Mathematical Programming Techniques in … Finding Efficient Solutions – Scalarization...

244
Introduction Finding Efficient Solutions – Scalarization Multiobjective Linear Programming Multiobjective Combinatorial Optimization Applications Commercials Mathematical Programming Techniques in Multiobjective Optimization Matthias Ehrgott Department of Engineering Science The University of Auckland, New Zealand Laboratoire d’Informatique de Nantes Atlantique CNRS, Nantes, France First IEEE Symposium on Computational Intelligence in Multi-Criteria Decision-Making, Honolulu, April 1 – 5 2007 Matthias Ehrgott Multiobjective Optimization

Transcript of Mathematical Programming Techniques in … Finding Efficient Solutions – Scalarization...

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Mathematical Programming Techniques inMultiobjective Optimization

Matthias Ehrgott

Department of Engineering ScienceThe University of Auckland, New Zealand

Laboratoire d’Informatique de Nantes AtlantiqueCNRS, Nantes, France

First IEEE Symposium on Computational Intelligence inMulti-Criteria Decision-Making, Honolulu, April 1 – 5 2007

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

1 IntroductionProblem Formulation and Definitions of Optimality

2 Finding Efficient Solutions – ScalarizationThe Idea of ScalarizationScalarization Techniques and Their Properties

3 Multiobjective Linear ProgrammingFormulation and the Fundamental TheoremSolving MOLPs in Decision and Objective Space

4 Multiobjective Combinatorial OptimizationDefinitions Revisited and CharacteristicsSolution Methods

5 Applications

6 Commercials

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Problem Formulation and Definitions of Optimality

Overview

1 IntroductionProblem Formulation and Definitions of Optimality

2 Finding Efficient Solutions – ScalarizationThe Idea of ScalarizationScalarization Techniques and Their Properties

3 Multiobjective Linear ProgrammingFormulation and the Fundamental TheoremSolving MOLPs in Decision and Objective Space

4 Multiobjective Combinatorial OptimizationDefinitions Revisited and CharacteristicsSolution Methods

5 Applications

6 Commercials

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Problem Formulation and Definitions of Optimality

Mathematical Formulation

min f (x)

subject to g(x) 5 0

x ∈ Rn

x ∈ Rn −→ n variables, i = 1, . . . , n

g : Rn → Rm −→ m constraints, j = 1, . . . ,m

f : Rn → Rp −→ p objective functions, k = 1, . . . , p

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Problem Formulation and Definitions of Optimality

Mathematical Formulation

min f (x)

subject to g(x) 5 0

x ∈ Rn

x ∈ Rn −→ n variables, i = 1, . . . , n

g : Rn → Rm −→ m constraints, j = 1, . . . ,m

f : Rn → Rp −→ p objective functions, k = 1, . . . , p

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Problem Formulation and Definitions of Optimality

Mathematical Formulation

min f (x)

subject to g(x) 5 0

x ∈ Rn

x ∈ Rn −→ n variables, i = 1, . . . , n

g : Rn → Rm −→ m constraints, j = 1, . . . ,m

f : Rn → Rp −→ p objective functions, k = 1, . . . , p

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Problem Formulation and Definitions of Optimality

Feasible Sets

X = {x ∈ Rn : g(x) 5 0}feasible set in decision space

Y = f (X ) = {f (x) : x ∈ X}feasible set in objective space

0 1 2 3 4 5 6 7 8 9 100

1

2

3

4

5

6

7

8

9

10

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Problem Formulation and Definitions of Optimality

Feasible Sets

X = {x ∈ Rn : g(x) 5 0}feasible set in decision space

Y = f (X ) = {f (x) : x ∈ X}feasible set in objective space

0 1 2 3 4 5 6 7 8 9 100

1

2

3

4

5

6

7

8

9

10

Y = f(X)

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Problem Formulation and Definitions of Optimality

Notation

y1 5 y2 ⇔ y1k 5 y2

k for k = 1, . . . , p

y1 < y2 ⇔ y1k < y2

k for k = 1, . . . , p

y1 ≤ y2 ⇔ y1 5 y2 and y1 6= y2

Rp= = {y ∈ Rp : y = 0}

Rp> = {y ∈ Rp : y > 0}

Rp≥ = {y ∈ Rp : y ≥ 0}

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Problem Formulation and Definitions of Optimality

Notation

y1 5 y2 ⇔ y1k 5 y2

k for k = 1, . . . , p

y1 < y2 ⇔ y1k < y2

k for k = 1, . . . , p

y1 ≤ y2 ⇔ y1 5 y2 and y1 6= y2

Rp= = {y ∈ Rp : y = 0}

Rp> = {y ∈ Rp : y > 0}

Rp≥ = {y ∈ Rp : y ≥ 0}

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Problem Formulation and Definitions of Optimality

Notation

y1 5 y2 ⇔ y1k 5 y2

k for k = 1, . . . , p

y1 < y2 ⇔ y1k < y2

k for k = 1, . . . , p

y1 ≤ y2 ⇔ y1 5 y2 and y1 6= y2

Rp= = {y ∈ Rp : y = 0}

Rp> = {y ∈ Rp : y > 0}

Rp≥ = {y ∈ Rp : y ≥ 0}

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Problem Formulation and Definitions of Optimality

Notation

y1 5 y2 ⇔ y1k 5 y2

k for k = 1, . . . , p

y1 < y2 ⇔ y1k < y2

k for k = 1, . . . , p

y1 ≤ y2 ⇔ y1 5 y2 and y1 6= y2

Rp= = {y ∈ Rp : y = 0}

Rp> = {y ∈ Rp : y > 0}

Rp≥ = {y ∈ Rp : y ≥ 0}

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Problem Formulation and Definitions of Optimality

Notation

y1 5 y2 ⇔ y1k 5 y2

k for k = 1, . . . , p

y1 < y2 ⇔ y1k < y2

k for k = 1, . . . , p

y1 ≤ y2 ⇔ y1 5 y2 and y1 6= y2

Rp= = {y ∈ Rp : y = 0}

Rp> = {y ∈ Rp : y > 0}

Rp≥ = {y ∈ Rp : y ≥ 0}

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Problem Formulation and Definitions of Optimality

Notation

y1 5 y2 ⇔ y1k 5 y2

k for k = 1, . . . , p

y1 < y2 ⇔ y1k < y2

k for k = 1, . . . , p

y1 ≤ y2 ⇔ y1 5 y2 and y1 6= y2

Rp= = {y ∈ Rp : y = 0}

Rp> = {y ∈ Rp : y > 0}

Rp≥ = {y ∈ Rp : y ≥ 0}

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Problem Formulation and Definitions of Optimality

Lexicographic Optimality

Individual minimafk(x) 5 fk(x) for all x ∈ X

Lexicographic optimality (1)f (x) ≤lex f (x) for all x ∈ X

Lexicographic optimality (2)f π(x) ≤lex f π(x) for all x ∈ Xand some permutation f π of(f1, . . . , fp)

0 1 2 3 4 5 6 7 8 9 100

1

2

3

4

5

6

7

8

9

10

Y = f(X)

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Problem Formulation and Definitions of Optimality

Lexicographic Optimality

Individual minimafk(x) 5 fk(x) for all x ∈ X

Lexicographic optimality (1)f (x) ≤lex f (x) for all x ∈ X

Lexicographic optimality (2)f π(x) ≤lex f π(x) for all x ∈ Xand some permutation f π of(f1, . . . , fp)

0 1 2 3 4 5 6 7 8 9 100

1

2

3

4

5

6

7

8

9

10

Y = f(X)

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Problem Formulation and Definitions of Optimality

Lexicographic Optimality

Individual minimafk(x) 5 fk(x) for all x ∈ X

Lexicographic optimality (1)f (x) ≤lex f (x) for all x ∈ X

Lexicographic optimality (2)f π(x) ≤lex f π(x) for all x ∈ Xand some permutation f π of(f1, . . . , fp)

0 1 2 3 4 5 6 7 8 9 100

1

2

3

4

5

6

7

8

9

10

Y = f(X)

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Problem Formulation and Definitions of Optimality

(Weakly) Efficient Solutions

Weakly efficient solutions XwE

There is no x with f (x) < f (x)f (x) is weakly nondominatedYwN := f (XwN)

Efficient solutions XE

There is no x with f (x) ≤ f (x)f (x) is nondominatedYN := f (XE )

0 1 2 3 4 5 6 7 8 9 100

1

2

3

4

5

6

7

8

9

10

Y = f(X)

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Problem Formulation and Definitions of Optimality

(Weakly) Efficient Solutions

Weakly efficient solutions XwE

There is no x with f (x) < f (x)f (x) is weakly nondominatedYwN := f (XwN)

Efficient solutions XE

There is no x with f (x) ≤ f (x)f (x) is nondominatedYN := f (XE )

0 1 2 3 4 5 6 7 8 9 100

1

2

3

4

5

6

7

8

9

10

Y = f(X)

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Problem Formulation and Definitions of Optimality

Properly Efficient Solutions

Properly efficient solutions XpE

x is efficientThere is M > 0 such that foreach k and x withfk(x) < fk(x) there is l withfl(x) < fl(x) and

fk(x)− fk(x)

fl(x)− fl(x)5 M

f (x) is properly nondominatedYpN := f (XpE ) 0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Problem Formulation and Definitions of Optimality

Properly Efficient Solutions

Properly efficient solutions XpE

x is efficientThere is M > 0 such that foreach k and x withfk(x) < fk(x) there is l withfl(x) < fl(x) and

fk(x)− fk(x)

fl(x)− fl(x)5 M

f (x) is properly nondominatedYpN := f (XpE ) 0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10

Y = f(X)

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Problem Formulation and Definitions of Optimality

Properly Efficient Solutions

Properly efficient solutions XpE

x is efficientThere is M > 0 such that foreach k and x withfk(x) < fk(x) there is l withfl(x) < fl(x) and

fk(x)− fk(x)

fl(x)− fl(x)5 M

f (x) is properly nondominatedYpN := f (XpE ) 0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10

Y = f(X)

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Problem Formulation and Definitions of Optimality

Existence

YN 6= ∅ if for some y0 ∈ Y the

section(y0 − R=

)∩ Y 6= ∅ is

compact

XE 6= ∅ if X is compact and f is(R=-semi-)continuous

0 1 2 3 4 5 6 7 8 9 100

1

2

3

4

5

6

7

8

9

10

Y = f(X)

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Problem Formulation and Definitions of Optimality

Existence

YN 6= ∅ if for some y0 ∈ Y the

section(y0 − R=

)∩ Y 6= ∅ is

compact

XE 6= ∅ if X is compact and f is(R=-semi-)continuous

0 1 2 3 4 5 6 7 8 9 100

1

2

3

4

5

6

7

8

9

10

Y = f(X)

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Problem Formulation and Definitions of Optimality

Relationships of Solution Sets

XpE ⊆ XE ⊆ XwE

YpN ⊆ YN ⊆ YwN

It is possible thatYN = Y but YpN = ∅Y =

{(y1, y2) : y2 = 1

y1, y1 < 0

}0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10

Y = f(X)

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Problem Formulation and Definitions of Optimality

Relationships of Solution Sets

XpE ⊆ XE ⊆ XwE

YpN ⊆ YN ⊆ YwN

It is possible thatYN = Y but YpN = ∅Y =

{(y1, y2) : y2 = 1

y1, y1 < 0

}0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10

Y = f(X)

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Problem Formulation and Definitions of Optimality

Relationships of Solution Sets

XpE ⊆ XE ⊆ XwE

YpN ⊆ YN ⊆ YwN

It is possible thatYN = Y but YpN = ∅Y =

{(y1, y2) : y2 = 1

y1, y1 < 0

}0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10

Y = f(X)

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Problem Formulation and Definitions of Optimality

Relationships of Solution Sets

XpE ⊆ XE ⊆ XwE

YpN ⊆ YN ⊆ YwN

It is possible thatYN = Y but YpN = ∅Y =

{(y1, y2) : y2 = 1

y1, y1 < 0

}0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10

Y = f(X)

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Problem Formulation and Definitions of Optimality

Relationships of Solution Sets

XpE ⊆ XE ⊆ XwE

YpN ⊆ YN ⊆ YwN

It is possible thatYN = Y but YpN = ∅Y =

{(y1, y2) : y2 = 1

y1, y1 < 0

}0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10

Y = f(X)

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Problem Formulation and Definitions of Optimality

Ideal and Nadir Points

Ideal point y I

y Ik = min{yk : y ∈ Y }

Nadir point yN

yNk = min{yk : y ∈ YN}

Anti-ideal point yAI

y Ik = max{yk : y ∈ Y }

Utopia point yU

yUk = y I

k − εk

0 1 2 3 4 5 6 7 8 9 100

1

2

3

4

5

6

7

8

9

10

Y = f(X)

yI

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Problem Formulation and Definitions of Optimality

Ideal and Nadir Points

Ideal point y I

y Ik = min{yk : y ∈ Y }

Nadir point yN

yNk = min{yk : y ∈ YN}

Anti-ideal point yAI

y Ik = max{yk : y ∈ Y }

Utopia point yU

yUk = y I

k − εk

0 1 2 3 4 5 6 7 8 9 100

1

2

3

4

5

6

7

8

9

10

Y = f(X)

yI

yN

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Problem Formulation and Definitions of Optimality

Ideal and Nadir Points

Ideal point y I

y Ik = min{yk : y ∈ Y }

Nadir point yN

yNk = min{yk : y ∈ YN}

Anti-ideal point yAI

y Ik = max{yk : y ∈ Y }

Utopia point yU

yUk = y I

k − εk

0 1 2 3 4 5 6 7 8 9 100

1

2

3

4

5

6

7

8

9

10

Y = f(X)

yI

yN

yAI

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Problem Formulation and Definitions of Optimality

Ideal and Nadir Points

Ideal point y I

y Ik = min{yk : y ∈ Y }

Nadir point yN

yNk = min{yk : y ∈ YN}

Anti-ideal point yAI

y Ik = max{yk : y ∈ Y }

Utopia point yU

yUk = y I

k − εk

0 1 2 3 4 5 6 7 8 9 100

1

2

3

4

5

6

7

8

9

10

Y = f(X)

yI

yN

yAI

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Problem Formulation and Definitions of Optimality

