Link Layer Link Layer: Introduction

26
Ch 5 Chapter 5 Link Layer and LANs Link Layer and LANs A note on the use of these ppt slides: We’re making these slides freely available to all (faculty, students, readers). They’re in PowerPoint form so you can add, modify, and delete slides (including this one) and slide content to suit your needs. They obviously Computer Networking: A T D A h represent a lot of work on our part. In return for use, we only ask the following: If you use these slides (e.g., in a class) in substantially unaltered form, that you mention their source (after all, we’d like people to use our book!) If you post any slides in substantially unaltered form on a www site that A Top Down Approach 4 th edition. Jim Kurose, Keith Ross Addis W sl Jl If you post any slides in substantially unaltered form on a www site, that you note that they are adapted from (or perhaps identical to) our slides, and note our copyright of this material. Thanks and enjoy! JFK/KWR Addison-Wesley, July 2007. 5: DataLink Layer 5-1 All material copyright 1996-2007 J.F Kurose and K.W. Ross, All Rights Reserved Chapter 5: The Data Link Layer Chapter 5: The Data Link Layer Our goals: Our goals: understand principles behind data link layer services: services error detection, correction sharing a broadcast channel: multiple access link layer addressing reliable data transfer, flow control: done! i t ti ti d i l t ti f i li k instantiation and implementation of various link layer technologies 5: DataLink Layer 5-2 Link Layer Link Layer 5 1 I d i d 5 6 Li k l i h 5.1 Introduction and services 5 2 E dt ti 5.6 Link-layer switches 5.7 PPP 5.2 Error detection and correction 5 3Multiple access 5.8 Link virtualization: ATM, MPLS 5.3Multiple access protocols 5 4 Link-layer 5.4 Link layer Addressing 5.5 Ethernet 5.5 Ethernet 5: DataLink Layer 5-3 Link Layer: Introduction Link Layer: Introduction Some terminology: hosts and routers are nodes communication channels that connect adjacent nodes along connect adjacent nodes along communication path are links wired links i l li k wireless links LANs layer-2 packet is a frame, encapsulates datagram data-link layer has responsibility of transferring datagram from one node 5: DataLink Layer 5-4 to adjacent node over a link

Transcript of Link Layer Link Layer: Introduction

Page 1: Link Layer Link Layer: Introduction

Ch 5Chapter 5Link Layer and LANsLink Layer and LANs

A note on the use of these ppt slidesWersquore making these slides freely available to all (faculty students readers) Theyrsquore in PowerPoint form so you can add modify and delete slides (including this one) and slide content to suit your needs They obviously Computer Networking

A T D A h ( g ) y y yrepresent a lot of work on our part In return for use we only ask the following

If you use these slides (eg in a class) in substantially unaltered form that you mention their source (after all wersquod like people to use our book)

If you post any slides in substantially unaltered form on a www site that

A Top Down Approach 4th edition Jim Kurose Keith RossAddis W sl J l If you post any slides in substantially unaltered form on a www site that

you note that they are adapted from (or perhaps identical to) our slides and note our copyright of this material

Thanks and enjoy JFKKWR

Addison-Wesley July 2007

5 DataLink Layer 5-1

All material copyright 1996-2007JF Kurose and KW Ross All Rights Reserved

Chapter 5 The Data Link LayerChapter 5 The Data Link LayerOur goalsOur goals

understand principles behind data link layer servicesservices

error detection correctionsharing a broadcast channel multiple accesslink layer addressingreliable data transfer flow control done

i t ti ti d i l t ti f i li k instantiation and implementation of various link layer technologies

5 DataLink Layer 5-2

Link LayerLink Layer

5 1 I d i d 5 6 Li k l i h51 Introduction and services5 2 E d t ti

56 Link-layer switches57 PPP

52 Error detection and correction 5 3Multiple access

58 Link virtualization ATM MPLS

53Multiple access protocols5 4 Link-layer 54 Link layer Addressing55 Ethernet55 Ethernet

