Magnetic field and convection in Betelgeuse

23
Magnetic field and convection in Betelgeuse M. Aurière, J.-F. Donati, R. Konstantinova-Antova, G. Perrin, P. Petit, T. Roudier Roscoff, 2011 April

description

Magnetic field and convection in Betelgeuse. M. Aurière, J.-F. Donati, R. Konstantinova-Antova, G. Perrin, P. Petit, T. Roudier. Roscoff, 2011 April 6. Outline. Dynamo(s) in the Sun and cool stars The case of Betelgeuse Spectropolarimetric detection of stellar magnetic fields - PowerPoint PPT Presentation

Transcript of Magnetic field and convection in Betelgeuse

Page 1: Magnetic field and convection in Betelgeuse

Magnetic field and convection in Betelgeuse

M. Aurière, J.-F. Donati, R. Konstantinova-Antova, G. Perrin, P. Petit, T. Roudier

Roscoff, 2011 April 6

Page 2: Magnetic field and convection in Betelgeuse

Outline

• Dynamo(s) in the Sun and cool stars

• The case of Betelgeuse

• Spectropolarimetric detection of stellar magnetic fields

• The cool supergiant Betelgeuse

• Systematic field measurements in supergiant stars

• Perspectives

Page 3: Magnetic field and convection in Betelgeuse

The large-scale solar dynamo

QuickTime™ et undécompresseur TIFF (non compressé)

sont requis pour visionner cette image.

QuickTime™ et undécompresseur TIFF (non compressé)

sont requis pour visionner cette image.

Differential rotation Helical motions

Parker 1955

Solar cycle

poloidal toroidal toroidal poloidal

surface

tachocline

Combination of both effects(both linked to solar rotation)

Page 4: Magnetic field and convection in Betelgeuse

Some open questions about the solar dynamo

• Toroidal field generation : differential rotation (Parker 1955) tachocline alone ? convective zone as a whole ? (Brown et al 2010, Petit et al. 2008)

what about the subsurface shear layer ? (Brandenburg 2005)

Poloidal field generation : cyclonic convection ? (Parker 1955) decay of active regions + meridional circ. ? (Dikpati et al. 2004)

Page 5: Magnetic field and convection in Betelgeuse

Lites et al. 2008 (Hinode observations)

Small-scale magnetism and solar dynamo

QuickTime™ et undécompresseur

sont requis pour visionner cette image.

Origin of small-scale (intranetwork) magnetic elements :• decay of active regions ? But: no or very limited variation over solar cycle• small-scale dynamo (Meneguzzi & Pouquet 1989, Cattaneo 1999 etc) ?

Page 6: Magnetic field and convection in Betelgeuse

QuickTime™ et undécompresseur

sont requis pour visionner cette image.

Vögler et al. 2007

Small-scale magnetism and solar dynamo

Origin of small-scale (intranetwork) magnetic elements :• decay of active regions ? But: no or very limited variation over solar cycle• small-scale dynamo ? (Meneguzzi & Pouquet 1989, Cattaneo 1999 etc)

Page 7: Magnetic field and convection in Betelgeuse

• How to make sure that small solar magnetic elements are not residuals from active regions, generated by the large-scale dynamo ?

Observe a star without rotation (no global dynamo)

• How to resolve magnetic elements at the convective scale on a distant star ?

Observe a star with huge convective cells

Play with other stars to tune parameters

Page 8: Magnetic field and convection in Betelgeuse

Betelgeuse : basic facts

Cool supergiant star

• Teff = 3600 K

• R = 600 - 800 Rsun , e.g. Perrin et al. 2004

(first stellar diameter ever measured, Michelson & Pease 1921)

• M ~ 15 Msun

• Prot ~ 17 yr (from space-resolved UV Doppler shifts)

HST/FOC

Page 9: Magnetic field and convection in Betelgeuse

Convection in Betelgeuse

Giant convection cells(a few tens of cells on visible hemisphere vs ~ 106 cells on solar hemisphere)

• largest cells seen in nIR, lifetime ~ years

• smaller cells in visible, lifetime ~ weeks (e.g. Schwarzshild 1975, Chiavassa et al. 2010, 2011)

Page 10: Magnetic field and convection in Betelgeuse

Magnetic fields in Betelgeuse ?

