MA2211 Unit 3

30
1 UNIT III PARTIAL DIFFERENTIAL EQUATIONS PART – A Problem 1 Form the pa rt ia l di ff er enti al equa ti on by el iminat ing a an d b fr om 2 2 2 2  z x a y b . Solution: 2 2 2 2  z x a y b - (1) Diff eren tiati ng (1) p artia lly w.r . t x and y we ge t 2 2 2  z  p y b x  x - (2) 2 2 2  z q x a y  y - (3) Multiplying Eqn. (2) and Eqn (3) 2 2 2 2 4  pq x a y b xy 4  pq xyz [using (1)] Problem 2 Obtain the partial differential equation by eliminating arbitrary constants a and b from 2 2 2 1  x a y b z . Solution: 2 2 2 1  x a y b z - (1) Differentia ting (1) partia lly w.r. t x and y we get 2 2 0  x a zp  x a zp - (2) 2 2 0  y b zq  y b zq - (3) Substituting (2) & (3) in (1) we get 2 2 2 2 2 1  z p z q z i.e., 2 2 2 1 1  z p q Pr o bl e m 3 Fr om the pa rt ia l di ff eren ti al eq ua ti on by eli min at ing f from 2 2 2 , 0  f x y z x y z . Solution: We know that if f (u, v) = 0 then u = f (v) 2 2 2  x y z f x y z - (1) Differentia ting (1) partia lly w.r. t x and y We get

Transcript of MA2211 Unit 3

Page 1: MA2211 Unit 3

8/8/2019 MA2211 Unit 3

http://slidepdf.com/reader/full/ma2211-unit-3 1/30

1

UNIT III PARTIAL DIFFERENTIAL EQUATIONS

PART – A

Problem 1 Form the partial differential equation by eliminating a and b from

2 2 2 2  z x a y b .

Solution:

2 2 2 2  z x a y b - (1)

Differentiating (1) partially w.r. t x and y we get

2 2 2 z

  p y b x x

- (2)

2 2 2 zq x a y y

- (3)

Multiplying Eqn. (2) and Eqn (3)

2 2 2 2 4  pq x a y b xy

4  pq xyz [using (1)]

Problem 2 Obtain the partial differential equation by eliminating arbitrary constants a

and b from 2 2 2 1  x a y b z .

Solution:

2 2 2

1  x a y b z - (1)Differentiating (1) partially w.r. t x and y we get

2 2 0  x a zp

  x a zp - (2)

2 2 0  y b zq

  y b zq - (3)

Substituting (2) & (3) in (1) we get2 2 2 2 2 1 z p z q z

i.e., 2 2 2 1 1  z p q

Problem 3 From the partial differential equation by eliminating f  from

2 2 2 , 0 f x y z x y z .

Solution:

We know that if f (u, v) = 0

then u = f (v)

2 2 2 x y z f x y z - (1)

Differentiating (1) partially w.r. t x and y

We get

Page 2: MA2211 Unit 3

8/8/2019 MA2211 Unit 3

http://slidepdf.com/reader/full/ma2211-unit-3 2/30

2

'2 2 1  x zp f x y z p - (2)

'2 2 1  y zq f x y z q

Divide (2) & (3)1

1

  x zp p

  y zq q

  x qx zp zpq y py zq zpq

 z y p x z q y x

Problem 4 Form the partial differential equation by eliminating f  from

2 12 log  z x f x

 y

.

Solution:

Let 2 12 log  z x f x

 y

- (1)

Differentiate (1) w.r. t x and y

' 1 12 2 log

 z  p x f x

  x y x

- (2)

'

2

1 12 log

 zq f x

  y y y

- (3)

Eliminating ' f  from (2) & (3)

22 1 p x y

q x

2 22  px x qy 2 22  px qy x

Problem 5 Obtain the partial differential equation by eliminating the arbitrary constants

a & b from2 2

  z xy y x a b .

Solution:

2 2  z xy y x a b - (1)

Differentiating (1) partially w.r. t x and y

2 2

12

2

 z  p y y x

 x x a

2 2

 yx p y

 x a

2 21

 p x

 y x a

Page 3: MA2211 Unit 3

8/8/2019 MA2211 Unit 3

http://slidepdf.com/reader/full/ma2211-unit-3 3/30

3

2 21

 p x

 y x a

- (2)

2 2 zq x x a y

2 2q x x a - (3)

Multiplying (2) & (3)

2 2

2 21

1

 p xq x x a

 y x a

 pq x x

 y

  p y q x xy

  pq xp yq xy xy

  px qy pq

Problem 6 Find the complete integral of  p q pq where z z

  p and q x y

.

Solution:

  p q pq - (1)

This is of the form , 0  f p q

Let z ax by c - (2) be the complete solution of the partial differential

equation.

 z p a

 x

 zq b

 y

(1) reduces to a+b=ab

1

1

a b a

ab

a

1

a  z ax y ca

Problem 7 Obtain the complete integral of 2 2  z px qy p q .

Solution:2 2  z px qy p q - (1)

This equation is of the form ,  z px qy f p q (clairaut’s type)

the complete integral is 2 2  z ax by a b .

