m2m3 Sistem Rangka

224
VINAS 1 SISTEM RANGKA Disediakan Oleh: VICKNESWARAN A/L NAKAR SALAPAN

description

sistem rangka

Transcript of m2m3 Sistem Rangka

Page 1: m2m3 Sistem Rangka

VINAS 1

SISTEM RANGKA

Disediakan Oleh:

VICKNESWARAN A/L NAKAR SALAPAN

Page 2: m2m3 Sistem Rangka

VINAS 2

FUNGSI TULANG & STRUKTUR TULANG

Page 3: m2m3 Sistem Rangka

VINAS 3

Sistem RangkaBerasal dari Greek yang bermaksud badan yang kering “dried up body”

Sistem rangka adalah kerangka kerja dimana keseluruhan badan dibina

Tulang kita adalah ringan tetapi kuat, disesuaikan untuk memberi perlindungan dan pergerakan (locomotion)

“Osteo” = Bone

Page 4: m2m3 Sistem Rangka

VINAS 4

Terdiri dari pelbagai tisu

Kebanyakkannya ialah collagen dan hydroxyapatite - Ca10(PO4)6(OH)2

About 206 bones in the human body

Page 5: m2m3 Sistem Rangka

VINAS 5

Rangka terbahagi kepada dua bahagian

Rangka aksial, yang terdiri dalam

bentuk longitud aksial badan

Rangka apendikular,

terdiri dari tulang anggota luar/ lengkungan

Page 6: m2m3 Sistem Rangka

VINAS 6

FUNGSI TULANG

Tulang memberikan bentuk badan serta membantu homeostasis dalam beberapa cara penting

1) Sokongan: Tulang adalah sumber sokongan badan, ini dilakukan melalui memberikan tempat berpaut otot

Page 7: m2m3 Sistem Rangka

VINAS 7

2) Perlindungan : Tulang memberi perlindungan kepada tisu lembut seperti otak, saraf tunjang dan organ dalam ruang kosong torasik.

3) Pergerakan : Tulang bekerjasama dengan otot dalam mengerakkan anggota dengan bantuan tendon.

Tulang bertindak sebagai tuas dalam pergerakan badan dan anggota yang terlibat.

FUNGSI TULANG

Page 8: m2m3 Sistem Rangka

VINAS 8

4) Penyimpanan : Ruang kosong dalam tulang digunakan untuk menyimpan lemak.

Tulang juga menjadi sumber / khazanah mineral seperti Kalsium dan phosphorous. Pertukaran ini dikawal oleh

kehadiran hormon

5) Tempat Formasi sel darah: Hematopoiesis berlaku dalam ruang kosong sum-sum beberapa tulang

FUNGSI TULANG

Page 9: m2m3 Sistem Rangka

VINAS 9

TULANG BADAN MANUSIA Terdapat 206 tulang dalam badan manusia

dewasa

Dua jenis tisu tulang asas Tulang padu (Compact bone)

Homogeneous Tulang anjal / lembut (Spongy bone)

Banyak bentuk kecil seperti jarum Banyak ruangan kosong

Tulang boleh juga diklasifikasi mengikut bentuk

Page 10: m2m3 Sistem Rangka

VINAS 10

Page 11: m2m3 Sistem Rangka

VINAS 11

KLASIFIKASI TULANG BERDASARKAN BENTUK

Page 12: m2m3 Sistem Rangka

VINAS 12

Page 13: m2m3 Sistem Rangka

VINAS 13

TULANG PANJANG

Panjang berbanding lebar (Are longer than they are wide)

Ada syaf (batang), kedua-dua hujung yang besar

Kebanyakkannya terdiri dari tulang padu

KLASIFIKASI TULANG

Page 14: m2m3 Sistem Rangka

VINAS 14

Kesemua tulang utama di anggota luar adalah tulang panjang

Tangan

Humerus, tulang lengan atas, berartikulasi dibahu

Radius tulang lateral lengan bawah

Ulna tulang medial lengan bawah

KLASIFIKASI TULANG

Page 15: m2m3 Sistem Rangka

VINAS 15

Kaki Femur, tulang besar dan kuat badan. Berartikulasi di pinggul dan dibahagian distal terletak tibia / pattela

Tibia, tulang besar di anggota kaki bawah, dikenali juga dengan nama shin bone (tulang kering); proksimal berartikulasi dengan distal femur (lutut).Distal berartikulasi dengan tarsal menjadi pergelangan kaki

Fibula tulang kecil anggota kaki bawah, proksimal tidak berada di lutut, tetapi distal ada kaitan dengan dengan pergelangan kaki

KLASIFIKASI TULANG

Page 16: m2m3 Sistem Rangka

VINAS 16

TULANG PENDEK

Selalunya berbentuk kiub, dan terdiri dari tulang anjal

Patella, karpal (pergelangan tangan), tarsal (pergelangan kaki)

Patella adalah tulang jenis sesamoid kerana ianya terletak didalam tendon

KLASIFIKASI TULANG

Page 17: m2m3 Sistem Rangka

VINAS 17

Page 18: m2m3 Sistem Rangka

VINAS 18

TULANG LEPER

Nipis, rata dan selalunya melengkung

Tulang anjal dihimpit oleh dua lapisan tulang tulang padu ‘sandwitch’.

Tulang tengkorak

KLASIFIKASI TULANG

Page 19: m2m3 Sistem Rangka

VINAS 19

Page 20: m2m3 Sistem Rangka

VINAS 20

TULANG TIDAK SEKATA

Semua tulang yang tidak terlibat dengan klasifikasi sebelum ini adalah tergolong dalam jenis ini

Tulang vertebrae

KLASIFIKASI TULANG

Page 21: m2m3 Sistem Rangka

VINAS 21

Page 22: m2m3 Sistem Rangka

VINAS 22

Epiphysis: Hujung tulang.

Diaphysis: Batang tulang yang meliputi ruang medullary.

Rawan Articular: Melindungi hujung tulang, dan melicinkan pergerakan.

Epiphyseal Plate:Kawasan pertumbuhan/pemanjangan tulang.

