| <1/n olduğundan Teorem 2.2.1’e (Sıkıştırma Teoremi) göre x = y’dir. Bu ise

f(x) = f(y) çelişkisini doğurur.

Sınırlı açık aralıklar üzerinde düzgün sürekliliğin kullanışlı fakat basit birkarakterizasyonu aşağıdaki teorem ile verilmektedir (Bu sonuç sınırsız aralıklariçin geçerli değildir).

94

Page 99: MB1001 ANALİZ I - i kuweb.iku.edu.tr/~eyavuz/Dersler/Analiz I/AnalizI.pdfDers Notları Yrd. Doç. Dr. Emel YAVUZ DUMAN İstanbul Kültür Üniversitesi Matematik-Bilgisayar Bölümü

Teorem 3.4.6. a < b ve f : (a, b) → R olsun. f fonksiyonunun (a, b) üzerinde

düzgün sürekli olması için gerek ve yeter şart f ’in [a, b] kapalı aralığına sürekli

genişletilebilmesi, yani

f(x) = g(x), x ∈ (a, b) (3.11)

eşitliğini sağlayan bir g : [a, b] → R sürekli fonksiyonunun var olmasıdır.

Kanıt. f fonksiyonu (a, b) üzerinde düzgün sürekli olsun. Diğer taraftan n → ∞iken b değerine yakınsayan bir xn ∈ (a, b) dizisi göz önüne alınsın. Buna göre

{xn} bir Cauchy dizisi olduğundan Lemma 3.4.4’e göre {f(xn)}’de bir Cauchy

dizisidir ve ayrıca

g(b) := limn→∞

f(xn)

limiti vardır. Bu değer b değerine yaklaşan başka diziler kullanılsa da değişmez.

n → ∞ iken b değerine yakınsayan bir başka yn ∈ (a, b) dizisi göz önüne alınsın.

ε > 0 sayısı verilsin ve E = (a, b) için (3.9) ifadesini gerçekleyecek şekilde bir

δ > 0 sayısı seçilsin. xn − yn → 0 olduğundan n ≥ N için |xn − yn| < δ

eşitsizliğini gerçekleyecek şekilde N ∈ N sayısı seçilebilir. Dolayısıyla (3.9)’a

göre her n ≥ N için |f(xn) − f(yn)| < ε sağlanır. Her ε > 0 için bu ifadenin

n → ∞ iken limiti alınırsa

| limn→∞

f(xn)− limn→∞

f(yn)| ≤ ε

elde edilir. Bu ise Teorem 1.2.9’ya göre

limn→∞

f(xn) = limn→∞

f(yn)

demektir. Benzer şekilde hareket ederek g(a) için istenilen gösterilebilir.

Her x ∈ (a, b) için g(x) = f(x) olsun. Buna göre g fonksiyonu [a, b] üze-

rinde tanımlıdır ve (3.11) ifadesini sağlar. Ayrıca Limitlerin Dizisel Karakte-

rizasyonu’na göre [a, b] üzerinde süreklidir. Dolayısıyla, g’ye istenildiği şekilde

“sürekli genişletilebilir”.

Tersine, [a, b] üzerinde sürekli ve (3.11) ifadesini sağlayan bir fonksiyon g

olsun. Teorem 3.4.5’e göre [a, b] aralığı üzerinde g fonksiyonu düzgün süreklidir.

Dolayısıyla, g fonksiyonu (a, b) aralığı üzerinde düzgün süreklidir. Bu ise f ’in

(a, b) üzerinde düzgün sürekli olduğu anlamına gelir.

Sınırlı, açık ve dejenere olmayan (a, b) aralığında f fonksiyonu sürekli olsun.Dikkat edilirse f ’in [a, b] aralığına sürekli genişletilebilmesi için gerek ve yeterf fonksiyonunun tek-yönlü limitlerinin var ve a ve b sayılarına eşit olmasıdır.Aslında, limitlerin varlığı durumunda her zaman g fonksiyonunun a ve b nokta-larındaki değerleri söz konusu limitlere eşit olacak şekilde tanımlanabilir. Bunagöre f fonksiyonunun düzgün sürekliliğini ε ve δ argümanlarını kullanılmadangöstermek mümkündür.

95

Page 100: MB1001 ANALİZ I - i kuweb.iku.edu.tr/~eyavuz/Dersler/Analiz I/AnalizI.pdfDers Notları Yrd. Doç. Dr. Emel YAVUZ DUMAN İstanbul Kültür Üniversitesi Matematik-Bilgisayar Bölümü

Örnek 3.4.7. (0, 1) üzerinde f(x) = (x − 1)/ log x fonksiyonunun düzgün

sürekli olduğunu gösteriniz.

Kanıt. Açıkça x → 0+ iken f(x) → 0 sağlanır. Diğer taraftan l’Hôpital Ku-

ralı’na göre

limx→1−

f(x) = limx→1−

x− 1

log x= lim

x→1−1

1/x= 1

elde edilir. Yani f(x) fonksiyonunun 0 noktasında sağdan ve 1 noktasında sol-

dan limitleri mevcut olduğundan f fonksiyonu [0, 1] aralığına sürekli genişleti-

lebilir. Dolayısıyla Teorem 3.4.6’ya göre f fonksiyonu (0, 1) aralığında düzgün

süreklidir.

Alıştırmalar

3.4.1. Aşağıda verilen ifadelerin hangilerinin doğru, hangilerinin yanlış olduğunutespit ediniz. Doğru olanları ispatlayıp yanlış olanlara ise birer ters örnek veriniz.

a) Eğer f fonksiyonu (0,∞) aralığında düzgün sürekli ve g fonksiyonu (0,∞) aralı-ğında pozitif ve sınırlı ise fg fonksiyonu da (0,∞) aralığında düzgün süreklidir.

b) x log(1/x) fonksiyonu (0, 1) aralığında düzgün süreklidir.c) Her sıfırdan farklı m, b ∈ R için

cosx

mx+ b

şeklinde tanımlanan fonksiyon (0, 1) üzerinde düzgün süreklidir.d) f ve g fonksiyonları [a, b] üzerinde düzgün sürekli ve her x ∈ [a, b] için g(x) 6= 0

ise f/g fonksiyonu da [a, b] üzerinde düzgün süreklidir.

3.4.2. Tanım 3.4.1’i kullanarak aşağıda verilen fonksiyonların (0, 1) aralığında düz-gün sürekli olduğunu gösteriniz.

a) f(x) = x2 + x

b) f(x) = x3 − x+ 2

c) f(x) = x sinx

3.4.3. Aşağıda verilen fonksiyonların (0, 1) aralığında düzgün sürekli olduğunu göste-riniz (sinx ve cosx fonksiyonlarının tanım bölgeleri üzerinde sürekli olduğu bilindiğinegöre isteneni göstermek için l’Hôpital Kuralı kullanılabilir).

a) f(x) = sin xx

b) f(x) = x cos 1x2

c) f(x) = x log x

d) f(x) = (1− x2)1/x

3.4.4. sinx fonksiyonunun R üzerinde sürekli olduğu bilindiğine göre (0, 1) açık aralığıüzerinde xα sin(1/x) fonksiyonunun düzgün sürekli olduğu α reel sayısını tespit ediniz.

96

Page 101: MB1001 ANALİZ I - i kuweb.iku.edu.tr/~eyavuz/Dersler/Analiz I/AnalizI.pdfDers Notları Yrd. Doç. Dr. Emel YAVUZ DUMAN İstanbul Kültür Üniversitesi Matematik-Bilgisayar Bölümü

3.4.5. a) f : [0,∞) fonksiyonu sürekli ve x → ∞ iken f(x) → L olacak şekildebir L ∈ R sayısı var olsun. Buna göre f fonksiyonunun [0,∞) üzerinde düzgünsürekli olduğunu ispatlayınız.

b) f(x) = 1/(x2+1) fonksiyonunun R üzerinde düzgün sürekli olduğunu gösteriniz.

3.4.6. Reel sayıların boştan farklı bir alt kümesi E, α ∈ R ve f, g : E → R fonksi-yonları E üzerinde düzgün sürekli olsun. α

a) f+g ve αg fonksiyonlarının da E üzerinde düzgün sürekli olduğunu ispatlayınız.b) f ve g fonksiyonları E üzerinde sınırlı ise fg fonksiyonun E üzerinde düzgün

sürekli olduğunu gösteriniz.c) fg çarpım fonksiyonu R üzerinde düzgün sürekli olmadığı halde R üzerinde

düzgün sürekli olan f ve g fonksiyonlarının varlığını gösteriniz.d) f fonksiyonu E üzerinde sınırlı ve her x ∈ E için g(x) ≥ ε0 eşitsizliğini sağlaya-

cak şekilde bir ε > 0 sayısı var olsun. Buna göre f/g fonksiyonunun E üzerindedüzgün sürekli olduğunu ispatlayınız.

e) Her x ∈ (0, 1) için g(x) > 0 olmak üzere f/g bölüm fonksiyonu (0, 1) üze-rinde düzgün sürekli olmadığı halde (0, 1) üzerinde düzgün sürekli olan f ve g

fonksiyonlarının varlığını gösteriniz.

3.4.7. a) I bir sınırlı aralık olsun. Eğer f : I → R fonksiyonu I üzerinde düzgünsürekli ise f ’in I üzerinde sınırlı olduğunu ispatlayınız.

b) a) şıkkında verilen ifadede I sınırsız veya sadece f sürekli olarak alınır isesınırlılık hakkında verilen hüküm doğru olmayabilir.

3.4.8. E ⊆ R olsun. f : E → R fonksiyonunun E üzerinde artan olarak adlandırılmasıiçin gerek ve yeter şart x1 < x2 koşulunu sağlayan her x1, x2 ∈ E için f(x1) ≤ f(x2)

eşitsizliğinin gerçeklenmesidir. f fonksiyonu boştan farklı, sınırlı ve açık (a, b) aralığıüzerinde artan olsun.

a) f(a+) ve f(a−) limitlerinin her ikisinin de var ve sonlu olduğunu ispatlayınız.b) Gösteriniz ki f fonksiyonunun (a, b) aralığında sürekli olması için gerek ve yeter

şart f ’in (a, b) üzerinde düzgün sürekli olmasıdır.c) Gösteriniz ki eğer f sınırsız ise b) şıkkı doğru değildir. Yani, (0, 1) aralığı üze-

rinde sürekli fakat bu aralık üzerinde düzgün sürekli olmayan bir g : (0, 1) → R

fonksiyonu vardır.

3.4.9. İspatlayınız ki n. dereceden bir polinomun R üzerinde sürekli olması için gerekve yeter şart n = 0 ya da 1 olmasıdır.

97

Page 102: MB1001 ANALİZ I - i kuweb.iku.edu.tr/~eyavuz/Dersler/Analiz I/AnalizI.pdfDers Notları Yrd. Doç. Dr. Emel YAVUZ DUMAN İstanbul Kültür Üniversitesi Matematik-Bilgisayar Bölümü
Page 103: MB1001 ANALİZ I - i kuweb.iku.edu.tr/~eyavuz/Dersler/Analiz I/AnalizI.pdfDers Notları Yrd. Doç. Dr. Emel YAVUZ DUMAN İstanbul Kültür Üniversitesi Matematik-Bilgisayar Bölümü

4 R Üzerinde Diferansiyellenebilme

4.1 Türev

Tanım 4.1.1. Reel değerli bir f fonksiyonunun bir a noktasında diferansi-

yellenebilir olarak adlandırılması için gerek ve yeter şart f fonksiyonunun a

noktasını içeren bir I açık aralığında tanımlı ve

f ′(a) := limh→0

f(a+ h)− f(a)

h(4.1)

limitinin var olmasıdır. Bu durumda f ′(a) değerine a noktasında f fonksiyo-

nunun türev i denir.

f fonksiyonu a noktasını içeren bir I açık aralığı üzerinde tanımlı olduğun-dan yeterince küçük h 6= 0 için (4.1) ile verilen bölüm de tanımlıdır.

Biliyoruz ki y = f(x) fonksiyonunun bir (a, f(a)) noktasında düşey olmayanbir teğet doğrusunun (veya tanjat doğrusu) olması için gerek ve yeter şart f ’ina noktasında türevi olmasıdır. Bu durumda x = a noktasında fonksiyonungrafiğine çizilen teğetin eğimi f ′(a)’dır. Bu bağlantının mantıklı olduğunu göz-lemlemek için (4.1) ifadesinin geometrik yorumunu verelim: f fonksiyonu anoktasında diferansiyellenebilir olsun. y = f(x) eğrisinin grafiği üzerindeki enaz iki noktadan geçen doğruya secant doğrusu (veya kesen), eğrinin grafiğiüzerindeki bir noktadan yine eğrinin üzerinde ki diğer bir noktaya çizilen doğruparçasına ise kiriş adı verilir. x = a+ h olsun. Buna göre (x, f(x)) ve (a, f(a))noktalarından geçen kirişin eğimi (f(x)−f(a))/(x−a)’dır. x = a+h olduğundan(4.1) ifadesinden

f ′(a) := limx→a

f(x)− f(a)

x− a

yazılabilir. x → a olduğundan aşağıdaki şekilde de görüldüğü üzere (x, f(x))ve (a, f(a)) noktalarından geçen kirişlerin eğimi, x = a noktasından y = f(x)doğrusuna çizilen teğetin eğimine yaklaşmaktadır ve limit durumunda x = anoktasında y = f(x) eğrisine çizilen teğet doğrusunun eğimi tam olarak f ′(a)değerine eşittir. Buna göre x = a noktasında y = f(x) eğrisinin grafiğinin(a, f(a)) noktasında tek türlü belirli bir teğet doğrusuna sahip olabilmesi içingerek ve yeter şart f ′(a) türevinin var olmasıdır denir.

