Magnetotheranostics - Nano-Tera 2016

download Magnetotheranostics - Nano-Tera 2016

of 46

Transcript of Magnetotheranostics - Nano-Tera 2016

  • 8/18/2019 Magnetotheranostics - Nano-Tera 2016

    1/46

    MagnetoTheranosticsNano Particle Hyperthermia Applicator 

    Myles Capstick, Dimce Iliev

    and Niels Kuster IT’IS Foundation, ETH Zurich, Switzerland

    Lausanne 26 April 2016

  • 8/18/2019 Magnetotheranostics - Nano-Tera 2016

    2/46

    Development of the magnetic field applicator 

     AIMS• To develop a new applicator that improves the overall

    efficiency for nano-particle heating - whilst considering the

    unwanted heating of normal tissue and provide effective E-field

    shielding.

    • Develop an applicator cooling system.

    • To design a high efficiency computer controlled RF source for

    excitation of the applicator.

    • To provide experimental validation in simplified phantoms.

  • 8/18/2019 Magnetotheranostics - Nano-Tera 2016

    3/46

    Second prototype

  • 8/18/2019 Magnetotheranostics - Nano-Tera 2016

    4/46

     Applicator Second Prototype

    • 8 field coil windings, each with 5 turns• Total 40 turns

    • Field sensitivity 84 μT/A Bore diameter

    400mm

  • 8/18/2019 Magnetotheranostics - Nano-Tera 2016

    5/46

    Tuning and matching

    • High voltage capacitor stacks Input transformers for matching

    • Operates at 303 kHz

  • 8/18/2019 Magnetotheranostics - Nano-Tera 2016

    6/46

    System

    • Two amplifierunits

     – Each with 4 x

    750W amplifier

    modules

     – Each with 2 x1.5kW power

    supplies

    • One set of 8 field

    coils

     – Series resonated – Fed at low

    voltage point

    PSU

    Input 2fo

    Power

    Cotrol

    PSU

    PSU

    PSU

  • 8/18/2019 Magnetotheranostics - Nano-Tera 2016

    7/46

    System

    • System functions

    • Field coils

    characterised

    • Equivalent circuitmodel available

    • Basic control

    software available

  • 8/18/2019 Magnetotheranostics - Nano-Tera 2016

    8/46

    Field coil voltages

  • 8/18/2019 Magnetotheranostics - Nano-Tera 2016

    9/46

    Field coil currents

  • 8/18/2019 Magnetotheranostics - Nano-Tera 2016

    10/46

    Loss resistance

    • Calramic capacitors hadTanδ = 0.002

    • Loss resistance between

    0.23 and 0.30 Ω at 300 kHz

    • Arlon Diclad 527

    • Tanδ = 0.001 at 1 MHz

    •   εr = 2.65

    • Loss resistance between

    0.11 and 0.15 Ω at 300 kHz

  • 8/18/2019 Magnetotheranostics - Nano-Tera 2016

    11/46

    Oil cooled capacitors

    • Manufactured from a PTFE based material with some glassfibre reinforcement with 254µm thickness bonded to an oil

    filled heat exchanger.

    280mm x 212 mm

    • Can expect 200W

    dissipation per capacitor 

  • 8/18/2019 Magnetotheranostics - Nano-Tera 2016

    12/46

    Predicted field strength

    For 750W per channel

    Current is about 36 ArmsField ~ 3mT

  • 8/18/2019 Magnetotheranostics - Nano-Tera 2016

    13/46

    Cooling system

    • System has been defined, will use split cooling loops with aliquid – liquid heat exchanger.