Page 23: m2m3 Sistem Rangka

VINAS 23

Anatomi Kasar Tulang PanjangDiaphysis

Batang Terdiri dari tulang

paduEpiphysis

Hujung tulang Kebanyakkannya

adalah tulang anjal Dilitupi oleh rawan

hyaline (articular)

Page 24: m2m3 Sistem Rangka

VINAS 24

Ruang kosong Medullary Ruang ini terdapat dalam tulang

panjang.

Ruang ini dipenuhi dengan

lemak (dewasa).

Ruang ini dipenuhi dengan sum-

sum merah, penghasilan sel

darah (kanak-kanak/bayi)

Sel darah dihasilkan oleh sum-

sum merah dikalangan dewasa.

Ianya terIetak dalam tulang leper

dan epiphyses setengah tulang

panjang

Figure 5.2a

Page 25: m2m3 Sistem Rangka

VINAS 25

PERKEMBANGAN DAN PERTUMBUHAN

TULANG

Page 26: m2m3 Sistem Rangka

VINAS 26

Perubahan Tulang Manusia

Semasa embrio, kebanyakkan tulang dalam bentuk rawan hyaline

Semasa perkembangan, rawan diganti dengan tulang

Rawan masih wujud dibeberapa bahagian tertentu

Jambatan Hidung (Bridge of the nose) Sebahagian tulang rusuk sendi

Proses pembentukan tulang – Ossification.

Page 27: m2m3 Sistem Rangka

VINAS 27

Untuk suatu jangka masa pendek, fetus mempunyai tulang rawan yang dilitupi dengan tulang halus

Kedua: rawan yang terdapat dalam tulang terhakis, dan membuka ruang untuk ruang kosong medullary dalam tulang baru

Selepas lahir, rawan ditukar menjadi tulang, kecuali di dua kawasan

Page 28: m2m3 Sistem Rangka

VINAS 28Figure 5.4a

Page 29: m2m3 Sistem Rangka

VINAS 29

“Epiphyseal plates” membenarkan perkembangan tulang panjang dari awal bayi

Rawan baru sentiasa wujud Rawan lama menjadi ossified

(Ossification) Rawan dipecahkan Rawan diganti oleh tulang

Page 30: m2m3 Sistem Rangka

VINAS 30

Page 31: m2m3 Sistem Rangka

VINAS 31

Pertumbuhan Tulang

Tulang dibentuk dan dipanjangkan sehingga pertumbuhan berhenti

Berlaku perubahan bentuk pada tulang Tulang bertambah leber

Page 32: m2m3 Sistem Rangka

VINAS 32

Osteoblasts dalam periosteum menambah tisu tulang baru kepermukaan tulang

Proses perkembangan “Appositional” menyebabkan tulang melebar.

Pertumbuhan tulang panjang dibawah kawalan hormon, hormon pertumbuhan dan hormon seks (jantina)

Tulang adalah struktur dinamik yang sentiasa bertindakbalas dengan:

Page 33: m2m3 Sistem Rangka

VINAS 33

Kehadiran Ca+ dalam darah

Stres akibat graviti

Daya yang dikenakan oleh otot skeletal

Apabila kadar Ca+ turun dalam darah, maka kelenjar parathyroid akan merembeskan parathyroid hormone (PTH) yang memulakan aktiviti osteoclast (klast-keluar kalsium).

Ini menyeimbangkan Ca+ dalam darah. ……Homeo….

Page 34: m2m3 Sistem Rangka

VINAS 34

Jika tahap Ca+ tinggi dalam darah, maka keadaan ini dikenali sebagai “hypercalcemia”, Ini akan mengakibatkan Ca+ didepositkan di atas tulang.

Tulang sentiasa mengekalkan kadar pertumbuhan yang sekata walaupun jangka masa yang panjang.

Pertambahan keperluan ke atas tulang skeletal menyebabkan ianya mengubah tindakbalas. (atlit angkat berat, tulang lebar berbanding panjang)

Page 35: m2m3 Sistem Rangka

VINAS 35

Aktiviti menyebabkan tulang menjadi kuat

Kurang / tiada aktiviti menyebabkan tulang kehilangan jisim akibat kehilangan Ca, (atrophy)

PTH menentukan bila dan kadar tulang dipecahkan (osteoclast).

Stres fizikal menentukan bila tulang perlu dibina

Page 36: m2m3 Sistem Rangka

VINAS 36

Keretakan tulang (Fractures) Tulang ada keretakan Jenis keretakan tulang

Tertutup(ringkas) – keretakan yang tidak tertusuk keluar melalui kulit

Terbuka(majmuk) – tulang yang patah, tertusuk menerusi kulit

Rawatan melalui pengurangan pergerakan (immobilization)

Tulang yang patah diluruskan semula

Page 37: m2m3 Sistem Rangka

VINAS 37

Common Types of Fractures

Page 38: m2m3 Sistem Rangka

VINAS 38

Pembaikan keretakan tulang

Hematoma (pembengkakkan akibat darah) Disambung oleh “fibrocartilage” untuk

menjadikan “callus” Fibrocartilage callus diganti oleh bony callus Bony callus dibentuk menjadi lekatan kekal

Page 39: m2m3 Sistem Rangka

VINAS 39Figure 5.5

Page 40: m2m3 Sistem Rangka

VINAS 40

RANGKA AKSIAL

Page 41: m2m3 Sistem Rangka

VINAS 41

RANGKA AKSIAL

Membentuk bahagian longitud badan Terbahagi kepada 3 bahagian

Tengkorak Kolum Vertebra (tulang belakang) Thoraks

Page 42: m2m3 Sistem Rangka

VINAS 42Figure 5.6

RANGKA AKSIAL

Page 43: m2m3 Sistem Rangka

VINAS 43

Rangka aksial

- TENGKORAK

Page 44: m2m3 Sistem Rangka

VINAS 44

Tengkorak

Dua set tulang Kranium Tulang muka

Tulang disambung dengan bentuk jahitan Hanya mandibel sahaja yang boleh

bergerak bebas

Page 45: m2m3 Sistem Rangka

VINAS 45Figure 5.7

Page 46: m2m3 Sistem Rangka

VINAS 46

Page 47: m2m3 Sistem Rangka

VINAS 47

Page 48: m2m3 Sistem Rangka

VINAS 48

Tulang kranium terdiri dari 8 tulang, kecuali 2 tulang yang berpasangan.

