Magnetic Sensors: An Overview

54
Magnetic Sensors: An Overview Magnetic Sensors: An Overview Evangelos Hristoforou Laboratory of Physical Metallurgy National Technical University of Athens IEEE Sensors 2003 Conference - Toronto, Canada

Transcript of Magnetic Sensors: An Overview

Page 1: Magnetic Sensors: An Overview

Magnetic Sensors: An OverviewMagnetic Sensors: An Overview

Evangelos HristoforouLaboratory of Physical Metallurgy

National Technical University of Athens

IEEE Sensors 2003 Conference - Toronto, Canada

Page 2: Magnetic Sensors: An Overview

Outline

•Part A: Engineering Theory of Magnetism•A short introduction to magnetics•The magnetization process•Magnetic effects for engineering applications

•Part B: Sensors Based on Magnetic Materials•Sensing principles based on magnetic effects•Applications of sensors based on magnetic materials•Developing a sensor

IEEE Sensors 2003 Conference - Toronto, Canada

Page 3: Magnetic Sensors: An Overview

Part A:

Engineering Theory of Magnetism

IEEE Sensors 2003 Conference - Toronto, Canada

Page 4: Magnetic Sensors: An Overview

A short introduction to magnetics

• Paramagnetism

IEEE Sensors 2003 Conference - Toronto, Canada

∆H

M

• Diamagnetism

M

H

H=0 A/m

M

H>>0 A/m

MH=M - ∆M

χ>0

χ<0

Page 5: Magnetic Sensors: An Overview

Ferromagnetism

• Short range or exchangeinteraction results in spin-spin alignment of neighboring spins in some TM materials

• The spin-spin alignment results in the formation of the so called ferromagnetic domains

IEEE Sensors 2003 Conference - Toronto, Canada

Page 6: Magnetic Sensors: An Overview

Ferromagnetism

Magnetic domains cannot be extended to infinityDomain-domain interaction results in magnetic domains separated bymagnetic domain walls

IEEE Sensors 2003 Conference - Toronto, Canada

M=0

Orientation of dipoles in domain walls changes gradually

Page 7: Magnetic Sensors: An Overview

The Basic Mechanisms of Magnetization Process

• Domain wall motion:• Reversible• Irreversible

• Domain rotation:• Barkhausen jumps: irreversible effect• Small angle rotation: reversible effect

IEEE Sensors 2003 Conference - Toronto, Canada

Page 8: Magnetic Sensors: An Overview

Reversible Magnetic Domain MotionReversible Magnetic Domain Motion

M=0H=0

M>0

Msat

H

IEEE Sensors 2003 Conference - Toronto, Canada

H

M

Hs

Ms

Page 9: Magnetic Sensors: An Overview

Irreversible Magnetic Domain MotionIrreversible Magnetic Domain Motion

IEEE Sensors 2003 Conference - Toronto, Canada

M=0H=0

M>0

Msat

H

Defect

H

M

Hs

Ms

Page 10: Magnetic Sensors: An Overview

Irreversible domain rotation:Irreversible domain rotation:BarkhausenBarkhausen JumpsJumps

IEEE Sensors 2003 Conference - Toronto, Canada

H

Easy axis A Easy axis B

Page 11: Magnetic Sensors: An Overview

Reversible Rotation of Domains

IEEE Sensors 2003 Conference - Toronto, Canada

Reversible magnetic domain rotation after the irreversible magnetisation process

H ∆H

Page 12: Magnetic Sensors: An Overview

The Magnetization Process

IEEE Sensors 2003 Conference - Toronto, Canada

H

M

Hs

Ms

• Virgin curve– Intrinsic magnetization

changes under external field– Main curve: three parts

• Domain wall motion• Barkhausen jumps• Rotation of magnetization

– Minor loops

• Saturation Ms– Completely oriented dipoles

H

Mo

MB

Ms

Page 13: Magnetic Sensors: An Overview

The Magnetization Process

• B-H loop– Saturation & back– Irreversible process – remanence– Coercive force (field) & coercive slope– Properties & dynamic properties: f, T, σ– Single phase systems have symmetric B-H loops– Minor loops: Inside the B-H loop– Size of B-H loops: hard - soft - semi– Non-single-phase materials may result in asymmetric B-H loop– Large Barkhausen Effect: an interesting property