    • Manifolds connect to all 8 coils

    • Coil cooling loop will use transformer oil which has very high

    isolation of the high voltages and does not corrode or absorb

    ions from the construction materials

    • The oil is pumped through the coils and heat exchanger in a

    sealed and closed loop

    • Connections for an external water based cooling loop will be

    provided – the water will cool the oil

  • 8/18/2019 Magnetotheranostics - Nano-Tera 2016

    14/46

    Cooling system

  • 8/18/2019 Magnetotheranostics - Nano-Tera 2016

    15/46

    Treatment Planning for Magnetic Nanoparticle-Based Hyperthermia

    Esra Neufeld, Hazael Montanaro, Myles Capstick,Niels Kuster 

  • 8/18/2019 Magnetotheranostics - Nano-Tera 2016

    16/46

    Outline

    • background• method

    • application

    • impact:

     – width – shape

     – vasculature

    • conclusions

    Image: Oxbridge Biotech

  • 8/18/2019 Magnetotheranostics - Nano-Tera 2016

    17/46

    Background

    • SPIONS (superparamagnetic iron oxidenanoparticles)

    • coated iron oxide core

    • can be functionalized, e.g., with antibodies

     – targeted visualization and therapy(also secondary tumors &metastases)

    • serve as MRI contrast agents –diagnosis and treatment guidance

    • heat in alternating magnetic field due toremagnetization loss

     –hyperthermic cancer treatment• when targeting insufficient:

    can be directly injected / integrated into bone-

    cement used to treat brittle, tumor-affectedbone

    Image: Sezer 2012

  • 8/18/2019 Magnetotheranostics - Nano-Tera 2016

    18/46

    Introduction: Treatment Planning

    • personalized treatment planning permits

    • efficacy assessment• improved dosage (required particle density, field

    strength, duration)

    • identification / avoidance of unwanted side effects

    • treatment optimization

    • requirements• efficient generation of personalized patient model

    (anatomy, physiology, treatment setup)• precise modeling of physics

    • realistic modeling of physiological reaction

    • assessment of induced therapeutic effect /collateral damage

    • treatment optimization

    • validation & uncertainty assessment

    • imaging provides information about• patient anatomy• nano particle distribution

    • potentially: tissue properties (perfusion maps…)

  • 8/18/2019 Magnetotheranostics - Nano-Tera 2016

    19/46

    Method

    • extend existing HTP platform (Sim4Life)

    • magneto-quasistatic solver to determine local magnetic field (FEM,MPI-parallelized, rectilinear mesh)

     –modeling of in vivo induced magnetic field distribution fromapplicator 

  • 8/18/2019 Magnetotheranostics - Nano-Tera 2016

    20/46

    Method (II)

    • combine computed field strength with image-based particle densityusing derived relationship to determine deposited power 

    • determine temperature increase using Pennes bioheat equation

    • perfusion impact• non-linear temperature dependence of perfusion

    • convective/Dirichlet boundary conditions for large vessels

    • possibility of coupling to advanced models

    (body-core heating, vessel trees, CRD...)

  • 8/18/2019 Magnetotheranostics - Nano-Tera 2016

    21/46

    Method (IV)

    • CEM43 thermal dose computation for effect assessment

  • 8/18/2019 Magnetotheranostics - Nano-Tera 2016

    22/46

    Liver Tumor Targetting

  • 8/18/2019 Magnetotheranostics - Nano-Tera 2016

    23/46

    Impact (I)

    varied:

    • width of particle distribution• sharpness (step vs. gaussian)

    • proximity of major vessel(Dirichlet, zero T increase)

    observation

    • dominated by interplay betweendiffusion & perfusion heat removal

     –little T impact when distributionwider than characteristic Green’sfunction length

     –strongly perfused tissue (liver)

    quickly reaches perfusiondominated regime (perfusion &particle density matter, distributiononly affects width)

  • 8/18/2019 Magnetotheranostics - Nano-Tera 2016

    24/46

    Impact (II)

  • 8/18/2019 Magnetotheranostics - Nano-Tera 2016

    25/46

    Conclusion

    • nanomedicine promises efficient, targetted therapies

    • comprehensive treatment planning platform has been created

    • supports image-based modeling (anatomy, particle distribution)

    • multiscale/multiphysics model (EM – particle power loss – thermal)

