Logbook week 5

8
In the following photo you can see the sequence that we went through to produce our balsa wood model of a can8lever from the Melbourne University Oval pavilion building. Photo 1 shows us first understanding what part of the building we are building. The next photo (2) shows us sketching the specified part onto a piece of paper which we then glued the balsa wood onto (this made it easier to ensure angles and measurements were right). In photo 3 we then proceeded to match up the different parts that we had each been working on. They were then stuck onto a piece of white cardboard which served as the roof. Photo 5 shows the finished structure of our model. This structure has fixed joints. Photo 4, Zoe Brain, (2014) Photo 3, Zoe Brain, (2014) Photo 2, Zoe Brain, (2014) Photo 1, Zoe Brain, (2014) Photo 5, Zoe Brain, (2014) Below is a load path diagram of our groups structure. Sketch 1, by Zoe Brain, (2014) Zoe Brain 639 607

description

Zoe Brain

Transcript of Logbook week 5

Page 1: Logbook week 5

In  the  following  photo  you  can  see  the  sequence  that  we  went  through  to  produce  our  balsa  wood  model  of  a  can8lever  from  the  Melbourne  University  Oval  pavilion  building.  Photo  1  shows  us  first  understanding  what  part  of  the  building  we  are  building.  The  next  photo  (2)  shows  us  sketching  the  specified  part  onto  a  piece  of  paper  which  we  then  glued  the  balsa  wood  onto  (this  made  it  easier  to  ensure  angles  and  measurements  were  right).    In  photo  3  we  then  proceeded  to  match  up  the  different  parts  that  we  had  each  been  working  on.  They  were  then  stuck  onto  a  piece  of  white  cardboard  which  served  as  the  roof.  Photo  5  shows  the  finished  structure  of  our  model.    This  structure  has  fixed  joints.  

Photo  4,  Zoe  Brain,  (2014)  

Photo  3,  Zoe  Brain,  (2014)  

Photo  2,  Zoe  Brain,  (2014)  

Photo  1,  Zoe  Brain,  (2014)  

Photo  5,  Zoe  Brain,  (2014)  

Below  is  a  load  path  diagram  of  our  groups  structure.  Sketch  1,  by  Zoe  Brain,  (2014)  

Zoe  Brain  639  607  

Page 2: Logbook week 5

Different  models…  This  groups  model  is  quite  similar  to  the  one  our  group  made  (also  a  can8lever).  However,  the  construc8on  method  was  slightly  different,  in  that  this  group  did  not  s8ck  their  model  onto  paper  in  order  to  construct  it.    However,  the  equipment  as  well  as  the  other  methods  they  undertook  were  the  same.  (This  structure  also  has  fixed  joints).  

Below  is  a  load  path  diagram  of  this  groups  final  design.  Sketch  1,  by  Zoe  Brain,  (2014)  

Photo  4,  James  Macintosh,  (2014)  

Photo  3,  James  Macintosh,  (2014)  

Photo  2,  James  Macintosh,  (2014)  

Photo  1,  James  Macintosh,  (2014)  

Zoe  Brain  639  607  

Page 3: Logbook week 5

Round  and  rectangular  columns  are  used  (in  a  grid)  in  concrete  frames  where  they  are  connected  together  using  concrete  beams.  

Steel  frames  can  be  seen  in  Melbourne    School  of  design-­‐  they  comprise  steel  columns  connected  to  steel  girders  and  beams.  

MATERIALS  IN  CONSTRUCTION…  

Sketch  1,  by  Zoe  Brain,  (2014)    

Sketch  2,  by  Zoe  Brain,  (2014)    

Reinforced  masonry  load  bearing  walls  are  core  filled  hollow  concrete  blocks  or  grout  filled  cavity  masonry.  Bond  beams  created  using  special  concrete  blocks  which  bond  individual  units  together.  These  are  used  instead  of  concrete  or  steel  lintels.  

Timber  frame  (post  and  bearing)  typically  use  a  grid  of  8mber  post  or  poles  connected  to  8mber  beams.  Bracing  is  necessary  for  stabilising  the  structure.  (This  type  of  framing  can  be  seen  in  the  oval  pavilion).  

Zoe  Brain  639  607  

Page 4: Logbook week 5

Concrete  load  bearing  walls  can  be  in-­‐situ  or  precast.  They  may  also  provide  support  for  spandrel  panels  and  link  into  other  structural  elements  (i.e.  floor  slabs,  roof  structure  etc.)    

Sketch  1,  by  Zoe  Brain,  (2014)    

Solid  masonry  load  bearing  walls  can  be  constructed  with  either  single  or  mul8ple  skins  of  concrete  masonry  or  clay  bricks.  If  more  than  one  skin  they’re  8ed  together  with  a  wall  8e.  Could  also  be  joined  using  a  brick  (header  showing  in  face  of  wall)    

Cavity  masonry  walls  are  generally  double  skin  walls,  this  provides  more  insula8on.  If  you  see  weep  holes  (holes  between  bricks),  chances  are  it’s  a  cavity  masonry  wall.  Could  put  blue  layering  between  brick/8mber  to  keep  moisture  out;  leave  perpend  open  to  let  water  seep  through.  Brick  veneer  construc8on  uses  1  skin  of  structural  frame  wall  and  1  skin  of  non-­‐structural  masonry-­‐  which  does  not  support  structure,  the  structural  frame  does.  Insula8on  then  put  in  between  the  brick  and  structural  frame!!    Stud  wall  members  can  be  8mber  or  steel  and  structural  frames  can  be  constructed    using  8mber,  steel  or  concrete;  could  even  use  brick.  