General Assumptions

XE is non-empty

y I 6= yN

0 1 2 3 4 5 6 7 8 9 100

1

2

3

4

5

6

7

8

9

10

Y = f(X)

yI

yN

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

The Idea of ScalarizationScalarization Techniques and Their Properties

Overview

1 IntroductionProblem Formulation and Definitions of Optimality

2 Finding Efficient Solutions – ScalarizationThe Idea of ScalarizationScalarization Techniques and Their Properties

3 Multiobjective Linear ProgrammingFormulation and the Fundamental TheoremSolving MOLPs in Decision and Objective Space

4 Multiobjective Combinatorial OptimizationDefinitions Revisited and CharacteristicsSolution Methods

5 Applications

6 Commercials

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

The Idea of ScalarizationScalarization Techniques and Their Properties

Principle of Scalarization

Convert multiobjective problem to (parameterized) single objectiveproblem and solve repeatedly with different parameter values

Desirable properties of scalarizations

Correctness: Optimal solutions are (weakly, properly) efficient

Completeness: All (weakly, properly) efficient solutions can befound

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

The Idea of ScalarizationScalarization Techniques and Their Properties

Principle of Scalarization

Convert multiobjective problem to (parameterized) single objectiveproblem and solve repeatedly with different parameter values

Desirable properties of scalarizations

Correctness: Optimal solutions are (weakly, properly) efficient

Completeness: All (weakly, properly) efficient solutions can befound

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

The Idea of ScalarizationScalarization Techniques and Their Properties

Principle of Scalarization

Convert multiobjective problem to (parameterized) single objectiveproblem and solve repeatedly with different parameter values

Desirable properties of scalarizations

Correctness: Optimal solutions are (weakly, properly) efficient

Completeness: All (weakly, properly) efficient solutions can befound

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

The Idea of ScalarizationScalarization Techniques and Their Properties

Principle of Scalarization

Convert multiobjective problem to (parameterized) single objectiveproblem and solve repeatedly with different parameter values

Desirable properties of scalarizations

Correctness: Optimal solutions are (weakly, properly) efficient

Completeness: All (weakly, properly) efficient solutions can befound

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

The Idea of ScalarizationScalarization Techniques and Their Properties

Three Ideas for Scalarization

Aggregate objectives

Convert objectives to constraints

Minimize distance to ideal point

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

The Idea of ScalarizationScalarization Techniques and Their Properties

Three Ideas for Scalarization

Aggregate objectives

Convert objectives to constraints

Minimize distance to ideal point

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

The Idea of ScalarizationScalarization Techniques and Their Properties

Three Ideas for Scalarization

Aggregate objectives

Convert objectives to constraints

Minimize distance to ideal point

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

The Idea of ScalarizationScalarization Techniques and Their Properties

Overview

1 IntroductionProblem Formulation and Definitions of Optimality

2 Finding Efficient Solutions – ScalarizationThe Idea of ScalarizationScalarization Techniques and Their Properties

3 Multiobjective Linear ProgrammingFormulation and the Fundamental TheoremSolving MOLPs in Decision and Objective Space

4 Multiobjective Combinatorial OptimizationDefinitions Revisited and CharacteristicsSolution Methods

5 Applications

6 Commercials

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

The Idea of ScalarizationScalarization Techniques and Their Properties

The Weighted Sum Method

Let λ ≥ 0

min

{p∑

k=1

λk fk(x) : x ∈ X

}(1)

0 1 2 3 4 5 6 7 8 9 100

1

2

3

4

5

6

7

8

9

10

Y = f(X)

λ = (0, 1)

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

The Idea of ScalarizationScalarization Techniques and Their Properties

The Weighted Sum Method

Let λ ≥ 0

min

{p∑

k=1

λk fk(x) : x ∈ X

}(1)

0 1 2 3 4 5 6 7 8 9 100

1

2

3

4

5

6

7

8

9

10

Y = f(X)

λ = (0, 1)

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

The Idea of ScalarizationScalarization Techniques and Their Properties

The Weighted Sum Method

Let λ ≥ 0

min

{p∑

k=1

λk fk(x) : x ∈ X

}(1)

0 1 2 3 4 5 6 7 8 9 100

1

2

3

4

5

6

7

8

9

10

Y = f(X)

λ = (1, 1)

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

The Idea of ScalarizationScalarization Techniques and Their Properties

The Weighted Sum Method

Let λ ≥ 0

min

{p∑

k=1

λk fk(x) : x ∈ X

}(1)

0 1 2 3 4 5 6 7 8 9 100

1

2

3

4

5

6

7

8

9

10

Y = f(X)

λ = (1, 0)

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

The Idea of ScalarizationScalarization Techniques and Their Properties

The Weighted Sum Method: Results

Theorem

Let x be an optimal solution of (1).

1 If λ ≥ 0 then x ∈ XwE .

2 If λ ≥ 0 and f (x) is unique then x ∈ XE .

3 If λ > 0 then x ∈ XpE .

Proof.

1 By contradiction

2 By contradiction

3 Construct M so that larger tradeoff would contradictoptimality of x

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

The Idea of ScalarizationScalarization Techniques and Their Properties

The Weighted Sum Method: Results

Theorem

Let x be an optimal solution of (1).

1 If λ ≥ 0 then x ∈ XwE .

2 If λ ≥ 0 and f (x) is unique then x ∈ XE .

3 If λ > 0 then x ∈ XpE .

Proof.

1 By contradiction

2 By contradiction

3 Construct M so that larger tradeoff would contradictoptimality of x

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

The Idea of ScalarizationScalarization Techniques and Their Properties

The Weighted Sum Method: Results

Theorem

Let x be an optimal solution of (1).

1 If λ ≥ 0 then x ∈ XwE .

2 If λ ≥ 0 and f (x) is unique then x ∈ XE .

3 If λ > 0 then x ∈ XpE .

Proof.

1 By contradiction

2 By contradiction

3 Construct M so that larger tradeoff would contradictoptimality of x

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

The Idea of ScalarizationScalarization Techniques and Their Properties

The Weighted Sum Method: Results

Theorem (Geoffrion 1968)

Let X and f be such that Y = f (X ) is convex.

1 If x ∈ XwE then there is λ ≥ 0 such that x is an optimalsolution to (1).

2 If x ∈ XpE then there is λ > 0 such that x is an optimalsolution to (1).

Proof.

1 Apply separation theorem to (Y + Rp= − y) and −Rp

>

2 Apply separation theorem to (cl cone Y + Rp= − y) and −Rp

>

to show that weights are positive

3 If X and f are convex use properties of convex functionsMatthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

The Idea of ScalarizationScalarization Techniques and Their Properties

The Weighted Sum Method: Results

Theorem (Geoffrion 1968)

Let X and f be such that Y = f (X ) is convex.

1 If x ∈ XwE then there is λ ≥ 0 such that x is an optimalsolution to (1).

2 If x ∈ XpE then there is λ > 0 such that x is an optimalsolution to (1).

Proof.

1 Apply separation theorem to (Y + Rp= − y) and −Rp

>

2 Apply separation theorem to (cl cone Y + Rp= − y) and −Rp

>

to show that weights are positive

3 If X and f are convex use properties of convex functionsMatthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

The Idea of ScalarizationScalarization Techniques and Their Properties

Nondominated and Properly Nondominated Points

....................................................................................................................................................................................................................................................................................................................

.......................

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Y

YN ..........................................................................................................................................................................................................................................................................................................................................

.....................................................................................................................................................................................................................................................................................................................................................

••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

....................................................................................................................................................................................................................................................................................................................

.......................

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Y

YpN............

..............................................................................................................................................................................................................................................................................................................................

.....................................................................................................................................................................................................................................................................................................................................................

•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

XsE := {x ∈ X : x is optimal solution to (1) for some λ > 0}

Theorem

Assume that Y + Rp= is closed and convex. Then

YpN = f (XsE ) ⊆ YN ⊆ closure f (XsE ) = closure YpN

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

The Idea of ScalarizationScalarization Techniques and Their Properties

Nondominated and Properly Nondominated Points

....................................................................................................................................................................................................................................................................................................................

.......................

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Y

YN ..........................................................................................................................................................................................................................................................................................................................................

.....................................................................................................................................................................................................................................................................................................................................................

••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

....................................................................................................................................................................................................................................................................................................................

.......................

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Y

YpN............

..............................................................................................................................................................................................................................................................................................................................

.....................................................................................................................................................................................................................................................................................................................................................

•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

XsE := {x ∈ X : x is optimal solution to (1) for some λ > 0}

Theorem

Assume that Y + Rp= is closed and convex. Then

YpN = f (XsE ) ⊆ YN ⊆ closure f (XsE ) = closure YpN

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

The Idea of ScalarizationScalarization Techniques and Their Properties

Nondominated and Properly Nondominated Points

....................................................................................................................................................................................................................................................................................................................

.......................

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Y

YN ..........................................................................................................................................................................................................................................................................................................................................

.....................................................................................................................................................................................................................................................................................................................................................

••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

....................................................................................................................................................................................................................................................................................................................

.......................

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Y

YpN............

..............................................................................................................................................................................................................................................................................................................................

.....................................................................................................................................................................................................................................................................................................................................................

•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

XsE := {x ∈ X : x is optimal solution to (1) for some λ > 0}

Theorem

Assume that Y + Rp= is closed and convex. Then

YpN = f (XsE ) ⊆ YN ⊆ closure f (XsE ) = closure YpN

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

The Idea of ScalarizationScalarization Techniques and Their Properties

Supported Efficient Solutions

Supported efficient solutions are efficient solutions with f (x) onthe convex hull of Y

0 1 2 3 4 5 6 7 8 9 100

1

2

3

4

5

6

7

8

9

10

conv(f(X)) + R2

0 1 2 3 4 5 6 7 8 9 100

1

2

3

4

5

6

7

8

9

10

conv(f(X)) + R2

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

The Idea of ScalarizationScalarization Techniques and Their Properties

The ε-constraint Method

Let ε ∈ Rp

min fl(x)

s.t. fk(x) 5 εk k 6= l (2)

gj(x) 5 0 j = 1, . . . ,m

0 1 2 3 4 5 6 7 8 9 100

1

2

3

4

5

6

7

8

9

10

Y = f(X)

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

The Idea of ScalarizationScalarization Techniques and Their Properties

The ε-constraint Method

Let ε ∈ Rp

min fl(x)

s.t. fk(x) 5 εk k 6= l (2)

gj(x) 5 0 j = 1, . . . ,m

0 1 2 3 4 5 6 7 8 9 100

1

2

3

4

5

6

7

8

9

10

f1(x) ≦ 3.7

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

The Idea of ScalarizationScalarization Techniques and Their Properties

The ε-constraint Method

Theorem (Chankong and Haimes 1983)

1 If x is an optimal solution to (2) then x ∈ XwE .

2 If x is an optimal solution to (2) and f (x) is unique thenx ∈ XE .

3 x ∈ XE if and only if there is ε ∈ Rp such that x is an optimalsolution to (2) for all l = 1, . . . , p.

Proof.

By contradiction and using εl = fl(x)

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

The Idea of ScalarizationScalarization Techniques and Their Properties

The ε-constraint Method

Theorem (Chankong and Haimes 1983)

1 If x is an optimal solution to (2) then x ∈ XwE .

2 If x is an optimal solution to (2) and f (x) is unique thenx ∈ XE .

3 x ∈ XE if and only if there is ε ∈ Rp such that x is an optimalsolution to (2) for all l = 1, . . . , p.

Proof.

By contradiction and using εl = fl(x)

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

The Idea of ScalarizationScalarization Techniques and Their Properties

The ε-constraint Method

Theorem (Chankong and Haimes 1983)

1 If x is an optimal solution to (2) then x ∈ XwE .

2 If x is an optimal solution to (2) and f (x) is unique thenx ∈ XE .

3 x ∈ XE if and only if there is ε ∈ Rp such that x is an optimalsolution to (2) for all l = 1, . . . , p.

Proof.

By contradiction and using εl = fl(x)

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

The Idea of ScalarizationScalarization Techniques and Their Properties

The ε-constraint Method

Theorem (Chankong and Haimes 1983)

1 If x is an optimal solution to (2) then x ∈ XwE .

2 If x is an optimal solution to (2) and f (x) is unique thenx ∈ XE .

3 x ∈ XE if and only if there is ε ∈ Rp such that x is an optimalsolution to (2) for all l = 1, . . . , p.

Proof.

By contradiction and using εl = fl(x)

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

The Idea of ScalarizationScalarization Techniques and Their Properties

The Hybrid Method

Let λ ∈ Rp≥ and ε ∈ Rp

min

p∑k=1

λk fk(x) (3)

s.t. fk(x) 5 εk k = 1, . . . , p

gj(x) 5 0 j = 1, . . . ,m

0 1 2 3 4 5 6 7 8 9 100

1

2

3

4

5

6

7

8

9

10

Y = f(X)

Theorem (Guddat et al. 1985)

x is efficient if and only if there are λ ≥ 0 and ε such that x is anoptimal solution to (3).

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

The Idea of ScalarizationScalarization Techniques and Their Properties

The Hybrid Method

Let λ ∈ Rp≥ and ε ∈ Rp

min

p∑k=1

λk fk(x) (3)

s.t. fk(x) 5 εk k = 1, . . . , p

gj(x) 5 0 j = 1, . . . ,m

0 1 2 3 4 5 6 7 8 9 100

1

2

3

4

5

6

7

8

9

10

Theorem (Guddat et al. 1985)

x is efficient if and only if there are λ ≥ 0 and ε such that x is anoptimal solution to (3).

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

The Idea of ScalarizationScalarization Techniques and Their Properties

The Hybrid Method

Let λ ∈ Rp≥ and ε ∈ Rp

min

p∑k=1

λk fk(x) (3)

s.t. fk(x) 5 εk k = 1, . . . , p

gj(x) 5 0 j = 1, . . . ,m

0 1 2 3 4 5 6 7 8 9 100

1

2

3

4

5

6

7

8

9

10

Theorem (Guddat et al. 1985)

x is efficient if and only if there are λ ≥ 0 and ε such that x is anoptimal solution to (3).