IEEE Sensors 2003 Conference - Toronto, Canada

Page 14: Magnetic Sensors: An Overview

-1,1

0

1,1

-30 0 30

H

M/Ms

IEEE Sensors 2003 Conference - Toronto, Canada

B-H loopMain parameters: Temperature - Stress - Frequency

Page 15: Magnetic Sensors: An Overview

Magnetic effects

Magnetostriction:– Magnetic domain

rotation (reversible and irreversible)

– +λ(H): zero, classic,unhysteretic, giant, colossal

– Dynamic properties, hysteresis

IEEE Sensors 2003 Conference - Toronto, Canada

-1,2

-1

-0,8

-0,6

-0,4

-0,2

0

0,2

-30 0 30

H

λ/λs

Page 16: Magnetic Sensors: An Overview

IEEE Sensors 2003 Conference - Toronto, Canada

Magnetic effects

Magnetostrictive Delay Lines:an application of the magnetostriction effect

Ie

Ie

MDL

MDL

Vo

a

a

Detectable change of flux density

Propagating elastic pulse

Generated microstrains

Page 17: Magnetic Sensors: An Overview

Magnetic effects

Z-H loops

Magnetoresistance(MR, AMR, GMR, CMR)

Magnetoimpedance(MI, SI, GMI)

IEEE Sensors 2003 Conference - Toronto, Canada

0

100

200

300

400

-80 -40 0 40 80

UPDOWN

∆Z/

Z (%

)

H (Oe)

1.5 mA

b)200

300

400

-4 -2 0 2 4H (Oe)

-15 -10 -5 0 5 10 15-4

-3

-2

-1

0

GMR%

H (kOe)

AgPt (2.8 nm)-Co(0.5 nm) AgCu (2.8 nm)-Co(0.5 nm) AgSi (2.8 nm)-Co(0.5 nm)

Page 18: Magnetic Sensors: An Overview

Magnetic effects

Inductive effects

Wiedeman effect

Domain wall nucleation& propagation

Classic set-ups(LVDT, fluxgates)

IEEE Sensors 2003 Conference - Toronto, Canada

I (t)exc

Vind

µ(t) B(t) B0

H0

iEXC

DA Vout

PSD

INT

2f

GEN

C1

C2

f

Icomp

vi

Page 19: Magnetic Sensors: An Overview

Magnetic effects

Magneto-optic effectsBitter, Kerr, Faraday effects

Use of M-O effectsCase study:displacement sensor

IEEE Sensors 2003 Conference - Toronto, Canada

H = Hs

H = 0

H = -Hs

Page 20: Magnetic Sensors: An Overview

Magnetic effects

Spintronics

Spin valves

Spin tunneling

IEEE Sensors 2003 Conference - Toronto, Canada

Pinning ofReference layer

ShapeAnisotropy(geometric)

InducedAnisotropy

Orange PeelCoupling

Stray FieldCoupling

(geometric)

Sensors Iso lation Coil

Page 21: Magnetic Sensors: An Overview

Magnetic materials

BulkThin films

RQ (ribbons & wires)Particulate media

Composites

IEEE Sensors 2003 Conference - Toronto, Canada

Stress reliefInducing anisotropyTailoring B-λ-Z(H)Nanocrystallization

Micromechanics

Applications of magnetic materials

(Fe Co Ni)-(ETM)-(RE)-(NMM)