Zoe  Brain  639  607  

Page 5: Logbook week 5

WOOD  

Quarter  sawn  Advantages:  best  grain  shown  on  face,  good  wearing  for  surface  floors/furniture,  lower  width  shrinkage  on  drying,  less  cupping  and  warping  than  other  cuts.  Can  be  successfully  recondi8oned.  Disadvantages:  slower  seasoning,  nailing  on  face  is  prone  to  splicng.  Back  Sawn:  Advantages:  seasons  more  rapidly,  less  prone  to  splicng  when  nailing.  Wide  sec8ons  are  possible,  few  knots  on  edge.  Disadvantages:  shrinks  more  across  width  when  drying;  more  likely  to  warp  and  cup  ;  collapsed  8mber  more  difficult  to  recondi8on.    

Radial  Sawn:  Advantages:  dimensional  stability  less  prone  to  warping  and  cupping,  less  wastage  in  milling.      Disadvantages:  wedge  shaped  cross  sec8on;  more  difficult  to  detail  and  stack.  

Zoe  Brain  639  607  

Sketch  1,  by  Zoe  Brain,  (2014)    

Sketch  2,  by  Zoe  Brain,  (2014)    

Sketch  3,  by  Zoe  Brain,  (2014)    

Page 6: Logbook week 5

LVL-­‐  Laminated  veneer  lumber-­‐  made  from  lamina8ng  thin  sheets  of  8mber,  most  laminates  with  grain  aligned  to  longitudinal  direc8on,  very  deep  and  long  sec8ons  possible,  high  strength.  {Mainly  structural  use  (beams,  posts,  portal  frames).}  

ENGINEERED  TIMBER  

GLULAM-­‐  glue  laminated  8mber-­‐  made  from  gluing  pieces  of  dressed  sawn  8mber  together  to  form  a  deep  member.  Most  laminates  with  grain  aligned  to  longitudinal  direc8on.  

CLT-­‐  Cross  laminated  8mber  made  by  gluing  pieces  of  dressed  sawn  8mber  together  to  form  a  deep  member  most  laminates  with  grain  designed  to  longitudinal  direc8on.    

PLYWOOD-­‐  Made  by  gluing  and  pressing  thin  laminates  together  to  form  a  sheet  grain  in  laminates  in  alternate  direc8ons  strengths  in  2  direc8ons.  {Structural  bracing,  structural  flooring,  formworks,  joinery,  marine  applica8ons}.  

MDF-­‐  Medium  density  fibreboard-­‐  made  by  breaking  down  hardwood  or  sonwood  waste  into  wood  fibres,  combining  it  with  wax  and  resin  binder  by  applying  high  temperature  and  pressure.  MDF  generally  more  dense  than  plywood  {non  structural  applica8ons  –  (joinery).}  

OSB  (Oriented  strand  board)/Chipboard  and  strand  board-­‐  made  by  layering  hardwood  and  sonwood  residuals  (chips,  strands)  in  specific  orienta8ons  with  wax  and  resin  binder  by  applying  high  temperatures  and  pressure  {structural  systems  (flooring,  bracing,  cladding  finish)      

Zoe  Brain  639  607  

Page 7: Logbook week 5

Length  is  longer  than  12:1.  

LONG  COLUMNS:  

Deflect  by  buckling  (in  length)  

SHORT  COLUMNS:  

Length  is  shorter  than  12:1.  

Length  and  fixing  of  the  column  determines  how  it  will  take  load  and  the  way  it  buckles.    (The  effec8ve  length  changes  depending  on  the  fixture.  This  is  measured  between  the  points  of  contraflexure.    

Deflect  by  compressing;  are  shorter  length/thicker  cross  sec8on  i.e.  10:1  Load  (N)/Area  (mm^2)      

Fail  by  crushing  (shear  force)  [when  compressive  load  in  exceeded-­‐  load  too  great  or  cross  sec8on  too  small.]  and  get  shorter  with  compressive  load.    

COLUMNS:  

Ver8cal  structural  members  designed  to  transfer  axial  compressive  loads.  All  columns  are  considered  slender  members.      

•  Compressive  Strength  (Pa)  =  Load  (N)  /  area  (mm2)    

 (Column)  easy  to  deflect  pin;  harder  fixed  joint;  more  hard  fixed/pin  (length  shorter);  hardest  if  2  pin  and  fixed  middle  (length  shorter).            

Zoe  Brain  639  607  

Sketch  1,  by  Zoe  Brain,  (2014)    

Page 8: Logbook week 5

•  References:  htps://app.lms.unimelb.edu.au/bbcswebdav/courses/ENVS10003_2014_SM1/WEEK%2005/SHORT%20AND%20LONG%20COLUMNS.pdf  

•  htps://app.lms.unimelb.edu.au/bbcswebdav/courses/ENVS10003_2014_SM1/WEEK%2005/SHORT%20AND%20LONG%20COLUMNS.pdf  

•  htp://www.youtube.com/watch?v=Vq41q6gUIjI&feature=youtu.be  •  htp://www.youtube.com/watch?v=YJL0vCwM0zg&feature=youtu.be  •  htp://www.youtube.com/watch?v=ul0r9OGkA9c&feature=youtu.be  •  htp://www.youtube.com/watch?v=iqn2bYoO8j4&feature=youtu.be  •  htp://www.youtube.com/watch?v=0YrYOGSwtVc&feature=youtu.be  

•  ‘Oval  Pavilion  Redevelopment’,  Cox  Architecture,  (2012)  

Zoe  Brain  639  607