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

The Idea of ScalarizationScalarization Techniques and Their Properties

Compromise Solutions

Let λ ∈ Rp≥ and 1 ≤ q < ∞

minx∈X

(p∑

k=1

λk(fk(x)− y Ik)q

) 1q

(4)

Let λ ∈ Rp≥

minx∈X

maxk=1,...,p

λk(fk(x)− y Ik) (5)

0 1 2 3 4 5 6 7 8 9 100

1

2

3

4

5

6

7

8

9

10

Y = f(X)

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

The Idea of ScalarizationScalarization Techniques and Their Properties

Compromise Solutions

Let λ ∈ Rp≥ and 1 ≤ q < ∞

minx∈X

(p∑

k=1

λk(fk(x)− y Ik)q

) 1q

(4)

Let λ ∈ Rp≥

minx∈X

maxk=1,...,p

λk(fk(x)− y Ik) (5)

0 1 2 3 4 5 6 7 8 9 100

1

2

3

4

5

6

7

8

9

10

Y = f(X)

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

The Idea of ScalarizationScalarization Techniques and Their Properties

Compromise Solutions

Let λ ∈ Rp≥ and 1 ≤ q < ∞

minx∈X

(p∑

k=1

λk(fk(x)− y Ik)q

) 1q

(4)

Let λ ∈ Rp≥

minx∈X

maxk=1,...,p

λk(fk(x)− y Ik) (5)

0 1 2 3 4 5 6 7 8 9 100

1

2

3

4

5

6

7

8

9

10

Y = f(X)

yI

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

The Idea of ScalarizationScalarization Techniques and Their Properties

Compromise Solutions

Theorem

1 If x is a unique optimal solution to (4) or if λ > 0 then x isefficient.

2 If x is an optimal solution to (5) and λ > 0 then x is weaklyefficient.

3 If x is a unique optimal solution to (5) and λ > 0 then x isefficient.

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

The Idea of ScalarizationScalarization Techniques and Their Properties

Compromise Solutions

Theorem

1 If x is a unique optimal solution to (4) or if λ > 0 then x isefficient.

2 If x is an optimal solution to (5) and λ > 0 then x is weaklyefficient.

3 If x is a unique optimal solution to (5) and λ > 0 then x isefficient.

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

The Idea of ScalarizationScalarization Techniques and Their Properties

Compromise Solutions

Theorem

1 If x is a unique optimal solution to (4) or if λ > 0 then x isefficient.

2 If x is an optimal solution to (5) and λ > 0 then x is weaklyefficient.

3 If x is a unique optimal solution to (5) and λ > 0 then x isefficient.

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

The Idea of ScalarizationScalarization Techniques and Their Properties

Compromise Solutions

For q = 1 (4) is the weighted sum scalarization

If y I is replaced by yU in (4) stronger results followSolutions obtained are properly efficient, and YN is containedin the closure of the set of all solutions obtained (Sawaragi etal. 1985)

True without convexity assumption, value of q indicates“degree of non-convexity”

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

The Idea of ScalarizationScalarization Techniques and Their Properties

Compromise Solutions

For q = 1 (4) is the weighted sum scalarization

If y I is replaced by yU in (4) stronger results followSolutions obtained are properly efficient, and YN is containedin the closure of the set of all solutions obtained (Sawaragi etal. 1985)

True without convexity assumption, value of q indicates“degree of non-convexity”

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

The Idea of ScalarizationScalarization Techniques and Their Properties

Compromise Solutions

For q = 1 (4) is the weighted sum scalarization

If y I is replaced by yU in (4) stronger results followSolutions obtained are properly efficient, and YN is containedin the closure of the set of all solutions obtained (Sawaragi etal. 1985)

True without convexity assumption, value of q indicates“degree of non-convexity”

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

The Idea of ScalarizationScalarization Techniques and Their Properties

More General Concepts

lq norms can be replaced by more general distance functions

Ideal point can be replaced by a reference point and thedistance function by a ((strictly, strongly) increasing)achievement function Rp → R (Wierzbicki 1986)

min{sR(f (x)) : x ∈ X}sR(y) = maxk=1,...,p{λk(yk − yR

k )}+ ρ∑p

k=1(yk − yRk )

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

The Idea of ScalarizationScalarization Techniques and Their Properties

More General Concepts

lq norms can be replaced by more general distance functions

Ideal point can be replaced by a reference point and thedistance function by a ((strictly, strongly) increasing)achievement function Rp → R (Wierzbicki 1986)

min{sR(f (x)) : x ∈ X}sR(y) = maxk=1,...,p{λk(yk − yR

k )}+ ρ∑p

k=1(yk − yRk )

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

The Idea of ScalarizationScalarization Techniques and Their Properties

More General Concepts

lq norms can be replaced by more general distance functions

Ideal point can be replaced by a reference point and thedistance function by a ((strictly, strongly) increasing)achievement function Rp → R (Wierzbicki 1986)

min{sR(f (x)) : x ∈ X}sR(y) = maxk=1,...,p{λk(yk − yR

k )}+ ρ∑p

k=1(yk − yRk )

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Formulation and the Fundamental TheoremSolving MOLPs in Decision and Objective Space

Overview

1 IntroductionProblem Formulation and Definitions of Optimality

2 Finding Efficient Solutions – ScalarizationThe Idea of ScalarizationScalarization Techniques and Their Properties

3 Multiobjective Linear ProgrammingFormulation and the Fundamental TheoremSolving MOLPs in Decision and Objective Space

4 Multiobjective Combinatorial OptimizationDefinitions Revisited and CharacteristicsSolution Methods

5 Applications

6 Commercials

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Formulation and the Fundamental TheoremSolving MOLPs in Decision and Objective Space

MOLP Formulation

f (x) = Cx where C ∈ Rp×n

Constraints Ax = b where A ∈ Rm×n

Nonnegativity x = 0

min {Cx : Ax = b, x = 0}

X and Y are convex

Weakly and properly efficient solutions are found by weightedsum method

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Formulation and the Fundamental TheoremSolving MOLPs in Decision and Objective Space

MOLP Formulation

f (x) = Cx where C ∈ Rp×n

Constraints Ax = b where A ∈ Rm×n

Nonnegativity x = 0

min {Cx : Ax = b, x = 0}

X and Y are convex

Weakly and properly efficient solutions are found by weightedsum method

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Formulation and the Fundamental TheoremSolving MOLPs in Decision and Objective Space

MOLP Formulation

f (x) = Cx where C ∈ Rp×n

Constraints Ax = b where A ∈ Rm×n

Nonnegativity x = 0

min {Cx : Ax = b, x = 0}

X and Y are convex

Weakly and properly efficient solutions are found by weightedsum method

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Formulation and the Fundamental TheoremSolving MOLPs in Decision and Objective Space

MOLP Formulation

f (x) = Cx where C ∈ Rp×n

Constraints Ax = b where A ∈ Rm×n

Nonnegativity x = 0

min {Cx : Ax = b, x = 0}

X and Y are convex

Weakly and properly efficient solutions are found by weightedsum method

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Formulation and the Fundamental TheoremSolving MOLPs in Decision and Objective Space

MOLP Example

C =

(3 1

−1 −2

),A =

(0 1 1 03 −1 0 1

), b =

(36

)

0 1 2 3 40

1

2

3

4

X

x1

x2

x3

x4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 140

-1

-2

-3

-4

-5

-6

-7

-8

-9

-10

Y

Cx1

Cx2

Cx3

Cx4

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Formulation and the Fundamental TheoremSolving MOLPs in Decision and Objective Space

MOLP Example

C =

(3 1

−1 −2

),A =

(0 1 1 03 −1 0 1

), b =

(36

)

0 1 2 3 40

1

2

3

4

X

x1

x2

x3

x4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 140

-1

-2

-3

-4

-5

-6

-7

-8

-9

-10

Y

Cx1

Cx2

Cx3

Cx4

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Formulation and the Fundamental TheoremSolving MOLPs in Decision and Objective Space

Theorem (Isermann 1974)

A feasible solution x ∈ X is efficient if and only if there is λ > 0such that λTCx 5 λT x for all x ∈ X.

Proof.

If x is efficient, max{eT z : Ax = b,Cx + Iz = Cx ; x , z = 0}has optimal solution z = 0

By duality min{uTb + wTCx : uTA = wTC = 0 : w = e}has optimal solution (u, w) with uTb = −wTCx

u is optimal solution of min{uTb : uTA = −wTC}By duality an optimal solution ofmax{−wTCx : Ax = b, x = 0} exists

x is an optimal solution of this LP

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Formulation and the Fundamental TheoremSolving MOLPs in Decision and Objective Space

Theorem (Isermann 1974)

A feasible solution x ∈ X is efficient if and only if there is λ > 0such that λTCx 5 λT x for all x ∈ X.

Proof.

If x is efficient, max{eT z : Ax = b,Cx + Iz = Cx ; x , z = 0}has optimal solution z = 0

By duality min{uTb + wTCx : uTA = wTC = 0 : w = e}has optimal solution (u, w) with uTb = −wTCx

u is optimal solution of min{uTb : uTA = −wTC}By duality an optimal solution ofmax{−wTCx : Ax = b, x = 0} exists

x is an optimal solution of this LP

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Formulation and the Fundamental TheoremSolving MOLPs in Decision and Objective Space

Theorem (Isermann 1974)

A feasible solution x ∈ X is efficient if and only if there is λ > 0such that λTCx 5 λT x for all x ∈ X.

Proof.

If x is efficient, max{eT z : Ax = b,Cx + Iz = Cx ; x , z = 0}has optimal solution z = 0

By duality min{uTb + wTCx : uTA = wTC = 0 : w = e}has optimal solution (u, w) with uTb = −wTCx

u is optimal solution of min{uTb : uTA = −wTC}By duality an optimal solution ofmax{−wTCx : Ax = b, x = 0} exists

x is an optimal solution of this LP

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Formulation and the Fundamental TheoremSolving MOLPs in Decision and Objective Space

Theorem (Isermann 1974)

A feasible solution x ∈ X is efficient if and only if there is λ > 0such that λTCx 5 λT x for all x ∈ X.

Proof.

If x is efficient, max{eT z : Ax = b,Cx + Iz = Cx ; x , z = 0}has optimal solution z = 0

By duality min{uTb + wTCx : uTA = wTC = 0 : w = e}has optimal solution (u, w) with uTb = −wTCx

u is optimal solution of min{uTb : uTA = −wTC}By duality an optimal solution ofmax{−wTCx : Ax = b, x = 0} exists

x is an optimal solution of this LP

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Formulation and the Fundamental TheoremSolving MOLPs in Decision and Objective Space

Theorem (Isermann 1974)

A feasible solution x ∈ X is efficient if and only if there is λ > 0such that λTCx 5 λT x for all x ∈ X.

Proof.

If x is efficient, max{eT z : Ax = b,Cx + Iz = Cx ; x , z = 0}has optimal solution z = 0

By duality min{uTb + wTCx : uTA = wTC = 0 : w = e}has optimal solution (u, w) with uTb = −wTCx

u is optimal solution of min{uTb : uTA = −wTC}By duality an optimal solution ofmax{−wTCx : Ax = b, x = 0} exists

x is an optimal solution of this LP

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Formulation and the Fundamental TheoremSolving MOLPs in Decision and Objective Space

Theorem (Isermann 1974)

A feasible solution x ∈ X is efficient if and only if there is λ > 0such that λTCx 5 λT x for all x ∈ X.

Proof.

If x is efficient, max{eT z : Ax = b,Cx + Iz = Cx ; x , z = 0}has optimal solution z = 0

By duality min{uTb + wTCx : uTA = wTC = 0 : w = e}has optimal solution (u, w) with uTb = −wTCx

u is optimal solution of min{uTb : uTA = −wTC}By duality an optimal solution ofmax{−wTCx : Ax = b, x = 0} exists

x is an optimal solution of this LP

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Formulation and the Fundamental TheoremSolving MOLPs in Decision and Objective Space

Overview

1 IntroductionProblem Formulation and Definitions of Optimality

2 Finding Efficient Solutions – ScalarizationThe Idea of ScalarizationScalarization Techniques and Their Properties

3 Multiobjective Linear ProgrammingFormulation and the Fundamental TheoremSolving MOLPs in Decision and Objective Space

4 Multiobjective Combinatorial OptimizationDefinitions Revisited and CharacteristicsSolution Methods

5 Applications

6 Commercials

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Formulation and the Fundamental TheoremSolving MOLPs in Decision and Objective Space

Multiobjective Simplex Algorithm

Phase I: FeasibilityMOLP is feasible if and only ifmin{eT z : Ax + Iz = b; x , z = 0} has optimal value 0Let (x0, z) be optimal solution

Phase II: First efficient solutionIf min{uTb + wTCx0 : uTA = wTC = 0;w = e}is infeasible then XE = ∅Let w be optimal solutionOptimal solution x to min{wTCx : Ax = b, x = 0} is efficient

Phase III: Explore efficient solutions by identifying enteringvariables

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Formulation and the Fundamental TheoremSolving MOLPs in Decision and Objective Space

Multiobjective Simplex Algorithm

Phase I: FeasibilityMOLP is feasible if and only ifmin{eT z : Ax + Iz = b; x , z = 0} has optimal value 0Let (x0, z) be optimal solution

Phase II: First efficient solutionIf min{uTb + wTCx0 : uTA = wTC = 0;w = e}is infeasible then XE = ∅Let w be optimal solutionOptimal solution x to min{wTCx : Ax = b, x = 0} is efficient

Phase III: Explore efficient solutions by identifying enteringvariables

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Formulation and the Fundamental TheoremSolving MOLPs in Decision and Objective Space

Multiobjective Simplex Algorithm

Phase I: FeasibilityMOLP is feasible if and only ifmin{eT z : Ax + Iz = b; x , z = 0} has optimal value 0Let (x0, z) be optimal solution

Phase II: First efficient solutionIf min{uTb + wTCx0 : uTA = wTC = 0;w = e}is infeasible then XE = ∅Let w be optimal solutionOptimal solution x to min{wTCx : Ax = b, x = 0} is efficient

Phase III: Explore efficient solutions by identifying enteringvariables

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Formulation and the Fundamental TheoremSolving MOLPs in Decision and Objective Space

Multiobjective Simplex Algorithm

Reduced cost matrix

R := (C − CBA−1B A)N

xj is efficient nonbasic variable if there is λ > 0 such thatλTR = 0 and λT r j = 0

At every efficient basis there exists an efficient nonbasicvariable and every feasible pivot leads to another efficient basis

Theorem (Evans and Steuer 1973)

Nonbasic variable xj is efficient if and only if the LP

max{eT v : Rz − r jδ + Iv = 0, zδ, v = 0}

has an optimal value of 0.