Page 104: MB1001 ANALİZ I - i kuweb.iku.edu.tr/~eyavuz/Dersler/Analiz I/AnalizI.pdfDers Notları Yrd. Doç. Dr. Emel YAVUZ DUMAN İstanbul Kültür Üniversitesi Matematik-Bilgisayar Bölümü

.

.

.

x

y

x1x2

y = f(x)

Teğet

Kirişler

a

f fonksiyonu E kümesi üzerindeki tüm noktalarda diferansiyellenebilir isef ′ türev fonksiyonu E üzerinde bir fonksiyondur. Bu fonksiyon pek çok şekildegösterilebilir:

Dxf =df

dx= f (1) = f ′.

y = f(x) olması durumunda f ′ için dy/dx veya y′ noktasyonları kullanılır. Yük-sek mertebeden türevler rekürsif olarak tanımlanır: yani, söz konusu türevlerinvar olması durumunda n ∈ N için f (n+1)(a) := (f (n))′(a)’dır. Ayrıca, yüksekmertebeden türevleri ifade etmek için de çeşitli yollar kullanılır: Dn

xf , dnf/dxn

ve f (n) gibi. Eğer y = f(x) ise dny/dxn veya y(n) yazılır. f (2) (sırası ile, y(2))ikinci türev i fonksiyonu f ′′ (sırası ile, y′′) ile gösterilir ve bir a noktasında varolması durumunda f fonksiyonu a noktasında iki kez diferansiyellenebilirdirdenir.

Türevlerle çalışma söz konusu olduğundan diferansiyellenebilmenin iki ka-rakterizasyonunu verebiliriz. Bunlardan ilki türevleri

F (x) :=f(x)− f(a)

x− a, x 6= a (4.2)

“kiriş fonksiyonu” ile karakterize etmektir. Bu metot Zincir Kuralı’nı ortayakoyarken kullanılacaktır.

Teorem 4.1.2. Reel değerli f fonksiyonunun bir a ∈ R noktasında diferansi-

yellenebilmesi için gerek ve yeter şart a ∈ I, I üzerinde tanımlı bir fonksiyon

f , a noktasında sürekli bir fonksiyon F ve her x ∈ I için

f(x) = F (x)(x− a) + f(a) (4.3)

eşitliğinin sağlandığı bir I açık aralığı ve F : I → R fonksiyonunun var olma-

sıdır. Bu durumda F (a) = f ′(a) gerçeklenir.

Kanıt. Dikkat edilirse her x ∈ I\{a} için (4.2) and (4.3) ifadeleri birbirlerine

denktir. f fonksiyonu a noktasında diferansiyellenebilir olsun. Buna göre f

fonksiyonu a noktasını içeren bir I açık aralığında tanımlıdır ve (4.1) ifadesinde

100

Page 105: MB1001 ANALİZ I - i kuweb.iku.edu.tr/~eyavuz/Dersler/Analiz I/AnalizI.pdfDers Notları Yrd. Doç. Dr. Emel YAVUZ DUMAN İstanbul Kültür Üniversitesi Matematik-Bilgisayar Bölümü

verilen limit vardır. F fonksiyonu I üzerinde x 6= a olması durumunda (4.2)

eşitliği ile, a noktasında ise F (a) := f ′(a) olarak tanımlansın. Dolayısıyla, her

x ∈ I için (4.3) eşitliği gerçeklenir ve f ′(a) türevi var olduğundan (4.2)’ye göre

F fonksiyonu süreklidir.

Tersine (4.3) ifadesi gerçeklensin. Buna göre her x 6= a, x ∈ I için (4.2)

eşitliği sağlanır. x → a iken (4.2) ifadesinden limit alınırsa, F ’in a noktasında

sürekli olduğu bilindiğine göre, F (a) = f ′(a) elde edilir.

Diferansiyellenebilmenin ikinci karakterizasyonu ise lineer yaklaşım (f(a+h) − f(a)’ya orijinden geçen doğrular ile ne kadar iyi yaklaşılabilir) ile verilir.Bu olgu çok değişkenli fonksiyonların türevleri tanımlanırken kullanılacaktır.

Teorem 4.1.3. Reel değerli f fonksiyonunun bir a noktasında diferansiyelle-

nebilmesi için gerek ve yeter şart T (x) := mx fomundaki bir T fonksiyonunun

limh→0

f(a+ h)− f(a)− T (h)

h= 0 (4.4)

eşitliğini sağlayacak şekilde var olmasıdır.

Kanıt. f fonksiyonu türevlenebilir ve m := f ′(a) olsun. Dolayısıyla (4.1)’e göre

h → 0 iken

f(a+ h)− f(a)− T (h)

h=

f(a+ h)− f(a)

h− f ′(a) → 0

gerçeklenir.

Tersine, h 6= 0 ve T (x) := mx için (4.4) ifadesi sağlansın. Buna göre

f(a+ h)− f(a)

h= m+

f(a+ h)− f(a)−mh

h

= m+f(a+ h)− f(a)−mh

h

ifadesinden limit alınırsa (4.4)’e göre m elde edilir. Dolayısıyla, h → 0 iken

(f(a + h) − f(a))/h → m sonucuna ulaşılır. Yani, f ′(a) türevi vardır ve m’e

eşittir.

Teorem 4.1.2’nin aşağıda verilen ilk uygulaması süreklilik ile diferansiyelle-nebilme arasındaki ilişkiyi ortaya koymaktadır.

Teorem 4.1.4. f fonksiyonu a noktasında diferansiyellenebilir ise aynı za-

manda bu noktada süreklidir.

Kanıt. f fonksiyonu a noktasında diferansiyellenebilir olsun. Teorem 4.1.2’ye

göre her x ∈ I için f(x) = f(a) + F (x)(x − a) şeklinde tanımlı, a noktasında

101

Page 106: MB1001 ANALİZ I - i kuweb.iku.edu.tr/~eyavuz/Dersler/Analiz I/AnalizI.pdfDers Notları Yrd. Doç. Dr. Emel YAVUZ DUMAN İstanbul Kültür Üniversitesi Matematik-Bilgisayar Bölümü

sürekli bir F fonksiyonu ve I açık aralığı vardır. Bu ifadeden x → a iken limit

alınırsa

limx→a

f(x) = f(a) + F (x) · 0 = f(a)

elde edilir. Yani, x → a iken f(x) → f(a) sonucuna ulaşılır ki bu f fonksiyonu

a noktasında sürekli demektir.

Yukarıdaki teoreme göre a noktasında sürekli olmayan hiç bir fonksiyon a’dadiferansiyellenebilir değildir. Örnek 4.1.5, Teorem 4.1.4’ün tersinin, yani bir anoktasında sürekli olan fonksiyonların bu a noktasında diferansiyellenmesinigerektirmediğini göstermektedir.

Örnek 4.1.5. f(x) = |x| fonksiyonunun 0 noktasında sürekli fakat diferansi-

yellenebilir olmadığını gösteriniz.

Kanıt. Mutlak değer fonksiyonunun tanımına göre x → 0 iken |x| → 0 sağlan-

dığından f fonksiyonu 0 noktasında süreklidir. h > 0 iken |h| = h ve h < 0 iken

|h| = −h sağlandığından

limh→0+

f(0 + h)− f(0)

h= lim

h→0+

h− 0

h= 1

ve

limh→0−

f(0 + h)− f(0)

h= lim

h→0−

−h− 0

h= −1

elde edilir. Limitin var olması için tek-yönlü limitlerin mevcut ve birbirine eşit

olması gerektiğinden (Teorem 3.2.3), a = 0 ve f(x) = |x| için (4.1) ifadesindeki

limit yoktur. Buna göre f fonksiyonu 0 noktasında diferansiyellenebilir değildir.

. x

y

y = |x|

Aslında Örnek 4.1.5 diferansiyellenebilme ve sürekli fonksiyonlar arasındakifark hakkında ki en genel yanlış anlaşılmayı yansıtır. a noktasında diferansi-yellenebilen bir fonksiyon (a, f(a)) noktasında daima tek türlü belirli bir teğet

102

Page 107: MB1001 ANALİZ I - i kuweb.iku.edu.tr/~eyavuz/Dersler/Analiz I/AnalizI.pdfDers Notları Yrd. Doç. Dr. Emel YAVUZ DUMAN İstanbul Kültür Üniversitesi Matematik-Bilgisayar Bölümü

doğrusuna sahip olacağından, verilen bir aralıkta bu diferansiyellenebilir fonk-siyonun grafiği “düzgün”dür, yani bir köşe, bir sivri uç veya kırılma noktasıiçermez. Aksine, her ne kadar bir sürekli fonksiyonun grafiği verilen bir ara-lıkta kesintisiz (boşluk veya sıçrama içermeyen) olsa da bir köşe, bir sivri uçveya bir kırılma noktası içerebilir. Özel olarak, x = 0 noktasında f(x) = |x|fonksiyonu sürekli olmakla birlikte diferansiyellenebilir değildir. Ayrıca, y = |x|grafiği her ne kadar kesintisiz olsa da (0, 0)’da bir köşe içerir.

Tanım 4.1.1’e göre f fonksiyonu a noktasında diferansiyellenebilir ise f ’ina noktasını (dolayısıyla a’nın her iki yanını da) içeren bir açık aralık ğzerindetanımlanmış olması gerekir. Limit kavramındaki gibi tanım bölgesi kapalı ara-lıklar olan fonksiyonlar için “tek-yönlü” türevlerini tanımlamak uygun olur (bkzÖrnek 4.1.9). Burada bir reel fonksiyonun bir aralık üzerinde diferansiyellene-bilmesi ne anlama gelir kısaca vurgulanmaktadır (bir aralık içindeki her nok-tada diferansiyellenebilmenin tersine). Bu konsept İntegral kavramı anlatılırkenkullanılacaktır.

Tanım 4.1.6. I dejenere olmayan bir aralık olsun.

i) Bir f : I → R fonksiyonunun I aralığı üzerinde diferansiyellenebilir ola-

rak adlandırılması için gerek ve yeter şart

f ′I(a) := lim

x→ax∈I

f(x)− f(a)

x− a

limitinin mevcut ve her a ∈ I için sonlu olmasıdır.

ii) f fonksiyonunun I üzerinde sürekli diferansiyellenebilir olarak adlandı-

rılması için gerek ve yeter şart f ′I türevinin mevcut ve I üzerinde sürekli

olmasıdır.

Dikkat edilirse, I aralığının bir uç noktası a değil iken f ′I(a) ile f ′(a) de-

ğerleri aynıdır. Bu durumda genellikle f ′I notasyonundaki alt indis kullanılmaz.

Ayrıca, f fonksiyonu [a, b] aralığında diferansiyellenebilir ise

f ′(a) := limh→0+

f(a+ h)− f(a)

hvef ′(b) := lim

h→0−

f(b+ h)− f(b)

h

ifadeleri yazılabilir.

Örnek 4.1.7. i) Her x ∈ R ve n ∈ N için (xn)′ = nxn−1 olduğunu ispatla-

yınız.

ii) Her x ∈ (0,∞) ve n ∈ −N∪{0} için (xn)′ = nxn−1 olduğunu ispatlayınız.

Kanıt. i) Her c, d ∈ R ve n ∈ N için

cn − dn = (c− d) (cn−1 + cn−2d+ cn−3d2 + · · ·+ cdn−2 + dn−1)︸ ︷︷ ︸

n terim

103

Page 108: MB1001 ANALİZ I - i kuweb.iku.edu.tr/~eyavuz/Dersler/Analiz I/AnalizI.pdfDers Notları Yrd. Doç. Dr. Emel YAVUZ DUMAN İstanbul Kültür Üniversitesi Matematik-Bilgisayar Bölümü

şeklinde yazılabileceğini biliyoruz. f(x) = xn olsun. n = 1 ise her a ∈ R için

f ′(a) = limx→a

f(x)− f(a)

x− a= lim

x→a

x− a

x− a= 1

elde edilir. Eğer n > 1 ve x 6= a ise

f ′(a) = limx→a

f(x)− f(a)

x− a= lim

x→a

xn − an

x− a

= limx→a

(x− a)(xn−1 + xn−2a+ xn−3a2 + · · ·+ xan−2 + an−1)

x− a

= limx→a

(xn−1 + xn−2a+ xn−3a2 + · · ·+ xan−2 + an−1)

= (an−1 + an−2a+ an−3a2 + · · ·+ aan−2 + an−1)︸ ︷︷ ︸

n terim

= nan−1

sonucuna ulaşılır.

ii) f(x) = xn olsun. n = 0 ise f(x) = x0 = 1 olduğundan her x ∈ R için

f ′(a) = limx→a

f(x)− f(a)

x− a= lim

x→a

1− 1

x− a= 0

elde edilir. n ∈ −N ve a > 0 olsun. Bu durmda −n ∈ N olduğundan i) şıkkı

kullanılarak

f ′(a) = limx→a

f(x)− f(a)

x− a= lim

x→a

xn − an

x− a

= limx→a

a−n − x−n

x− axnan

= limx→a

(a−n − x−n

x− a

)

limx→a

(xnan)

= na−n−1a2n

= nan−1

elde edilir. Buna göre xn fonksiyonu a ∈ R noktasında diferansiyellenebilirdir

ve türevi f ′(a) = nan−1’e eşittir.

Örnek 4.1.8. i) n ∈ Z ve n ∈ N olmak üzere q = n/m ise

xn − an = (xq − aq)(xq(m−1) + x2(m−2)aq + · · ·+ xqaq(m−2) + aq(m−1))

eşitliğinin gerçeklendiğini gösteriniz.

ii) [Kuvvet Kuralı] Her q ∈ Q için xq fonksiyonunun (0,∞) aralığında dife-

ransiyellenebilir ve (xq)′ = qxq−1 olduğunu ispatlayınız.