Tulang Frontal: tulang dahi dan berlanjutan sehingga tulang kening,dan bahagian superior tulang orbit (mata)

Tulang Parietal: bergabung menjadi tulang dibahagian dinding superior dan lateral tengkorak

Page 49: m2m3 Sistem Rangka

VINAS 49

Frontal View

Page 50: m2m3 Sistem Rangka

VINAS 50

Frontal

Page 51: m2m3 Sistem Rangka

VINAS 51

Parietal

Page 52: m2m3 Sistem Rangka

VINAS 52

Temporal

Page 53: m2m3 Sistem Rangka

VINAS 53

Nasal

Page 54: m2m3 Sistem Rangka

VINAS 54

Vomer

Page 55: m2m3 Sistem Rangka

VINAS 55

Zygoma

Page 56: m2m3 Sistem Rangka

VINAS 56

Maxilla

Page 57: m2m3 Sistem Rangka

VINAS 57

Mandible

Page 58: m2m3 Sistem Rangka

VINAS 58

FrontalParietal

Temporal

Zygoma

Nasal

Vomer

Maxilla

Mandible

Page 59: m2m3 Sistem Rangka

VINAS 59

Lateral View

Page 60: m2m3 Sistem Rangka

VINAS 60

Frontal

Page 61: m2m3 Sistem Rangka

VINAS 61

Parietal

Page 62: m2m3 Sistem Rangka

VINAS 62

Temporal

Page 63: m2m3 Sistem Rangka

VINAS 63

Nasal

Page 64: m2m3 Sistem Rangka

VINAS 64

Zygoma

Page 65: m2m3 Sistem Rangka

VINAS 65

Maxilla

Page 66: m2m3 Sistem Rangka

VINAS 66

Mandible

Page 67: m2m3 Sistem Rangka

VINAS 67

Sphenoid

Page 68: m2m3 Sistem Rangka

VINAS 68

Occipital

Page 69: m2m3 Sistem Rangka

VINAS 69

Mastoid Process

Page 70: m2m3 Sistem Rangka

VINAS 70

External Auditory Meatus

Page 71: m2m3 Sistem Rangka

VINAS 71

Frontal

Nasal

ZygomaMaxilla

Mandible

Parietal

Sphenoid

Temporal

Occipital

External Auditory Meatus

Mastoid Process

Page 72: m2m3 Sistem Rangka

VINAS 72

Sutures

Page 73: m2m3 Sistem Rangka

VINAS 73

Sagittal

Page 74: m2m3 Sistem Rangka

VINAS 74

Frontal(Coronal)

Page 75: m2m3 Sistem Rangka

VINAS 75

Squamous

Page 76: m2m3 Sistem Rangka

VINAS 76

Lambdoid

Page 77: m2m3 Sistem Rangka

VINAS 77

Frontal(Coronal)

Sagittal

Squamous

Lambdoid

Page 78: m2m3 Sistem Rangka

VINAS 78

Human Skull, Inferior View

Page 79: m2m3 Sistem Rangka

VINAS 79

TULANG MUKA

Terdapat 14 tulang

12 tulang berpasangan dan hanya 2, tulang individu (mandible and vomer)

Maxillae ( maxillary bones) bergabung menjadi rahang atas (upper jaw). Kesemua tulang muka bercantum disini kecuali tulang mandible

Page 80: m2m3 Sistem Rangka

VINAS 80

Sinuses

Hollow portions of bones surrounding the nasal cavity

Page 81: m2m3 Sistem Rangka

VINAS 81

Tulang Zygomatic : dikenali juga dengan nama tulang pipi, membentuk sebahagian besar soket mata

Mandible : rahang bawah, tulang paling besar di muka dan paling kuat

Page 82: m2m3 Sistem Rangka

VINAS 82

Tulang Hyoid:

Satu-satunya tulang yang tidak berartikulasi dengan tulang lain secara langsung.

Terletak di pertengahan leher, di atas larynx, dan dilekatkan di styloid process dengan ligamen

Berbetuk ladam kuda, menjadi tapak lidah dan tempat otot leher berpaut

Page 83: m2m3 Sistem Rangka

VINAS 83

Page 84: m2m3 Sistem Rangka

VINAS 84

Tengkorak Fetal / bayiBesar berbanding badan fetus.

Banyak bahagian tulang tengkorak yang masih dalam bentuk rawan.

Bahagian lembut di kepada dikenali sebagai fontanels ( little fountains)

Degupan jantung bayi boleh dikesan dikawasan ini.

Selalunya akan diganti menjadi tulang selepas 22 ke 24 bulan selepas lahir (post – partum).

Page 85: m2m3 Sistem Rangka

VINAS 85

Page 86: m2m3 Sistem Rangka

VINAS 86

Fontanelles – ruang “fibrous” berserat yang

akan membenarkan sambungan tulang

kranial berlaku Membenarkan otak membesar

Memudahkan/membenarkan bayi keluar melalui

saluran peranakan

Page 87: m2m3 Sistem Rangka

VINAS 87

Rangka aksial

- TULANG BELAKANG

Page 88: m2m3 Sistem Rangka

VINAS 88

Kolum Vertebra (Vertebral Column)

Terdiri dari 26 tulang tidak sekata Fleksibel, melengkung, bemula dari

tengkorak ke tulang pelvis Menjaga saraf tunjang yang amat sensitif Mengagihkan berat badan ke anggota

bawah.