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Formulation and the Fundamental TheoremSolving MOLPs in Decision and Objective Space

Multiobjective Simplex Algorithm

Reduced cost matrix

R := (C − CBA−1B A)N

xj is efficient nonbasic variable if there is λ > 0 such thatλTR = 0 and λT r j = 0

At every efficient basis there exists an efficient nonbasicvariable and every feasible pivot leads to another efficient basis

Theorem (Evans and Steuer 1973)

Nonbasic variable xj is efficient if and only if the LP

max{eT v : Rz − r jδ + Iv = 0, zδ, v = 0}

has an optimal value of 0.

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Formulation and the Fundamental TheoremSolving MOLPs in Decision and Objective Space

Multiobjective Simplex Algorithm

Reduced cost matrix

R := (C − CBA−1B A)N

xj is efficient nonbasic variable if there is λ > 0 such thatλTR = 0 and λT r j = 0

At every efficient basis there exists an efficient nonbasicvariable and every feasible pivot leads to another efficient basis

Theorem (Evans and Steuer 1973)

Nonbasic variable xj is efficient if and only if the LP

max{eT v : Rz − r jδ + Iv = 0, zδ, v = 0}

has an optimal value of 0.

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Formulation and the Fundamental TheoremSolving MOLPs in Decision and Objective Space

Multiobjective Simplex Algorithm

Reduced cost matrix

R := (C − CBA−1B A)N

xj is efficient nonbasic variable if there is λ > 0 such thatλTR = 0 and λT r j = 0

At every efficient basis there exists an efficient nonbasicvariable and every feasible pivot leads to another efficient basis

Theorem (Evans and Steuer 1973)

Nonbasic variable xj is efficient if and only if the LP

max{eT v : Rz − r jδ + Iv = 0, zδ, v = 0}

has an optimal value of 0.

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Formulation and the Fundamental TheoremSolving MOLPs in Decision and Objective Space

Theorem

The set of all efficient bases is connected by pivots withefficient entering variables.

The set of all efficient extreme points of XE is connected byefficient edges.

The set of all nondominated extreme points of YN isconnected by nondominated edges.

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Formulation and the Fundamental TheoremSolving MOLPs in Decision and Objective Space

Theorem

The set of all efficient bases is connected by pivots withefficient entering variables.

The set of all efficient extreme points of XE is connected byefficient edges.

The set of all nondominated extreme points of YN isconnected by nondominated edges.

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Formulation and the Fundamental TheoremSolving MOLPs in Decision and Objective Space

Theorem

The set of all efficient bases is connected by pivots withefficient entering variables.

The set of all efficient extreme points of XE is connected byefficient edges.

The set of all nondominated extreme points of YN isconnected by nondominated edges.

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Formulation and the Fundamental TheoremSolving MOLPs in Decision and Objective Space

Phase I: MOLP is feasiblex0 = (0, 0)

Phase II: Optimal weightw = (1, 1)

Phase II: First efficient solutionx2 = (0, 3)

Phase III: Efficient enteringvariables s1, x2

Phase III: Efficient solutionsx1 = (0, 0), x3 = (3, 3)

Phase III: No more efficiententering variables

0 1 2 3 40

1

2

3

4

X

x1

x2

x3

x4

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Formulation and the Fundamental TheoremSolving MOLPs in Decision and Objective Space

Phase I: MOLP is feasiblex0 = (0, 0)

Phase II: Optimal weightw = (1, 1)

Phase II: First efficient solutionx2 = (0, 3)

Phase III: Efficient enteringvariables s1, x2

Phase III: Efficient solutionsx1 = (0, 0), x3 = (3, 3)

Phase III: No more efficiententering variables

0 1 2 3 40

1

2

3

4

X

x1

x2

x3

x4

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Formulation and the Fundamental TheoremSolving MOLPs in Decision and Objective Space

Phase I: MOLP is feasiblex0 = (0, 0)

Phase II: Optimal weightw = (1, 1)

Phase II: First efficient solutionx2 = (0, 3)

Phase III: Efficient enteringvariables s1, x2

Phase III: Efficient solutionsx1 = (0, 0), x3 = (3, 3)

Phase III: No more efficiententering variables

0 1 2 3 40

1

2

3

4

X

x1

x2

x3

x4

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Formulation and the Fundamental TheoremSolving MOLPs in Decision and Objective Space

Phase I: MOLP is feasiblex0 = (0, 0)

Phase II: Optimal weightw = (1, 1)

Phase II: First efficient solutionx2 = (0, 3)

Phase III: Efficient enteringvariables s1, x2

Phase III: Efficient solutionsx1 = (0, 0), x3 = (3, 3)

Phase III: No more efficiententering variables

0 1 2 3 40

1

2

3

4

X

x1

x2

x3

x4

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Formulation and the Fundamental TheoremSolving MOLPs in Decision and Objective Space

Phase I: MOLP is feasiblex0 = (0, 0)

Phase II: Optimal weightw = (1, 1)

Phase II: First efficient solutionx2 = (0, 3)

Phase III: Efficient enteringvariables s1, x2

Phase III: Efficient solutionsx1 = (0, 0), x3 = (3, 3)

Phase III: No more efficiententering variables

0 1 2 3 40

1

2

3

4

X

x1

x2

x3

x4

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Formulation and the Fundamental TheoremSolving MOLPs in Decision and Objective Space

Phase I: MOLP is feasiblex0 = (0, 0)

Phase II: Optimal weightw = (1, 1)

Phase II: First efficient solutionx2 = (0, 3)

Phase III: Efficient enteringvariables s1, x2

Phase III: Efficient solutionsx1 = (0, 0), x3 = (3, 3)

Phase III: No more efficiententering variables

0 1 2 3 40

1

2

3

4

X

x1

x2

x3

x4

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Formulation and the Fundamental TheoremSolving MOLPs in Decision and Objective Space

Solving MOLPs in Objective Space

(Benson 1998)

Degeneracy causes problems for simplex algorithm

Decisions based on objective function values

Usually dim Y 5 p << dim X

Assume X is bounded

Theorem (Benson 1998)

The dimension of Y + Rp= is p and (Y + Rp

=)N = YN .

Y ′ := (Y + Rp=) ∩ (yAI − Rp

=)

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Formulation and the Fundamental TheoremSolving MOLPs in Decision and Objective Space

Solving MOLPs in Objective Space

(Benson 1998)

Degeneracy causes problems for simplex algorithm

Decisions based on objective function values

Usually dim Y 5 p << dim X

Assume X is bounded

Theorem (Benson 1998)

The dimension of Y + Rp= is p and (Y + Rp

=)N = YN .

Y ′ := (Y + Rp=) ∩ (yAI − Rp

=)

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Formulation and the Fundamental TheoremSolving MOLPs in Decision and Objective Space

Solving MOLPs in Objective Space

(Benson 1998)

Degeneracy causes problems for simplex algorithm

Decisions based on objective function values

Usually dim Y 5 p << dim X

Assume X is bounded

Theorem (Benson 1998)

The dimension of Y + Rp= is p and (Y + Rp

=)N = YN .

Y ′ := (Y + Rp=) ∩ (yAI − Rp

=)

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Formulation and the Fundamental TheoremSolving MOLPs in Decision and Objective Space

Solving MOLPs in Objective Space

(Benson 1998)

Degeneracy causes problems for simplex algorithm

Decisions based on objective function values

Usually dim Y 5 p << dim X

Assume X is bounded

Theorem (Benson 1998)

The dimension of Y + Rp= is p and (Y + Rp

=)N = YN .

Y ′ := (Y + Rp=) ∩ (yAI − Rp

=)

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Formulation and the Fundamental TheoremSolving MOLPs in Decision and Objective Space

Solving MOLPs in Objective Space

(Benson 1998)

Degeneracy causes problems for simplex algorithm

Decisions based on objective function values

Usually dim Y 5 p << dim X

Assume X is bounded

Theorem (Benson 1998)

The dimension of Y + Rp= is p and (Y + Rp

=)N = YN .

Y ′ := (Y + Rp=) ∩ (yAI − Rp

=)

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Formulation and the Fundamental TheoremSolving MOLPs in Decision and Objective Space

Let p ∈ int Y ′

Let y be solution ofmin{eT y : y ∈ Y }Simplex S0 such that Y ′ ⊆ S0

defined by axes-parallelhyperplanes and supportinghyperplane with normal e at y

While Sk 6= Y ′

Find vertex yk of Sk−1 withsk /∈ Y ′

Find αk > 0 such thatαyk + (1− α)p is on theboundary of Y ′

Find supporting hyperplane toY ′ through boundary point

-6

-9

01263

Y

1y

2y

'Y

131

-4

S0

__

p

-16

-3-2

Vertices of S k

-6

-9

01263 1263

YY

1y

2y

'Y

131

-4

S0S0

__

p

-16

-3-2

-16

-3-2

Vertices of S kS k

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Formulation and the Fundamental TheoremSolving MOLPs in Decision and Objective Space

Let p ∈ int Y ′

Let y be solution ofmin{eT y : y ∈ Y }Simplex S0 such that Y ′ ⊆ S0

defined by axes-parallelhyperplanes and supportinghyperplane with normal e at y

While Sk 6= Y ′

Find vertex yk of Sk−1 withsk /∈ Y ′

Find αk > 0 such thatαyk + (1− α)p is on theboundary of Y ′

Find supporting hyperplane toY ′ through boundary point

-6

-9

01263

Y

1y

2y

'Y

131

-16

-4__

p

S1

-3-2

Vertex being cut out

Boundary point of on line segment

Vertices ofky

kq 'Y ),(__

pyk

S k

-6

-9

01263 1263

YY

1y

2y

'Y

131

-16

-4__

p

S1S1

-3-2

Vertex being cut out

Boundary point of on line segment

Vertices ofky

kq 'Y ),(__

pyk

S kS k

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Formulation and the Fundamental TheoremSolving MOLPs in Decision and Objective Space

Let p ∈ int Y ′

Let y be solution ofmin{eT y : y ∈ Y }Simplex S0 such that Y ′ ⊆ S0

defined by axes-parallelhyperplanes and supportinghyperplane with normal e at y

While Sk 6= Y ′

Find vertex yk of Sk−1 withsk /∈ Y ′

Find αk > 0 such thatαyk + (1− α)p is on theboundary of Y ′

Find supporting hyperplane toY ′ through boundary point

-6

-9

01263

Y

1y

2y

'Y

131

-16

-4__

p-3-2

S2

Vertex being cut out

Boundary point of on line segment

Vertices ofky

kq 'Y ),(__

pyk

S k

-6

-9

01263 1263

YY

1y

2y

'Y

131

-16

-4__

p-3-2

S2S2

Vertex being cut out

Boundary point of on line segment

Vertices ofky

kq 'Y ),(__

pyk

S kS k

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Formulation and the Fundamental TheoremSolving MOLPs in Decision and Objective Space

Let p ∈ int Y ′

Let y be solution ofmin{eT y : y ∈ Y }Simplex S0 such that Y ′ ⊆ S0

defined by axes-parallelhyperplanes and supportinghyperplane with normal e at y

While Sk 6= Y ′

Find vertex yk of Sk−1 withsk /∈ Y ′

Find αk > 0 such thatαyk + (1− α)p is on theboundary of Y ′

Find supporting hyperplane toY ′ through boundary point

-3-2

-6

-9

01263

Y

1y

2y

'Y

131

-4__

p

S3

-16

Vertex being cut out

Boundary point of on line segment

Vertices ofky

kq 'Y ),(__

pyk

S k

-3-2

-6

-9

01263 1263

YY

1y

2y

'Y

131

-4__

p

S3S3

-16

Vertex being cut out

Boundary point of on line segment

Vertices ofky

kq 'Y ),(__

pyk

S kS k

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Formulation and the Fundamental TheoremSolving MOLPs in Decision and Objective Space

Let p ∈ int Y ′

Let y be solution ofmin{eT y : y ∈ Y }Simplex S0 such that Y ′ ⊆ S0

defined by axes-parallelhyperplanes and supportinghyperplane with normal e at y

While Sk 6= Y ′

Find vertex yk of Sk−1 withsk /∈ Y ′

Find αk > 0 such thatαyk + (1− α)p is on theboundary of Y ′

Find supporting hyperplane toY ′ through boundary point

-3-2

-6

-9

01263

Y

1y

2y

'Y

131

-4__

p

S4

-16

Vertex being cut out

Boundary point of on line segment

Vertices ofky

kq 'Y ),(__

pyk

S k

-3-2

-6

-9

01263 1263

YY

1y

2y

'Y

131

-4__

p

S4S4

-16

Vertex being cut out

Boundary point of on line segment

Vertices ofky

kq 'Y ),(__

pyk

S kS k

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Definitions Revisited and CharacteristicsSolution Methods

Overview

1 IntroductionProblem Formulation and Definitions of Optimality

2 Finding Efficient Solutions – ScalarizationThe Idea of ScalarizationScalarization Techniques and Their Properties

3 Multiobjective Linear ProgrammingFormulation and the Fundamental TheoremSolving MOLPs in Decision and Objective Space

4 Multiobjective Combinatorial OptimizationDefinitions Revisited and CharacteristicsSolution Methods

5 Applications

6 Commercials

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Definitions Revisited and CharacteristicsSolution Methods