Page 22: Magnetic Sensors: An Overview

Applications of magnetic materials

Powertransformers

motorsactuators

Recordingrecording mediarecording heads

technology

Sensors

&

IEEE Sensors 2003 Conference - Toronto, Canada

Page 23: Magnetic Sensors: An Overview

Magnetic Sensors: An OverviewMagnetic Sensors: An Overview

Part B: SensorsPart B: Sensors

IEEE Sensors 2003 Conference - Toronto, Canada

Page 24: Magnetic Sensors: An Overview

Sensors

• Position

• Stress

• Field

• Position (tapes, digitizers, 3-d)• Dilatometry: LVDT, MDL• Speed & vibration: accelaration, …

• Load cells & torque meters• Pressure gauges and stress sensors• Force/pressure digitizers

• NDT applications• Recording• Compass

IEEE Sensors 2003 Conference - Toronto, Canada

Data from EMSA 2002, Athens, Greece

Page 25: Magnetic Sensors: An Overview

Position Sensors

• Position sensor based on the magnetostrictive delay line technique– Sensitivity: 5 µm; Uncertainty: + 10 µm– Drawbacks: ambient field sensitive– Characteristics are optimised by using amorphous alloys

IEEE Sensors 2003 Conference - Toronto, Canada

Ie

Pulse voltage output train of the in series connected search coils

Horizontally movable permanent Nd-Fe-B magnetMDL

-10

-5

0

5

10

0 10 20

Measuring length (mm)U

ncer

tain

ty (m

icro

ns)

Page 26: Magnetic Sensors: An Overview

Position Sensors(MDL technique cont.)

IEEE Sensors 2003 Conference - Toronto, Canada

ECT-MDL digitizerECT-MDL digitizer

Dilatometer and stress sensor Moving magnet sensor

Page 27: Magnetic Sensors: An Overview

Position Sensors

• Position sensor based on the linear variable differential transformer (LVDT) set-up. (1) Soft magnetic material, (2) Excitation coil, (3) In series opposition search coils.– Sensitivity: 100 µm– Uncertainty: + 500 µm– Repeatable response from -70 C to 150 C– Drawbacks: ambient field sensitive– Improved characteristics by material tailoring

IEEE Sensors 2003 Conference - Toronto, Canada

1 2 3

02040

6080

100

0 10 20

Magnet-piston position (mm)S

enso

r res

pons

e (m

V)

Page 28: Magnetic Sensors: An Overview

Position SensorsPosition sensor based on an inductive principle

IEEE Sensors 2003 Conference - Toronto, Canada

Page 29: Magnetic Sensors: An Overview

Position Sensors

• Position sensor based on permanent magnet tape. (1) Permanent magnetic thin films, (2) Searching magnetic head.

– Sensitivity: 100 µm– Uncertainty: + 500 µm– Repeatable response from -70 C to 150 C– Drawbacks: ambient field sensitive– Characteristics can be improved by material tailoring

1 2

IEEE Sensors 2003 Conference - Toronto, Canada

Page 30: Magnetic Sensors: An Overview

Position Sensors

• Angular positioning sensor. (1) Radial permanent magnets in tooth arrangement, (2) Searching field sensor.

– Repeatable response from -70 C to 150 C– Great reproducibility allowed use in automobile industry (ABS)– Drawbacks: ambient field sensitive– Advantages: no dust sensitive

IEEE Sensors 2003 Conference - Toronto, Canada

1 2

Page 31: Magnetic Sensors: An Overview

Stress sensors

• Stress sensors based on inductive effects. (1) Soft magnetic element, (2) Inductive excitation coil.– More sensitive than strain gauges, if amorphous alloys are used– Good noise level after heat annealing– Good reproducibility after field annealing– Ambient field sensitive

IEEE Sensors 2003 Conference - Toronto, Canada

FF

1 2

0

20

40

60

80

0 50 100 150

Tensile stress (N/sq.mm)V

o (m

Vol

ts)

Page 32: Magnetic Sensors: An Overview

Stress sensors

Pressure, stress & torque sensors based on MDLs

IEEE Sensors 2003 Conference - Toronto, Canada

Ie Vo

MDL

Ie Vo

MDL0

1020

3040

5060

70

0 20 40 60

Applied force (gr)