Page 89: m2m3 Sistem Rangka

VINAS 89

Tulang Vertebra diasingkan melalui “intervertebral discs”

Mempunyai lengkungan yang normal

Diberikan nama mengikut kedudukannya

Figure 5.14

Page 90: m2m3 Sistem Rangka

VINAS 90

Page 91: m2m3 Sistem Rangka

VINAS 91

Mengandungi 33 tulang vertebrae berasingan semasa lahir

Sembilan tulang akan bercantum menjadi sakrum dan coccyx

Bermula dari superior ke inferior terdapat 24 tulang berdasarkan kedudukan dan bilangannya

Cervical / Servikal 7 Thoracic / Torasik 12 Lumbar / Lumbar 5

Page 92: m2m3 Sistem Rangka

VINAS 92

Ingat masa makan….. 7 Cervical (sarapan pagi) 12 Thoracic (tengahari) 5 Lumbar (malam)

Page 93: m2m3 Sistem Rangka

VINAS 93

“Intervertebral disks” berfungsi sebagai penyerap hentakan dan boleh menerima daya mampatan amat tinggi.

Ianya 90% air

Apabila bertambah tua, kandungan air akan berkurangan dan disk menjadi kurang fleksibel

Inilah yang menyebabkan orang tua menjadi “pendek” apabila tua.

Page 94: m2m3 Sistem Rangka

VINAS 94

Herniated, atau “disks” yang terkeluar akan menekan saraf tunjang atau saraf yang keluar.

Ini akan menyebabkan kesakitan yang teruk, atau kehilangan fungsi

Mempunyai lengkungan, agar dapat menyerap hentakan.

Page 95: m2m3 Sistem Rangka

VINAS 95

Page 96: m2m3 Sistem Rangka

VINAS 96

Lengkungan torasik dan lengkungan sakral dipanggil lengkungan “primer” kerana wujud dari semasa lahir.

Lengkungan “sekunder” berkembang kemudian.

Lengkungan servikal “cervical” wujud apabila bayi mula menaikkan kepada, lengkungan lumbar apabila bayi mula berjalan.

Page 97: m2m3 Sistem Rangka

VINAS 97

Kesemua vertebrae mempunyai beberapa paten yang sama.

Bahagian Badan centrum: bahagian yang menanggung berat, selalunya menghadap anterior

Vertebral foramen: laluan dimana saraf tunjang berada

Page 98: m2m3 Sistem Rangka

VINAS 98

Transverese Process: Dua projeksi di bahagian lateral vertebra

Spinous Process : Satu projeksi yang keluar dari bahagian posterior vertebra

Superior dan Inferior Articular Processes : dua pasang yang akan membenarkan vertebra berartikulasi

Vertebral arch: wujud apabila kesemua ekstensi posterior badan vertebra bergabung.

Page 99: m2m3 Sistem Rangka

VINAS 99

Page 100: m2m3 Sistem Rangka

VINAS 100

Struktur Cervical Vertebrae Cervical vertebrae ( C1 to C7 )

membentuk bahagian leher di tulang belakang

C1 dan C2 adalah tulang khas, fungsinya tidak dikongsi oleh tulang cervical vertebrae yang lain

Tulang Atlas ( C1) Tiada badan

Page 101: m2m3 Sistem Rangka

VINAS 101

Transverse processes mempunuai lekukan untuk menerima “occipital condyles”.

The Axis ( C2 ) menjalankan tugas pivot untuk atlas dan tengkorak

C3 hingga C7 adalah tulang kecil dan teringan dalam vertebrae

Spinous proces pendek dan terbahagi kepada dua cabang.

Page 102: m2m3 Sistem Rangka

VINAS 102

Transverse processes pula mengandungi foramina yang akan membenarkan arteri melaluinya untuk sampak ke otak.

Hanya kumpulan tulang ini sahaja yang mempunyai kelebihan ini.

Page 103: m2m3 Sistem Rangka

VINAS 103

Structure of Thoracic Vertebrae Thoracic vertebrae ( T1 – T 12 ). Lebih besar berbanding cervical vertebrae Mempunyai dua costal demifacets di kedua-dua

bahagian untuk menerima kepala tulang rusuk Mempunyai spinous processes yang panjang

dan bersudut ke bawah. Apabila dilihat dari sisi, ianya mempunyai

watak kepala giraffe

Page 104: m2m3 Sistem Rangka

VINAS 104

Page 105: m2m3 Sistem Rangka

VINAS 105

Structure of Lumbar Vertebrae

Lumbar vertebrae ( L1 – L 5 ). Paling kuat dan teguh berbanding semua

vertebrae. Mempunyai blok badan yang besar Spinous processes pendek, dan berbentuk

kapak. Apabila dilihat dari sisi, ianya mempunyai

watak kepala moose.

Page 106: m2m3 Sistem Rangka

VINAS 106

The Sacrum (sakrum) 5 vertebrae yang bercantum

Superior berartikulasi dengan inferior L5

Dibahagian lateral ada alae yang akan artikulasi

dengan tulang pinggang untuk membentuk

sacroiliac joints

Membentuk dinding posterior pelvis

Saluran vertebra masih bersambung dalam sacrum

Page 107: m2m3 Sistem Rangka

VINAS 107

Page 108: m2m3 Sistem Rangka

VINAS 108

The Coccyx Cantuman 3 hingga 5 tulang tidak sekata

yang kecil

Ekor tidak jelas dalam manusia

Page 109: m2m3 Sistem Rangka

VINAS 109

Rangka aksial

- TORAKS

Page 110: m2m3 Sistem Rangka

VINAS 110

Sangkar Torasik meliputi dan menjaga jantung, paru-paru dan saluran darah major.

Sternum Tulang leper yang terdiri dari sambungan tiga

tulang. Dalam kedudukan Superior ke inferior: Manubrium Body ( Gladiolus) Xiphoid process

The sternum, ribs and thoracic vertebrae make up the thorax, or thoracic cage

Page 111: m2m3 Sistem Rangka

VINAS 111

Page 112: m2m3 Sistem Rangka

VINAS 112

The sternum articulates with the first 7 pairs of ribs.

The sternum has 3 important landmarks The jugular notch The sternal angle The xiphisternal joint

Page 113: m2m3 Sistem Rangka

VINAS 113

The jugular notch: the concave upper part of the manubrium, usually at the level of T3

The sternal angle : site where the manubrium and the gladiolus meet to form a slight angle.