104

Page 109: MB1001 ANALİZ I - i kuweb.iku.edu.tr/~eyavuz/Dersler/Analiz I/AnalizI.pdfDers Notları Yrd. Doç. Dr. Emel YAVUZ DUMAN İstanbul Kültür Üniversitesi Matematik-Bilgisayar Bölümü

Kanıt. i) Örnek 4.1.7’de söylendiği üzere her c, d ∈ R ve m ∈ N için

cm − dm = (c− d) (cm−1 + cm−2d+ cm−3d2 + · · ·+ cdm−2 + dm−1)︸ ︷︷ ︸

m terim

eşitliği geçerlidir. Burada q = n/m olmak üzere c = xq ve d = aq alınır istenilen

gösterilmiş olur.

ii) f(x) = xq, x, a ∈ (0,∞) ve q = n/m olsun. i) şıkkı kullanılarak

f ′(a) = limx→a

f(x)− f(a)

x− a= lim

x→a

xq − aq

x− a

= limx→a

xn − an

x− a(xq(m−1) + · · ·+ aq(m−1))−1

= limx→a

(xn − an

x− a

)

limx→a

(

(xq(m−1) + · · ·+ aq(m−1))−1)

︸ ︷︷ ︸

m terim

= nan−1(maq(m−1))−1 = qan−1−qm+q = qaq−1

elde edilir.

Aşağıdaki örnek Tanım 4.1.6’nın sürekli fonksiyonların ailelerine genişleti-lebileceğini ortaya koyar.

Örnek 4.1.9. f(x) = x3/2 fonksiyonu [0,∞) aralığında diferansiyellenebilirdir

ve türevi her x ∈ [0,∞) için f ′(x) = 3√x/2’ye eşittir.

Kanıt. Kuvvet Kuralı’na (Örnek 4.1.8) göre her x ∈ (0,∞) için

f ′(x) = (x3/2)′ =3

2x(3/2)−1 =

3

2x1/2 =

3

2

√x

sağlanır. Ayrıca, tanıma göre

f ′(0) = limh→0+

f(0 + h)− f(0)

h= lim

h→0+

h3/2 − 0

h= lim

h→0+

√h = 0

gerçeklenir.

Tanım 4.1.6 ile bağlantılı olarak sıklıkla kullanılan bir notasyon verelim. Idejenere olmayan bir aralık olsun. Her n ∈ N için Cn fonksiyonlar ailesini

Cn(I) := {f : f : I → R ve f (n) türevi var ve türev I üzerinde sürekli}

olarak tanımlayalım. Her n ∈ N için Cn(I)’ya ait olan f fonksiyonlarının ailesiC∞(I) ile gösterilir. Dikkat edilir ise C1(I) notasyonu I üzerinde sürekli dife-ransiyellenebilen reel değerli fonksiyonların ailesini gösterir. Üzerinde çalışılanaralık açık olarak verildiğinde bu notasyonda dışarıdaki parantezler ihmal edi-lecektir. Yani Cn([a, b]) yerine Cn[a, b] yazımı kullanılacaktır.

105

Page 110: MB1001 ANALİZ I - i kuweb.iku.edu.tr/~eyavuz/Dersler/Analiz I/AnalizI.pdfDers Notları Yrd. Doç. Dr. Emel YAVUZ DUMAN İstanbul Kültür Üniversitesi Matematik-Bilgisayar Bölümü

Teorem 4.1.4 modifiye edilerek bir I aralığı üzerinde diferansiyellenebilir birfonksiyonun I aralığı üzerinde sürekli olduğu sonucu elde edilebilir. Dolayısıyla,her m > n > 0 tamsayıları için C∞(I) ⊂ Cm(I) ⊂ Cn(I) içermesi doğrudur.

Aşağıdaki örnekte R üzerinde her diferansiyellenebilir fonksiyonun C1(R)ailesine ait olmadığı gösterilmektedir.

Örnek 4.1.10.

f(x) =

x2 sin(1/x) x 6= 0

0 x = 0

şeklinde tanımlanan fonksiyon R üzerinde süreklidir. Fakat orijin noktasını içe-

ren hiç bir reel sayı aralığında sürekli diferansiyellenebilir değildir.

Kanıt. Tanıma göre

f ′(0) = limh→0

f(0 + h)− f(0)

h= lim

h→0

h2 sin(1/h)− 0

h= lim

h→0h sin(1/h) = 0

ve x 6= 0 için

f ′(x) = 2x sin(1/x)− cos(1/x)

olduğundan f fonksiyonu R’de diferansiyellenebilirdir, fakat limx→0 f′(x) limiti

yoktur. Buna göre f ′ fonksiyonu orijin noktasını içeren hiç bir aralıkta sürekli

değildir.

İki farklı aralık üzerinde diferansiyellenebilen bir fonksiyonunun bu iki ara-lığın birleşimi üzerinde diferansiyellenebilir olması gerekmez.

Açıklama 4.1.11. f(x) = |x| fonksiyonu [0, 1] ve [−1, 0] aralıkları üzerinde

diferansiyellenebilir iken [−1, 1] aralığı üzerinde diferansiyellenemez.

Kanıt. x > 0 iken f(x) = x ve x < 0 iken f(x) = −x olduğundan açıkça f

fonksiyonu [−1, 0) ∪ (0, 1] aralığında diferansiyellebenilir (x > 0 ise f ′(x) = 1

ve x < 0 ise f ′(x) = −1). Örnek 4.1.5’den biliyoruz ki f(x) fonksiyonu x = 0

noktasında diferansiyellenebilir değildir. Bununla beraber

f ′[0,1](0) = lim

h→0+

|h|h

= 1 ve f ′[−1,0](0) = lim

h→0−

|h|h

= −1

olduğundan f fonksiyonu [0, 1] ve [−1, 0] aralıkları üzerinde diferansiyellenebi-

lirdir.

106

Page 111: MB1001 ANALİZ I - i kuweb.iku.edu.tr/~eyavuz/Dersler/Analiz I/AnalizI.pdfDers Notları Yrd. Doç. Dr. Emel YAVUZ DUMAN İstanbul Kültür Üniversitesi Matematik-Bilgisayar Bölümü

Alıştırmalar

4.1.1. f, g : [a, b] → R olsun. Aşağıda verilen ifadelerin hangilerinin doğru, hangile-rinin yanlış olduğunu tespit ediniz. Doğru olanları ispatlayıp yanlış olanlara ise birerters örnek veriniz.

a) Eğer f = g2 ve [a, b] aralığında f diferansiyellenebilir ise (a, b) aralığında g

diferansiyellenebilirdir.b) Eğer [a, b] aralığında f diferansiyellenebilir ise [a, b] üzerinde düzgün süreklidir.c) Eğer (a, b) aralığında f(a) = f(b) = 0 ise f fonksiyonu [a, b] üzerinde düzgün

süreklidir.d) Eğer f fonksiyonu (a, b] aralığında diferansiyellenebilir ve x → a+ iken f(x)/(x−

a) → 1 ise f fonksiyonu (a, b] üzerinde düzgün süreklidir.

4.1.2. Aşağıdaki her reel fonksiyon için Tanım 4.1.1’i kullanarak f ′(a) tğrevinin varolduğunu gösteriniz.

a) f(x) = x2 + x, a ∈ R

b) f(x) =√x, a > 0

c) f(x) = 1/x, a 6= 0

4.1.3.

fα(x) =

|x|α 1x

x 6= 0

0 x = 0

olsun. α > 0 ise x = 0 noktasında fα(x) fonksiyonunun sürekli ve α > 1 için x = 0

noktasında diferansiyellenebilir olduğunu gösteriniz.

4.1.4. 0 noktasını içeren bir aralık I ve f : I → R olsun. Her x ∈ I için |f(x)| ≤ |x|αeşitsizliğini gerçekleyecek α > 1 sayısı varsa f fonksiyonunun 0 noktasında diferansi-yellenebilir olduğunu ispatlayınız.α = 1 olması durumunu inceleyiniz.

4.1.5. a) y = x+sinx eğrisinin y = x+15 doğrusuna paralel olan tüm teğetlerininy = x+ sinx eğrisini kestiği yerlerin koordinatlarını belirleyiniz.

b) y = 3x2 + 2 eğrisine teğet olan ve (−1, 7) noktasından geçen tüm teğtlerininy = 3x2 + 2 eğrisini kestiği yerlerin koordinatlarını belirleyiniz.

4.1.6. f fonksiyonu R üzerinde

fα(x) :=

x3 x ≥ 0

0 x < 0

olarak tanımlansın. Her R için f (n) var olmasını sağlayan tüm n ∈ N değerlerini tespitediniz.

4.1.7. f : (0,∞) → R fonksiyonu her x, y ∈ (0,∞) için f(x) − f(y) = f(x, y) vef(1) = 0 koşullarını sağlasın.

a) f fonksiyonunun (0,∞) aralığında sürekli olması için gerek ve yeter şart 1

noktasında sürekli olmasıdır, ispatlayınız.b) f fonksiyonunun (0,∞) aralığında diferansiyellenebilir olması için gerek ve yeter

şart 1 noktasında diferansiyellenebilir olmasıdır, ispatlayınız.

107

Page 112: MB1001 ANALİZ I - i kuweb.iku.edu.tr/~eyavuz/Dersler/Analiz I/AnalizI.pdfDers Notları Yrd. Doç. Dr. Emel YAVUZ DUMAN İstanbul Kültür Üniversitesi Matematik-Bilgisayar Bölümü

c) Gösteriniz ki, f fonksiyonu 1 noktasında diferansiyellenebilir ise her x ∈ (0,∞)

için f ′(x) = f ′(1)/x’dir.

[Not: Eğer f ′(1) = 1 ise f(x) = log x fonksiyonudur.]

4.1.8. I bir açık aralık, f : I → R ve c ∈ I olsun. f fonksiyonunun c noktasında yerel

maksimumu vardır olarak isimlendirilmesi için gerek ve yeter şart her |x− c| < δ içinf(c) ≥ f(x) eşitsizliğini sağlayacak şekilde bir δ > 0 sayısının var olmasıdır.

a) c noktasında f fonksiyonunun yerel maksimumu varsa u > 0 ve yeterince küçükt < 0 için

f(c+ u)− f(c)

u≤ 0 ve

f(c+ t)− f(c)

t≥ 0

eşitsizliklerinin sağlandığını gösteriniz.b) Yukarıdaki ifadeyi yerel minimum için yazınız.c) Gösteriniz ki, f fonksiyonu 1 noktasında diferansiyellenebilir ise her x ∈ (0,∞)

için f ′(x) = f ′(1)/x’dir.d) b) ve c) şıklarındaki ifadelerin terslerinin doğru olmadığını bir örnek ile gösteri-

niz: 0 noktasında yerel maksimum ve yerel minimum içermediği halde f ′(0) = 0

sağlayan bir f fonksiyonu bulunuz.

4.1.9. a > 0 için (−a, a) olsun. Bir f : I → R fonksiyonunun çift olarak isimlen-dirimesi için gerek ve yeter şart her x ∈ I için f(−x) = f(x) eşitliğinin, tek olarakisimlendirimesi için gerek ve yeter şart her x ∈ I için f(−x) = −f(x) eşitliğininsağlanmasıdır.

a) Eğer f fonksiyonu tek ve I üzerinde diferansiyellenebilir ise I üzerinde f ′ türevfonksiyonunun çift olduğunu gösteriniz.

b) Eğer f fonksiyonu çift ve I üzerinde diferansiyellenebilir ise I üzerinde f ′ türevfonksiyonunun tek olduğunu gösteriniz.

4.2 Diferansiyellenebilme Teoremleri

Teorem 4.2.1. f ve g reel fonksiyonlar ve α ∈ R olsun. Eğer f ve g fonksi-

yonları a noktasında diferansiyellenebilir ise f+g, αf , f ·g ve (g(a) 6= 0 olması

durumunda) f/g fonksiyonları da a noktasında diferansiyellenebildir. Ayrıca

(f + g)′(a) = f ′(a) + g′(a), (4.5)

(αf)′(a) = αf ′(a), (4.6)

(f · g)′(a) = g(a)f ′(a) + f(a)g′(a), (4.7)

ve(f

g

)′(a) =

g(a)f ′(a)− f(a)g′(a)

g2(a)(4.8)

eşitlikleri sağlanır.

108

Page 113: MB1001 ANALİZ I - i kuweb.iku.edu.tr/~eyavuz/Dersler/Analiz I/AnalizI.pdfDers Notları Yrd. Doç. Dr. Emel YAVUZ DUMAN İstanbul Kültür Üniversitesi Matematik-Bilgisayar Bölümü

Kanıt. Yukarıdaki ifadelerin doğruluğunu göstermek için yapılan ispat tarzları

aynı olduğundan biz burada sadece (4.7)’nin açık kanıtını vereceğiz. Buna göre

f(x)g(x)− f(a)g(a)

x− a=

f(x)g(x)− f(a)g(a) + f(a)g(x)− f(a)g(x)

x− a

=g(x)(f(x)− f(a)) + f(a)(g(x)− g(a))

x− a

= g(x)f(x)− f(a)

x− a+ f(a)

g(x)− g(a)

x− a

yazılabilir. Yukarıdaki ifade fonksiyonların çarpımıdır. g fonksiyonu sürekli ol-

duğundan (bkz Teorem 4.1.4), Tanım 4.1.1 and Teorem 3.1.10’a göre

limx→a

f(x)g(x)− f(a)g(a)

x− a= lim

x→a

(

g(x)f(x)− f(a)

x− a

)

+ limx→a

(

f(a)g(x)− g(a)

x− a

)

= limx→a

g(x) limx→a

f(x)− f(a)

x− a+ lim

x→a

(

f(a)g(x)− g(a)

x− a

)

= g(a)f ′(a) + f(a)g′(a)

elde edilir.