Page 4: MA2211 Unit 3

8/8/2019 MA2211 Unit 3

http://slidepdf.com/reader/full/ma2211-unit-3 4/30

4

Problem 8 Solve 1  p q qz .

Solution:

1  p q qz - (1)

This equation is of the form , , 0 f z p q

  z f x ay be the solution

  x ay u z f u

dz adz p q

du du

(1) reduces to

1

1

1

1

1

dz dz dza a z

du du du

dza az

du

dza az

du

dz z

du a

dzdu

 za

Integrating 1log z u ba

i.e.,1

log z x ay ba

is the complete solution.

Problem 9 Solve the equation tan tan tan  p x q y z .

Solution:

Given tan tan tan  p x q y z

This equation is of the form p q

P Q R

When P = tan x Q = tan y R = tan z

The subsidiary equations are

. .,tan tan tan

dx dy dz

P Q R

dx dy dzi e

  x y z

Considering the first two,

tan tan

dx dy

 x y

Sign,

Page 5: MA2211 Unit 3

8/8/2019 MA2211 Unit 3

http://slidepdf.com/reader/full/ma2211-unit-3 5/30

5

cot cot

log sin log sin log

sinlog log

sin

sin

sin

sin. .,

sin

  xdx ydy

  x y a

 xa

 y

 xa

 y

 xi e a

 y

 

Take,

tan tan

tan tan

dy dz

 y z

dy dz

 y z

 

cot cot

log sin log sin log

sinlog log

sin

  ydy zdz

  y z b

 yb

 z

 

sin

sin

 yb

 z

Hence the general solution is sin sin, 0sin sin

 x y y z

 

Problem 10 Solve 3 2 33 2 0  D DD D Z   .

Solution:

Substituting D = m, & D1

= 1

The Auxiliary equation is m3

- 3m + 2 = 0

m = 1, 1, -2

Complimentary function is 1 2 32 y x x y x y x  

i.e., 1 2 31 2  Z y x y x y x  

Problem 11 Find the general solution of 

2 2 2

2 24 12 9 0

  z z z

  x x y y

.

Solution:

2 1 124 12 9 0  D DD D Z  

The auxiliary equation is 24 12 9 0m m 4m2 – 6m – 6m +9 = 0

2m (2m – 3) – 3 (2m – 3) = 0

Page 6: MA2211 Unit 3

8/8/2019 MA2211 Unit 3

http://slidepdf.com/reader/full/ma2211-unit-3 6/30

6

(2m – 3)2

= 0

m =3

2

(twice)

C.F. =1 2

3 3

2 2  y x x y x  

the General solution is Z = C.F. + P.I

1 2

3 3

2 2  z y x x y x  

Problem 12 Solve 3 2 2 3 0  D DD D D D z .

Solution:

The Auxiliary equation is

3 2

2

2

1 0

1 1 0

1 1 0

. . 1, ,

m m m

m m m

m m

i e m i i

The general solution is 1 2 3  Z y x y ix y ix  

Problem 13 Find the particular integral of  3 2 2 3 cos2 x  D D D DD D z e y .

Solution:

P.I.3 2 2 3

1cos2 x

e y  D D D DD D

3 2 2 3

2

3 2 2 3

2

cos2

1 1 1

R.P. of 1 1 1

R.P. of 1 2 4 8

1 2R.P. of cos 2 sin 25 1 2 1 2

1 1. cos 2 2sin 2

5 5

 x

iy x

iy x

 x

 x

 ye

  D D D D D D

ee

  D D D D D D

ee

i i

e i   y i yi i

e y y

P.I. cos 2 2 sin 225

 xe

 y y

Problem 14 Solve 2 1 0  D DD D z .

Solution:

Page 7: MA2211 Unit 3

8/8/2019 MA2211 Unit 3

http://slidepdf.com/reader/full/ma2211-unit-3 7/30

7

21 0

1 ' 1 0

  D DD D

  D D D

This is of the form

1 1

1 1 2 2

1 1 2 2

0

0, 1, 1, 1

 D m D D m D

m m

 

 

C.F. is 1 2

1 1 2 2

 x x Z e f y m x e f y m x

 

1 2

 x x Z e f y e f y x

Problem 15 Solve 21 2 x y  D D D D z e .

Solution:

This is of the form 1 1 2 2 .... 0

n n D m D C D m D C D m D C Z  

Hence1 1 2 2

1 1 1 1m c m c 2

2c

Hence the C.F. is 2

1 2

 x x z e y x e y x  

P.I.

2

1 2

 x ye

  D D D D

2

2

2 1 1 2 1 2

1

2

 x y

 x y

e

e

Hence, the complete solution is 2 2

1 2

1

2

  x x x y Z e y x e y x e  

PART – B

Problem 16

a. From the partial differential equation by eliminating f  and  

from   z f y x y z  .