It is the reference point for locating the second intecostal space for listening to the heart valves

Xiphisternal joint : Where the sternal body and the xiphoid process meet. Used as a landmark to locate the level of T9

Page 114: m2m3 Sistem Rangka

VINAS 114

The Ribs 12 Pairs of ribs form the thoracic cage Men and women have the SAME number of

ribs All ribs articulate with the vertebral column

posteriorly The first 7 pairs are known as true ribs

because they attach directly to the sternum by costal cartilage

Page 115: m2m3 Sistem Rangka

VINAS 115

The Ribs The next 5 pairs are false ribs because

they either attach indirectly to the sternum, or not at all

The last 2 pairs of false ribs lack sternal attachment, and are called floating ribs

Page 116: m2m3 Sistem Rangka

VINAS 116

Rangka Apendikular

Page 117: m2m3 Sistem Rangka

VINAS 117

Appendicular skeleton Composed of 126 bones Shoulder girdle Also known as the pectoral or shoulder

girdle, consists of 2 bones Clavicle Scapula

Page 118: m2m3 Sistem Rangka

VINAS 118

Clavicle Also called the collar bone Attaches medially to the manubrium Attaches laterally to the scapula Serves to hold the arm away from the

thorax, and helps prevent shoulder dislocation

A broken clavicle causes the shoulder to collapse medially

Page 119: m2m3 Sistem Rangka

VINAS 119

Scapulae Also called the shoulder blades Flat, triangular in appearance, has 2

important processes Acromion process: the enlarged end of

the spine of the scapula Coracoid process : points over the top

of the shoulder and helps anchor the muscles of the arm

Page 120: m2m3 Sistem Rangka

VINAS 120

Page 121: m2m3 Sistem Rangka

VINAS 121

Scapulae The scapula does not attach directly to

the axial skeleton, but is held in place by muscles

The scapula has three borders: Superior Medial Lateral

Page 122: m2m3 Sistem Rangka

VINAS 122

Scapulae

The scapula has three angles: Superior Inferior Lateral

Page 123: m2m3 Sistem Rangka

VINAS 123

Scapulae The glenoid cavity is the shallow socket

that receives the head of the humerous The shoulder girdle is exceptionally free

to move However the price of this range of

motion is that it is easily dislocated

Page 124: m2m3 Sistem Rangka

VINAS 124

Page 125: m2m3 Sistem Rangka

VINAS 125

Bones of the upper limbs There are 30 bones in each upper

limb The arm is formed by the single

long bone, the humerus The proximal end has a rounded

head that fits into the glenoid cavity

Page 126: m2m3 Sistem Rangka

VINAS 126

Page 127: m2m3 Sistem Rangka

VINAS 127

Bones of the upper limbs The greater and lesser tubercles

opposite the head are sites for muscular attachment

The deltoid tuberosity is a roughened are at the midpoint of the shaft where the deltoid muscle attaches

The radial grove allows for the passage of the radial nerve.

Page 128: m2m3 Sistem Rangka

VINAS 128

Page 129: m2m3 Sistem Rangka

VINAS 129

Bones of the upper limbs The distal end of the humerus has a

spool shaped trochlea on the medial side, and the ball like capitulum on the lateral side

On the anterior surface the coronoid fossa is a depression above the trochlea

On the posterior surface you will find the olecranon fossa

These 2 depressions allow for free movement of the elbow

Page 130: m2m3 Sistem Rangka

VINAS 130

Page 131: m2m3 Sistem Rangka

VINAS 131

The Forearm The radius and ulna form the forearm In anatomical position the radius is the

lateral bone The radius and ulna articulate with each

other proximally and distally at small radio-ulnar joints

The bones are also connected by a long interosseous membrane

Page 132: m2m3 Sistem Rangka

VINAS 132

Bones of the Upper Limb

Figure 5.21c

Page 133: m2m3 Sistem Rangka

VINAS 133

The Forearm The head of the radius forms a joint with

the capitulum The radial tuberosity is the location for

the attachment of the biceps tendon The ulna is the medial bone The coronoid fossa can be found on the

proximal anterior surface of the bone The olecranon process can be found on

the proximal posterior surface

Page 134: m2m3 Sistem Rangka

VINAS 134

The Forearm

The coronoid and olecranon processes grip the trochlea like pliers to form the elbow.

Page 135: m2m3 Sistem Rangka

VINAS 135

The Hand The hand consists of the carpals,

metacarpals and phalanges. The carpals are 2 rows of 4 irregular

bones, and form the wrist

Hamate Pisiform TriquetralLunate

Trapezoid Trapezium ScaphoidCapitate

Page 136: m2m3 Sistem Rangka

VINAS 136

Page 137: m2m3 Sistem Rangka

VINAS 137

The Hand The carpals are bound together by

ligaments that restrict movement between them

The palm consists of metacarpals numbered 1 to 5, starting on the thumb side.

Each hand has 14 phalanges, and all of the fingers are composed of three phalanges, except for the thumb, which has 2.

Page 138: m2m3 Sistem Rangka

VINAS 138

Bones of the Pelvic Girdle Hip bones Composed of three pair of fused bones

Ilium Ischium Pubic bone

The total weight of the upper body rests on the pelvis

Protects several organs Reproductive organs Urinary bladder Part of the large intestine

Page 139: m2m3 Sistem Rangka

VINAS 139

Page 140: m2m3 Sistem Rangka

VINAS 140

The Pelvic Girdle

The pelvic bone is formed by 2 coxal bones

Each of these bones is formed by the fusion of 3 bones.