Mathematical Formulation

min z(x) = Cx

subject to Ax = b

x ∈ {0, 1}n

x ∈ {0, 1}n −→ n variables, i = 1, . . . , n

C ∈ Zp×n −→ p objective functions, k = 1, . . . , p

A ∈ Zm×n −→ m constraints, j = 1, . . . ,m

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Definitions Revisited and CharacteristicsSolution Methods

Mathematical Formulation

min z(x) = Cx

subject to Ax = b

x ∈ {0, 1}n

x ∈ {0, 1}n −→ n variables, i = 1, . . . , n

C ∈ Zp×n −→ p objective functions, k = 1, . . . , p

A ∈ Zm×n −→ m constraints, j = 1, . . . ,m

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Definitions Revisited and CharacteristicsSolution Methods

Mathematical Formulation

min z(x) = Cx

subject to Ax = b

x ∈ {0, 1}n

x ∈ {0, 1}n −→ n variables, i = 1, . . . , n

C ∈ Zp×n −→ p objective functions, k = 1, . . . , p

A ∈ Zm×n −→ m constraints, j = 1, . . . ,m

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Definitions Revisited and CharacteristicsSolution Methods

Feasible Sets

X = {x ∈ {0, 1}n : Ax = b}feasible set in decision space

Y = z(X ) = {Cx : x ∈ X}feasible set in objective space

conv(Y ) + Rp=

0 1 2 3 4 5 6 7 8 9 100

1

2

3

4

5

6

7

8

9

10

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Definitions Revisited and CharacteristicsSolution Methods

Feasible Sets

X = {x ∈ {0, 1}n : Ax = b}feasible set in decision space

Y = z(X ) = {Cx : x ∈ X}feasible set in objective space

conv(Y ) + Rp=

0 1 2 3 4 5 6 7 8 9 100

1

2

3

4

5

6

7

8

9

10

Y = C(X)

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Definitions Revisited and CharacteristicsSolution Methods

Feasible Sets

X = {x ∈ {0, 1}n : Ax = b}feasible set in decision space

Y = z(X ) = {Cx : x ∈ X}feasible set in objective space

conv(Y ) + Rp=

0 1 2 3 4 5 6 7 8 9 100

1

2

3

4

5

6

7

8

9

10

conv(C(X)) + Rp

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Definitions Revisited and CharacteristicsSolution Methods

Lexicographic Optimality

Individual minimazk(x) 5 zk(x) for all x ∈ X

Lexicographic optimality (1)z(x) ≤lex z(x) for all x ∈ X

Lexicographic optimality (2)zπ(x) ≤lex zπ(x) for all x ∈ Xand some permutation zπ of(z1, . . . , zp)

0 1 2 3 4 5 6 7 8 9 100

1

2

3

4

5

6

7

8

9

10

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Definitions Revisited and CharacteristicsSolution Methods

Lexicographic Optimality

Individual minimazk(x) 5 zk(x) for all x ∈ X

Lexicographic optimality (1)z(x) ≤lex z(x) for all x ∈ X

Lexicographic optimality (2)zπ(x) ≤lex zπ(x) for all x ∈ Xand some permutation zπ of(z1, . . . , zp)

0 1 2 3 4 5 6 7 8 9 100

1

2

3

4

5

6

7

8

9

10

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Definitions Revisited and CharacteristicsSolution Methods

Lexicographic Optimality

Individual minimazk(x) 5 zk(x) for all x ∈ X

Lexicographic optimality (1)z(x) ≤lex z(x) for all x ∈ X

Lexicographic optimality (2)zπ(x) ≤lex zπ(x) for all x ∈ Xand some permutation zπ of(z1, . . . , zp)

0 1 2 3 4 5 6 7 8 9 100

1

2

3

4

5

6

7

8

9

10

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Definitions Revisited and CharacteristicsSolution Methods

Efficient Solutions

Weakly efficient solutions XwE

There is no x with z(x) < z(x)z(x) is weakly nondominatedYwN := z(XwN)

Efficient solutions XE

There is no x with z(x) ≤ z(x)z(x) is nondominatedYN := z(XE )

0 1 2 3 4 5 6 7 8 9 100

1

2

3

4

5

6

7

8

9

10

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Definitions Revisited and CharacteristicsSolution Methods

Efficient Solutions

Weakly efficient solutions XwE

There is no x with z(x) < z(x)z(x) is weakly nondominatedYwN := z(XwN)

Efficient solutions XE

There is no x with z(x) ≤ z(x)z(x) is nondominatedYN := z(XE )

0 1 2 3 4 5 6 7 8 9 100

1

2

3

4

5

6

7

8

9

10

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Definitions Revisited and CharacteristicsSolution Methods

Efficient Solutions

Supported efficient solutionsXsE : There is λ > 0 withλTCx 5 λTCx for all x ∈ X

Cx is extreme point ofconv(Y ) + Rp

= → XsE1

Cx is in relative interior offace of conv(Y ) + Rp

= → XsE2

Nonsupported efficient solutionsXnE : Cx is in interior ofconv(Y ) + Rp

=0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Definitions Revisited and CharacteristicsSolution Methods

Efficient Solutions

Supported efficient solutionsXsE : There is λ > 0 withλTCx 5 λTCx for all x ∈ X

Cx is extreme point ofconv(Y ) + Rp

= → XsE1

Cx is in relative interior offace of conv(Y ) + Rp

= → XsE2

Nonsupported efficient solutionsXnE : Cx is in interior ofconv(Y ) + Rp

=0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10

conv(C(X)) + Rp

λ =(

5

6, 1

6

)

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Definitions Revisited and CharacteristicsSolution Methods

Efficient Solutions

Supported efficient solutionsXsE : There is λ > 0 withλTCx 5 λTCx for all x ∈ X

Cx is extreme point ofconv(Y ) + Rp

= → XsE1

Cx is in relative interior offace of conv(Y ) + Rp

= → XsE2

Nonsupported efficient solutionsXnE : Cx is in interior ofconv(Y ) + Rp

=0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10

conv(C(X)) + Rp

λ =(

1

2, 1

2

)

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Definitions Revisited and CharacteristicsSolution Methods

Efficient Solutions

Supported efficient solutionsXsE : There is λ > 0 withλTCx 5 λTCx for all x ∈ X

Cx is extreme point ofconv(Y ) + Rp

= → XsE1

Cx is in relative interior offace of conv(Y ) + Rp

= → XsE2

Nonsupported efficient solutionsXnE : Cx is in interior ofconv(Y ) + Rp

=0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10

conv(C(X)) + Rp

λ =(

1

3, 2

3

)

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Definitions Revisited and CharacteristicsSolution Methods

Efficient Solutions

Supported efficient solutionsXsE : There is λ > 0 withλTCx 5 λTCx for all x ∈ X

Cx is extreme point ofconv(Y ) + Rp

= → XsE1

Cx is in relative interior offace of conv(Y ) + Rp

= → XsE2

Nonsupported efficient solutionsXnE : Cx is in interior ofconv(Y ) + Rp

=0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10

conv(C(X)) + Rp

λ =(

2

3, 1

3

)

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Definitions Revisited and CharacteristicsSolution Methods

Efficient Solutions

Supported efficient solutionsXsE : There is λ > 0 withλTCx 5 λTCx for all x ∈ X

Cx is extreme point ofconv(Y ) + Rp

= → XsE1

Cx is in relative interior offace of conv(Y ) + Rp

= → XsE2

Nonsupported efficient solutionsXnE : Cx is in interior ofconv(Y ) + Rp

=

0 1 2 3 4 5 6 7 8 9 100

1

2

3

4

5

6

7

8

9

10

conv(C(X)) + Rp

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Definitions Revisited and CharacteristicsSolution Methods

Classification of Efficient Sets

Hansen 1979:

x1, x2 ∈ XE are equivalent ifCx1 = Cx2

Complete set: X ⊂ XE suchthat for all y ∈ YN there isx ∈ X with z(x) = y

Minimal complete set containsno equivalent solutions

Maximal complete set containsall equivalent solutions

XE

XSE XNE

XSE1 XEm XSE2 XNEm

XSE1mXSE2m

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Definitions Revisited and CharacteristicsSolution Methods

Classification of Efficient Sets

Hansen 1979:

x1, x2 ∈ XE are equivalent ifCx1 = Cx2

Complete set: X ⊂ XE suchthat for all y ∈ YN there isx ∈ X with z(x) = y

Minimal complete set containsno equivalent solutions

Maximal complete set containsall equivalent solutions

XE

XSE XNE

XSE1 XEm XSE2 XNEm

XSE1mXSE2m

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Definitions Revisited and CharacteristicsSolution Methods

Classification of Efficient Sets

Hansen 1979:

x1, x2 ∈ XE are equivalent ifCx1 = Cx2

Complete set: X ⊂ XE suchthat for all y ∈ YN there isx ∈ X with z(x) = y

Minimal complete set containsno equivalent solutions

Maximal complete set containsall equivalent solutions

XE

XSE XNE

XSE1 XEm XSE2 XNEm

XSE1mXSE2m

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Definitions Revisited and CharacteristicsSolution Methods

Classification of Efficient Sets

Hansen 1979:

x1, x2 ∈ XE are equivalent ifCx1 = Cx2

Complete set: X ⊂ XE suchthat for all y ∈ YN there isx ∈ X with z(x) = y

Minimal complete set containsno equivalent solutions

Maximal complete set containsall equivalent solutions

XE

XSE XNE

XSE1 XEm XSE2 XNEm

XSE1mXSE2m

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Definitions Revisited and CharacteristicsSolution Methods

MOCO Problems Are Hard

Theorem

Multiobjective combinatorial optimization problems are NP-hard,#P-complete, and intractable.

Examples:

Shortest path (Hansen 1979, Serafini 1986)

Assignment (Serafini 1986, Neumayer 1994)

Spanning tree (Hamacher and Ruhe 1994)

Network flow (Ruhe 1988)

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Definitions Revisited and CharacteristicsSolution Methods

MOCO Problems Are Hard

Theorem

Multiobjective combinatorial optimization problems are NP-hard,#P-complete, and intractable.

Examples:

Shortest path (Hansen 1979, Serafini 1986)

Assignment (Serafini 1986, Neumayer 1994)

Spanning tree (Hamacher and Ruhe 1994)

Network flow (Ruhe 1988)

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Definitions Revisited and CharacteristicsSolution Methods

MOCO Problems Are Hard

Theorem

Multiobjective combinatorial optimization problems are NP-hard,#P-complete, and intractable.

Examples:

Shortest path (Hansen 1979, Serafini 1986)

Assignment (Serafini 1986, Neumayer 1994)

Spanning tree (Hamacher and Ruhe 1994)

Network flow (Ruhe 1988)

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Definitions Revisited and CharacteristicsSolution Methods

MOCO Problems Are Hard

Theorem

Multiobjective combinatorial optimization problems are NP-hard,#P-complete, and intractable.

Examples:

Shortest path (Hansen 1979, Serafini 1986)

Assignment (Serafini 1986, Neumayer 1994)

Spanning tree (Hamacher and Ruhe 1994)

Network flow (Ruhe 1988)

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Definitions Revisited and CharacteristicsSolution Methods

MOCO Problems Are Hard

Theorem

Multiobjective combinatorial optimization problems are NP-hard,#P-complete, and intractable.

Examples:

Shortest path (Hansen 1979, Serafini 1986)

Assignment (Serafini 1986, Neumayer 1994)

Spanning tree (Hamacher and Ruhe 1994)

Network flow (Ruhe 1988)

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Definitions Revisited and CharacteristicsSolution Methods

Number of Efficient Solutions

Intractable: XE , even YsN , can be exponential in the size of theinstance

Empirically often

|XnE | grows exponentially with instance size

|XsE | grows polynomially with instance size

But this depends on numerical values of C

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Definitions Revisited and CharacteristicsSolution Methods

Number of Efficient Solutions

Intractable: XE , even YsN , can be exponential in the size of theinstance

Empirically often

|XnE | grows exponentially with instance size

|XsE | grows polynomially with instance size

But this depends on numerical values of C

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Definitions Revisited and CharacteristicsSolution Methods

Number of Efficient Solutions

Intractable: XE , even YsN , can be exponential in the size of theinstance

Empirically often

|XnE | grows exponentially with instance size

|XsE | grows polynomially with instance size

But this depends on numerical values of C

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Definitions Revisited and CharacteristicsSolution Methods

Number of Efficient Solutions

Intractable: XE , even YsN , can be exponential in the size of theinstance

Empirically often

|XnE | grows exponentially with instance size

|XsE | grows polynomially with instance size

But this depends on numerical values of C

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Definitions Revisited and CharacteristicsSolution Methods

Number of Efficient Solutions

Intractable: XE , even YsN , can be exponential in the size of theinstance

Empirically often

|XnE | grows exponentially with instance size

|XsE | grows polynomially with instance size

But this depends on numerical values of C

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Definitions Revisited and CharacteristicsSolution Methods

0

0.05

0.1

0.15

0.2

0.25

0.3

50 100 150 200 250 300 350 400 450 500

nb S

E p

ar r

ap. N

E

instance

Bi-KP Problems : proportion de supportees

ABCD

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Definitions Revisited and CharacteristicsSolution Methods

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

05 10 15 20 25 30 35 40 45 50

prop

SE

par

rap

. NE

instance

Bi-AP Problems : prop SE par rap. NE

ABCD

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Definitions Revisited and CharacteristicsSolution Methods

Overview

1 IntroductionProblem Formulation and Definitions of Optimality

2 Finding Efficient Solutions – ScalarizationThe Idea of ScalarizationScalarization Techniques and Their Properties

3 Multiobjective Linear ProgrammingFormulation and the Fundamental TheoremSolving MOLPs in Decision and Objective Space

4 Multiobjective Combinatorial OptimizationDefinitions Revisited and CharacteristicsSolution Methods

5 Applications

6 Commercials

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Definitions Revisited and CharacteristicsSolution Methods

Solving MOCO Problems

Scalarization

Single objective problem polynomially solvable and algorithmcan be directly extended to multiple objectives

Single objective problem polynomially solvable and rankingalgorithm exists: The 2 Phase Method

Single objective problem NP-hard: General integerprogramming methods

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Definitions Revisited and CharacteristicsSolution Methods