Solution:

 z f y x y z  - (1)

Differentiating partially with respect to x and y, we get

1P x y z p  - (2)

' ' 1q f y x y z q  - (3)

2

' . " 1r x y z r x y z p   - (4)

' . " 1 1s x y z s x y z p q   - (5)

2

" ' '' 1t f y x y z t x y z q   - (6)

Page 8: MA2211 Unit 3

8/8/2019 MA2211 Unit 3

http://slidepdf.com/reader/full/ma2211-unit-3 8/30

8

From (4) 2

1 ' 1 "r x y z p x y z   - (7)

From (5) 1 ' 1 1 "s x y z p q x y z   - (8)

Dividing (7) & (8) we get

1

1

1 1

 pr 

s q

q r p s

b. Solve 2 2 32 x  D DD z e x y .

Solution:

Auxiliary Equation is given by 2 2 0m m i.e., m (m – 2) =0

m = 0, m = 2

C.F. = 1 2 2  f y f y x

2

1 2

2

1

2

(Replace D by 2 and D by 0)4

 x

 x

PI e  D DD

e

3

2 2

13

2

3

2

33

2

5 6

5 6

1

2

1 21

1 21 ......

1 2

2.20 4.5.6

20 60

PI x y  D DD

 D x y

 D D

 D x y

 D D

 x x y

 D D

 x x y

 x x y

The complete solution is

1 2

2 5 6

1 2

. .

24 20 20

 x

  Z C F PI PI  

e x y x Z f y f y x

Problem 17

a. Find the complete integral of  p q x y .

Solution:

Page 9: MA2211 Unit 3

8/8/2019 MA2211 Unit 3

http://slidepdf.com/reader/full/ma2211-unit-3 9/30

9

The given equation does not contain z explicitly and is variable separable.

That is the equation can be rewritten as p – x = y – q =a, say - (!)

and p a x q y a

Now dz = pdx + qdy

dz a x dx y a dy (2)

Integrating both sides with respect to he concerned variables, we get

2 2

2 2

a x y a z b

- (3)

when a and b are arbitrary constants.

b. Solve 2 2  y p xyq x z y .

Solution:

This is a Lagrange’s linear equation of the form Pp Qq R

The subsidiary equations are

2 2

dx dy dz

P Q R

dx dy dz

  y xy x z y

Taking I & II ratios

2

dx dy

  y xy

  xdx ydy

Integrating,2 2

2 2

1

2 2

2

 x yC 

  x y c c

Taking II & III ratios 2

dy dz

  xy x z y

2

2

2

  Z y dy ydz

  ydz zdy ydy

d yz ydy

Integrating,2

2

2

2

  yz y c

  yz y c

the solution is 2 2 2, 0  x y yz y 

Problem 18

a. Find the singular integral of the partial differential equation2 2  z px qy p q .

Page 10: MA2211 Unit 3

8/8/2019 MA2211 Unit 3

http://slidepdf.com/reader/full/ma2211-unit-3 10/30

10

Solution:

The given equation 2 2  z px qy p q is a clairaut’s type equation.

Hence the complete solution is2 2

  z ax by a b -(1)To get singular Solution :Differentiate (1) w.r.t. a and b

0 = x + 2a - (2)

0 = y – 2b - (3)

and2 2

 x ya b

Substituting in (1),2 2 2 2

2 2 2 2

2 2

2 2 4

2 24

4 is the singular solution.

  x y x y z

  x y x y z

  z y x

b. Solve 2 2 24 5 3 sin 2 x y  D DD D z e x y .

Solution:

The Auxiliary equation,

2

2

4 5 0

5 5 0

5 5 0

1 5 0

1, 5

m m

m m m

m m m

m m

m

C.F. = 5 f y x g y x

2

1 2 2

2

2

2

13

4 5

3

4 8 5

3

9

1

3

 x y

 x y

 x y

 x y

PI e  D DD D

e

e

e

Page 11: MA2211 Unit 3

8/8/2019 MA2211 Unit 3

http://slidepdf.com/reader/full/ma2211-unit-3 11/30

11

2 2 2

1sin 2

4 5

1 sin 21 4 2 5 4

1sin 2

1 8 20

1sin 2

27

PI x y  D DD D

 x y

 x y

 x y

the complete solution is1 2  Z CF PI PI  

i.e. 21 15 sin 2

3 27

 x y Z f y x g y x e x y

Problem 19 a. Find the general solution of  3 4 4 2 2 3 z y p x z q y x .

Solution:

This is a Lagrange’s linear equation of the form Pp Qq R .

The subsidiary equations aredx dy dz

P Q R

3 4 4 2 2 3

dx dy dz

  z y x z y x

- (1)

Use Lagrangian multipliers x, y, z we get each ratio is

3 4 4 2 2 3  xdx ydy zdz

  xz xy xy yz yz xz

2 2 21

20

d x y z

Hence 2 2 2 0d x y z

Integrating both the sides,2 2 2

1  x y z C   - (2)

using multipliers 2, 3, 4 each of equation (1) is

2 3 4

6 8 12 6 8 12

2 3 4

0

dx dy dz

  z y x z y x

dx dy dz

2 3 4 0dx dy dz

Hence22 3 4  x y z C   - (3)

the General solution is 2 2 2 , 2 3 4 0  x y z x y z 

b. Solve 2

2 2 3 22 3 3 2 2 x y  D DD D D D z e e .