Ilium Ischium Pubis

Page 141: m2m3 Sistem Rangka

VINAS 141Figure 5.23b

Page 142: m2m3 Sistem Rangka

VINAS 142

The Pelvic Girdle The pelvis is constructed of fairly large

and heavy bones The hips are responsible for bearing the

entire weight of the torso They also bear the stress associated

with locomotion Reproductive organs, urinary bladder,

and part of the large intestine are protected by the pelvis

Page 143: m2m3 Sistem Rangka

VINAS 143

Gender Differences of the Pelvis

Page 144: m2m3 Sistem Rangka

VINAS 144

The Thigh The femur is the only bone in the thigh It is the largest, strongest bone of the

body The proximal end of the femur has a

ball-like head, and an obvious neck The femur slants medially to bring the

knees in line with the body’s center of gravity

Page 145: m2m3 Sistem Rangka

VINAS 145

Bones of the Lower Limbs

Page 146: m2m3 Sistem Rangka

VINAS 146

Distally, the lateral and medial condyles articulate with the tibia

The LEG The larger and more medial bone in the

lower leg is the tibia(shinbone) Proximally, it articulates with the distal

femur to form the knee joint Distally the medial malleolus forms the

inner bulge of the ankle

Page 147: m2m3 Sistem Rangka

VINAS 147

Bones of the Lower Limbs

Page 148: m2m3 Sistem Rangka

VINAS 148

The fibulaThe smaller, lateral bone of the lower leg

The fibula does not form the knee joint

The distal end of the fibula forms the outer part of the ankle with it’s lateral malleolus

The tibia and fibula are connected by an interosseous membrane, just like the radius and ulna are.

Page 149: m2m3 Sistem Rangka

VINAS 149

Bones of the Lower Limbs

Page 150: m2m3 Sistem Rangka

VINAS 150

Bones of the ankle and foot

The foot Tarsus –

ankle Metatarsals –

sole Phalanges –

toes

Page 151: m2m3 Sistem Rangka

VINAS 151

ARTIKULASI

Page 152: m2m3 Sistem Rangka

VINAS 152

• Articulations• Junctions between bones• Bind parts of skeletal system together• Make bone growth possible• Permit parts of the skeleton to change shape during childbirth• Enable body to move in response to skeletal muscle contraction

Joints of the Skeletal System

Page 153: m2m3 Sistem Rangka

VINAS 153

Articulation – site where two or more bones meet

Two Fundamental Functions of Joints:Allow the skeleton to have mobilityHold the skeleton together

Joints = Articulations

Page 154: m2m3 Sistem Rangka

VINAS 154

Three Functional Classifications

•Synarthrosis – immovable •Amphiarthrosis – slightly movable •Diarthrosis – freely movable

Three Structural Classifications:

•Fibrous – suture, syndesomosis, gomphosis•Cartilaginous – synchondrosis, symphysis•Synovial

Joints – Structural and Functional Classes

Page 155: m2m3 Sistem Rangka

VINAS 155

• Fibrous Joints• dense connective tissues connect bones• between bones in close contact

• Cartilaginous Joints• hyaline cartilage or fibrocartilage connect bones

• Synovial Joints• most complex• allow free movement

• synarthrotic• immovable

• amphiarthrotic• slightly movable

• diarthrotic• freely movable

Classification of Joints

Page 156: m2m3 Sistem Rangka

VINAS 156

3 Types• Syndesmosis• Suture• Gomphosis

Syndesmosis• long fibers connect bones• amphiarthrotic• distal ends of tibia and fibula

Fibrous Joints

Page 157: m2m3 Sistem Rangka

VINAS 157

Suture• between flat bones• synarthrotic• thin layer of connective tissue connects bones

Gomphosis• cone-shaped bony process in a socket• tooth in jawbone• synarthrotic

Fibrous Joints

Page 158: m2m3 Sistem Rangka

VINAS 158

Cartilaginous Joints

2 Types• Synchondrosis• Symphysis

Synchondrosis• bands of hyaline cartilage unite bones• epiphyseal plate (temporary)• between manubrium and first rib• synarthrotic

Page 159: m2m3 Sistem Rangka

VINAS 159

Cartilaginous Joints

Symphysis• pad of fibrocartilage between bones• pubis symphysis• joint between bodies of vertebrae• amphiarthrotic

Page 160: m2m3 Sistem Rangka

VINAS 160

Synovial Joints

• diarthrotic• joint cavity• synovial fluid• joint capsule• synovial membrane• bursae

Page 161: m2m3 Sistem Rangka

VINAS 161

Page 162: m2m3 Sistem Rangka

VINAS 162

Types of Synovial Joints

Ball-and-Socket Joint• hip• shoulder

Condyloid Joint• between metacarpals and phalanges

Page 163: m2m3 Sistem Rangka

VINAS 163

Types of Synovial Joints

Gliding Joint• between carpals• between tarsals

Hinge Joint• elbow• between phalanges

Page 164: m2m3 Sistem Rangka

VINAS 164

Types of Synovial Joints

Pivot Joint• between proximal ends of radius and ulna

Saddle Joint• between carpal and metacarpal of thumb

Page 165: m2m3 Sistem Rangka

VINAS 165

Flexion — bending movement that decreases the angle of the jointExtension — reverse of flexion; joint angle increasesDorsiflexion and Plantar flexion — up and down movement of the footAbduction — movement of a limb away from the midline or median planeAdduction — movement of a limb toward the midline or median planeCircumduction — movement of a limb describing a cone in space

Angular Movement – Change of Angle Between Bones

Page 166: m2m3 Sistem Rangka

VINAS 166

Types of Joint Movements

• abduction/adduction• dorsiflexion/plantarflexion• flexion/extension/hyperextension

Page 167: m2m3 Sistem Rangka

VINAS 167

The turning of a bone around its own long axis

Examples:Between first two vertebraeHip and shoulder joints

Rotation

Page 168: m2m3 Sistem Rangka

VINAS 168

Types of Joint Movements

• rotation/circumduction• supination/pronation

Page 169: m2m3 Sistem Rangka

VINAS 169

Supination and Pronation – refer to movements of radius around the ulna (also applied to foot movements)

Special Movements

Page 170: m2m3 Sistem Rangka

VINAS 170

Types of Joint Movements

• eversion/inversion• protraction/retraction• elevation/depression

Page 171: m2m3 Sistem Rangka

VINAS 171

Inversion and Eversion

Protraction and Retraction

Special Movements

Page 172: m2m3 Sistem Rangka

VINAS 172

Elevation and Depression

Opposition

Special Movements

Page 173: m2m3 Sistem Rangka

VINAS 173

Shoulder Joint

• ball-and-socket• head of humerus• glenoid cavity of scapula• loose joint capsule• bursae• ligaments prevent displacement• very wide range of movement