    • limitations: current implementation does not consider 

     – modified macroscopic dielectric/thermal properties due to particles

     – interaction between multiple nanoparticles in proximity• ongoing:

     – extraction of quantitative particle density information from MRI data

     – experimental validation

    • used to:

     – optimize particle size / applicator frequency

     – gain understanding on impact of particle distribution, vasculature – model treatment

  • 8/18/2019 Magnetotheranostics - Nano-Tera 2016

    26/46

     Acknowlegement

    Funding

    • CTI HYCUNEHT

    • SNF, Nano-Tera.ch

    Collaboration

    • EPFL Powder Lab

    • University Hospital Geneva

    • Veterinary Clinic, University Zurich• Centre Hospitalier Universitaire Vaudois

    Center for BioMedical Imaging

    • Inselspital Bern

  • 8/18/2019 Magnetotheranostics - Nano-Tera 2016

    27/46

    Magnetotheranostics

    From superparamagneticnanoparticles to tools for the detection and

    treatment of cancer

    H. Hofmann1, B. von Rechenberg2, H. Thoeny3, M. Stuber4, O. Jordan5, N.

    Kuster6, D. Bonvin1, P. Kircher2, H. Richter2, S. Barbieri3, J. Bastiaansen4,

    M. Mionic 

    Ebersold4, S. Ehrenberger5, G. Borchart5, M.Capstick6, E.Neufeld6

    1EPFL, 2University of Zurich,3Inselspital Bern, 4CHUV, 5University of Geneva, 6 It’IS

    Magnetotheranostics Mid Term Report

    April 2016

    1

  • 8/18/2019 Magnetotheranostics - Nano-Tera 2016

    28/46

    Project layout

    Existing and newparticle composition

    Functionalisation ofparticle with

    antibodies

    Characterisation

    toxicity screening

    In vitro tests

    specific adsorption

    at metastasis

    Nanocomposite

    formulation

    In vitro tests

    and heating

    capacity

    In vivo tests of

    and tumor

    treatment

    In vivo tests of

    metastasis

    detection

    In vivo tests

    theragnosis

    Improvement

    of mag

    generator

    Developmenttemperatur

    simulation

    tool

    Engineering ; ITIS, ANTIA

    Physics, chemistry material

    science; EPFL, UNI GE, CHUV

    In-vitro, toxicity, imaging

    EPFL, ITIS, UNI GE, CHUV

    Medical application

    CABMM, Inselspital

            T      o      x        i      c        i       t      y

           t      e      s       t      s

       M   o    l   e   c   u    l   a

       r   i   m   a   g   i   n   g    (   M   R   I    )

       H   y   p

       e   r   t    h   e   r   m   i   a

    MagnetoTheranosticsMagnetotheranostics Mid Term ReportApril 2016

    2

  • 8/18/2019 Magnetotheranostics - Nano-Tera 2016

    29/46

    SPION as Contrast agent

    Functionalized nanoparticles for biomedicalapplication MSE 617

    4

    Mukesh G. Harisinghani, The new england journal of medicine 2003 vol. 348 no. 25, 2491

  • 8/18/2019 Magnetotheranostics - Nano-Tera 2016

    30/46

    MRI sequences for IONP

    • Further development of ultra-short echo time (UTE) MRIimaging.

     –  visualization of the off-resonance portion of the MRI signals which are

    present in areas surrounding the contrast agent,

     –  visualization of short T2* components which are typically in closervicinity to the contrast agent.

    Magnetotheranostics Mid Term Report

    April 2016

    7

    basic MRI method UTE MRI novel IRON-UTE (IRON) MRI

  • 8/18/2019 Magnetotheranostics - Nano-Tera 2016

    31/46

    Magnetotheranostics Mid Term ReportApril 2016

    8

  • 8/18/2019 Magnetotheranostics - Nano-Tera 2016

    32/46

    Functionalisation

    Magnetotheranostics Mid Term Report

    April 2016

    9

    Different types of molecules were used to

    • increase biocompatibility• higher colloidal stability

    • Act as linker for further functionalization with targeting molecules

    Up-Take is controlled by the chemistry and charge of the coating.