Solution:

Page 12: MA2211 Unit 3

8/8/2019 MA2211 Unit 3

http://slidepdf.com/reader/full/ma2211-unit-3 12/30

12

2 2

6 3 2 4

1 1 2 2

2 3 3 2 ' 2 ' 1

' 2 ' 1 4 41, 2, 1, 1

  x x y y

  D DD D D D z D D D D z

  D D D D z e e em m  

2C.F. x xe f y x e f y x

6

1

6

6

1

2 1

1

6 0 2 6 0 1

1

20

 x

 x

 x

PI e  D D D D

e

e

3 2

2

3 2

3 2

3 2

14

2 1

4

3 2 2 3 2 1

4

3 4

1

3

 x y

 x y

 x y

 x y

PI e  D D D D

e

e

e

4

3

4

4

4

14

2 1

4

0 4 2 0 4 1

4

2 3

2

3

 y

 y

 y

 y

PI e  D D D D

e

e

e

the general solution

2 6 3 2 41 1 2

20 3 3

  x x x x y y Z e f y x e f y x e e e

Problem 20

a. Form the differential equation by eliminating the arbitrary function f  and

g in  z f x y g x y Solution:

 z f x y g x y

Page 13: MA2211 Unit 3

8/8/2019 MA2211 Unit 3

http://slidepdf.com/reader/full/ma2211-unit-3 13/30

13

Let u x y v x y

. Z f u g v - (1)

Differentiating partially with respect to x and y, we get . ' ' . p f u g v f u g v - (2)

' 1 'q f u g v f u g v - (3)

" 2 ' ' " .r f u g v f u g v f u g v - (4)

" 1 " .s f u g v f u g v - (5)

" 2 ' ' "t f u g v f u g v f u g v - (6)

Subtracting (4) from (6) , we get

4 .r t f u g v - (7)

From (2) & (3), we get 2 2 4 . . ' . ' p q f u g v f u g v

= Z (r – t) from (1) & (7)

i.e.,

222 2

2 2

  z z z z z

  x y x y

b. Solve the equation   pq p q z px qy pq .

Solution:

Rewriting the given equation aspq

  Z px qy

  pq p q

- (1)

we identify it as a clairaut’s type equation. Hence its complete solution is

ab  Z ax by

ab a b

- (2)

The general solution of (1) is found out as usual from (2).

Let us now find the singular solution of (1).

Differentiating (2) partially with respect to a and then b, we get

2

10

ab a b b ab b x

ab a b

i.e.,

2

20

b

 x ab a b

- (3)

and similarly

2

20

a y

ab a b

- (4)

From (3) & (4), we get2

2

a y

b x or

a bk 

 y x , say

a k y and b k x

Using there values in (3) we get

Page 14: MA2211 Unit 3

8/8/2019 MA2211 Unit 3

http://slidepdf.com/reader/full/ma2211-unit-3 14/30

14

22 2

2 2

0k x k xy k y k x x

k x k xy k y k x x

i.e., 1k xy x y

1 x yk 

 xy

Hence1 1

and  x y x y

a b x y

Also

1 1

1 11 1

1 1

1

ab

ab a by xb a   x y x y

 x y

Using these values in (2), the singular solution of (1) is

2

1 1 1

1

  z x x y y x y x y

  z x y

Problem 21

a. Form the partial differential equation by eliminating

 f  from 2 2 2 2, 2 0  f x y z z xy .

Solution:

2 2 2 2, 2 0  f x y z z xy

Let 2 2 2 2and v 2u x y z z xy then

the given equation is , 0 f u v - (1)

Differentiating (1) partially w.r.t. x and y respectively

we get . 0  f u f v

u x v x

and . . 0

  f u f v

u y v y

2 2 2 2 0 f f   x zp zp yu v

- (4)

2 2 + 2zq-2x 0 f f 

  y zqu v

-(5)

from (4) and (5)

we get 0  x zp zp y

  y zq zq x

Page 15: MA2211 Unit 3

8/8/2019 MA2211 Unit 3

http://slidepdf.com/reader/full/ma2211-unit-3 15/30

15

2 2 2 2

2 2

  x zp zq x y zq zp y

  zqx x z pq xzp zpy y z pq zqy

  zp x y zq x y x y

  zp x y zq x y x y x y

  zp zq x y

  zp zq y x

 z p q y x

b. Solve the equation 21 1  p q q z .

Solution:

The given equation is of the from , , 0 f z p q

21P q q p z - (1)

Let   z f x ay be the solution of (1)

If 

If then

and

  x ay u z f u

dz adz p q

du du

(1) reduces as

2

21 1  z dz adz

a z

u du du

i.e.,

2

21 0dz dz

a a azdu du

As z is not a constant, 0dz

du

2

21 0dz

a a azdu

i.e.,

2

21

dza az a

du

1dz

a az adu

- (3)

solving (3), we get

2

1

2 1

2 1

4 1

dza du

az a

az a u b

az a x ay b

az a x ay b

 

Page 16: MA2211 Unit 3

8/8/2019 MA2211 Unit 3

http://slidepdf.com/reader/full/ma2211-unit-3 16/30

16

which is the complete solution of (1)

Problem 22

a. Solve the equation 2 2 2 2 2  p q z x y .