Solving MOCO Problems

Scalarization

Single objective problem polynomially solvable and algorithmcan be directly extended to multiple objectives

Single objective problem polynomially solvable and rankingalgorithm exists: The 2 Phase Method

Single objective problem NP-hard: General integerprogramming methods

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Definitions Revisited and CharacteristicsSolution Methods

Solving MOCO Problems

Scalarization

Single objective problem polynomially solvable and algorithmcan be directly extended to multiple objectives

Single objective problem polynomially solvable and rankingalgorithm exists: The 2 Phase Method

Single objective problem NP-hard: General integerprogramming methods

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Definitions Revisited and CharacteristicsSolution Methods

Solving MOCO Problems

Scalarization

Single objective problem polynomially solvable and algorithmcan be directly extended to multiple objectives

Single objective problem polynomially solvable and rankingalgorithm exists: The 2 Phase Method

Single objective problem NP-hard: General integerprogramming methods

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Definitions Revisited and CharacteristicsSolution Methods

Principle and Properties of Scalarization

Convert multiobjective problem to (parameterized) single objectiveproblem and solve repeatedly with different parameter values

Desirable properties of scalarizations: (Wierzbicki 1984)

Correctness: Optimal solutions are (weakly) efficient

Completeness: All efficient solutions can be found

Computability: Scalarization is not harder than singleobjective version of problem (theory and practice)

Linearity: Scalarization has linear formulation

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Definitions Revisited and CharacteristicsSolution Methods

Principle and Properties of Scalarization

Convert multiobjective problem to (parameterized) single objectiveproblem and solve repeatedly with different parameter values

Desirable properties of scalarizations: (Wierzbicki 1984)

Correctness: Optimal solutions are (weakly) efficient

Completeness: All efficient solutions can be found

Computability: Scalarization is not harder than singleobjective version of problem (theory and practice)

Linearity: Scalarization has linear formulation

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Definitions Revisited and CharacteristicsSolution Methods

Principle and Properties of Scalarization

Convert multiobjective problem to (parameterized) single objectiveproblem and solve repeatedly with different parameter values

Desirable properties of scalarizations: (Wierzbicki 1984)

Correctness: Optimal solutions are (weakly) efficient

Completeness: All efficient solutions can be found

Computability: Scalarization is not harder than singleobjective version of problem (theory and practice)

Linearity: Scalarization has linear formulation

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Definitions Revisited and CharacteristicsSolution Methods

Scalarization Methods

Weighted sum:

minx∈X

{λT z(x)

}ε-constraint:minx∈X

{zl(x) : zk(x) ≤ εk , k 6= l}

Weighted Chebychev:

minx∈X

{max

k=1,...,pνk(zk(x)− y I

k)

}0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10

λT=

(

3

7, 4

7

)

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Definitions Revisited and CharacteristicsSolution Methods

Scalarization Methods

Weighted sum:

minx∈X

{λT z(x)

}ε-constraint:minx∈X

{zl(x) : zk(x) ≤ εk , k 6= l}

Weighted Chebychev:

minx∈X

{max

k=1,...,pνk(zk(x)− y I

k)

}0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10

z1(x) ≤ 5.5

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Definitions Revisited and CharacteristicsSolution Methods

Scalarization Methods

Weighted sum:

minx∈X

{λT z(x)

}ε-constraint:minx∈X

{zl(x) : zk(x) ≤ εk , k 6= l}

Weighted Chebychev:

minx∈X

{max

k=1,...,pνk(zk(x)− y I

k)

}0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10

yI

ν2 = 1

ν1 = 0.5

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Definitions Revisited and CharacteristicsSolution Methods

General Formulation

minx∈X

{p

maxk=1

[νk(ckx − ρk)] +

p∑k=1

[λk(ckx − ρk)]

}subject to ckx ≤ εk k = 1, . . . , p

Includes Correct Complete Computable LinearWeighted sum + - + +ε-constraint + + - +Benson + + - +Chebychev + (+) (-) +Max-ordering + + - +Reference point + (+) (-) +

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Definitions Revisited and CharacteristicsSolution Methods

General Formulation

minx∈X

{p

maxk=1

[νk(ckx − ρk)] +

p∑k=1

[λk(ckx − ρk)]

}subject to ckx ≤ εk k = 1, . . . , p

Includes Correct Complete Computable LinearWeighted sum + - + +ε-constraint + + - +Benson + + - +Chebychev + (+) (-) +Max-ordering + + - +Reference point + (+) (-) +

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Definitions Revisited and CharacteristicsSolution Methods

General Formulation

minx∈X

{p

maxk=1

[νk(ckx − ρk)] +

p∑k=1

[λk(ckx − ρk)]

}subject to ckx ≤ εk k = 1, . . . , p

Includes Correct Complete Computable LinearWeighted sum + - + +ε-constraint + + - +Benson + + - +Chebychev + (+) (-) +Max-ordering + + - +Reference point + (+) (-) +

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Definitions Revisited and CharacteristicsSolution Methods

General Formulation

minx∈X

{p

maxk=1

[νk(ckx − ρk)] +

p∑k=1

[λk(ckx − ρk)]

}subject to ckx ≤ εk k = 1, . . . , p

Includes Correct Complete Computable LinearWeighted sum + - + +ε-constraint + + - +Benson + + - +Chebychev + (+) (-) +Max-ordering + + - +Reference point + (+) (-) +

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Definitions Revisited and CharacteristicsSolution Methods

General Formulation

minx∈X

{p

maxk=1

[νk(ckx − ρk)] +

p∑k=1

[λk(ckx − ρk)]

}subject to ckx ≤ εk k = 1, . . . , p

Includes Correct Complete Computable LinearWeighted sum + - + +ε-constraint + + - +Benson + + - +Chebychev + (+) (-) +Max-ordering + + - +Reference point + (+) (-) +

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Definitions Revisited and CharacteristicsSolution Methods

General Formulation

minx∈X

{p

maxk=1

[νk(ckx − ρk)] +

p∑k=1

[λk(ckx − ρk)]

}subject to ckx ≤ εk k = 1, . . . , p

Includes Correct Complete Computable LinearWeighted sum + - + +ε-constraint + + - +Benson + + - +Chebychev + (+) (-) +Max-ordering + + - +Reference point + (+) (-) +

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Definitions Revisited and CharacteristicsSolution Methods

General Formulation

minx∈X

{p

maxk=1

[νk(ckx − ρk)] +

p∑k=1

[λk(ckx − ρk)]

}subject to ckx ≤ εk k = 1, . . . , p

Includes Correct Complete Computable LinearWeighted sum + - + +ε-constraint + + - +Benson + + - +Chebychev + (+) (-) +Max-ordering + + - +Reference point + (+) (-) +

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Definitions Revisited and CharacteristicsSolution Methods

General Formulation

Theorem (Ehrgott 2005)

1 The general scalarization is NP-hard.

2 An optimal solution of the Lagrangian dual of the linearizedgeneral scalarization is a supported efficient solution.

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Definitions Revisited and CharacteristicsSolution Methods

Method of Elastic Constraints

minx∈X

clx +∑k 6=l

µkwk

s.t. ckx + vk − wk ≤ εk k 6= l

vk ,wk ≥ 0 k 6= l

0 1 2 3 4 5 6 7 8 9 100

1

2

3

4

5

6

7

8

9

10

z1(x) ≤ 5.5

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Definitions Revisited and CharacteristicsSolution Methods

Method of Elastic Constraints

minx∈X

clx +∑k 6=l

µkwk

s.t. ckx + vk − wk = εk k 6= l

vk ,wk ≥ 0 k 6= l

0 1 2 3 4 5 6 7 8 9 100

1

2

3

4

5

6

7

8

9

10

µ1 = 1.5

z1(x) ≤ 5.5

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Definitions Revisited and CharacteristicsSolution Methods

Method of Elastic Constraints

Theorem (Ehrgott and Ryan 2002)

The method of elastic constraints

is correct and complete,

contains the weighted sum and ε-constraint method as specialcases,

is NP-hard.

... but (often) solvable in practice because

it “respects” problem structure

it “limits damage” of ε-constraints

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Definitions Revisited and CharacteristicsSolution Methods

Method of Elastic Constraints

Theorem (Ehrgott and Ryan 2002)

The method of elastic constraints

is correct and complete,

contains the weighted sum and ε-constraint method as specialcases,

is NP-hard.

... but (often) solvable in practice because

it “respects” problem structure

it “limits damage” of ε-constraints

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Definitions Revisited and CharacteristicsSolution Methods

Method of Elastic Constraints

Theorem (Ehrgott and Ryan 2002)

The method of elastic constraints

is correct and complete,

contains the weighted sum and ε-constraint method as specialcases,

is NP-hard.

... but (often) solvable in practice because

it “respects” problem structure

it “limits damage” of ε-constraints

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Definitions Revisited and CharacteristicsSolution Methods

Method of Elastic Constraints

Theorem (Ehrgott and Ryan 2002)

The method of elastic constraints

is correct and complete,

contains the weighted sum and ε-constraint method as specialcases,

is NP-hard.

... but (often) solvable in practice because

it “respects” problem structure

it “limits damage” of ε-constraints

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Definitions Revisited and CharacteristicsSolution Methods

Integer Programming Duality

Theorem (Klamroth et al. 2004)

x ∈ XE if and only if there isF ∈ F := {F : Rm+p−1 → R nondecreasing}such that x is an optimal solution to

max{

cjx − F ((ckx)k 6=j , b) : Ax 5 b, x = 0, x integer}

.

F can be chosen as an optimal solution of the IP dual

min{

F (−e, b) : F ((−ckx)k 6=j ,Ax) ≥ cjx ∀x ∈ Zn=,F ∈ F

}of max{clx : ckx ≥ εk , k 6= l ,Ax = b, x ∈ Zn

=}The level curve of the objective function of the composite IPat level 0 defines an upper bound on YN .

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Definitions Revisited and CharacteristicsSolution Methods

Direct Application of Single Objective Method

The Shortest Path Problem

Shortest path from node s to node t in a directed graphLabels are vectors, each node has set of labelsNew labels deleted if dominated by another labelLabels dominated by new label dominated

More general: Dynamic Programming

The Spanning Tree Problem

Generalizations of Prim’s and Kruskal’s algorithms

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Definitions Revisited and CharacteristicsSolution Methods

Direct Application of Single Objective Method

The Shortest Path Problem

Shortest path from node s to node t in a directed graphLabels are vectors, each node has set of labelsNew labels deleted if dominated by another labelLabels dominated by new label dominated

More general: Dynamic Programming

The Spanning Tree Problem

Generalizations of Prim’s and Kruskal’s algorithms

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Definitions Revisited and CharacteristicsSolution Methods

Direct Application of Single Objective Method

The Shortest Path Problem

Shortest path from node s to node t in a directed graphLabels are vectors, each node has set of labelsNew labels deleted if dominated by another labelLabels dominated by new label dominated

More general: Dynamic Programming

The Spanning Tree Problem

Generalizations of Prim’s and Kruskal’s algorithms

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Definitions Revisited and CharacteristicsSolution Methods

Direct Application of Single Objective Method

The Shortest Path Problem

Shortest path from node s to node t in a directed graphLabels are vectors, each node has set of labelsNew labels deleted if dominated by another labelLabels dominated by new label dominated

More general: Dynamic Programming

The Spanning Tree Problem

Generalizations of Prim’s and Kruskal’s algorithms

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Definitions Revisited and CharacteristicsSolution Methods

Direct Application of Single Objective Method

The Shortest Path Problem

Shortest path from node s to node t in a directed graphLabels are vectors, each node has set of labelsNew labels deleted if dominated by another labelLabels dominated by new label dominated

More general: Dynamic Programming

The Spanning Tree Problem

Generalizations of Prim’s and Kruskal’s algorithms

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Definitions Revisited and CharacteristicsSolution Methods

Direct Application of Single Objective Method

The Shortest Path Problem

Shortest path from node s to node t in a directed graphLabels are vectors, each node has set of labelsNew labels deleted if dominated by another labelLabels dominated by new label dominated

More general: Dynamic Programming

The Spanning Tree Problem

Generalizations of Prim’s and Kruskal’s algorithms

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Definitions Revisited and CharacteristicsSolution Methods

The Two Phase Method

Phase 1: Compute XsE

1 Find lexicographic solutions2 Recursively:

Calculate λSolve min

x∈XλTCx

Phase 2: Compute XnE

1 Solve by triangle2 Use neighborhood (wrong)3 Use constraints (bad)4 Use variable fixing (possible)5 Use ranking (good)

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Definitions Revisited and CharacteristicsSolution Methods

The Two Phase Method

Phase 1: Compute XsE

1 Find lexicographic solutions2 Recursively:

Calculate λSolve min

x∈XλTCx

Phase 2: Compute XnE

1 Solve by triangle2 Use neighborhood (wrong)3 Use constraints (bad)4 Use variable fixing (possible)5 Use ranking (good)

0 1 2 3 4 5 6 7 8 9 100

1

2

3

4

5

6

7

8

9

10

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Definitions Revisited and CharacteristicsSolution Methods

The Two Phase Method

Phase 1: Compute XsE

1 Find lexicographic solutions2 Recursively:

Calculate λSolve min

x∈XλTCx

Phase 2: Compute XnE

1 Solve by triangle2 Use neighborhood (wrong)3 Use constraints (bad)4 Use variable fixing (possible)5 Use ranking (good)

0 1 2 3 4 5 6 7 8 9 100

1

2

3

4

5

6

7

8

9

10

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Definitions Revisited and CharacteristicsSolution Methods

The Two Phase Method

Phase 1: Compute XsE

1 Find lexicographic solutions2 Recursively:

Calculate λSolve min

x∈XλTCx

Phase 2: Compute XnE

1 Solve by triangle2 Use neighborhood (wrong)3 Use constraints (bad)4 Use variable fixing (possible)5 Use ranking (good)

0 1 2 3 4 5 6 7 8 9 100

1

2

3

4

5

6

7

8

9

10

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Definitions Revisited and CharacteristicsSolution Methods