    Hard protein corona with different compositions detected (charge,

    chemistry)

    Small biocompatible molecules with min 3 functional groups for:

    - retaining good MRI relaxivity (> thickness, < r2 relaxivity)

    - enabling heat transfer for hyperthermia treatment

    - enabling lymphatic retention (> for HDsize < 100 nm)

    - act as a linker for further functionalization with targeting molecules

  • 8/18/2019 Magnetotheranostics - Nano-Tera 2016

    33/46

    Functionalization with targeting molecules

    Magnetotheranostics Mid Term ReportApril 2016

    10

    3 candidate ligands targeting the extracellular part of Prostate-specific membrane antigen (PSMA)

    transmembrane receptor were chosen:(i) Small urea molecule ACUPA (phase II clinical trial for docetaxel nanoparticles)

    (ii) Aptamer A10 (phase I clinical trial for docetaxel-loaded nanoparticles)

    (iii) Antibody J591 (phase II trials for PC immunotherapy, radiotherapy, imaging)

    In vitro, the aptamer specifically binds to PSMA+ cells:

    PSMA-negative PC3 cells

    PSMA-positive LNCaP cells

  • 8/18/2019 Magnetotheranostics - Nano-Tera 2016

    34/46

    In vivo tumor model

    Magnetotheranostics Mid Term ReportApril 2016

    11

    Most promising model: Grafting of MAT-LyLu prostate metastatic cell line in the rat.

    Method: Incubation of MAT-LyLu with fluorescent aptamer-Cy5 and small molecule-BDP FL

    B

    binds surface of MAT-LyLu cells… and is further internalized

    small molecule aptamer merged

    Adequate cell line forin vivo targeting assay

    aptamer-Cy5

    M ti i l t h th i

  • 8/18/2019 Magnetotheranostics - Nano-Tera 2016

    35/46

    cement

    Remaining

    tumor tissue

    Magnetic implant hyperthermia:Potential applications to vertebroplasty

  • 8/18/2019 Magnetotheranostics - Nano-Tera 2016

    36/46

    Hyperthermic implant imaging:

    CT-scan

    Implant

    Coronal cross section 3D reconstruction

    • SPION-containing implants easily seen

    due to their X-ray absorption close to that of bone

    Functionalized nanoparticles for biomedicalapplication MSE 617

    13

    M i i l h h i

  • 8/18/2019 Magnetotheranostics - Nano-Tera 2016

    37/46

    Magnetic implant hyperthermia:

    in vivo investigations

    Equilibrium temperature depends on : - magnetic field strength

    - physiological cooling reflexes

    p

  • 8/18/2019 Magnetotheranostics - Nano-Tera 2016

    38/46

    Magnetic implant Hyperthermia

    Implant

    15Functionalized nanoparticles for biomedicalapplication MSE 617

  • 8/18/2019 Magnetotheranostics - Nano-Tera 2016

    39/46

    Magnetic implant hyperthermia:

    in vivo investigations

    • Kaplan-Meyer survival curvesendpoint : ten time initial tumoral volume

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    0 12 24 36 48 60 72 84

    Days after therapy

       F  r  a  c   t   i  o  n  a   l  s  u  r

      v   i  v  a   l

    ControlImplanted control

    10.5 mT

    12 mT

    200

    group Median

    survival

    time : tm.