Solution:

The given equation dues not belong to any of the standard types.

It can be rewritten as 2 2

1 1 2 2  z p z q x y - (1)

As the Equation (1) contains 1 1and  z p z q we make the substitution Z = log z-1 -1z p=P and z q Q

Using there values in (1), it becomes2 2 2 2P Q x y (2)

As Eq. (2) dues not contain Z explicitly, we rewrite it as2 2 2 2 2P x y Q a , say (3)

From (3)2 2 2 2 2 2

2 2 2 2

2 2 2 2

and

and

P a x Q y a

P a x Q y a

dz Pdx Qdy

dz a x dx y a dy

Integrating, we get2 2

2 2 1 2 2 1

sin cos2 2 2 2

  x a x y a y

  Z x a h y a h ba a

the complete solution of (1) is

2 22 2 1 2 2 1log sin cos

2 2 2

  x a x y a y  z x a h y a h b

a a a

where a and b are arbitrary constants.

Singular solution does not exist and the General solution is found out as usual.

b. Solve the equation 2 2 2sin 2 sin 3 2 sin  D D z x y x y .

Solution:

The auxiliary equation is m2

+ 1 = 0i.e., m i

C.F. =   f y ix g y ix

Page 17: MA2211 Unit 3

8/8/2019 MA2211 Unit 3

http://slidepdf.com/reader/full/ma2211-unit-3 17/30

17

1 2 2

2 2

1sin 2 sin3

'

1 1. cos 2 3 cos 2 3' 2

1 1 1cos 2 3 cos 2 3

2 4 9 4 9

1 1. cos 2 3 cos 2 3

13 2

1sin 2 sin3

13

PI x y D D

  x y x y D D

  x y x y

  x y x y

 x y

2

2 2 2

2 2

2 2 2 2

0

2 2

2

12sin

'

11 cos 2 2

'

1 11 cos 2 2

' '

1 1cos 2 2

' 4 4

1cos 2 2

2 8

 x

PI x y D D

 x y D D

 x y  D D D D

e x y D D

 x x y

The complete solution is1 2

. .  Z C F PI PI  

i.e., 21 1sin 2 sin 3 cos 2 2

13 2 8

 x Z f y i x g y i x x y x y

Problem 23

a. Solve 1 p q .

Solution:

This is of the form , 0  f p q .

The complete integral is given by z ax by c where

2

1

1

1

a b

b a

b a

The complete solution is 2

1  z ax a y c - (1)

Differentiating partially w.r.t. c we get 0 = 1 (absurd)

There is no singular integral

Taking c f a where f is arbitrary,

2

1  z ax a y f a - (2)

Differentiating partially w.r.t a, we get

Page 18: MA2211 Unit 3

8/8/2019 MA2211 Unit 3

http://slidepdf.com/reader/full/ma2211-unit-3 18/30

18

1

0 2 1 '2

  x a y f aa

- (3)

Eliminating ‘a’ between (2) & (3) we get the general solution.

b. Solve 2 2 2  x yz p y zx q z xy .

Solution:

This is a Lagrange’s linear equation of the form Pp Qq R

The subsidiary equations are2 2 2

dx dy dz

  x yz y zx z xy

- (1)

2 2 2 22 2

dx dy dy dz dx dz

  y zx z xy x yz z xy  x yz y zx

i.e.,

2 2 2 22 2 1

d x y d y z d x z

 y z x y z x z y z  x y z x y

i.e.,

d x y d y z d x z

 x y x y z y z x y z x z x y z

- (2)

i.e.,

d x y d y z d x z

  x y y z x z

- (3)

Taking the first two ratios, and integrating log log log  x y y z a

 x ya

 y z

- (4)

Similarly taking the last two ratios of (3) we get,

 y zb

 x z

- (5)

Butx y

 y z

and

y z

 x z

are not independent solutions for 1

 x y

 y z

gives

x z

 y z

which is the reciprocal of the second solution.Therefore solution given by (4) and (5) are not independent. Hence we have to

search for another independent solution.

Using multipliers x, y, z in equation (1) each ratio is3 3 3

3

  xdx ydy zdz

  x y z xyz

Using multipliers 1, 1, 1 each ratio is

2 2 2

dx dy dz

  x y z xy yz zx

3 3 3 2 2 23

  xdx ydy zdz dx dy dz

  x y z xyz x y z xy yz zx

2 2 2

2 2 22 2 2

1

2d x y z d x y z

  x y z xy yz zx  x y z x y z xy yz zx

Page 19: MA2211 Unit 3

8/8/2019 MA2211 Unit 3

http://slidepdf.com/reader/full/ma2211-unit-3 19/30

19

Hence 2 2 21

2d x y z x y z d x y z

Integrating 2

2 2 212 2

  x y z  x y z k  

22 2 2

2 2 2 2 2 2

2

2 2 2 2

 x y z x y z k  

  x y z x y z xy yz zx k  

i.e., xy yz zx b

the general solution is , 0 x y

  xy yz zx y z

 

Problem 24a. Solve 2 log  yp xy q .