The Two Phase Method

Phase 1: Compute XsE

1 Find lexicographic solutions2 Recursively:

Calculate λSolve min

x∈XλTCx

Phase 2: Compute XnE

1 Solve by triangle2 Use neighborhood (wrong)3 Use constraints (bad)4 Use variable fixing (possible)5 Use ranking (good)

0 1 2 3 4 5 6 7 8 9 100

1

2

3

4

5

6

7

8

9

10

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Definitions Revisited and CharacteristicsSolution Methods

The Two Phase Method

Phase 1: Compute XsE

1 Find lexicographic solutions2 Recursively:

Calculate λSolve min

x∈XλTCx

Phase 2: Compute XnE

1 Solve by triangle2 Use neighborhood (wrong)3 Use constraints (bad)4 Use variable fixing (possible)5 Use ranking (good)

0 1 2 3 4 5 6 7 8 9 100

1

2

3

4

5

6

7

8

9

10

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Definitions Revisited and CharacteristicsSolution Methods

The Two Phase Method

Phase 1: Compute XsE

1 Find lexicographic solutions2 Recursively:

Calculate λSolve min

x∈XλTCx

Phase 2: Compute XnE

1 Solve by triangle2 Use neighborhood (wrong)3 Use constraints (bad)4 Use variable fixing (possible)5 Use ranking (good)

0 1 2 3 4 5 6 7 8 9 100

1

2

3

4

5

6

7

8

9

10

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Definitions Revisited and CharacteristicsSolution Methods

The Two Phase Method

Phase 1: Compute XsE

1 Find lexicographic solutions2 Recursively:

Calculate λSolve min

x∈XλTCx

Phase 2: Compute XnE

1 Solve by triangle2 Use neighborhood (wrong)3 Use constraints (bad)4 Use variable fixing (possible)5 Use ranking (good)

0 1 2 3 4 5 6 7 8 9 100

1

2

3

4

5

6

7

8

9

10

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Definitions Revisited and CharacteristicsSolution Methods

The Two Phase Method

Phase 1: Compute XsE

1 Find lexicographic solutions2 Recursively:

Calculate λSolve min

x∈XλTCx

Phase 2: Compute XnE

1 Solve by triangle2 Use neighborhood (wrong)3 Use constraints (bad)4 Use variable fixing (possible)5 Use ranking (good)

0 1 2 3 4 5 6 7 8 9 100

1

2

3

4

5

6

7

8

9

10

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Definitions Revisited and CharacteristicsSolution Methods

Enumeration Problems

Finding maximal complete set:

Enumeration to find all optimal solutions of minx∈X λTCxEnumeration to find all x ∈ XnE with Cx = y ∈ YnD

Finding minimal complete set:

Enumeration to find XsE2

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Definitions Revisited and CharacteristicsSolution Methods

Enumeration Problems

Finding maximal complete set:

Enumeration to find all optimal solutions of minx∈X λTCxEnumeration to find all x ∈ XnE with Cx = y ∈ YnD

Finding minimal complete set:

Enumeration to find XsE2

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Definitions Revisited and CharacteristicsSolution Methods

Enumeration Problems

Finding maximal complete set:

Enumeration to find all optimal solutions of minx∈X λTCxEnumeration to find all x ∈ XnE with Cx = y ∈ YnD

Finding minimal complete set:

Enumeration to find XsE2

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Definitions Revisited and CharacteristicsSolution Methods

Enumeration Problems

Finding maximal complete set:

Enumeration to find all optimal solutions of minx∈X λTCxEnumeration to find all x ∈ XnE with Cx = y ∈ YnD

Finding minimal complete set:

Enumeration to find XsE2

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Definitions Revisited and CharacteristicsSolution Methods

Enumeration Problems

Finding maximal complete set:

Enumeration to find all optimal solutions of minx∈X λTCxEnumeration to find all x ∈ XnE with Cx = y ∈ YnD

Finding minimal complete set:

Enumeration to find XsE2

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Definitions Revisited and CharacteristicsSolution Methods

Enumeration Problems

Finding maximal complete set:Enumeration to find all optimal solutions of minx∈X λTCxEnumeration to find all x ∈ XnE with Cx = y ∈ YnD

Finding minimal complete set:Enumeration to find XsE2

205

210

215

220

225

230

235

195 200 205 210 215 220 225

z2

z1

( 206,223 )

( 207,222 )

( 208,221 )

( 209,220 )

( 210,219 )

( 211,218 )

( 199,230 )

( 220,209 )

( 218,211 )

( 202,227 )

( 203,226 )

( 204,225 )

( 212,217 )

( 213,216 )

( 214,215 )

( 215,214 )

( 216,213 )

z(x) ∈ ZSN1

z(x) ∈ ZSN2

λ = 0.5666

=0.5λ

=0.4918λ

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Definitions Revisited and CharacteristicsSolution Methods

2 Phase Algorithm for Biobjective Assignment

(Przybylski et al. 2004)

Hungarian Method for minx∈X λTCx

Enumeration of all optimal solutions of minx∈X λTCx(Fukuda and Matsui 1992)

Ranking of (non-optimal) solutions of minx∈X λTCx(Chegireddy and Hamacher 1987)

Results for 100× 100:

Range Variable Fixing Seek & Cut Ranking

20 14049.17 2755.75 220.0740 × 17441.35 225.0660 × 38553.18 399.6580 × 53747.45 721.08

100 × 60227.31 711.97

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Definitions Revisited and CharacteristicsSolution Methods

2 Phase Algorithm for Biobjective Assignment

(Przybylski et al. 2004)

Hungarian Method for minx∈X λTCx

Enumeration of all optimal solutions of minx∈X λTCx(Fukuda and Matsui 1992)

Ranking of (non-optimal) solutions of minx∈X λTCx(Chegireddy and Hamacher 1987)

Results for 100× 100:

Range Variable Fixing Seek & Cut Ranking

20 14049.17 2755.75 220.0740 × 17441.35 225.0660 × 38553.18 399.6580 × 53747.45 721.08

100 × 60227.31 711.97

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Definitions Revisited and CharacteristicsSolution Methods

2 Phase Algorithm for Biobjective Assignment

(Przybylski et al. 2004)

Hungarian Method for minx∈X λTCx

Enumeration of all optimal solutions of minx∈X λTCx(Fukuda and Matsui 1992)

Ranking of (non-optimal) solutions of minx∈X λTCx(Chegireddy and Hamacher 1987)

Results for 100× 100:

Range Variable Fixing Seek & Cut Ranking

20 14049.17 2755.75 220.0740 × 17441.35 225.0660 × 38553.18 399.6580 × 53747.45 721.08

100 × 60227.31 711.97

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Definitions Revisited and CharacteristicsSolution Methods

2 Phase Algorithm for Biobjective Assignment

(Przybylski et al. 2004)

Hungarian Method for minx∈X λTCx

Enumeration of all optimal solutions of minx∈X λTCx(Fukuda and Matsui 1992)

Ranking of (non-optimal) solutions of minx∈X λTCx(Chegireddy and Hamacher 1987)

Results for 100× 100:

Range Variable Fixing Seek & Cut Ranking

20 14049.17 2755.75 220.0740 × 17441.35 225.0660 × 38553.18 399.6580 × 53747.45 721.08

100 × 60227.31 711.97

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Definitions Revisited and CharacteristicsSolution Methods

2 Phase Algorithm for Biobjective Assignment

(Przybylski et al. 2004)

Hungarian Method for minx∈X λTCx

Enumeration of all optimal solutions of minx∈X λTCx(Fukuda and Matsui 1992)

Ranking of (non-optimal) solutions of minx∈X λTCx(Chegireddy and Hamacher 1987)

Results for 100× 100:

Range Variable Fixing Seek & Cut Ranking

20 14049.17 2755.75 220.0740 × 17441.35 225.0660 × 38553.18 399.6580 × 53747.45 721.08

100 × 60227.31 711.97

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Definitions Revisited and CharacteristicsSolution Methods

The 2 Phase Method for 3 Objectives

Phase 1:

Dichotomic search impossible since normal defined by threenondominated extreme points need not define positive weightsy1 = (11, 11, 14), y2 = (15, 9, 17), y3 = (19, 14, 10) are threenondominated extreme points, normal is (−1, 40, 28)Nondominated extreme point y4 = (13, 16, 11) not found

Phase 2:

Search by triangle impossible due to lack of natural order ofpointsy1 = (22, 42, 25), y2 = (38, 33, 27), y3 = (39, 31, 30) are threenondominated extreme pointsy4 = (30, 38, 37) is not “below” (39,41,30)

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Definitions Revisited and CharacteristicsSolution Methods

The 2 Phase Method for 3 Objectives

Phase 1:

Dichotomic search impossible since normal defined by threenondominated extreme points need not define positive weightsy1 = (11, 11, 14), y2 = (15, 9, 17), y3 = (19, 14, 10) are threenondominated extreme points, normal is (−1, 40, 28)Nondominated extreme point y4 = (13, 16, 11) not found

Phase 2:

Search by triangle impossible due to lack of natural order ofpointsy1 = (22, 42, 25), y2 = (38, 33, 27), y3 = (39, 31, 30) are threenondominated extreme pointsy4 = (30, 38, 37) is not “below” (39,41,30)

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Definitions Revisited and CharacteristicsSolution Methods

The 2 Phase Method for 3 Objectives

Phase 1:

Dichotomic search impossible since normal defined by threenondominated extreme points need not define positive weightsy1 = (11, 11, 14), y2 = (15, 9, 17), y3 = (19, 14, 10) are threenondominated extreme points, normal is (−1, 40, 28)Nondominated extreme point y4 = (13, 16, 11) not found

Phase 2:

Search by triangle impossible due to lack of natural order ofpointsy1 = (22, 42, 25), y2 = (38, 33, 27), y3 = (39, 31, 30) are threenondominated extreme pointsy4 = (30, 38, 37) is not “below” (39,41,30)

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Definitions Revisited and CharacteristicsSolution Methods

The 2 Phase Method for 3 Objectives

Phase 1:

Dichotomic search impossible since normal defined by threenondominated extreme points need not define positive weightsy1 = (11, 11, 14), y2 = (15, 9, 17), y3 = (19, 14, 10) are threenondominated extreme points, normal is (−1, 40, 28)Nondominated extreme point y4 = (13, 16, 11) not found

Phase 2:

Search by triangle impossible due to lack of natural order ofpointsy1 = (22, 42, 25), y2 = (38, 33, 27), y3 = (39, 31, 30) are threenondominated extreme pointsy4 = (30, 38, 37) is not “below” (39,41,30)

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Definitions Revisited and CharacteristicsSolution Methods

Weight Set Decomposition

W 0 :=

{λ > 0 : λp = 1−

p∑k=1

λk

}W 0(y) :=

{λ ∈ W 0 : λT y = min{λT y : y ∈ Y }

}Theorem

If y is a nondominated extreme point of Y then dimW 0(y) = p − 1.

W 0(y) =⋃

y∈YsN1W 0(y).

dim W 0(y) + dim F (y) = p − 1 for all y ∈ YsN , where F (y)is the maximal nondominated face of Y containing y.

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Definitions Revisited and CharacteristicsSolution Methods

Weight Set Decomposition

W 0 :=

{λ > 0 : λp = 1−

p∑k=1

λk

}W 0(y) :=

{λ ∈ W 0 : λT y = min{λT y : y ∈ Y }

}Theorem

If y is a nondominated extreme point of Y then dimW 0(y) = p − 1.

W 0(y) =⋃

y∈YsN1W 0(y).

dim W 0(y) + dim F (y) = p − 1 for all y ∈ YsN , where F (y)is the maximal nondominated face of Y containing y.

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Definitions Revisited and CharacteristicsSolution Methods

Finding Nondominated Extreme Points

For p = 1, . . . , p find yk

minimizing the k-th objective

S := {y1, . . . , yp} andW 0

p (yk) = {λ ∈ W 0 : λT y =

min{λT y : y ∈ S}}Facets of W 0

p (yk) definebiobjective problems

Solve biobjective problems forall facets for all yk to find newnondominated extreme pointsadded to S

Stop if W 0p (y) = W 0(y) for all

y ∈ S

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

λ1

λ2

W0p(y1)

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Definitions Revisited and CharacteristicsSolution Methods

Finding Nondominated Extreme Points

For p = 1, . . . , p find yk

minimizing the k-th objective

S := {y1, . . . , yp} andW 0

p (yk) = {λ ∈ W 0 : λT y =

min{λT y : y ∈ S}}Facets of W 0

p (yk) definebiobjective problems

Solve biobjective problems forall facets for all yk to find newnondominated extreme pointsadded to S

Stop if W 0p (y) = W 0(y) for all

y ∈ S

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1λ1

W0(y1)

λ2

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Definitions Revisited and CharacteristicsSolution Methods

Finding Nondominated Extreme Points

For p = 1, . . . , p find yk

minimizing the k-th objective

S := {y1, . . . , yp} andW 0

p (yk) = {λ ∈ W 0 : λT y =

min{λT y : y ∈ S}}Facets of W 0

p (yk) definebiobjective problems

Solve biobjective problems forall facets for all yk to find newnondominated extreme pointsadded to S

Stop if W 0p (y) = W 0(y) for all

y ∈ S

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1λ1

λ2

W0(y2)

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Definitions Revisited and CharacteristicsSolution Methods

Finding Nondominated Extreme Points

For p = 1, . . . , p find yk

minimizing the k-th objective

S := {y1, . . . , yp} andW 0

p (yk) = {λ ∈ W 0 : λT y =

min{λT y : y ∈ S}}Facets of W 0

p (yk) definebiobjective problems

Solve biobjective problems forall facets for all yk to find newnondominated extreme pointsadded to S

Stop if W 0p (y) = W 0(y) for all

y ∈ S

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1λ1

λ2

W0(y3)

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Definitions Revisited and CharacteristicsSolution Methods

Finding Nondominated Extreme Points

For p = 1, . . . , p find yk

minimizing the k-th objective

S := {y1, . . . , yp} andW 0

p (yk) = {λ ∈ W 0 : λT y =

min{λT y : y ∈ S}}Facets of W 0

p (yk) definebiobjective problems

Solve biobjective problems forall facets for all yk to find newnondominated extreme pointsadded to S