Page 174: m2m3 Sistem Rangka

VINAS 174

Shoulder Joint

Page 175: m2m3 Sistem Rangka

VINAS 175

Elbow Joint

• hinge joint• trochlea of humerus• trochlear notch of ulna

• gliding joint• capitulum of humerus• head of radius

• flexion and extension• many reinforcing ligaments• stable joint

Page 176: m2m3 Sistem Rangka

VINAS 176

Page 177: m2m3 Sistem Rangka

VINAS 177

Elbow Joint

Page 178: m2m3 Sistem Rangka

VINAS 178

Hip Joint

• ball-and-socket joint• head of femur• acetabulum• heavy joint capsule• many reinforcing ligaments• less freedom of movement than shoulder joint

Page 179: m2m3 Sistem Rangka

VINAS 179

Hip Joint

Page 180: m2m3 Sistem Rangka

VINAS 180

Knee Joint

• largest joint• most complex• medial and lateral condyles of distal end of femur• medial and lateral condyles of proximal end of tibia• femur articulates anteriorly with patella• modified hinge joint• flexion/extension/little rotation• strengthened by many ligaments and tendons• menisci separate femur and tibia• bursae

Page 181: m2m3 Sistem Rangka

VINAS 181

Knee Joint

Page 182: m2m3 Sistem Rangka

VINAS 182

Life-Span Changes

• Joint stiffness is an early sign of aging• Regular exercise can prevent stiffness• Fibrous joints first to strengthen over a lifetime• Changes in symphysis joints of vertebral column diminish flexibility and decrease height • Synovial joints lose elasticity

Page 183: m2m3 Sistem Rangka

VINAS 183

Clinical Application

Joint DisordersSprains

• damage to cartilage, ligaments, or tendons associated with joints• forceful twisting of joint

Bursitis• inflammation of a bursa• overuse of a joint

Arthritis• inflamed, swollen, painful joints

• Rheumatoid Arthritis• Osteoarthritis• Gout

Page 184: m2m3 Sistem Rangka

VINAS 184

Sprain - the ligaments in a joint are stretched or torn. Partially torn ligaments may repair themselves, but healing is slow due to lack of vascularization.Completely torn ligaments require surgical repair.

Cartilage is mostly avascular and largely unable to repair itself when torn. Most cartilage injuries involve tearing of the menisci.

Joint Injuries – Sprains & Cartilage Injury

Page 185: m2m3 Sistem Rangka

VINAS 185

Occur when bones are forced out of alignment

Usually accompanied by sprains, inflammation, and joint immobilization

Subluxation – partial dislocation of a joint

Dislocations - Luxation

Page 186: m2m3 Sistem Rangka

VINAS 186

BursitisInflammation of a bursa, usually caused by a blow or friction. Symptoms are pain and swelling. Treated with anti-inflammatory drugs; excessive fluid may be aspirated.

TendonitisInflammation of tendon sheaths.Symptoms and treatment are similar to bursitis.

Inflammatory Conditions

Page 187: m2m3 Sistem Rangka

VINAS 187

Ligament and Cartilage Tears: Example of the Knee Joint

Page 188: m2m3 Sistem Rangka

VINAS 188

Tendon of the Quadriceps Femoris

Lateral and Medial Patellar Retinacula

Fibular and Tibial Collateral Ligaments

Patellar Ligament

Knee Ligaments and Tendons – Anterior View

Page 189: m2m3 Sistem Rangka

VINAS 189

Intracapsular Ligaments (but outside of synovial cavity)

Ant.Cruciate Ligament Post. Cruciate Ligament

Semilunar Cartilages

Medial Meniscus Lateral meniscus

Knee Ligaments and other Supporting Structures

Page 190: m2m3 Sistem Rangka

VINAS 190

Adductor Magnus Tendon

Articular Capsule

Oblique Popliteal Ligament

Arcuate Popliteal Ligament

Semimembranosus Tendon

Knee Ligaments and other Supporting Structures

Page 191: m2m3 Sistem Rangka

VINAS 191

Knee Injury

Page 192: m2m3 Sistem Rangka

VINAS 192

More than 100 different types of inflammatory or degenerative diseases that damage the joints

Most widespread crippling disease in the U.S. (1 out of every 7 people)

Symptoms – pain, stiffness, and swelling of a joint

Acute forms are caused by bacteria and are treated with antibiotics

Chronic forms include osteoarthritis, rheumatoid arthritis, and gouty arthritis

Arthritis

Page 193: m2m3 Sistem Rangka

VINAS 193

Most common chronic arthritis; often called “wear-and-tear” arthritis

Affects women more than men 85% of all Americans develop OA More prevalent in the aged, and is probably

related to the normal aging process

Osteoarthritis (OA)

Page 194: m2m3 Sistem Rangka

VINAS 194

Page 195: m2m3 Sistem Rangka

VINAS 195

OA reflects the years of abrasion and compression causing increased production of metalloproteinase enzymes that break down cartilage

As one ages, cartilage is destroyed more quickly than it is replaced

The exposed bone ends thicken, enlarge, form bone spurs, and restrict movement

Crepitus – crunching noise as roughened articular surfaces rub together

Joints most affected are the cervical and lumbar spine, fingers, knuckles, knees, and hips

Osteoarthritis: Course

Page 196: m2m3 Sistem Rangka

VINAS 196

OA is usually slow and irreversible Treatments include:

Mild pain relievers, along with moderate activity Magnetic therapy? Glucosamine sulfate? said to decrease pain and

inflammation

Osteoarthritis: Treatments

Page 197: m2m3 Sistem Rangka

VINAS 197

Chronic, inflammatory, autoimmune disease of unknown cause, with an insidious onset

Usually arises between the ages of 40 to 50, but may occur at any age

Signs and symptoms include joint tenderness, anemia, osteoporosis, muscle atrophy, and cardiovascular problems The course of RA is marked with exacerbations

and remissions

Rheumatoid Arthritis (RA)