Formül (4.5)’e Toplam Kuralı, (4.6)’ya Homojenlik Kuralı, (4.7)’ye Çarpım

Kuralı ve (4.8)’e ise Bölüm Kuralı adı verilir.İki fonksiyonun bileşkesinin türevi hakkında aşağıdaki teorem söz konusu-

dur.

Teorem 4.2.2 (Zincir Kuralı). f ve g reel değerli iki fonksiyon olsun. Eğer

f fonksiyonu a noktasında, g fonksiyonu f(a) noktasında diferansiyellenebilir

iseg ◦ f fonksiyonu da a noktasında diferansiyellenebilirdir ve

(g ◦ f)′(a) = g′(f(a))f ′(a)

sağlanır.

Kanıt. Teorem 4.1.2’ye göre açık I ve J aralıkları, a noktasında sürekli F : I →R, f(a) noktasında sürekli G : I → R fonksiyonları F (a) = f ′(a), G(f(a)) =

g′(f(a)),

f(x) = F (x)(x− a) + f(a), x ∈ I (4.9)

ve

g(y) = G(y)(y − f(a)) + g(f(a)), y ∈ J (4.10)

ifadelerini sağlayacak şekilde mevcuttur. f fonksiyonu a noktasında sürekli ol-

duğundan her x ∈ I için f(x) ∈ J olduğunu varsayabiliriz (eğer gerekirse I

aralığı küçültülebilir).

109

Page 114: MB1001 ANALİZ I - i kuweb.iku.edu.tr/~eyavuz/Dersler/Analiz I/AnalizI.pdfDers Notları Yrd. Doç. Dr. Emel YAVUZ DUMAN İstanbul Kültür Üniversitesi Matematik-Bilgisayar Bölümü

Bir x ∈ I sabitlensin. (4.10) eşitliğinde y = f(x) alınır ve bu ifadede (??)

kullanılır ise

(g ◦ f)(x) = g(f(x)) = G(f(x))(f(x)− f(a)) + g(f(a))

= G(f(x))F (x)(x− a) + (g ◦ f)(a)

elde edilir. Her x ∈ I için H(x) = G(f(x))F (x) olsun. a noktasında F fonksi-

yonu ve f(a) noktasında G fonksiyonu sürekli olduğundan H fonksiyonu da a

noktasında süreklidir. Ayrıca,

H(a) = G(f(a))F (a) = g′(f(a))f ′(a)

sağlanır. Buna göre Teorem 4.1.2 kullanılarak (g ◦ f)′(a) = g′(f(a))f ′(a) eşit-

liğine ulaşılır.

Alıştırmalar

4.2.1. a noktasını içeren bir açık aralık I ve f, g, h : I → R olsun. Aşağıda verilen ifa-delerin hangilerinin doğru, hangilerinin yanlış olduğunu tespit ediniz. Doğru olanlarıispatlayıp yanlış olanlara ise birer ters örnek veriniz.

a) f, g ve h fonksiyonları a noktasında diferansiyellenebilir ise

(fgh)′(a) = f ′(a)g(a)h(a) + f(a)g′(a)h(a) + f(a)g(a)h′(a)

sağlanır.b) f fonksiyonu a noktasında iki kez diferansiyellenebilir ve g fonksiyonu f(a)

noktasında iki kez diferansiyellenebilir ise

(g ◦ f)′′(a) = g′(f(a))f ′′(a) + g′′(f(a))(f ′(a))2

sağlanır.c) f (n)(a) ve g(n)(a) ile verilen n. derece türevler var ise

(f + g)(n)(a) = f (n)(a) + g(n)(a)

sağlanır.d) f (n)(a) ve g(n)(a) ile verilen n. derece türevler var ve sıfırdan farklı ise

(

f

g

)(n)

(a) =g(a)f (n)(a) + (−1)nf(a)g(n)(a)

g(n+1)(a)

sağlanır.

4.2.2. f ve g fonksiyonları 2 ve 3 noktalarında diferansiyellenebilir f ′(2) = a, f ′(3) =

b, g′(2) = c ve g′(3) = d

a) f, g ve h fonksiyonları a noktasında diferansiyellenebilir ise

(fgh)′(a) = f ′(a)g(a)h(a) + f(a)g′(a)h(a) + f(a)g(a)h′(a)

sağlanır.

110

Page 115: MB1001 ANALİZ I - i kuweb.iku.edu.tr/~eyavuz/Dersler/Analiz I/AnalizI.pdfDers Notları Yrd. Doç. Dr. Emel YAVUZ DUMAN İstanbul Kültür Üniversitesi Matematik-Bilgisayar Bölümü

b) f fonksiyonu a noktasında iki kez diferansiyellenebilir ve g fonksiyonu f(a)

noktasında iki kez diferansiyellenebilir ise

(g ◦ f)′′(a) = g′(f(a))f ′′(a) + g′′(f(a))(f ′(a))2

sağlanır.c) f (n)(a) ve g(n)(a) ile verilen n. derece türevler var ise

(f + g)(n)(a) = f (n)(a) + g(n)(a)

sağlanır.d) f (n)(a) ve g(n)(a) ile verilen n. derece türevler var ve sıfırdan farklı ise

(

f

g

)(n)

(a) =g(a)f (n)(a) + (−1)nf(a)g(n)(a)

g(n+1)(a)

sağlanır.

4.3 Bazı Fonksiyonların Türevleri

Bu noktaya kadar aşağıdaki türevlerin doğruluğu gösterilmiştir:

• f(x) = c (c sabit sayı) ise f ′(x) = 0’dır

• f(x) = xq ise f ′(x) = qxq−1’dir

• f(x) = |x| ise f ′(x) = x|x| ’dir.

Şimdi bazı önemli fonksiyonların türevlerinin ne şekilde hasaplandığını incele-yelim.

Trigonometrik Fonksiyonların Türevleri

Teorem 4.3.1. Sinüs fonksiyonunun türevi kosinüs fonksiyonudur:

d

dxsinx = cosx.

Kanıt. Türev tanımı, sinüs fonksiyonu için toplam formülü (sin(x+h) = sinx cosh+

cosx sinh) ve limit kuralları kullanılarak

d

dxsinx = lim

h→0

sin(x+ h)− sinx

h= lim

h→0

sinx cosh+ cosx sinh− sinx

h

= limh→0

sinx(cosh− 1) + cosx sinh

h

= limh→0

(sinx(cosh− 1)

h

)

+ limh→0

(cosx sinh

h

)

= sinx limh→0

(cosh− 1

h

)

+ cosx limh→0

(sinh

h

)

= sinx · 0 + cosx · 1 = cosx.

elde edilir.

111

Page 116: MB1001 ANALİZ I - i kuweb.iku.edu.tr/~eyavuz/Dersler/Analiz I/AnalizI.pdfDers Notları Yrd. Doç. Dr. Emel YAVUZ DUMAN İstanbul Kültür Üniversitesi Matematik-Bilgisayar Bölümü

Teorem 4.3.2. Kosinüs fonksiyonunun türevi negatif sinüs fonksiyonudur:

d

dxcosx = − sinx.

Kanıt. Türev tanımı, kosinüs fonksiyonu için toplam formülü (cos(x + h) =

cosx cosh−sinx sinh) ve limit kuralları kullanılarak yukarıdaki şekilde hareket

ederek istenilen gösterilir. Diğer taraftan

sin(π

2− x)

= cosx ve cos(π

2− x)

= sinx

olduğundan Zincir Kuralı (Teorem 4.2.2) kullanılarak

d

dxcosx =

d

dxsin(π

2− x)

= (−1) cos(π

2− x)

= − sinx

türev değeri elde edilir.

Örnek 4.3.3. Aşağdaki fonksiyonların türevlerini hesaplayınız.

i) sin(πx) + cos(3x)

ii) x2 sin√x

iii) cos x1−sin x

Çözüm. i) Toplam ve Zincir Kuralları kullanılarak

d

dx(sin(πx) + cos(3x)) = π cos(πx)− 3 sin(3x)

elde edilir.

ii) Çarpım ve Zincir Kuralları kullanılarak

d

dx(x2 sin

√x) = 2x sin

√x+ x2 cos

√x

1

2√x= 2x sin

√x+

1

2x3/2 cos

√x

elde edilir.

iii) Bölüm Kuralı kullanılarak

d

dx

(cosx

1− sinx

)

=(1− sinx)(− sinx)− (cosx)(0− cosx)

(1− sinx)2

=− sinx+ sin2 x+ cos2 x

(1− sinx)2(sin2 x+ cos2 x = 1)

=1− sinx

(1− sinx)2=

1

1− sinx

elde edilir. �

112

Page 117: MB1001 ANALİZ I - i kuweb.iku.edu.tr/~eyavuz/Dersler/Analiz I/AnalizI.pdfDers Notları Yrd. Doç. Dr. Emel YAVUZ DUMAN İstanbul Kültür Üniversitesi Matematik-Bilgisayar Bölümü

Örnek 4.3.4. İki farklı metot kullanarak f(t) = sin t cos t fonksiyonunun tü-

revini hesaplayınız.

Çözüm. Çarpım kuralını kullanarak

f ′(t) = cos t cos t+ sin t(− sin t) = cos2 t− sin2 t

elde edilir. Bir diğer çözüm yöntemi sin(2t) = 2 sin t cos t eşitliği kullanılarak

verilebilir. Buna göre

f ′(t) =d

dt

(1

2sin(2t)

)

=1

2(2) cos(2t) = cos(2t) = cos2 t− sin2 t

sonucuna ulaşılır. �

Diğer trigonometrik fonksiyonların türevleri ise

tanx =sinx

cosxsecx =

1

cosx

cotx =cosx

sinxcscx =

1

sinxeşitlikleri kullanıılarak elde edilir.

Örnek 4.3.5. Tanjant ve sekant fonksiyonlarının türevlerini hesaplayınız.

Çözüm. Yukarıda tanjat ve sekant fonksiyonları için verilen ifadeleri kullanarak

d

dxtanx =

d

dx

(sinx

cosx

)

=(cosx)(cosx)− sinx(− sinx)

cos2 x

=cos2 x+ sin2 x

cos2 x=

1

cos2 x= sec2 x

ve

d

dxsecx =

d

dx

(1

cosx

)

=d

dx(cosx)

−1

= (−1)(cosx)−2(− sinx) =sinx

cos2 x=

1

cosx

sinx

cosx= secx tanx

elde edilir. �

Örnek 4.3.5’deki şekilde hareket ederek

d

dxcotx = − csc2 x

d

dxcsc = − cscx cotx

olduğunun gösterilmesi okuyucuya alıştırma olarak bırakılmıştır.

Örnek 4.3.6.d

dx

[

3x+ cot(x

2

)]

= 3 +[

− csc2(x

2

)] 1

2= 3− 1

2csc2

(x

2

)

d

dx

(3

sin(2x)

)

=d

dx(3 csc(2x)) = 3(− csc(2x) cot(2x))(2) = −6 csc(2x) cot(2x)

113

Page 118: MB1001 ANALİZ I - i kuweb.iku.edu.tr/~eyavuz/Dersler/Analiz I/AnalizI.pdfDers Notları Yrd. Doç. Dr. Emel YAVUZ DUMAN İstanbul Kültür Üniversitesi Matematik-Bilgisayar Bölümü

Kapalı Fonksiyonların Türevleri

Bu kısımda Zincir Kuralı’nın özel bir durumu olan kapalı türev kavramı ince-lenecektir. Şimdiye kadar

y = 3x2 − sin(7x+ 5)

gibi y = f(x) formunda “açık” bir şekilde x’e bağlı olarak yazılabilien y fonksi-yonlarının türevleri incelendi ve türevlerinin Zincir Kuralı kullanılarak

y′ = 6x− 7 cos(7x+ 5)

şeklinde hesaplanabileceği gösterildi. Diğer taraftan kimi zaman

x3 + y3 − 9xy = 0, y2 − x = 0 ve x2 − y2 − 25 = 0

gibi eşitlikler ile çalışmamız gerekebilir. Bu denklemler x ile y değişkenleri ara-sında “kapalı” bir ilişki tanımlar. Bazı durumlarda böyle bir denklemi, y’yi x’inbir kapalı fonksiyonu şeklinde yazarak çözebiliriz. Bildiğimiz yoldan türev alır-ken F (x, y) = 0 denklemini y = f(x) şeklinde yazamasak da dy/dx türevinigene de kapalı türev yolu ile bulabiliriz. Bu olgu aşağıdaki örnekte anlatılmak-tadır.

Örnek 4.3.7. x2+y2 = 25 eğrisine (3,−4) noktasından çizilen teğetin eğimini

tespit ediniz.

Çözüm. x2 + y2 = 52 denklemi merkezi (0, 0), yarıçapı 5 olan çemberi gösterir.

İstenen teğetin eğimi iki farklı şekilde bulunabilir.

Yöntem 1. x2 + y2 = 25 denklemi sadece x’e bağlı olarak y1,2 = ±√25− x2

şeklinde yazılabilir. Dikkat edilirse (3,−4) noktası y = −√25− x2 eğrisinin

üzerindedir. Dolayısyla Zincir Kuralı kullanılarak

y′ =dy

dx=

d

dx(−√

25− x2) = − −2x

2√25− x2

=x√

25− x2

türev değeri elde edilir. Buna göre teğitin eğimi

dy

dx

∣∣∣x=3

x√25− x2

=3√

25− 32=

3

4

şeklinde bulunur.