Stop if W 0p (y) = W 0(y) for all

y ∈ S

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

W0(y4)

λ1

λ2

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Definitions Revisited and CharacteristicsSolution Methods

Finding Nondominated Extreme Points

For p = 1, . . . , p find yk

minimizing the k-th objective

S := {y1, . . . , yp} andW 0

p (yk) = {λ ∈ W 0 : λT y =

min{λT y : y ∈ S}}Facets of W 0

p (yk) definebiobjective problems

Solve biobjective problems forall facets for all yk to find newnondominated extreme pointsadded to S

Stop if W 0p (y) = W 0(y) for all

y ∈ S

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1λ1

λ2

W0(y1)

W0(y2)

W0(y3)

W0(y4)

W0(y5)

Weight to usefor enumeration

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Definitions Revisited and CharacteristicsSolution Methods

Finding Supported Nondominated Points

Relevant weights

Intersection points of at leastthree sets W 0(y)Points in the interior of faceswhere two sets W 0(y)intersect

Enumerate all optimal solutionsof weighted sum problems

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1λ1

λ2

W0(y1)

W0(y2)

W0(y3)

W0(y4)

W0(y5)

Weight to usefor enumeration

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Definitions Revisited and CharacteristicsSolution Methods

Finding Supported Nondominated Points

Relevant weights

Intersection points of at leastthree sets W 0(y)Points in the interior of faceswhere two sets W 0(y)intersect

Enumerate all optimal solutionsof weighted sum problems

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1λ1

λ2

W0(y1)

W0(y2)

W0(y3)

W0(y4)

W0(y5)

Weight to usefor enumeration

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Definitions Revisited and CharacteristicsSolution Methods

Finding Nonsupported Nondominated Points

The search area

A =((conv YsN)N + Rp

=

)\(YsN + Rp

=

)=

((conv YsN)N + Rp

=

)∩(∪u∈D(YsN)u − Rp

=

)

Procedure to calculate D(YsN)

For each u ∈ D(YsN) find closest nondomiated facet of Y

Apply ranking procedure to enumerate solutions between facetof Y and parallel plane through u

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Definitions Revisited and CharacteristicsSolution Methods

Finding Nonsupported Nondominated Points

The search area

A =((conv YsN)N + Rp

=

)\(YsN + Rp

=

)=

((conv YsN)N + Rp

=

)∩(∪u∈D(YsN)u − Rp

=

)

Procedure to calculate D(YsN)

For each u ∈ D(YsN) find closest nondomiated facet of Y

Apply ranking procedure to enumerate solutions between facetof Y and parallel plane through u

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Definitions Revisited and CharacteristicsSolution Methods

Finding Nonsupported Nondominated Points

The search area

A =((conv YsN)N + Rp

=

)\(YsN + Rp

=

)=

((conv YsN)N + Rp

=

)∩(∪u∈D(YsN)u − Rp

=

)

Procedure to calculate D(YsN)

For each u ∈ D(YsN) find closest nondomiated facet of Y

Apply ranking procedure to enumerate solutions between facetof Y and parallel plane through u

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Definitions Revisited and CharacteristicsSolution Methods

Finding Nonsupported Nondominated Points

The search area

A =((conv YsN)N + Rp

=

)\(YsN + Rp

=

)=

((conv YsN)N + Rp

=

)∩(∪u∈D(YsN)u − Rp

=

)

Procedure to calculate D(YsN)

For each u ∈ D(YsN) find closest nondomiated facet of Y

Apply ranking procedure to enumerate solutions between facetof Y and parallel plane through u

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Definitions Revisited and CharacteristicsSolution Methods

Finding Nonsupported Nondominated Points

The search area

A =((conv YsN)N + Rp

=

)\(YsN + Rp

=

)=

((conv YsN)N + Rp

=

)∩(∪u∈D(YsN)u − Rp

=

)

Procedure to calculate D(YsN)

For each u ∈ D(YsN) find closest nondomiated facet of Y

Apply ranking procedure to enumerate solutions between facetof Y and parallel plane through u

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Definitions Revisited and CharacteristicsSolution Methods

Results for Three-Objective Assignment Problem

n |YN | S/C 2004 T-P 2003 L et al. (2005) P et al. 20075 12 0.15 0.04 0.15 0.00

10 221 99865.00 97.30 41.70 0.0815 483 × 544.53 172.29 0.3620 1942 × × 1607.92 4.5125 3750 × × 5218.00 30.1330 5195 × × 15579.00 55.8735 10498 × × 101751.00 109.9640 14733 × × × 229.0545 23941 × × × 471.6050 29193 × × × 802.68

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Definitions Revisited and CharacteristicsSolution Methods

Multicriteria Branch and Bound

Ulungu and Teghem 1997,Mavrotas and Diakoulaki 2002

Branching: As in singleobjective case

Bounding: Ideal point ofproblem at node is dominatedby efficient solution

Branching may be veryineffective

Use lower and upper bound sets

N0

N1

1, 2, 3

N2

1, 2

3

N5

1

2

N9

1

N3

1, 2, 4

3

N4

1, 2

3, 4

N6

1, 3

2

N7

1

2, 3

N8

1, 4, 5

2, 3

L ={(

23

27

)}

L ={(

23

27

)

,(

29

16

)}

L ={(

23

27

)

,(

29

16

)

,(

27

18

)}

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Definitions Revisited and CharacteristicsSolution Methods

Multicriteria Branch and Bound

Ulungu and Teghem 1997,Mavrotas and Diakoulaki 2002

Branching: As in singleobjective case

Bounding: Ideal point ofproblem at node is dominatedby efficient solution

Branching may be veryineffective

Use lower and upper bound sets

N0

N1

1, 2, 3

N2

1, 2

3

N5

1

2

N9

1

N3

1, 2, 4

3

N4

1, 2

3, 4

N6

1, 3

2

N7

1

2, 3

N8

1, 4, 5

2, 3

L ={(

23

27

)}

L ={(

23

27

)

,(

29

16

)}

L ={(

23

27

)

,(

29

16

)

,(

27

18

)}

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Definitions Revisited and CharacteristicsSolution Methods

Multicriteria Branch and Bound

Ulungu and Teghem 1997,Mavrotas and Diakoulaki 2002

Branching: As in singleobjective case

Bounding: Ideal point ofproblem at node is dominatedby efficient solution

Branching may be veryineffective

Use lower and upper bound sets

N0

N1

1, 2, 3

N2

1, 2

3

N5

1

2

N9

1

N3

1, 2, 4

3

N4

1, 2

3, 4

N6

1, 3

2

N7

1

2, 3

N8

1, 4, 5

2, 3

L ={(

23

27

)}

L ={(

23

27

)

,(

29

16

)}

L ={(

23

27

)

,(

29

16

)

,(

27

18

)}

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Definitions Revisited and CharacteristicsSolution Methods

Multicriteria Branch and Bound

Ulungu and Teghem 1997,Mavrotas and Diakoulaki 2002

Branching: As in singleobjective case

Bounding: Ideal point ofproblem at node is dominatedby efficient solution

Branching may be veryineffective

Use lower and upper bound sets

N0

N1

1, 2, 3

N2

1, 2

3

N5

1

2

N9

1

N3

1, 2, 4

3

N4

1, 2

3, 4

N6

1, 3

2

N7

1

2, 3

N8

1, 4, 5

2, 3

L ={(

23

27

)}

L ={(

23

27

)

,(

29

16

)}

L ={(

23

27

)

,(

29

16

)

,(

27

18

)}

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Definitions Revisited and CharacteristicsSolution Methods

Multicriteria Branch and Bound

Ulungu and Teghem 1997,Mavrotas and Diakoulaki 2002

Branching: As in singleobjective case

Bounding: Ideal point ofproblem at node is dominatedby efficient solution

Branching may be veryineffective

Use lower and upper bound sets

N0

N1

1, 2, 3

N2

1, 2

3

N5

1

2

N9

1

N3

1, 2, 4

3

N4

1, 2

3, 4

N6

1, 3

2

N7

1

2, 3

N8

1, 4, 5

2, 3

L ={(

23

27

)}

L ={(

23

27

)

,(

29

16

)}

L ={(

23

27

)

,(

29

16

)

,(

27

18

)}

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Definitions Revisited and CharacteristicsSolution Methods

Bound Sets

Ehrgott and Gandibleux 2005:1 Lower bound set L

is Rp=-closed

is Rp=-bounded

YN ⊂ L + Rp=

L ⊂(L + Rp

=

)N

2 Upper bound set U

is Rp=-closed

is Rp=-bounded

YN ∈ cl[(

U + Rp=

)c]U ⊂

(U + Rp

=

)N

0 1 2 3 4 5 6 7 8 9 100

1

2

3

4

5

6

7

8

9

10

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Definitions Revisited and CharacteristicsSolution Methods

Bound Sets

Ehrgott and Gandibleux 2005:1 Lower bound set L

is Rp=-closed

is Rp=-bounded

YN ⊂ L + Rp=

L ⊂(L + Rp

=

)N

2 Upper bound set U

is Rp=-closed

is Rp=-bounded

YN ∈ cl[(

U + Rp=

)c]U ⊂

(U + Rp

=

)N

0 1 2 3 4 5 6 7 8 9 100

1

2

3

4

5

6

7

8

9

10

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Definitions Revisited and CharacteristicsSolution Methods

10000

20000

30000

40000

50000

60000

70000

80000

90000

10000 20000 30000 40000 50000 60000 70000 80000 90000

y2

y1

ub

⋆⋆

⋆⋆⋆

⋆⋆

⋆⋆⋆⋆

⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆ ⋆⋆ ⋆⋆⋆⋆⋆ ⋆ ⋆⋆ ⋆ ⋆ ⋆

lb

r

r

r

rrrrrrrrrrrrrrr r

r

rrrrrrr rrrrr rr r

r

dMax

e

e

e

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Portfolio Selection

Markowitz 1952 with cardinality constraint, e.g. Chang et al. 2000

max z1(x) = µT x

min z2(x) = xTσx

subject to eT x = 1

xi 5 uiyi

xi = liyi

eT y = k

y ∈ {0, 1}n

0

50

100

150

200

250

300

350

0 200 400 600 800 1000 1200 1400 1600f 1

f2

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Portfolio Selection

Markowitz 1952 with cardinality constraint, e.g. Chang et al. 2000

max z1(x) = µT x

min z2(x) = xTσx

subject to eT x = 1

xi 5 uiyi

xi = liyi

eT y = k

y ∈ {0, 1}n

0

50

100

150

200

250

300

350

0 200 400 600 800 1000 1200 1400 1600f 1

f2

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Airline Crew Scheduling

Partition flights into set of pairings, but minimizing cost can causedelays ...and be very expensive

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Airline Crew Scheduling

Partition flights into set of pairings, but minimizing cost can causedelays ...and be very expensive

Sunday, 4 August, 2002, 20:29 GMT 21:29 UK

Delays as Easyjet cancels 19 flights

Passengers with low-cost airline Easyjet are suffering delays after 19 flights in and out

of Britain were cancelled.

The company blamed the move - which comes a week after passengers staged a protest sit-in

at Nice airport - on crewing problems stemming from technical hitches with aircraft.

Crews caught up in the delays worked up to their maximum hours and then had to be allowed

home to rest.

Mobilising replacement crews has been a problem as it takes time to bring people to

airports from home. Standby crews were already being used and other staff are on holiday.

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Airline Crew Scheduling

Model 1: Minimize cost and minimize non-robustness (Ehrgott andRyan 2002)

aij =

{1 pairing j includes flight i0 otherwise

min z1(x) = cT x

min z2(x) = rT x

subject to Ax = e

Mx = b

x ∈ {0, 1}n

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Airline Crew Scheduling

Model 1: Minimize cost and minimize non-robustness (Ehrgott andRyan 2002)

aij =

{1 pairing j includes flight i0 otherwise

min z1(x) = cT x

min z2(x) = rT x

subject to Ax = e

Mx = b

x ∈ {0, 1}n

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Airline Crew Scheduling

Model 1: Minimize cost and minimize non-robustness (Ehrgott andRyan 2002)

aij =

{1 pairing j includes flight i0 otherwise

min z1(x) = cT x

min z2(x) = rT x

subject to Ax = e

Mx = b

x ∈ {0, 1}n

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

0

1000

2000

3000

4000

5000

6000

880 900 920 940 960 980 1000 1020 1040Cost

Non

-rob

ustn

ess

LPIP 2% bound gap

Cost IP solution 2% bound gap

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Radiotherapy Treatment Design

Choose beam directions and intensities to destroy tumour andspare healthy organs (e.g. Holder 2004)

min(zT , zS , zN )subject to AT x + zT e = lT

AT x 5 uTASx − zSe 5 uS

AN x − zN e 5 uNzS = −uSzN = 0

x = 0x 5 Myey ∈ {0, 1}n

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Radiotherapy Treatment Design

Choose beam directions and intensities to destroy tumour andspare healthy organs (e.g. Holder 2004)

min(zT , zS , zN )subject to AT x + zT e = lT

AT x 5 uTASx − zSe 5 uS

AN x − zN e 5 uNzS = −uSzN = 0

x = 0x 5 Myey ∈ {0, 1}n

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Radiotherapy Treatment Design

Choose beam directions and intensities to destroy tumour andspare healthy organs (e.g. Holder 2004)

min(zT , zS , zN )subject to AT x + zT e = lT

AT x 5 uTASx − zSe 5 uS

AN x − zN e 5 uNzS = −uSzN = 0

x = 0x 5 Myey ∈ {0, 1}n 5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

Matthias Ehrgott Multiobjective Optimization

IntroductionFinding Efficient Solutions – Scalarization

Multiobjective Linear ProgrammingMultiobjective Combinatorial Optimization

ApplicationsCommercials

19th International Conference onMultiple Criteria Decision Making

MCDM for Sustainable Energy and Transportation Systems

7th – 12th January 2008The University of Auckland, Auckland, New Zealand

Deadline for abstract submission September 30, 2007Deadline for early registration October 15, 2007

www.esc.auckland.ac.nz/[email protected]

MCDM

mcdmposter.indd 1 3/26/2007 16:34:59Matthias Ehrgott Multiobjective Optimization