Prot ~ 17 yr Ro = Prot/tconv >> 1 no solar dynamo expected

Convective dynamo simulations predict strong fields (500 G)with small filling factors (Dorch 2004)

UV radius > optical radius (hot material above photosphere, Gilliland et al. 1996) … and :Radio radius > optical radius(cool material above photosphere, Lim et al. 1998)

Cool extended atmosphere coexists with hot extended atmosphere

Ayres et al. 2003 report strongly absorbed lines of highly ionized species « Buried » coronal loops

Page 11: Magnetic field and convection in Betelgeuse

Zeeman detection of stellar magnetic fields

J=0

J=1

Zeeman 1896, Hale 1908 for the Sun, Babcock 1947 for a star

Splitting of spectral lines in a magnetized atmosphere(proportional to field strength, unsensitive to field orientation)

Page 12: Magnetic field and convection in Betelgeuse

Zeeman detection of stellar magnetic fields

Zeeman splitting in a sunspot

Page 13: Magnetic field and convection in Betelgeuse

Generally, B too weak to produce Zeeman splitting… but still able to polarize light in spectral lines

J=0

J=1

Zeeman detection of stellar magnetic fields

Page 14: Magnetic field and convection in Betelgeuse

J=0

J=1

(Zeeman 1896)

Light polarization controlled by strength and orientation of B

Zeeman detection of stellar magnetic fields

Page 15: Magnetic field and convection in Betelgeuse

QuickTime™ et undécompresseur codec YUV420

sont requis pour visionner cette image.

• Generally, polarized Zeeman signatures signatures too weak to be detected in individual lines

multi-line analysis (cross-correlation).

Extracting Zeeman signatures

Page 16: Magnetic field and convection in Betelgeuse

Instrumental constraints

• Largest polarized Zeeman signatures in cool stars : V ~ 10-2Ic

• For low-activity stars (e.g. solar twins) : V ~ 10-5Ic

• Linear polarization (Q and U) ~ 10-2V ~ 10-7Ic for solar twins

• optimize the instrumental throughput (ESPaDOnS/NARVAL : about 15% including sky & detector)• use large reflectors (ESPaDOnS/HARPSpol : 4m)• perform accurate polarimetric analysis

• resolve spectral lines (R > 30,000)

Page 17: Magnetic field and convection in Betelgeuse

QuickTime™ et undécompresseur

sont requis pour visionner cette image.

CFHT, HawaiiESPaDOnS (2004)

TBL, Pic du MidiNARVAL (2007)

QuickTime™ et undécompresseur

sont requis pour visionner cette image.

QuickTime™ et undécompresseur

sont requis pour visionner cette image.

La Silla, ChileHARPS (2010)

Page 18: Magnetic field and convection in Betelgeuse

QuickTime™ et undécompresseur TIFF (non compressé)

sont requis pour visionner cette image.

The magnetic field of Betelgeuse

Aurière et al. 2010

Field detection using 15,000 photospheric atomic lines(note : thousands of molecular lines ignored)

B ~ 1 Gauss

Page 19: Magnetic field and convection in Betelgeuse

QuickTime™ et undécompresseur TIFF (non compressé)

sont requis pour visionner cette image.

QuickTime™ et undécompresseur TIFF (non compressé)

sont requis pour visionner cette image.

The magnetic field of Betelgeuse

Aurière et al. 2010

Field variability < 1 month • much faster than stellar rotation• consistent with convective timescales (giant cells)

Likely similar to « Quiet Sun » magnetism

Page 20: Magnetic field and convection in Betelgeuse

QuickTime™ et undécompresseur

sont requis pour visionner cette image.

Viticchié & Sanchez Almeida 2011

QuickTime™ et undécompresseur TIFF (non compressé)

sont requis pour visionner cette image.

Velocity fields

Asymmetric Zeeman signaturesgenerated by vertical gradientsof magnetic fields & velocities

QuickTime™ et undécompresseur

sont requis pour visionner cette image.

(Lopez Ariste 2002)

… seen also in solar intranetwork :

Page 21: Magnetic field and convection in Betelgeuse

QuickTime™ et undécompresseur

sont requis pour visionner cette image.

Are all cool supergiants magnetic ?

Grunhut et al. (2009) observed 30 late-type supergiantswith 30% magnetic detections (weak fields) probably 100% of magnetic supergiants (assuming 5x better S/N)

What happens to the 5-10% of strongly magnetic,main-sequence massive magnetic stars ? organized, strongly magnetic evolved stars (inclined dipole with ~500G field) Aurière et al. 2008 for EK Eri

Page 22: Magnetic field and convection in Betelgeuse

Magnetic field often ignored in proposed processes creating highly structured wind to be reconsidered ?

Kervella et al. 2009 (NACO observations)

Page 23: Magnetic field and convection in Betelgeuse

Perspectives

• Look for periodicities in field variability • Classical magnetic mapping prevented by long rot. period (17 yr) use simultaneous interferometry and spectropolarimetry use future ground-based solar facilities like ATST, EST. (AO + spectropolarimetry)

• Combine optical spectropolarimetry and UV spectroscopy UVMAG project (ask Coralie about that)