Yöntem 2. Şimdi verilen denklemin y’yi kapalı olarak x’in türevlenebilir bir

fonksiyonu gibi tanımladığını varsayalım: y = y(x). Buna göre verilen kapalı

çember denkleminin her iki tarafından x’e göre türev alınırsa

d

dx(x2) +

d

dx(y2) =

d

dx25 ⇒ 2x+ 2y

dy

dx= 0 ⇒ dy

dx= −x

y

114

Page 119: MB1001 ANALİZ I - i kuweb.iku.edu.tr/~eyavuz/Dersler/Analiz I/AnalizI.pdfDers Notları Yrd. Doç. Dr. Emel YAVUZ DUMAN İstanbul Kültür Üniversitesi Matematik-Bilgisayar Bölümü

elde edilir. Buna göre teğerin eğimi

dy

dx

∣∣∣(3,−4)

= −x

y

∣∣∣(3,−4)

=3

4

olarak bulunur. Bu şekilde türev değerini hesaplama metoduna kapalı türev adı

verilir. �

Örnek 4.3.8. i) cos2 x+cos2 y = cos(2x+2y) ise dy/dx türevini bulunuz.

ii) x2y + y4 = 4 + 2x ise d2y/dx2 türevini bulunuz.

Çözüm. i) y’yi x’in fonksiyonu gibi düşünüp, y = y(x), denklemin kapalı olarak

türevini alırsak

d

dx(cos2 x) +

d

dx(cos2 y) =

d

dx(cos(2x+ 2y))

2 cosxd

dxcosx+ 2 cos y

d

dxcos y = − sin(2x+ 2y)

d

dx(2x+ 2y)

2 cosx(− sinx) + 2 cos y(− sin y)dy

dx= − sin(2x+ 2y)

(

2 + 2dy

dx

)

−2 cosx sinx− 2dy

dxcos y sin y = −2 sin(2x+ 2y)− 2

dy

dxsin(2x+ 2y)

2dy

dxsin(2x+ 2y)− 2

dy

dxcos y sin y = −2 cosx sinx+ 2 sin(2x+ 2y)

elde edilir. Buna göre türev

y′ =dy

dx=

cosx sinx− sin(2x+ 2y)

sin(2x+ 2y)− cos y sin y

olarak bulunur.

ii) Benzer şekilde y = y(x) olarak düşünüp denklemin kapalı olarak birinci

türevini alırsak

d

dx(x2y + y4) =

d

dx(4 + 2x) ⇒ 2xy + x2 dy

dx+ 4y3

dy

dx= 2

y′ =dy

dx=

2− 2xy

x2 + 4y3

elde edilir. Birinci türev ifadesinden tekrar türev alınarak

d2

dx2

(2− 2xy

x2 + 4y3

)

=ddx (2− 2xy)(x2 + 4y3)− d

dx (x2 + 4y3)(2− 2xy)

(x2 + 4y3)2

=−2(

y + x dydx

)

(x2 + 4y3)−(

2x+ 12y2 dydx

)

(2− 2xy)

(x2 + 4y3)2

115

Page 120: MB1001 ANALİZ I - i kuweb.iku.edu.tr/~eyavuz/Dersler/Analiz I/AnalizI.pdfDers Notları Yrd. Doç. Dr. Emel YAVUZ DUMAN İstanbul Kültür Üniversitesi Matematik-Bilgisayar Bölümü

bulunur. dydx = 2−2xy

x2+4y3 olduğu kullanılarak

y′′ =d2

dx2

(2− 2xy

x2 + 4y3

)

=−2(

y + x(

2−2xyx2+4y3

))

(x2 + 4y3)−(

2x+ 12y2(

2−2xyx2+4y3

))

(2− 2xy)

(x2 + 4y3)2

sonucuna ulaşılır. �

Ters Trigonometrik Fonksiyonların Türevleri

Örnek 4.3.9. ddx arcsinx = 1√

1−x2olduğunu ispatlayınız.

Kanıt. y = arcsinx olsun. Gösterilmesi gereken dydx = 1√

1−x2eşitliğinin sağlan-

dığıdır. Arcsinüs fonksiyonunun tanımı gereği biliyoruz ki

x = sin y ve − π

2≤ y ≤ π

2

ifadeleri geçerlidir. Yukarıdaki ilk ifadenin x’e göre türevi alınırsa

1 =d

dx(x) =

d

dx(sin y) =

d

dy(sin y)

dy

dx= (cos y)

dy

dx

olduğundandy

dx=

1

cos y

elde edilir. Diğer taraftan sin2 y + cos2 y = 1 dolayısıyla cos2 y = 1 − sin2 y

olduğundan cos y = ±√

1− sin2 y elde edilir. Burada −π2 ≤ y ≤ π

2 için cos y >

0 olduğundan cos y =√

1− sin2 y gerçeklenir. Buna göre

dy

dx=

1√

1− sin2 y=

1√1− x2

bulunur.

Örnek 4.3.10. ddx arccosx = −1√

1−x2olduğunu ispatlayınız.

Kanıt. y = arccosx olsun. Gösterilmesi gereken dydx = −1√

1−x2eşitliğinin sağlan-

dığıdır. Arckosinüs fonksiyonunun tanımı gereği biliyoruz ki

x = cos y ve 0 ≤ y ≤ π

ifadeleri geçerlidir. Yukarıdaki ilk ifadenin x’e göre türevi alınırsa

1 =d

dx(x) =

d

dx(cos y) =

d

dy(cos y)

dy

dx= (− sin y)

dy

dx

116

Page 121: MB1001 ANALİZ I - i kuweb.iku.edu.tr/~eyavuz/Dersler/Analiz I/AnalizI.pdfDers Notları Yrd. Doç. Dr. Emel YAVUZ DUMAN İstanbul Kültür Üniversitesi Matematik-Bilgisayar Bölümü

olduğundandy

dx=

−1

sin y

elde edilir. Diğer taraftan sin2 y + cos2 y = 1 dolayısıyla sin2 y = 1 − cos2 y

olduğundan sin y = ±√

1− cos2 y elde edilir. Burada 0 ≤ y ≤ π için sin y > 0

olduğundan sin y =√

1− cos2 y gerçeklenir. Buna göre

dy

dx=

−1√

1− cos2 y=

−1√1− x2

bulunur.

Örnek 4.3.11. ddx arctanx = 1

1+x2 olduğunu ispatlayınız.

Kanıt. y = arctanx olsun. Gösterilmesi gereken dydx = 1

1+x2 eşitliğinin sağlan-

dığıdır. Arctanjant fonksiyonunun tanımı gereği biliyoruz ki

x = tan y ve − π

2≤ y ≤ π

2

ifadeleri geçerlidir. Yukarıdaki ilk ifadenin x’e göre türevi alınırsa

1 =d

dx(x) =

d

dx(tan y) =

d

dy(tan y)

dy

dx= (sec2 y)

dy

dx

olduğundandy

dx=

1

sec2 y

elde edilir. Diğer taraftan sin2 y + cos2 y = 1 dolayısıyla sin2 ycos2 y + cos2 y

cos2 y = 1cos2 y

olduğundan sec2 y = 1 + tan2 y elde edilir. Buna göre

dy

dx=

1

1 + tan2 y=

1

1 + x2

bulunur.

Logaritmik ve Üstel Fonksiyonların Türevleri

Logaritma fonksiyonunun türevi

limn→0

(1 + n)1/n

= e

eşitliğine dayanır. Burada e sayısı doğal logaritmanın tabanı olan e = 2.718281828459 · · ·sayısıdır.

Örnek 4.3.12. ddx lnx = 1

x olduğunu ispatlayınız.

117

Page 122: MB1001 ANALİZ I - i kuweb.iku.edu.tr/~eyavuz/Dersler/Analiz I/AnalizI.pdfDers Notları Yrd. Doç. Dr. Emel YAVUZ DUMAN İstanbul Kültür Üniversitesi Matematik-Bilgisayar Bölümü

Kanıt. f(x) = lnx fonksiyonu x > 0 için tanımlıdır. Türev tanımı kullanılarak

f ′(x) = limh→0

f(x+ h)− f(x)

h= lim

h→0

ln(x+ h)− lnx

h= lim

h→0

[1

hln

(x+ h

x

)]

= limh→0

[1

hln

(

1 +h

x

)]

= limh→0

[

ln

(

1 +h

x

) 1h

]

(h/x = n olsun)

= limn→0

[

ln (1 + n)1nx

]

= limn→0

[

ln(

(1 + n)1n

) 1x

]

= limn→0

[1

xln (1 + n)

1n

]

=1

xlimn→0

ln (1 + n)1n

=1

xln e =

1

x

elde edilir.

Örnek 4.3.13. x > 0, a > 0 ve a 6= 1 olmak üzere ddx (loga x) =

1x ln a olduğunu

ispatlayınız.

Kanıt. ddx lnx = 1

x olduğu kullanılarak

f ′(x) =d

dx(loga x) =

d

dx

(lnx

ln a

)

=1/x

ln a=

1

x ln a

elde edilir.

Açıklama 4.3.14. En genel halde u = u(x) olmak üzere

d

dx(loga u(x)) =

1

u(x) ln au′(x) ve

d

dx(lnu(x)) =

1

u(x)u′(x)

sağlanır.

Örnek 4.3.15. i) y = ln(sinx) ise dy/dx’i bulunuz.

ii) y = log10(2 + sinx) ise dy/dx’i bulunuz.

iii) y = x√x ise dy/dx’i bulunuz.

Çözüm. i) u = sinx olsun. Buna göre zincir kuralını kullanarak y = lnu fonk-

siyonunun türevi

dy

dx=

dy

du

du

dx=

1

ucosu =

1

sinxcosx = cotx

118

Page 123: MB1001 ANALİZ I - i kuweb.iku.edu.tr/~eyavuz/Dersler/Analiz I/AnalizI.pdfDers Notları Yrd. Doç. Dr. Emel YAVUZ DUMAN İstanbul Kültür Üniversitesi Matematik-Bilgisayar Bölümü

olarak elde edilir.

ii) u = 2+ sinx olsun. Buna göre zincir kuralını kullanarak y = log10 u fonksi-

yonunun türevi

dy

dx=

dy

du

du

dx=

1

u ln 10cosx =

1

(2 + sinx)(ln 10)cosx =

cosx

(2 + sinx)(ln 10)

şeklinde bulunur.

iii) y = x√x ifadesinden

y = x√x ⇒ y = xx1/2 ⇒ ln y = lnxx1/2 ⇒ ln y = x1/2 lnx

yazılır ve her iki tarafın x’e göre kapalı türevi alınırsa

1

yy′ =

1

2x−1/2 lnx+ x1/2 1

x=

lnx

2√x+

1√x⇒

y′ = y

(lnx

2√x+

1√x

)

y′ = y = x√x

(lnx

2√x+

1√x

)

sonucuna ulaşılır. �

Örnek 4.3.16. ddxe

x = ex olduğunu ispatlayınız.

Kanıt. y = ex olsun. Buna göre x = ln y elde edilir. Son eşitliğin her iki tara-

fından y’ye göre türev alırsak

dx

dy=

d

dy(ln y) =

1

y⇒ dy

dx= y sonuçta

d

dxex = ex

elde edilir.

Örnek 4.3.17. ddx (a

x) = ax ln a olduğunu ispatlayınız.

Kanıt. y = ax olsun. Buna göre ln y = ln ax yani ln y = x ln a sağlanır. Bu

ifadenin her iki yanından x’e göre türev alırsak

d

dx(ln y) =

d

dx(x ln a) ⇒ 1

y

dy

dx= ln a ⇒ dy

dx= y ln a

sonuçtady

dx= ax ln a

elde edilir.

119

Page 124: MB1001 ANALİZ I - i kuweb.iku.edu.tr/~eyavuz/Dersler/Analiz I/AnalizI.pdfDers Notları Yrd. Doç. Dr. Emel YAVUZ DUMAN İstanbul Kültür Üniversitesi Matematik-Bilgisayar Bölümü

Açıklama 4.3.18. En genel halde u = u(x) olmak üzere

d

dx(au(x)) = au(x) ln a · u′(x) ve

d

dx(eu(x)) = eu(x)u′(x)

sağlanır.

Örnek 4.3.19. i) y = 2sin 3x ise dy/dx’i bulunuz.

ii) y = xe√1−x ise dy/dx’i bulunuz.

Çözüm. i) u = sin 3x olsun. Buna göre y = 2u fonksiyonunun türevi

dy

dx=

dy

du

du

dx=

d

du(2u)

d

dx(sin 3x) = 2u ln 2 · 3 cos 3x

yanidy

dx= 3 · 2sin 3x ln 2 · cos 3x

elde edilir.

ii) Gerekli işlemler yapılarak

dy

dx= 1e

√1−x + xe

√1−x −1

2√1− x

= e√1−x − xe

√1−x

2√1− x

sonucuna ulaşılır. �

4.4 Ortalama Değer Teoremi

Ortalama Değer Teoremi, bir fonksiyonunu türevi ile bu fonksiyona ait kirişlerinbir tanesinin eğimi arasındaki ilişkiyi ortaya koyar. Şimdi özel bir durumu içerenaşağıdaki sonucu verelim.

Lemma 4.4.1 (Rolle Teoremi). a < b olmak üzere a, b ∈ R reel sayıları göz

önüne alınsın. Eğer f fonksiyonu [a, b] aralığında sürekli, (a, b) aralığında dife-

ransiyellenebilir ve f(a) = f(b) ise f ′(c) = 0 olacak şekilde bir c ∈ (a, b) sayısı

vardır.