Vo

(mV

olts)

01020304050607080

0 20 40 60

Applied force (gr)V

o (m

Vol

ts)

Page 33: Magnetic Sensors: An Overview

Stress Sensors

Thickness sensor based on a coilless MDL set-up

IEEE Sensors 2003 Conference - Toronto, Canada

0

2

4

6

8

10

10 30 50 70 90 110 130Pulsed current (mA)

Out

put V

olta

ge (m

V)

0

2

4

6

8

10

0 2 4 6 8 10 12 14 16 18 20Thickness (X100nm)

Out

put (

mV

)

Page 34: Magnetic Sensors: An Overview

Stress Sensors

• Magneto-inductive (MI) stress & torque sensors. (1) Sinusoidal excitation circuit, (2) MI element.

– Very sensitive, especially in high frequencies

IEEE Sensors 2003 Conference - Toronto, Canada

1

2

Vout

Vout

0

10

20

30

40

50

0 0,4 0,8 1,2 1,6

Applied force (X10N) or applied torsion (turns/m)

Vol

tage

out

put (

mV

) Torsion

Stress

Page 35: Magnetic Sensors: An Overview

Stress Sensors: Torque Meters

IEEE Sensors 2003 Conference - Toronto, Canada

Page 36: Magnetic Sensors: An Overview

Air-flux (A)

C3 C4

C1 C2

RibbonSignal coil

Cantilever

C3-C4

AC1-C2

Air-flux (A)

Air-flux Sensors Based on the Inverse Wiedeman Effect

IEEE Sensors 2003 Conference - Toronto, Canada

Page 37: Magnetic Sensors: An Overview

Ambient field dependence

• A serious drawback in mechanical sensors based on magnetics

• There are three solutions:– Two axes shielding by nanocrystalline thin

ribbons– Active compensation by induced field in some

cases (MDL and MI set-ups)– Smart field sensing

IEEE Sensors 2003 Conference - Toronto, Canada

Page 38: Magnetic Sensors: An Overview

Field Sensors

Fluxgates

IEEE Sensors 2003 Conference - Toronto, Canada

IEX

Vout

B0

c)

noise PSD (pTrms/√Hz)

frequency (Hz)

1 100.10.1

1000

100

10

1

1.03760 Hz Y = 2.919 (pTrms/√Hz)

time (s)

0 5 10 15 20 25

sensor noise (pT)40

20

0

-20

-40

Page 39: Magnetic Sensors: An Overview

IEEE Sensors 2003 Conference - Toronto, Canada

Field Sensors

Magnetoresistive heads

Page 40: Magnetic Sensors: An Overview

IEEE Sensors 2003 Conference - Toronto, Canada

Field Sensors

MDLs

IeVo

MDL

-60

-40

-20

0

20

40

60

-160 -120 -80 -40 0 40 80 120 160

Applied field (A/m)

Vol

tage

out

put (

mV

)

Page 41: Magnetic Sensors: An Overview

IEEE Sensors 2003 Conference - Toronto, Canada

Field Sensors

GMR & Spintronics

SubstrateSi

Hard Layer

Spacing Layer

current strap

Isolation

Sensing Layer

(Co)(FeMn)

current direction for lin. characeristic

Cu

Cu

Co/Py

hyst.

Page 42: Magnetic Sensors: An Overview

Smart Sensors

Multifunctional system: combination of measurements• - Magnetostrictive delay line• - Magnetoimpedance set-up• - Domain wall nucleation and propagation set-up

Using three different types of response to determine three different inputs

IEEE Sensors 2003 Conference - Toronto, Canada

IeVo

Magnetic Element

Page 43: Magnetic Sensors: An Overview

Sensor Applications

• Industrial– Sensors in production (piston position, stress monitoring, else)– Sensing systems for industry– NDT&E using field detection techniques