Solution:

2 log

2 log

2 log

log2 ( )

  yp xy q

  yp xy q

  p x y q

q  p x a say

 y

12 and log  p x a q a

 y

- (1)

2 , log

ay

  p x a q ay

q e

Now dz pdx qdy

2 aydz x a dx e dy - (2)

Integrating (2), we get

2 1 ay  z x ax e ba

- (3)

Where a and b are arbitrary constant.

Equation (3) is the complete solution of the given equation.

Differentiating (3) partially w.r.t b we get 0 = 1 (absurd)

There is no singular integral.

Put b a  in (3)

2aye

  z x ax aa

  - (4)

Differentiating partially w.r.t a we get

Page 20: MA2211 Unit 3

8/8/2019 MA2211 Unit 3

http://slidepdf.com/reader/full/ma2211-unit-3 20/30

20

2

2

1 10 0 '

10 ' -(5)

ay ay

ay ay

  x e y e aa a

 y  x e e aa a

 

 

Eliminating ‘a’ between (4) & (5) we obtain the general solution.

b. Solve4 2 22 3 0  x p yzq z .

Solution:

Rewriting this equation, we get

22

2 3 0  x p yq

 z z

This is an equation of the form , 0m k n k   f x z p y z q may be transformed into

the standard type , 0 f P Q by putting 1 1,m n  X x Y y and1, 1k   Z z whereK  

(or) log log log  X x Y y Z z if  1, 1m n and 1k 

Here 2 1m n

Hence 1 log and log  X x Y y Z z

2

21

1.

  Z Z z x pxP p x

  X z x X z z

  Z Z z y yQ q y q

Y z y Y Z Z  

the equation becomes, 22 3 0P Q

This is of the form , 0 f P Q

Hence the complete integral is Z aX bY c Where

2

2

2 3 0

2 3

a b

b a

the complete solution is Z aX bY c

i.e., 2log 2 3 loga

  z a y c x

- (1)

Differentiating equation (1) partially w.r.t to cWe get 0 = 1 (absurd)

Singular integral does not exist.

Taking C = f (a) where f is arbitrary

2log 2 3 loga

  z a y f a x

- (2)

Differentiating partially w.r.t a we get

1

0 4 log 'a y f a x

- (3)

Eliminating ‘a’ between (2) & (3) we get the general solution.

Page 21: MA2211 Unit 3

8/8/2019 MA2211 Unit 3

http://slidepdf.com/reader/full/ma2211-unit-3 21/30

21

Problem 25

a. Find the complete solution of  2 2

1  x pz y qz .Solution:

2 2

1  x pz y qz - (1)

This equation is of the form , 0k k  f z p z q

If  1k  and 1k  Z z

Hence put Z = z

2

. 2  Z Z z

P zp  x z x

2

 pPz

. 2  Z Z z

Q zq  y z y

2

Qqz

Substituting there results in (1)2 2

12 2

P Q x y

This is a separable equation

2 2

2

12 2

P Q  x y a

22 2 1

dZ Pdx Qdy

dZ a x dx a y dy

Integrating,

22 2

22 2 2

2 12

2 1

 y  Z a x a y dy

  Z a x a y y b

is the complete solution.

b. Solve 2 22  z yz y p xy zx q xy zx .

Solution:

This is a Lagrange’s linear equation of the form Pp Qq R

The subsidiary equations are2 22

dx dy dz

  z yz y xy zx xy zx

Taking x, y, z as multipliers, we have each fraction0

  xdx ydy zdz

0  xdx ydy zdz

Page 22: MA2211 Unit 3

8/8/2019 MA2211 Unit 3

http://slidepdf.com/reader/full/ma2211-unit-3 22/30

22

Integrating2 2 2

2 2 2

  x y zc

i.e.,2 2 2

1  x y z C   - (1)

Again, taking the last two members, we have

dy dz

 x y z x y z

i.e.,dy dz

  y z y z

0

0

  y z dy y z dz

  ydy zdy ydz zdz

  ydy zdy ydz zdz

  ydy d yz zdz z

Integrating we get 2 2

22  y yz z C   - (2)

From (1) & (2) the general solution is

2 2 2 2 2, 2 0  x y z y yz z 

Problem 26

a. Solve the equation 4 39 4 1  pqz z .

Solution:

4 39 4 1  pqz z - (1)

The given equation is of the form , , 0 f z p q Let   z f x ay be the solution of (1)

If  x ay u then   z f u

dzP

du and

dzq a

du

Substituting the values of p & q in (1), we get

2

4 3

2 3

2

3

9 4 1

3 2 1

3

2 1

dza z z

du

dz

az zdu

a z dzdu

 z

Integrating we get2

3

3

2 1

a zdz du

 z

 Put 1 + z

3= t

2

23 2  z dz tdt  

Page 23: MA2211 Unit 3

8/8/2019 MA2211 Unit 3

http://slidepdf.com/reader/full/ma2211-unit-3 23/30

23

2

2

a tdt  du

t   

a dt du

a t u b

 

i.e, 31a z x ay b

231a z x ay b - (2)

The singular solution is found as usual

Put b a 

231a z x ay a  - (3)

Differential w.r.t. a

31 2  z x ay a y a   - (4)

The elimination of ‘a’ between (3) & (4) gives the General solution.

b. Solve 2 2 23 2 2 4 x y  D DD D z x e .