Kanıt. Ekstremum Değer Teoremi (Teorem 3.3.8) gereği f fonksiyonunun [a, b]

kapalı aralığında sonlu bir M maksimum ve m minimum değeri vardır. Eğer

M = m ise f fonksiyonu (a, b) üzerinde sabit sabit fonksiyon olmak zorundadır

ve bu durumda her x ∈ (a, b) için f ′(x) = 0 sağlanır.

M 6= m olsun. f(a) = f(b) eşitliği gerçeklendiğinden bir c ∈ (a, b) nok-

tasının fonksiyon altındaki değeri M veya m’e eşit olacak şekilde seçilebilir.

120

Page 125: MB1001 ANALİZ I - i kuweb.iku.edu.tr/~eyavuz/Dersler/Analiz I/AnalizI.pdfDers Notları Yrd. Doç. Dr. Emel YAVUZ DUMAN İstanbul Kültür Üniversitesi Matematik-Bilgisayar Bölümü

Genelliği bozmadan f(c) = M olsun (eğer f(c) = m ise benzer tarzda hare-

ket ederek istenilen gösterilebilir). M noktası [a, b] aralığında f fonksiyonunun

maksimumu olduğundan c+ h ∈ (a, b) koşulunu sağlayan tüm h değerleri için

f(c+ h)− f(c) ≤ 0

eşitsizliği gerçeklenir. Eğer h > 0 ise

f ′(c) = limh→0+

f(c+ h)− f(c)

h≤ 0

ve h > 0 ise

f ′(c) = limh→0−

f(c+ h)− f(c)

h≥ 0

olduğundan f ′(c) = 0 eşitsizliğinin doğruluğu elde edilir.

Açıklama 4.4.2. Rolle Teoremi’ndeki süreklilik hipotezi [a, b] aralığındaki bir

nokta için bile sağlanmasa teorem doğruluğunu yitirir.

Kanıt. Aşağıdaki

f(x) =

x x ∈ [0, 1)

0 x = 1

fonksiyonu göz önüne alınsın. Bu fonksiyon açıkça [0, 1) aralığında sürekli, (0, 1)

üzerinde diferansiyellenebilir ve f(0) = f(1) = 0 olduğu halde f ′(x) değeri hiç

bir zaman sıfıra eşit değildir.

Açıklama 4.4.3. Rolle Teoremi’ndeki diferansiyellenebilirlik hipotezi (a, b)

aralığındaki bir nokta için bile sağlanmasa teorem doğruluğunu yitirir.

Kanıt. Biliyoruz ki f(x) = |x| fonksiyonu [−1, 1] aralığında sürekli, (−1, 1)\{0}üzerinde diferansiyellenebilir ve f(−1) = f(1) = 1 olduğu halde f ′(x) değeri

hiç bir zaman sıfıra eşit değildir.

Teorem 4.4.4. a < b olmak üzere a, b ∈ R reel sayıları göz önüne alınsın.

i) [Genelleştirilmiş Ortalama Değer Teoremi] Eğer f ve g fonksiyonları [a, b]

aralığında sürekli ve (a, b) aralığında diferansiyellenebilir ise

g′(c)(f(b)− f(a)) = f ′(c)(g(b)− g(a))

eşitliğini sağlayacak şekilde bir c ∈ (a, b) sayısı vardır.

121

Page 126: MB1001 ANALİZ I - i kuweb.iku.edu.tr/~eyavuz/Dersler/Analiz I/AnalizI.pdfDers Notları Yrd. Doç. Dr. Emel YAVUZ DUMAN İstanbul Kültür Üniversitesi Matematik-Bilgisayar Bölümü

ii) [Ortalama Değer Teoremi] Eğer f fonksiyonu [a, b] aralığında sürekli ve

(a, b) aralığında diferansiyellenebilir ise

f(b)− f(a) = f ′(c)(b− a)

eşitliğini sağlayacak şekilde bir c ∈ (a, b) sayısı vardır.

Kanıt. i)

h(x) = f(x)(g(b)− g(a))− g(x)(f(b)− f(a))

olsun. Bu fonksiyonun

h′(x) = f ′(x)(g(b)− g(a))− g′(x)(f(b)− f(a))

türev fonksiyonu açıkça [a, b] üzerinde sürekli ve (a, b) üzerinde diferansiyelle-

nebilirdir. Ayrıca

h(a) = f(a)(g(b)− g(a))− g(a)(f(b)− f(a))

= f(a)g(b)− f(a)g(a)− g(a)f(b) + g(a)f(a) = f(a)g(b)− g(a)f(b)

ve

h(b) = f(b)(g(b)− g(a))− g(b)(f(b)− f(a))

= f(b)g(b)− f(b)g(a)− g(b)f(b) + g(b)f(a) = g(b)f(a)− f(b)g(a)

sağlandığından h(a) = h(b) eşitliği gerçeklenir. Dolayısıyla Rolle Teoremi’ne

göre h′(c) = 0 olacak şekilde bir c ∈ (a, b) sayısı vardır.

ii) Eğer i) şıkkında g(x) = x alınır ise istenilen gösterilmiş olur.

Rolle Teoremi c ∈ (a, b) için eğriye (c, f(c)) noktasından çizilen teğetinx-eksenine paralel olduğunu söyler. Bununla beraber Ortalama Değer Teoremibenzer koşullarda bir c ∈ (a, b) için (c, f(c)) noktasından çizilen teğetin (a, f(a))ve (b, f(b)) noktalarını birleştiren kirişe paralel olacağını belirtir. Genelleştiril-miş Ortalam Değer Teoremi aynı zamanda Cauchy Ortalama Değer Teoremiolarak da bilinir.

x x

y y

a ab bcc

f(a)

f(b)

y = f(x)

y = f(x)

Teğet Kiriş

122

Page 127: MB1001 ANALİZ I - i kuweb.iku.edu.tr/~eyavuz/Dersler/Analiz I/AnalizI.pdfDers Notları Yrd. Doç. Dr. Emel YAVUZ DUMAN İstanbul Kültür Üniversitesi Matematik-Bilgisayar Bölümü

Tanım 4.4.5. R reel sayıların bir alt kümesi E göz önüne alınsın ve f : E → R

olsun.

i) f fonksiyonunun E üzerinde artan (sırası ile kesinlikle artan) olarak isim-

lendirilmesi için gerek ve yeter şart x1 < x2 koşulunu sağlayan x1, x2 ∈ E

için f(x1) ≤ f(x2) (sırası ile f(x1) < f(x2)) eşitsizliğinin sağlanmasıdır.

ii) f fonksiyonunun E üzerinde azalan (sırası ile kesinlikle azalan) olarak

isimlendirilmesi için gerek ve yeter şart x1 < x2 koşulunu sağlayan x1, x2 ∈E için f(x1) ≥ f(x2) (sırası ile f(x1) > f(x2)) eşitsizliğinin sağlanması-

dır.

iii) f fonksiyonunun E üzerinde monoton (sırası ile kesinlikle monoton) ola-

rak isimlendirilmesi için gerek ve yeter şart ya artan ya da azalan (sırası

ile ya kesinlikle artan ya da kesinlikle azalan) olmasıdır.

Dikkat edilirse f(x) = x2 fonksiyonu [0, 1] ve [−1, 0] üzerinde kesinliklemonotonken [−1, 1] aralığında monoton değildir.

Teorem 4.4.6. a < b olmak üzere a, b ∈ R, f fonksiyonu [a, b] üzerinde sürekli

ve (a, b) aralığında diferansiyellenebilir olsun.

i) Eğer her x ∈ (a, b) için f ′(x) > 0 (sırası ile f ′(x) < 0) ise f fonksiyonu

[a, b] üzerinde kesinlikle artandır (sırası ile kesinlikle azalandır).

ii) Eğer her x ∈ (a, b) için f ′(x) = 0 ise f fonksiyonu [a, b] üzerinde sabittir.

iii) Eğer g fonksiyonu [a, b] üzerinde sürekli, (a, b) aralığında diferansiyelle-

nebilir ve her x ∈ (a, b) için f ′(x) = g′(x) sağlanıyor ise [a, b] üzerinde

f − g fonksiyonu sabittir.

Kanıt. i) a ≤ x1 < x2 ≤ b olsun. Ortalama Değer Teoremi’ne göre f(x2) −f(x1) = f ′(c)(x2 − x1) eşitliğini sağlayacak şekilde bir c ∈ (a, b) sayısı vardır.

Buna göre eğer f ′(c) > 0 ise f(x2) > f(x1) ve eğer f ′(c) < 0 ise f(x2) < f(x1)

gerçeklenir. Dolayısıyla istenilen gösterilmiş olur.

ii) Eğer f ′ = 0 ise i) şıkkının istapına göre f fonksiyonu hem artan hem de

azalandır. Dolayısıyla [a, b] üzerinde sabit olmak zorundadır.

iii) Yıkarıda verilen ii) şıkkının ispatı f−g için uygulanırsa istenilen gösterilmiş

olur.

Teorem 4.4.6 i) şıkkı diferansiyellenebilir fonksiyonların monotonluğu hak-kında yorum yapma imkanı sağlar. Bununla birlikte monoton olduğu haldediferansiyellenebilir olmayan fonksiyonlar da vardır. Örneğin

f(x) = ⌊x⌋ := n, n ≤ x < n+ 1, n ∈ Z

123

Page 128: MB1001 ANALİZ I - i kuweb.iku.edu.tr/~eyavuz/Dersler/Analiz I/AnalizI.pdfDers Notları Yrd. Doç. Dr. Emel YAVUZ DUMAN İstanbul Kültür Üniversitesi Matematik-Bilgisayar Bölümü

en büyük tamsayı fonksiyonu R üzerinde artan olmakla birlikte ne sürekli nede diferansiyellenebilir değildir.

Peki bu diferansiyellenemeyen monoton fonksiyonların davranışları ne şekilde-dir. Aşağıdaki sonuç tıpkı en büyük tamsayı fonksiyonunda olduğu gibi biraralıkta monoton olan herhangi bir fonksiyonun daima sağdan ve soldan limit-lerinin var olduğunu ortaya koyar. Bu sonuç Monoton Yakınsaklık Teoremi’nin(Teorem 2.3.2) fonksiyonlar için analoğudur.

Teorem 4.4.7. f fonksiyonu [a, b] aralığında artan olsun.

i) Eğer c ∈ [a, b) ise f(c+) limiti mevcuttur ve f(c) ≤ f(c+) eşitsizliği

sağlanır.

ii) Eğer c ∈ (a, b] ise f(c−) limiti mevcuttur ve f(c−) ≤ f(c) eşitsizliği

sağlanır.

Kanıt. Simetriden ötürü verilen bir c ∈ (a, b] için f(c−) limitinin var ve f(c−) ≤f(c) olduğunu göstermek yeter. E = f((a, c)) ve s = supE olsun. f fonksiyonu

artan olduğundan f(c) değeri E’nin bir üst sınırıdır. Buna göre s bir sonlu sayı

olarak s ≤ f(c) eşitsizliğini gerçekler. Supremum için Yaklaşım Özelliği’nden

(Teorem 1.3.5) s− ε < f(x0) ≤ s olacak şekilde bir x0 ∈ (a, c) sayısı vardır. f

fonksiyonunun artan olduğu göz önüne alındığında her x0 < x < c için

s− ε < f(x0) ≤ f(x) ≤ s

eşitsizliği gerçeklenir. Buna göre f(c−) limiti vardır ve f(c−) = s ≤ f(c)

eşitsizliği gerçeklenir.

124

Page 129: MB1001 ANALİZ I - i kuweb.iku.edu.tr/~eyavuz/Dersler/Analiz I/AnalizI.pdfDers Notları Yrd. Doç. Dr. Emel YAVUZ DUMAN İstanbul Kültür Üniversitesi Matematik-Bilgisayar Bölümü

Örnek 3.3.14’den biliyoruz ki hiç bir yerde sürekli yani sayılamayan sonsuznoktada süreksizliği olan fonksiyonlar mevcuttur. Peki bir monoton fonksiyonkaç tane süreksizlik noktasına sahip olabilir?

Teorem 4.4.8. Eğer f fonksiyonu bir I aralığında monoton ise I üzerinde f

fonksiyonunun en fazla sayılabilir sayıda süreksizlik noktası olabilir.

Örnek 4.4.9. Her x > 0 için 1 + x < ex olduğunu ispatlayınız.

Kanıt. f(x) = ex − x olsun. Her x > 0 için f ′(x) = ex − 1 > 0 olduğundan Te-

orem 4.4.6 i) şıkkına göre f(x) fonksiyonu (0,∞) aralığında kesinlikle artandır.

Dolayısıyla her x > 0 için ex − x = f(x) > f(0) = 1 gerçeklenir. Yani, x > 0

için ex > x+ 1 gerçeklenir.

Teorem 4.4.10 (Türevler için Ara Değer Teoremi). f fonksiyonu f ′(a) 6= f ′(b)

olmak üzere [a, b] aralığında diferansiyellenebilir olsun. Eğer y0 sayısı f ′(a)

ile f ′(b) arasında yer alıyor ise f ′(x0) = y0 eşitliğini sağalayacak şekilde bir

x0 ∈ (a, b) sayısı vardır.

Strateji: F (x) := f(x) − y0x olsun. Buna göre F ′(x0) := f ′(x0) − y0 = 0eşitliğini sağlayacak şekilde bir x0 ∈ (a, b) sayısı bulmamız gerekir. Diferan-siyellenebilir bir F fonksiyonunun lokal ekstremumları F ′ türevinin sıfıra eşitolduğu yerlerde bulunduğundan F fonksiyonunun bir x0 ∈ (a, b) noktasındalokal ekstremumu olduğunu göstermek yeter.