IEEE Sensors 2003 Conference - Toronto, Canada

Ie

MDL

Voltage pulses due to cracks on the magnetic surface

Under test magnetic surface

Page 44: Magnetic Sensors: An Overview

GMR Sensor Response

Shielded GMR Sensor Response

Hall Sensor Response

A Comparison Between Hall and GMR Sensors for NDT&E Inspection

IEEE Sensors 2003 Conference - Toronto, Canada

Page 45: Magnetic Sensors: An Overview

A Micro-Fluxgate Arrangement for NDT&E Inspections

IEEE Sensors 2003 Conference - Toronto, Canada

The 4 m-Fluxgate Sensors The Sensor

The Under Inspection Magnetic Anomaly

Page 46: Magnetic Sensors: An Overview

Sensor Applications

BiomedicalField monitoring, diabetes & blood monitoring, stress & strain monitoring,

cardiac measurements, artificial sphincters

IEEE Sensors 2003 Conference - Toronto, Canada

Page 47: Magnetic Sensors: An Overview

B (Tesla)

BiomagneticFields

Lung particles

Human Heart Skeletal muscles Fetal heartHuman eyeHuman Brain

Human Brain (evoked response)

SQUID System Noise level

Earth’s Field

Urban Noise

Car @ 50m

Screwdriver@ 5m

Transistor, IC chip @ 2m

Transistordie @ 1m

Electromagnetic Measurements in Bio-Engineering

GMI Measurements

IEEE Sensors 2003 Conference - Toronto, Canada

Page 48: Magnetic Sensors: An Overview

Sensor Applications• Military applications

– Gyroscopes (field)– Magnetic signatures (field)

• Automotive– Positioning & tracking (field)– Torque sensors (stress)– On-off- ABS rotation (positioning)

• Other applications– Environmental: E/M low frequency– Laboratory : characterization techniques

– Domestic : current path searcher

IEEE Sensors 2003 Conference - Toronto, Canada

Page 49: Magnetic Sensors: An Overview

Sensor Applications

IEEE Sensors 2003 Conference - Toronto, Canada

Induced m agnetic f ie ld

D C cu rrent

r ibbon

Current source

Fu n ction gen era tor

Lock - in Am p lif ie r

O scillo scope

G PIB In te rfa c e

Induced m agnetic f ie ld

D C cu rrent

r ibbon

Current source

Fu n ction gen era tor

Lock - in Am p lif ie r

O scillo scope

G PIB In te rfa c e

Electric Current Meter

Page 50: Magnetic Sensors: An Overview

IEEE Sensors 2003 Conference - Toronto, Canada

AMR Bridge Micro-coils

Micromagnetic arrangements

Page 51: Magnetic Sensors: An Overview

Micromagnetic arrangements

IEEE Sensors 2003 Conference - Toronto, Canada

Page 52: Magnetic Sensors: An Overview

Developing a sensor

• Facing-up the problem– measurement– range – sensitivity– Field of use (application)– Parameters affecting

• Choice of sensing principle (effect)– Taking into account: range – sensitivity – parameters– Preliminary experiments: indicative results– Scheduling the experiment & and the sensor

IEEE Sensors 2003 Conference - Toronto, Canada

Page 53: Magnetic Sensors: An Overview

Sensor Development

• Sensing element : thin film, RQ, powder, else• Sensing device: the first prototype• Sensor electronics &calibration set-up• Measurements• Parametric effects: field, stress, temperature• Design of the sensor housing• Development of the sensor prototype• Calibration & Corrective actions• Final prototype & technical envelop

IEEE Sensors 2003 Conference - Toronto, Canada

Page 54: Magnetic Sensors: An Overview

Designing the future

Is miniaturization a future challenge?– Nanoscale resolution in writing & reading– Sensors with secondary standard uncertainty (nanotechnology?)– Smart multipurpose sensors– Parametric control (field-temperature- stress)– Silicon-chip magnetic sensors

Is there any key-parameter in designing magnetic sensors?– Hysteresis: the key point– Stability of B-λ-Z(H)– Parametric effects: field- stress-temperature

IEEE Sensors 2003 Conference - Toronto, Canada