    Controln=6

    12

    implante

    d controln=7

    21

    10.5mTtreated

    n=7

    27

    12 mTtreated

    n=11

    37

    *Significant differences betweencurves with Wilcoxon test

      p

  • 8/18/2019 Magnetotheranostics - Nano-Tera 2016

    40/46

    Magnetic fluid hyperthermia

    • Undergoing clinical trials

     – Phase II (efficacy): glioblastoma multiforme

    and prostate carcinomas

     – Phase I (feasibility): esophageal cancer

    Functionalized nanoparticles for biomedicalapplication MSE 617

    17

  • 8/18/2019 Magnetotheranostics - Nano-Tera 2016

    41/46

    Task 2: Nano particle hyperthemia applicator

    prototype

    • Two amplifier units

    -Each with 4 x750W amplifiermodules

    - Total of 6 kW RFpower at 300 kHz

    • Field coils Amplifiers

    Magnetotheranostics Mid Term ReportApril 2016

    18

  • 8/18/2019 Magnetotheranostics - Nano-Tera 2016

    42/46

    Simulation Platform for TP

    • multiscale, multiphysics nanoparticle HT modeling:electromagnetic field – nanoparticle losses – induced heating (incl.thermoregulation) – therapeutic impact

    • image integration:extraction of SPION density & anatomy for personalized

    simulations, joint visualization of image data & models & results• advanced models of large vasculature impact;novel vessel segmentation for large range of image data withtunable interactivity/automatization

    • application: modeling complete treatment (human and dog model)

    • behavior study -> theoretical model: impact of particle distribution(width, sharpness), diffusion vs. perfusion, nearby vessel

    • novel FEM thermal solver with inhomogeneous & anisotropic tissuemodels (perfusion & effective thermal conductivity)

    Magnetotheranostics Mid Term ReportApril 2016

    19

  • 8/18/2019 Magnetotheranostics - Nano-Tera 2016

    43/46

    Example: Modeling of dog NP HT

    Magnetotheranostics Mid Term ReportApril 2016 20

  • 8/18/2019 Magnetotheranostics - Nano-Tera 2016

    44/46

    Conclusion

    • Milestones and delivery fulfilled as planned• Engineering part developed so far, that the

    biological/medical part can start.

    • Animal models and antibodies selected and tested

    • Next steps: –  Finalizing in vitro tets

     –  Animal tests

     –  Tests of the magnetic field generator with INOP of this project

     –  Establishing of SOP for synthesis, modification, testing andapplication of all products developed in Magnetotheranostics

     –  GMP production of core nanoparticles

    Magnetotheranostics Mid Term ReportApril 2016

    21

  • 8/18/2019 Magnetotheranostics - Nano-Tera 2016

    45/46

    *with Prof. S. Krishnan, Director, University of Texas MD Anderson Cancer Center, USA

    The «other» big challenges

    22

    Challenges Measures (several

    partners are involved)Use of EMA/FDA approved chemicals and

    solvents

    Realized by using aqueous chemistry

    Accepted methods for biocompatibility

    tests of (inorganic) nanoparticles

    Methods in parallel developed in CCMX

    project VIGO and NanoScreen

    Regulations for the use of inorganic

    nanoparticles for diagnostic and

    therapeutic applications

    Active participation on NanoReg

    (especially OECD Guidelines for the

    characterization of inorganic NP

    Good manufacturing practice at academic

    level

    Standard Operation Protocols for each

    step established or in preparation

    Reproducibility (at batch to batch andresearch level)

    Realized

    Acceptance of nanotechnology Organized the World Nano Cancer Day

    (Swiss part), Papers targeting clinicians in

    preparation*

  • 8/18/2019 Magnetotheranostics - Nano-Tera 2016

    46/46

    Thank you for your attentionInvestigator Institution Main task

    H. Hofmann, D. Bovin,M Mionic

    EPFL Particle and functionalisation

    B. von Rechenberg P.

    Kircher,

    H. Richter

    Vetsuisse Zürich animal experiments

    H. Thoeny,S. Barbieri, Inselspital, Bern MRI of lymph nodemetastasis

    M. Stuber, J. Bastiaansen,

    M. Mionic,

    CHUV MRI sequences development

    O. Jordan, G. Borchart ,

    S. Ehrenberger

    UNI Geneva, Implant and targeting

    N. Kuster, M. Clapstick

    E. Neufeld

    ITIS Magnetic field generator and

    treatment modeling