Kanıt. y0 değeri f ′(a) ile f ′(b) arasında yer alsın. Simetriden ötürü f ′(a) <

y0 < f ′(b) olduğunu farz edebiliriz. Her x ∈ (a, b) için F (x) = f(x) − y0x

olarak tanımlansın. Buna göre F fonksiyonu [a, b] aralığında diferansiyellene-

bilirdir. Dolayısıyla, Ekstremum Değer Teoremi’ne (Teorem 3.3.8) göre [a, b]

üzerinde F fonksiyonunun bir mutlak maksimum, F (x0) değeri vardır. Diğer

taraftan F ′(a) = f ′(a)−y0 < 0 olduğundan F fonksiyonu azalandır. Dolayısıyla

yeterince küçük h > 0 için F (a + h) − F (a) < 0 yani F (a + h) < F (a) sağ-

lanır. Bu ise bize F (a)’nın [a, b] üzerinde F fonksiyonunun mutlak minimumu

olmadığını gösterir. Dolayısıyla mutlak minimum F (x0) değeri mutlaka (a, b)

üzerinde olmalıdır. Yani F ′(x0) = 0 olacak şekilde bir x0 ∈ (a, b) sayısı vardır.

Bu ise isteneni ispatlar.

4.5 Limitlerde Belirsiz Şekiller ve L’Hôpital Kuralı

Aşağıdaki sonuç 0/0 ve ∞/∞ formundaki limitleri hesaplamada sıkça kullanılır.

125

Page 130: MB1001 ANALİZ I - i kuweb.iku.edu.tr/~eyavuz/Dersler/Analiz I/AnalizI.pdfDers Notları Yrd. Doç. Dr. Emel YAVUZ DUMAN İstanbul Kültür Üniversitesi Matematik-Bilgisayar Bölümü

Teorem 4.5.1 (L’Hôpital Kuralı). a bir genişletilmiş reel sayı, a’nın bir iç

veya uç noktası olduğu bir açık aralık I, f ve g fonksiyonları I\{a} üzerinde

diferansiyellenebilir ve her x ∈ I\{a} için g(x) 6= 0 6= g′(x) olsun. Ayrıca,

A := limx→ax∈I

f(x) = limx→ax∈I

g(x)

değeri ya 0 ya da ∞ olsun. Eğer

B := limx→ax∈I

f ′(x)

g′(x)

limiti bir genişletilmiş reel sayı olarak var ise

limx→ax∈I

f(x)

g(x)= lim

x→ax∈I

f ′(x)

g′(x)

sağlanır.

limx→ax∈I

f(x)g(x) limitini l’Hôpital kuralı ile bulmak için x → a iken 0/0 veya

∞/∞ formunu elde ettiğimiz sürece f ve g ifadelerinin türevlerini almaya de-vam ederiz.

0\0 Belirsizliği

Örnek 4.5.2. Aşağıdaki limitleri hesaplayınız.

(a) limx→0

√1 + x− 1

x

(b) limx→∞sin 1

x

arctan 1x

(c) limx→0sinx2 − ln(1 + x2)

1− cosx2

(d) limx→0

x3 cos 1x

1− secx

(e) limx→0−sinx

x2

Çözüm. Bu tip belirsizliklerde doğrudan l’Hôpital Kuralı uygulanır.

(a) limx→0

√1 + x− 1

x

00= limx→0

12√1+x

1= 1

2

(b) limx→∞sin 1

x

arctan 1x

00= limx→∞

− 1x2 cos

1x

− 1

x2

1+ 1

x2

00= limx→∞

(

cos1

x

)(

1 +1

x2

)

= 1

126

Page 131: MB1001 ANALİZ I - i kuweb.iku.edu.tr/~eyavuz/Dersler/Analiz I/AnalizI.pdfDers Notları Yrd. Doç. Dr. Emel YAVUZ DUMAN İstanbul Kültür Üniversitesi Matematik-Bilgisayar Bölümü

(c)

limx→0

sinx2 − ln(1 + x2)

1− cosx2

00= lim

x→0

2x cosx2 − 2x1+x2

2x sinx2= lim

x→0

cosx2 − 11+x2

sinx2

00= lim

x→0

−2x sinx2 + 2x(1+x2)2

2x cosx2

= limx→0

− sinx2 + 1(1+x2)2

cosx2= 1

(d) Her a ∈ R için −1 ≤ cos a ≤ 1 sağlandığından limx→0 cos1x limit değeri

sonludur. limx→0 cos1x = k olsun. Buna göre

limx→0

x3 cos 1x

1− secx=

(

limx→0

x3

1− secx

)(

limx→0

cos1

x

)

= k limx→0

x3

1− secx00= k lim

x→0

3x2

− secx tanx= −3k lim

x→0

( x

sinx

)

(x cos2 x)

= −3k · 1 · 0 = 0

(e) limx→0−sinx

x2

00= limx→0−

cosx

2x= 1

0− = −∞ �

∞\∞, ∞ · 0, ∞−∞ Belirsizlikleri

∞\∞ formundaki belirsizliklerde doğrudan l’Hôpital Kuralı uygulanır.

Örnek 4.5.3. Aşağıdaki limitleri hesaplayınız.

(a) limx→π4

tan 2x

ln(4x− π)

(b) limx→∞x(lnx)2

e2x

Çözüm. (a)

limx→π

4

tan 2x

ln(4x− π)

∞= limx→π

4

2 sec2 2x4

4x−π

= limx→π

4

4x− π

2 cos2 2x

00= lim

x→π4

4

−8 cos 2x sin 2x=

4

0= ∞

(b)

limx→∞

x(lnx)2

e2x

∞= limx→∞

(lnx)2 + 2x(lnx) 1x2e2x

= limx→∞

(lnx)2 + 2(lnx)

2e2x

∞= limx→∞

2(lnx) 1x + 2 1x

4e2x= lim

x→∞(lnx) + 1

2xe2x

∞= limx→∞

1x

2e2x + 4xe2x=

0

∞ = 0

127

Page 132: MB1001 ANALİZ I - i kuweb.iku.edu.tr/~eyavuz/Dersler/Analiz I/AnalizI.pdfDers Notları Yrd. Doç. Dr. Emel YAVUZ DUMAN İstanbul Kültür Üniversitesi Matematik-Bilgisayar Bölümü

∞ · 0 ve ∞−∞ tipindeki belirsizlikler cebirsel işlemler ile 0\0 veya ∞\∞formuna çevrilerek l’Hôpital kuralı uygulanarak limit bulunur.

Örnek 4.5.4. Aşağıdaki limitleri hesaplayınız.

(a) limx→2

(

lnx

2

)

tanxπ

4

(b) limx→π2

( x

cotx− π

2 cosx

)

Çözüm. (a)

limx→2

(

lnx

2

)

tanxπ

4

0·∞= lim

x→2

ln x2

cot xπ4

00= lim

x→2

1

x−π

4

(1 + cot2 xπ

4

) =12

−π4

= − 2

π

(b)

limx→π

2

( x

cotx− π

2 cosx

)∞−∞= lim

x→π2

2x cosx− π cotx

2 cosx cotx

= limx→π

2

2x sinx− π

2 cosx

00= lim

x→π2

2 sinx+ 2x cosx

−2 sinx=

2

−2= −1

Belirsiz Kuvvetler

1∞, 00 ve ∞0 formundaki belirsizlikler de fonksiyonun logaritması alınarakdaha önceden çözümü bilinen hallerden birisine dönüştürülebilir. Buna göre,eğer a genişletilmiş reel sayısı için limx→a ln f(x) = L ise

limx→a

f(x) = limx→a

eln f(x) = eL

elde edilir.

Örnek 4.5.5. limx→0+(1 + x)1/x = e olduğunu gösteriniz.

Çözüm. Verilen limt 1∞ formunda bir belirsizliğe sahiptir. f(x) = (1 + x)1/x

olsun ve limx→0+ ln f(x) limit değerini hesaplayalım. Buna göre

ln f(x) = ln(1 + x)1/x =1

xln(1 + x)

olduğundan

limx→0+

ln f(x) = limx→0+

1

xln(1 + x)

∞·0= lim

x→0+

ln(1 + x)

x

00= lim

x→0+

11+x

1=

1

1= 1

128

Page 133: MB1001 ANALİZ I - i kuweb.iku.edu.tr/~eyavuz/Dersler/Analiz I/AnalizI.pdfDers Notları Yrd. Doç. Dr. Emel YAVUZ DUMAN İstanbul Kültür Üniversitesi Matematik-Bilgisayar Bölümü

elde edilir. Yani,

limx→0+

ln f(x) = 1

olduğundan

limx→0+

(1 + x)1/x = limx→0+

f(x) = limx→0+

eln f(x) = e1 = e

sonucuna ulaşılır. �

Örnek 4.5.6. limx→0(cotx)sin x limitini hesaplayınız.

Çözüm. Dikkat edilirse limit ∞0 belirsizliğine sahiptir. Eğer f(x) = (cotx)sin x

denir ise

ln f(x) = ln(cotx)sin x = sinx ln(cotx)

elde edilir. Buna göre

limx→0

ln f(x) = limx→0

sinx ln(cotx)0·∞= lim

x→0

ln(cotx)1

sin x

∞= limx→0

−−1/ sin2 xcot x

− cos xsin2 x

= limx→0

sinx

cos2 x= 0

olduğundan istenen limit değeri

limx→0

(cotx)sin x = e0 = 1

şeklinde bulunur. �

Örnek 4.5.7. limx→0(x+ sinx)tan x limitini hesaplayınız.

Çözüm. Verilen limit 00 formunda bir belirsizliğe sahiptir. Eğer f(x) = (x +

sinx)tan x denir ise

ln f(x) = ln(x+ sinx)tan x = tanx ln(x+ sinx) =ln(x+ sinx)

cotx

elde edilir. Buna göre

limx→0

ln f(x) = limx→0

tanx ln(x+ sinx) = limx→0

ln(x+ sinx)

cotx

∞= limx→0

1+cos xx+sin x

− 1sin2 x

= limx→0

(− sin2 x)(1 + cosx)

x+ sinx= lim

x→0

(− sinx)(1 + cosx)x

sin x + 1=

0

1 + 1= 0

olduğundan istenen limit değeri

limx→0

(x+ sinx)tan x = e0 = 1

şeklinde bulunur. �

129

Page 134: MB1001 ANALİZ I - i kuweb.iku.edu.tr/~eyavuz/Dersler/Analiz I/AnalizI.pdfDers Notları Yrd. Doç. Dr. Emel YAVUZ DUMAN İstanbul Kültür Üniversitesi Matematik-Bilgisayar Bölümü

4.6 Fonksiyon Grafiklerinin Çizimi

Limit, süreklilik ve türev gibi kavramlar kullanarak verilen bir fonksiyonungrafiği çizilebilir. Bunun için aşağıdaki tanımlara ihtiyaç vardır.

Tanım 4.6.1 (Düşey Asimptotlar). f : A → R bir fonksiyon ve a ∈ A olsun.

i) limx→a+ f(x) = ±∞ ise x = a doğrusuna f fonksiyonunun sağdan düşey

asimptotu denir.

ii) limx→a− f(x) = ±∞ ise x = a doğrusuna f fonksiyonunun soldan düşey

asimptotu denir.

iii) x = a doğrusu f fonksiyonunun hem sağdan hem de soldan düşey asimp-

totu ise x = a doğrusuna f ’nin düşey asimptotu denir.

Örnek 4.6.2. f(x) = 15−x şeklinde tanımlı f : R\{5} → R fonksiyonunun eğer

varsa düşey asimptotlarını bulunuz.

Çözüm.

limx→5+

f(x) = limx→5+

1

5− x= −∞ ve lim

x→5−f(x) = lim

x→5−1

5− x= ∞

olduğundan x = 5 doğrusu f fonksiyonunun hem sağdan hem soldan düşey

asimptotudur. Bu durumda x = 5 doğrusu f ’in düşey asimptotudur �

Tanım 4.6.3 (Yatay ve Eğik Asimptotlar). Bazı a ∈ R için (a,∞) ⊆ A olmak

üzere f : A → R bir fonksiyon olsun.

limx→∞

(f(x)− (mx+ c)) = 0 veya limx→−∞

(f(x)− (mx+ c)) = 0

olacak şekilde bir y = mx+ c doğrusu varsa y = mx+ c doğrusuna f fonksiyo-

nunun bir eğik asimptotu denir. Burada m = 0 ise yani

limx→−∞

f(x) = c veya limx→∞

f(x) = c

ise y = c doğrusuna f ’in yatay asimptotu denir.

Önerme 4.6.4. f fonksiyonunun eğik ya da yatay asimptotu varsa tek türlü

belirlidir.

Örnek 4.6.5. f(x) = 1 + 15−x şeklinde tanımlı f : R\{5} → R fonksiyonunun

eğer varsa düşey asimptotlarını bulunuz.