Solution:

The Auxiliary equation is

2 3 2 0

1 2 0

1, 2

m m

m m

m

C.F. 1 22  y x y x  

2

2 2

2

2

2

2

2 4. .

3 ' 2 '

2 4

2 ' '

Re 1, ' ' 2

., , ' '

2 4

1 2 ' 2 1 ' 2

2 4

2 ' 3 ' 1

2 4

2 '3 1 1 '

3

 x y

 x y

 x y

 x y

 x y

e xP I 

  D DD D

e x

  D D D D

  placeD D D D

ie D D a D D b

 x

e   D D D D

 xe

  D D D D

 xe

 D D D D

Page 24: MA2211 Unit 3

8/8/2019 MA2211 Unit 3

http://slidepdf.com/reader/full/ma2211-unit-3 24/30

24

112

2

2

2

2 2

1 2 '1 1 ' 2 4

3 3

1 2 '1 ... 1 ' ... 2 4

3 3

1 4 5 ' ...1 2 4

3 3

1 12 4 16

3 3

1 22 24 11 6

3 3 9

 x y

 x y

 x y

 x y

  x y x y

 D De D D x

 D De D D x

 D De x

e x

e x e x

Hence the general solution is

2

1 2

. . . .

22 11 6

9

 x y

 Z C F P I  

  Z y x y x e x  

Problem 27

a. Solve2 4 2 22  p x y zq z .

Solution:

This can be written as 2

2 2 22Px qy z z - (1)

Which is of the form , , 0m n f x p y q z Where m = 2, n= 2

put 1 11 1;m n

  X x y y x y

2 2

2 2

.

.

  Z Z xP p x px

  X x X  

  Z Z yQ q y qy

Y y X 

Substituting in (1) the given equation reduces to 2 22P Qz z

This is of the form , , 0 f p q z Let   Z f X aY   where u = X + aY 

,dz adz

P Qdu du

Equation becomes,2

22 0dz dz

az zdu du

Solving fordz

du,we get

Page 25: MA2211 Unit 3

8/8/2019 MA2211 Unit 3

http://slidepdf.com/reader/full/ma2211-unit-3 25/30

25

2 2 2

2

2

2

2

8

2

8

2

8log

2

8log

2

8 1log

2

dz az a z z

du

dz a adu

 z

a a  z u b

a a  z X ay b

a a a z b

 x y

is the complete solution.

The singular and general integrals are found out as usual.

b. Find the general solution of   y z p z x q x y .

Solution:

This is a Lagrange’s linear equation of the form Pp Qq R .

The auxiliary equations aredx dy dz

 y z z x x y

each is equal to

2

dx dy dz dx dy dy dz

  x y z y x z y

- (1)

Taking the first two ratios,

2

d x y z d x y

  x y z x y

Integrating,

2

2

1log log log

2

log log log

  x y z x y c

  x y z x y k  

 x y z k x y

i.e., 2 x y z x y k   - (2)

Taking the last two ratios of equation (1),

d x y d y z

  x y y z

Integrating, log log log  x y y z b

 x yb

 y z

- (3)

Page 26: MA2211 Unit 3

8/8/2019 MA2211 Unit 3

http://slidepdf.com/reader/full/ma2211-unit-3 26/30

26

Hence the general solution is 2

, 0 x y

 f x y z x y y z

Problem 28

a. Find the equation of the cone satisfying px qy z and passing through the

circle2 2 2 4, 2  x y z x y z .

Solution:

The auxiliary equations aredx dy dz

  x y z

Taking the first two ratios,log x = log y + log a

 x a y

- (1)

Taking the second and third ratios,

log y = log z + log b

 yb

 z - (2)

the general solution is , 0 x y

 y z 

- (3)

We have to find that function   satisfying (3) and

also x2+ y2 + z2 = 4 - (4)

and x + y + z = 2 - (5)

Hence, we will eliminate x, y, z from (1),(2),(4),(5)

From (2) y = bz

From (1) x = ay

x =abzusing the value of x & y in (4) & (5)

2 2 2 2 2 2 4a b z b z z

2 2 2 2 1 4 z a b b - (6)

Also abz + bz + z = 2

1 2b ab z - (7)

Eliminating z between (6) & (7)

Squaring (7)

2 21 4b ab z - (8)

From (6) & (8),

22 2 2 2 2 2 21 1 1 2 2 2b a b b ab b a b b ab ab

Simplifying b + ab2

+ ab = 0

1 0ab a

Page 27: MA2211 Unit 3

8/8/2019 MA2211 Unit 3

http://slidepdf.com/reader/full/ma2211-unit-3 27/30

27

Using , x y

a b y z

in (9)

1 0  xy x  yz y

1 0 x x

 z y

i.e., 0  yz xy xz is the required surface.

b. Solve 2 26 cos  D DD D z y y .

Solution:

The Auxiliary equation is m2

+ m – 6 = 0

m = 2, –3

C.F. = 1 22 3  y x y x  

2 2

cos. .