Page 198: m2m3 Sistem Rangka

VINAS 198

RA begins with synovitis of the affected joint Inflammatory chemicals are inappropriately released Inflammatory blood cells migrate to the joint, causing

swelling Inflamed synovial membrane thickens into a pannus Pannus erodes cartilage, scar tissue forms,

articulating bone ends fuse The end result, ankylosis, produces bent, deformed

fingers

Rheumatoid Arthritis: Course

Page 199: m2m3 Sistem Rangka

VINAS 199

Conservative therapy – aspirin, long-term use of antibiotics, and physical therapy

Progressive treatment – anti-inflammatory drugs or immunosuppressants

The drug Enbrel, a biological response modifier, neutralizes the harmful properties of inflammatory chemicals

Rheumatoid Arthritis: Treatment

Page 200: m2m3 Sistem Rangka

VINAS 200

Deposition of uric acid crystals in joints and soft tissues, followed by an inflammatory response

Typically, gouty arthritis affects the joint at the base of the great toe

In untreated gouty arthritis, the bone ends fuse and immobilize the joint

Treatment – colchicine, nonsteroidal anti-inflammatory drugs, and glucocorticoids

Gouty Arthritis

Page 201: m2m3 Sistem Rangka

VINAS 201

THE HUMAN SKELETON IS THE HUMAN SKELETON IS MULTI-FUNCTIONALMULTI-FUNCTIONAL

•Gives structure to the body

•Provides for red and white blood cell development

•Allows for movement in a variety of directions, depending on the type of joint

•Protects internal organs

Page 202: m2m3 Sistem Rangka

VINAS 202

NAME THE JOINTNAME THE JOINT

As the arrow points out a joint (the point at which two bones meet) ---

•name the type of joint

•decide what kind of motion

occurs there

•write answers in your journal

Page 203: m2m3 Sistem Rangka

VINAS 203

NAME THE JOINTNAME THE JOINT

Hinge joint

Allows movement back and forth in one plane.

Page 204: m2m3 Sistem Rangka

VINAS 204

NAME THE JOINTNAME THE JOINT

Ball and socket joint

Allows for most range of movement.

Page 205: m2m3 Sistem Rangka

VINAS 205

NAME THE JOINTNAME THE JOINT

Pivot joint

Rotation of the head on the spine

Page 206: m2m3 Sistem Rangka

VINAS 206

NAME THE JOINTNAME THE JOINT

Gliding joints

Bones slide over one another.

Page 207: m2m3 Sistem Rangka

VINAS 207

NAME THE JOINTNAME THE JOINT

Immovable joint

No movement

Page 208: m2m3 Sistem Rangka

VINAS 208

NAME THE JOINTNAME THE JOINT

Hinge joint

Allows movement back and forth in one plane.

Page 209: m2m3 Sistem Rangka

VINAS 209

Most joints allow movement of the body framework. Imagine that you did not have a joint where your bones meet at your knee or where your bones meet at the elbow.

Would your world and life be any different?

Page 210: m2m3 Sistem Rangka

VINAS 210

Page 211: m2m3 Sistem Rangka

VINAS 211

Bone Development Initial skeleton of cartilage in infants

Replaced with bone by osteoblasts

More than 300 bones at birth – fuse to 206

Always growing and breaking down Osteoblasts – form new bone cells Osteoclasts – break bone cells down Osteocytes – mature bone cells

Page 212: m2m3 Sistem Rangka

VINAS 212

Broken Bones Fracture is a break of the bone Simple or Complex fracture Regrowth of bone:

Spongy bone forms in first few days Blood vessels regrow and spongy bone hardens Full healing takes 1-2 months

Page 213: m2m3 Sistem Rangka

VINAS 213

Homeostatic Imbalances

Rickets•Disease of children due to a lack of vitamin D.•Calcium is not deposited in bones.•Bones become soft.•Bowing of the bones, and other deformities occur.

Page 214: m2m3 Sistem Rangka

VINAS 214

Homeostatic Imbalances

Osteomalacia

•“Rickets” of adults.•Due to a lack of vitamin D.•Calcium is not deposited in the bones.•Bones become brittle.

Page 215: m2m3 Sistem Rangka

VINAS 215

Homeostatic Imbalances

Osteoporosis•Bone reabsorption is greater than bone deposition.•Due to any of the following:

•Lack of estrogen in women.•Lack of exercise to stress the bones.•Inadequate intake of calcium and phosphorus.•Abnormalities of vitamin D metabolism.•Loss of muscle mass.

Page 216: m2m3 Sistem Rangka

VINAS 216

Age Related DysfunctionsArthritis:

Osteoarthritis- 90% of pop. By age 40chronic inflammation of articular cartilagecan be normal age-dependent change can also be pathology due to ?

Age-related changesdecrease blood supplytrauma

Page 217: m2m3 Sistem Rangka

VINAS 217

Osteoarthritis

Page 218: m2m3 Sistem Rangka

VINAS 218

Osteoporosis

Decline in Bone DensityBone Resorption > Bone Deposition

Increase Risk for Fracturecompression fractures of vertebraehip fractures

Role of calcium, vitamin D, estrogen, exerciseCalcitonin vs. Parathyroid Hormone

Page 219: m2m3 Sistem Rangka

VINAS 219

Parts of the Skeletal System Axial skeleton

Skull and bones that support it Includes vertebra and ribs 80 bones

Appendicular skeleton Limbs 126 bones

Page 220: m2m3 Sistem Rangka

VINAS 220

Joints Where bone meets bone Ligament – holds bone to bone Types of joints:

Immovable - skull Ball-and-socket - shoulder Hinge - knee Pivot – forearm Gliding - vertebrae

Page 221: m2m3 Sistem Rangka

VINAS 221

Joints Cartilage covers ends of movable bones

Reduces friction

Lubricated by fluid from capillaries

Page 222: m2m3 Sistem Rangka

VINAS 222

Cartilage

Page 223: m2m3 Sistem Rangka

VINAS 223

Bone Marrow Red marrow – produces blood cells and

clotting factors Found in humerus, femur, sternum, ribs,

vertebrae, pelvis Produces RBC 2 million per second

Yellow marrow – stores fat Found in many bones

Page 224: m2m3 Sistem Rangka

VINAS 224

Osteoporosis