130

Page 135: MB1001 ANALİZ I - i kuweb.iku.edu.tr/~eyavuz/Dersler/Analiz I/AnalizI.pdfDers Notları Yrd. Doç. Dr. Emel YAVUZ DUMAN İstanbul Kültür Üniversitesi Matematik-Bilgisayar Bölümü

Çözüm.

limx→∞

f(x) = limx→∞

(

1 +1

5− x

)

= 1 ve limx→−∞

f(x) = limx→−∞

(

1 +1

5− x

)

= 1

olduğundan y = 1 doğrusu f fonksiyonunun yatay asimptotudur �

Eğik Asimptotun Bulunması. Bir f fonksiyonunun eğer varsa eğik asimp-totu varsa aşağıdaki şekilde bulunur.

i) limx→∞ f(x) = c olacak şekilde bir c ∈ R varsa y = c doğrusu f fonksi-yonunun yatay asimptotudur.

ii) limx→∞ f(x) = ∞ veya limx→∞ f(x) = −∞ ise limx→∞f(x)x limitinin

var olup olmadığına bakılır. Bu limit var ve sıfırdan farklı ise

limx→∞

f(x)

x= m

denir. Bundan sonra limx→∞(f(x) − mx) limitinin var olup olmadığınabakılır. Bu limit varsa

limx→∞

(f(x)−mx) = c

denir. Bu durumda y = mx+ c doğrusu f fonksiyonunun eğik asimptotuolur.

Örnek 4.6.6. f(x) =x2

3(x− 1)şeklinde tanımlı f : R\{1} → R fonksiyonunun

eğik asimptotunu bulunuz.

Çözüm. limx→∞ f(x) = limx→∞x2

3(x−1) = ∞ olduğundan f fonksiyonunun eğik

asimptotu olabilir. Diğer taraftan

limx→∞

f(x)

x= lim

x→∞

x2

3(x−1)

x= lim

x→∞x2

3(x2 − x)=

1

3= m

elde edilir. Buna göre

limx→∞

(f(x)−mx) = limx→∞

(x2

3(x− 1)− x

3

)

= limx→∞

x

3x− 3=

1

3

sonucuna ulaşılır. Eğer c = 1/3 denir ise y = x+13 doğrusu f fonksiyonunun

eğik asimptotudur. Ayrıca

limx→1+

f(x) = ∞ ve limx→1−

f(x) = −∞

olduğundan x = 1 noktasında fonksiyonun düşey asimptotu vardır. �

131

Page 136: MB1001 ANALİZ I - i kuweb.iku.edu.tr/~eyavuz/Dersler/Analiz I/AnalizI.pdfDers Notları Yrd. Doç. Dr. Emel YAVUZ DUMAN İstanbul Kültür Üniversitesi Matematik-Bilgisayar Bölümü

Fonksiyon Grafiklerinin Çizimi. Bir f fonksiyonunun grafiğini çizerken ge-nellikle aşağıdaki yol izlenir.

i) Eğer verilmemişse fonksiyonun tanım kümesi bulunur.

ii) Fonksiyonun eksenleri kestiği noktalar (varsa) bulunur:

• 0, f ’in tanım kümesine aitse f(0) değeri bulunarak fonksiyonun gra-fiğinin y-eksenini kestiği nokta bulunur.

• f(x) = 0 eşitliğini sağlayan x değerleri varsa (belirlenebiliyorsa) bu-lunarak fonksiyonun x-eksenini kestiği nokta veya noktalar bulunur.

iii) Fonksiyonun yerel maksimum ve yerel minimumları incelenir: f diferan-siyellenebilir ise f ′(x0) = 0 eşitliğini sağlayan f ’in ekstremum noktaları(varsa) bulunur.

• Eğer f ′ türevinin işareti x0’ın solunda negatif sağında pozitifse x0

noktasında f ’in yerel minimumu vardır.

• Eğer f ′ türevinin işareti x0’ın solunda pozitif sağında negatifse x0

noktasında f ’in yerel maksimumu vardır.

Yerel maksimum ve yerel minimumlar ikinci türev testi ile de bulunabilir:

• Eğer f ′′(x0) > 0 ise f ’in x0 noktasında yerel minimumu vardır.

• Eğer f ′′(x0) < 0 ise f ’in x0 noktasında yerel maksimumu vardır.

• Eğer f ′′(x0) = 0 ise bu test sonuç vermez. x0 noktasında bir ekstre-mum olabilir ya da olmayabilir.

iv) f ’in konkavitesi ve büküm noktaları incelenir: f ′′ türevi varsa ve bir aralıküzerinde

• Eğer f ′′(x) > 0 ise verilen aralıkta f fonksiyonu yukarı konkavdır.

• Eğer f ′′(x) < 0 ise verilen aralıkta f fonksiyonu aşağı konkavdır.

• Eğer fonksiyonunun gösterdiği eğri üzerindeki bir noktada konkav-lık yön değiştiriyorsa bu noktaya büküm noktası denir. Eğer c birbüküm noktası ise ya f ′′(x) = 0 eşitliği sağlanır ya da f ′′(x) ikincitürevi mevcut değildir.

v) Fonksiyonun tek veya çift olup olmadığına bakılır: f ’in tanım bölgesindekitüm x değerleri için

• f(−x) = −f(x) sağlanıyor ise f fonksiyonu tek fonksiyon,

• f(−x) = f(x) sağlanıyor ise f fonksiyonu çift fonksiyondur.

Buna göre:

• Fonksiyon çift ise x ≥ 0 için çizim yapılır, oluşan görüntünün y-eksenine göre, simetriği alınarak grafik tamamlanır.

132

Page 137: MB1001 ANALİZ I - i kuweb.iku.edu.tr/~eyavuz/Dersler/Analiz I/AnalizI.pdfDers Notları Yrd. Doç. Dr. Emel YAVUZ DUMAN İstanbul Kültür Üniversitesi Matematik-Bilgisayar Bölümü

• Fonksiyon tek ise, x ≥ 0 için çizim yapılır, oluşan görüntünün orijinegöre simetriği alınarak grafik tamamlanır.

vi) Eğer fonksiyon periyodik ise, fonksiyonun periyodu bulunur. Esas peri-yotta çizim yapılır; diğer aralıklarda çizim tekrarlanır.

vii) Fonksiyonun monotonluğu incelenir. Bir aralık üzerinde diferansiyellene-bilir f fonksiyonu için

• Eğer f ′(x) > 0 ise f fonksiyonu bu aralık üzerinde artandır.

• Eğer f ′(x) < 0 ise f fonksiyonu bu aralık üzerinde azalandır

viii) Fonksiyonun asimptotları bulunur.

ix) Fonksiyonun değişim tablosu yapılır ve bu değerlere göre grafik çizilir.

Grafiklerin Basit Dönüşümleri. Verilen bir f fonksiyonu cinsinden yazı-labilen bazı fonksiyonların grafikleri f ’in grafiği yardımıyla çizilebilir. Böylecegrafik çizmedeki işlem yükünü azaltmış oluruz. Şimdi bazı özel durumları in-celeyelim.

i) g(x) = f(x+a) şeklinde tanımlı g fonksiyonunun grafiği f fonksiyonunungrafiğinin, x-ekseni boyunca, |a|’nın değeri kadar, a nın işaretinin tersiyönünde kaydırılarak bulunur.

ii) g(x) = f(x) + b fonksiyonunun grafiği, f fonksiyonunun grafiğinin, y-ekseni boyunca, |b|’nin değeri kadar, b’nin işaretinin yönünde kaydırılarakbulunur.

iii) a) k > 1 olmak üzere g(x) = f(kx) fonksiyonunun grafiği f fonksiyonu-nun grafiğinin y-eksenine doğru yatay olarak k defa sıkıştırılmasıylaelde edilir.

b) 0 < k < 1 olmak üzere g(x) = f(kx) fonksiyonunun grafiği f fonksi-yonunun grafiğinin y-ekseninden yatay olarak 1/k defa açılarak eldeedilir.

iv) a) k > 1 olmak üzere g(x) = kf(x) fonksiyonunun grafiği f fonksi-yonunun grafiğinin x-ekseninden (dikey yönde) k kere açılarak eldeedilir.

b) 0 < k < 1 olmak üzere g(x) = kf(x) fonksiyonunun grafiği f fonk-siyonunun grafiğinin x-eksenine doğru (yani dikey yönde) 1/k keresıkıştırılarak bulunur.

v) a) g(x) = −f(x) fonksiyonunun grafiği, f fonksiyonunun grafiğinin,x-eksenine göre simetriğidir.

b) g(x) = f(−x) fonksiyonunun grafiği ise, f fonksiyonunun grafiğininy-eksenine göre simetriğidir.

133

Page 138: MB1001 ANALİZ I - i kuweb.iku.edu.tr/~eyavuz/Dersler/Analiz I/AnalizI.pdfDers Notları Yrd. Doç. Dr. Emel YAVUZ DUMAN İstanbul Kültür Üniversitesi Matematik-Bilgisayar Bölümü

vi) g(x) = f(|x|) fonksiyonunun grafiği x ≥ 0 için f ’in grafiği aynen koruna-rak ve x ≤ 0 için f fonksiyonunun x ≥ 0 için çizilen grafiğinin y-ekseninegöre simetriği alınarak bulunur.

vii) g(x) = |f(x)| fonksiyonunun grafiği, f fonksiyonunun grafiğinden kolaycabulunabilir. f fonksiyonunun grafiğinin x-ekseninin üzerinde kalan par-çaları aynen muhafaza edilir ve sonra da f fonksiyonunun grafiğinin x-ekseninin altında kalan parçalarının x-eksenine göre simetriği alınarak gnin grafiği elde edilir.

viii) y = λf(kx + a) + b şeklindeki daha karışık fonksiyonların grafiği (i)-(v)dönüşümleri ard arda uygulanarak çizilebilir.

4.7 Ters Fonksiyon Teoremleri

Bu bölümde ters fonksiyonların sürekliliği ve diferansiyellenebilmesi olgularıüzerinde durulacaktır.

Biliyoruz ki, f : X → Y fonksiyonunun bir f−1 tes fonksiyonuna sahip ola-bilmesi için gerek ve yeter şart f ’in 1-1 ve üzerine olmasınır (bkz Teorem 1.4.1).Bu durumda her x ∈ X için f−1(f(x)) = x ve her y ∈ Y için f(f−1(y)) = yeşitlikleri gerçeklenir. (x, f(x)) = (f−1(y), y) olduğundan y = f−1(x) ters fonk-siyonunun grafiği y = f(x) fonksiyonunun grafiğinin y = x doğrusuna göresimetriğidir. Dolayısıyla, f−1 eğrisi f eğrisi kadar düzgündür. Buna göre aşa-ğıdaki iki sonucu verebiliriz.

.

.

f ’in grafiği

f−1’in grafiği

(x, y)

(y, x)

y = x

Teorem 4.7.1. I dejenere olmayan bir aralık ve f : I → R fonksiyonu 1-

1 olsun. Eğer f fonksiyonu I üzerinde sürekli ise J := f(I) bir aralıktır, f

fonksiyonu I üzerinde kesinlikle artandır ve f−1 ters fonksiyonu J üzerinde

sürekli ve kesinlikle monotondur.

134

Page 139: MB1001 ANALİZ I - i kuweb.iku.edu.tr/~eyavuz/Dersler/Analiz I/AnalizI.pdfDers Notları Yrd. Doç. Dr. Emel YAVUZ DUMAN İstanbul Kültür Üniversitesi Matematik-Bilgisayar Bölümü

f fonksiyonu (a, b) aralığında diferansiyellenebilir olsun. Buna göre y =f(x) fonksiyonunun grafiği üzerindeki her x ∈ (a, b) noktasının düşey olmayanbir teğeti vardır. Aynı zamanda, y = f(x) fonksiyonunun yansıması olan y =f−1(x) ters fonksiyonunun grafiği üzerindeki f(a) ve f(b) aralığında yer alanher x noktasının da düşey olmayan bir teğeti mevcuttur. Dolayısıyla y = f−1

fonksiyonu bu x noktalarında diferansiyellenebilirdir. f(f−1(x)) = x olduğunagöre bu ifadenin her iki tarafından türev alırsak d

dxf(f−1(x)) = 1 elde edilir.

Dolayısıyla burada Zincir Kuralı kullanılır ise

f ′(f−1(x))d

dxf−1(x) = 1 yani

d

dxf−1(x) =

1

f ′(f−1(x))

sonucuna ulaşılır.

Teorem 4.7.2 (Ters Fonksiyon Teoremi). I bir açık aralık ve f : I → R

fonksiyonu 1-1, sürekli olsun. Eğer a ∈ I için b = f(a) sağlanıyor ve f ′(a) türev

değeri mevcut ve sıfırdan farklı ise buna göre f−1 ters fonksiyonu b noktasında

diferansiyellenebilirdir ve (f−1)′(b) = 1/f ′(a) eşitliği geçerlidir.

Örnek 4.7.3. f(x) = 2x+ cosx ise (f−1)′(1) değerini hesaplayınız.

Çözüm. Her x ∈ R için

f ′(x) = 2− sinx > 0

olduğundan f fonksiyonu R üzerinde 1-1 ve artandır. (f−1)′ için bir ifade bul-

madan (f−1)′(1) değerini hesaplayabiliriz. f(0) = 1 olduğundan f−1(1) = 0

eşitliği gerçeklenir. Buna göre Teorem 4.7.2 kullanılarak

(f−1)′(1) =1

f ′(f−1(1))=

1

f ′(0)=

1

2− sin 0=

1

2

elde edilir. �

Örnek 4.7.4. f(x) = x3 + x ise (f−1)′(10) değerini hesaplayınız.

Çözüm. Her x ∈ R için

f ′(x) = 3x2 + 1 > 0

olduğundan f fonksiyonu R üzerinde 1-1 ve artandır. (f−1)′ için bir ifade bul-

madan yukarıdaki şekilde hareket ederek (f−1)′(1) değerini hesaplayabiliriz.

f(2) = 10 olduğundan f−1(10) = 2 eşitliği gerçeklenir. Buna göre Teorem 4.7.2

kullanılarak

(f−1)′(10) =1

f ′(f−1(10))=

1

f ′(2)=

1

322 + 1=

1

13

elde edilir. �

135