luminescence, thermolysis and catalysis

8
<Electronic Supplementary Information> Construction of helical coordination polymers via flexible conformers of bis(3-pyridyl)cyclotetramethylenesilane: metal(II) and halogen effects on luminescence, thermolysis and catalysis Hyeun Kim, Minwoo Park, Haeri Lee and Ok-Sang Jung* Department of Chemistry, Pusan National University, Pusan 609-735, Korea Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2015

Transcript of luminescence, thermolysis and catalysis

Page 1: luminescence, thermolysis and catalysis

<Electronic Supplementary Information>

Construction of helical coordination polymers via flexible conformers of

bis(3-pyridyl)cyclotetramethylenesilane: metal(II) and halogen effects on

luminescence, thermolysis and catalysis

Hyeun Kim, Minwoo Park, Haeri Lee and Ok-Sang Jung*

Department of Chemistry, Pusan National University, Pusan 609-735, Korea

Electronic Supplementary Material (ESI) for Dalton Transactions.This journal is © The Royal Society of Chemistry 2015

Page 2: luminescence, thermolysis and catalysis

Fig. S1 TGA (red) and DSC (blue) curves of [ZnCl2L] (a), [ZnBr2L] (b), [HgCl2L] (c), and

[HgBr2L] (d).

Wei

ght l

oss (

%)

Temperature (°C)

50

100

50

100

50

100

200 400 600

50

100

Page 3: luminescence, thermolysis and catalysis

Fig. S2 Top: powder XRD data for zinc(II) oxide residue (black) and reference pattern (red)

from ICDD database (PDF no. 36-1451). Bottom: SEM-EDX data for the zinc(II) oxide

residue.

`

Cou

nts

Energy (KeV)5 10

10 K

Inte

nsity

(a. u

.)

2-theta (degree)

30 40 50 60 70

Page 4: luminescence, thermolysis and catalysis

Fig. S3 SEM images showing morphologies of thermal decomposition residue of [ZnCl2L]

calcined at 200 °C (a), 300 °C (b), 400 °C (c), and 500 °C (d) for 2 h.

50μm

(b)

20μm

(a)

2μm

(c)

2μm

(d)

Page 5: luminescence, thermolysis and catalysis

Fig. S4 1H NMR on the procedure of transesterification using [ZnCl2L] ((a) 1 h, (b) 3 h, (c) 7

h).

HE150116_m-CMPS_ZnCl2_phenylacetate_9h_Acetone

HE150116_M-CMPS_ZNCL2_PHENYLACETATE_1H_ACETONE_TEM60

9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0Chemical Shift (ppm)

HE150116_m-CMPS_ZnCl2_phenylacetate_3h_Acetone_Tem60

HE150116_m-CMPS_ZnCl2_phenylacetate_5h_Acetone

9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0Chemical Shift (ppm)

7 6.57.5Chemical shift (ppm)

(a)

(b)

(c)

Page 6: luminescence, thermolysis and catalysis

Fig. S5 1H NMR on the procedure of transesterification using [ZnBr2L] ((a) 1h, (b) 3h, (c) 7

h, (d) 14 h).

Chemical shift (ppm)

(a)

(b)

(c)

(d)

HE150116_M-CMPS_ZNBR2_PHENYLACETATE_13H_ACETONE_TEM60

9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0Chemical Shift (ppm)

HE150116_m-CMPS_ZnCl2_phenylacetate_5h_Acetone

9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0Chemical Shift (ppm)

7 6.57.5

HE150116_M-CMPS_ZNBR2_PHENYLACETATE_1H_ACETONE_TEM60

9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0Chemical Shift (ppm)

HE150116_m-CMPS_ZnBr2_phenylacetate_3h_Acetone_Tem60

HE150116_m-CMPS_ZnBr2_phenylacetate_5h_Acetone

Page 7: luminescence, thermolysis and catalysis

Fig. S6 1H NMR spectra showing the transesterification of phenyl acetate in methanol using

[HgCl2L] (a) and [HgBr2L] (b) for 13 h.

Chemical shift (ppm)

(a)

(b)

HE150116_m-CMPS_ZnCl2_phenylacetate_5h_Acetone

9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0Chemical Shift (ppm)

7 6.57.5

HE-150115-004-HgCl2-12h-Acetoned6

HE-150115-005-HgBr2-12h-Acetoned6

Page 8: luminescence, thermolysis and catalysis

Fig. S7 Plot showing the transesterification catalytic yield as a function of time using ZnCl2

(red), Zn(pyridine)2Cl2 (blue), and ZnO (green).

0 2 4 6

0

50

100

Yie

ld (%

)

Time (h)