' 6

1 cos

2 ' 3 '

13 cos where 3

2 '

13 sin 3 sin where 3

2 '1

sin 3 cos2 '

2 sin 3cos where 2

2 cos 2 sin 3sin wher

 y xP I 

  D DD D

 y x

  D D D D

a x xdx a x y D D

a x x xdx a x y

 D D

  y x x D D

a x x x dx a x y

a x x x x

 

 

 e 2a x y

1 2

. . cos sin

2 3 sin cos

P I y x x

  Z y x y x x y x  

Problem 29

a. Solve the equation2 2 2 2sin cos 1  pz x qz y .

Solution:

The given equation contains (z2p) and (z

2q).

Therefore we make the substitution Z = z3

2 23 and Q=3z Z 

P z p q x

Using there values in the given equation, it becomes

2 2sin cos 13 3

P Q x y

Page 28: MA2211 Unit 3

8/8/2019 MA2211 Unit 3

http://slidepdf.com/reader/full/ma2211-unit-3 28/30

28

Equation 1 does not contain Z explicitly.

Rewriting (1), we have 2 2sin 1 cos

3 3

P Q  x y a , say - (2)

From (2), 2 23 cos and 3 1 secP a ec x Q a y

Now dZ = Pdx + Qdy

= 3a cosec2 xdx + 3 (1 – a) sec

2 y dy - (3)

Integrating (3),

3

3 cot 3 1 tan

3 cot 3 1 tan (4)

  Z a x a y b

  z a x a y b

is the complete solution.

Singular solution does not exist.

put b a  in (4)

3 3 cot 3 1 tan  z a x a y a  - (5)

Differentiating (5) w.r.t. to a we get

0 3cot 3 tan '  x y a  - (6)

Eliminating a between (5) & (6) we get the required solution.

b. Solve the equation 2 2 2 22 x y  D DD D z x y e

.

Solution:

The Auxiliary equation is m2

- 2m + 1 = 0

(m – 1)2

= 0

m = 1 twice 1 2. .C F y x x y x  

2 2

2 2

2 2

2

2 2

2

2 2

2

2

2 2

2

22 2

2 2

1. .

2

1

1

1 1

1

11

1 2 3 '1

 x y

 x y

 x y

 x y

 x y

 x y

P I e x y  D DD D

e x y D D

e x y D D

e x y D D

 De x y

 D D

 D D x ye

  D D D

Page 29: MA2211 Unit 3

8/8/2019 MA2211 Unit 3

http://slidepdf.com/reader/full/ma2211-unit-3 29/30

29

2 2 2 2

2 2

2 2 2 2

2 3 4

1 2 32 2

1 1 14 6

 x y

 x y

e x y x y x  D D D

e y x y x x  D D D

4 2 5 61 1 1. .

12 15 60

 x yP I x y x y x e

4 2 5 6

1 2

. .

1 1 1

12 15 60

 x y

  Z C F P I  

 y x x y x x y x y x e  

Problem 30

a. Solve the equation mz ny p nx lz q ly mx . Hence write down the

solution of the equation 2 2 0 z y p x z q x y .

Solution:

The equation mz ny p nx lz q ly mx is a Lagrange’s linear equation of the

form Pp Qq R .

The Subsidiary equations aredx dy dz

mz ny nx lz ly mx

- (1)

Using l, m, n as a set of multipliers, the ratio in (1)0

ldx mdy ndz

i.e., 0ldx mdy ndz

Integrating we get lx my nz a

Choosing x, y, z as another set of multipliers, the ratio in (1)0

  xdx ydy zdz

Integrating we get 2 2 2  x y z b

the general solution of the given equation is 2 2 2, 0  f lx my nz x y z

comparing the equation 2 2 ......... 2 z y p x z q x y

With the pervious equation 1, we get 1, 2, 1l m n

Therefore the solution of equation (2) is

2 2 22 , 0  f x y z x y z

b. Solve 2 2 3 3 7  D D D D z xy .

Solution: 2 2 3 3 7  D D D D z xy

3 7  D D D D z xy

Here1 1 2 2

1 0 1 3m c m c

C.F 3 x  y x e y x 

Page 30: MA2211 Unit 3

8/8/2019 MA2211 Unit 3

http://slidepdf.com/reader/full/ma2211-unit-3 30/30

30

P.I

7

3

 xy

  D D D D

1 1

2

2

2

12

1 7

1 3 13

11 1 7

3 3

11 ...

3

11 ... 7

3 9

21 ... 7

3 3 9 9 3

 xy  D D D D

 D

  D D D xy

 D D

 D D

  D D D

 D D  D D xy

  D D D DD DD xy

 D

2

2 2 3

2 2 3

1 1 1 2 47

3 3 3 2 3 27

1 677

3 2 3 27 3 3 6 9

1 677

3 2 3 3 3 9 6 27

  D D D D DD xy

  D D D

  x xy x x x y y x

  x y xy x x y x x

Hence the general solution is

2 2 3

3 1 677

3 2 3 3 3 9 6 27

 x x y xy x x y x  z y x e f y x x 

.