5 DataLink Layer 5-3

Link Layer IntroductionLink Layer IntroductionSome terminology

hosts and routers are nodescommunication channels that connect adjacent nodes along connect adjacent nodes along communication path are links

wired linksi l li kwireless links

LANslayer-2 packet is a framey p encapsulates datagram

data-link layer has responsibility of transferring datagram from one node

5 DataLink Layer 5-4

g gto adjacent node over a link

Link layer contextydatagram transferred by transportation analogy

trip from Princeton to different link protocols over different links

Eth n t n fi st link

trip from Princeton to Lausanne

limo Princeton to JFKeg Ethernet on first link frame relay on intermediate links 80211

l l k

plane JFK to Genevatrain Geneva to Lausanne

don last linkeach link protocol provides different

tourist = datagramtransport segment =

i ti li kprovides different services

eg may or may not

communication linktransportation mode = link layer protocoleg may or may not

provide rdt over linklink layer protocoltravel agent = routing algorithm

5 DataLink Layer 5-5

algorithm

Link Layer ServicesLink Layer Servicesframing link accessframing link access

encapsulate datagram into frame adding header trailerchannel access if shared mediumf m mldquoMACrdquo addresses used in frame headers to identify source dest

diff t f IP dd bull different from IP addressreliable delivery between adjacent nodes

we learned how to do this already (chapter 3)we learned how to do this already (chapter 3)seldom used on low bit-error link (fiber some twisted pair)wireless links high error rates

bull Q why both link-level and end-end reliability

5 DataLink Layer 5-6

Link Layer Services (more)Link Layer Services (more)

flow controlpacing between adjacent sending and receiving nodes

error detectionerrors caused by signal attenuation noise

d f receiver detects presence of errors bull signals sender for retransmission or drops frame

tierror correctionreceiver identifies and corrects bit error(s) without resorting to retransmissionresorting to retransmission

half-duplex and full-duplexwith half duplex nodes at both ends of link can transmit

5 DataLink Layer 5-7

p but not at same time

Where is the link layer implementedWhere is the link layer implemented

in each and every hostin each and every hostlink layer implemented in ldquoadaptorrdquo (aka network host schematicadaptor (aka network interface card NIC)

Ethernet card PCMCI cpu memory

applicationtransportnetwork

linkcard 80211 cardimplements link physical layer controller

host bus (e g PCI)

link

layerattaches into hostrsquos system buses

physicaltransmission

(eg PCI)link

physical

ycombination of hardware software

network adaptercard

5 DataLink Layer 5-8

firmware

Adaptors CommunicatingAdaptors Communicating

controller controller

datagram datagram

controller

sending host receiving hostdatagram

frame

sending sideencapsulates datagram in f

receiving sidelooks for errors rdt flow

t l tframeadds error checking bits rdt flow control etc

control etcextracts datagram passes to upper layer at receiving

5 DataLink Layer 5-9

pp y gside

Link LayerLink Layer

5 1 I d i d 5 6 Li k l i h51 Introduction and services5 2 E d t ti

56 Link-layer switches57 PPP

52 Error detection and correction5 3Multiple access

58 Link Virtualization ATM MPLS

53Multiple access protocols5 4 Link-layer 54 Link layer Addressing55 Ethernet55 Ethernet

5 DataLink Layer 5-10

Error DetectionError DetectionEDC= Error Detection and Correction bits (redundancy)D D d b h k l d h d f ld D = Data protected by error checking may include header fields

bull Error detection not 100 reliablebull protocol may miss some errors but rarelybull larger EDC field yields better detection and correction

otherwise

5 DataLink Layer 5-11

Parity CheckingParity CheckingSingle Bit Parity Two Dimensional Bit ParitySingle Bit ParityDetect single bit errors

Two Dimensional Bit ParityDetect and correct single bit errors

0 0

5 DataLink Layer 5-12

Internet checksum (review)Internet checksum (review)

Goal detect ldquoerrorsrdquo (e g flipped bits) in transmitted Goal detect errors (eg flipped bits) in transmitted packet (note used at transport layer only)

Sendertreat segment contents

Receivercompute checksum of received segmentas sequence of 16-bit

integerschecksum addition (1rsquos

received segmentcheck if computed checksum equals checksum field valuechecksum addition (1 s

complement sum) of segment contentss d ts h ks

NO - error detectedYES - no error detected But maybe errors sender puts checksum

value into UDP checksum field

But maybe errors nonetheless

5 DataLink Layer 5-13

Checksumming Cyclic Redundancy CheckChecksumming Cyclic Redundancy Checkview data bits D as a binary numberychoose r+1 bit pattern (generator) Ggoal choose r CRC bits R such that

D R tl di i ibl b G ( d l 2) ltDRgt exactly divisible by G (modulo 2) receiver knows G divides ltDRgt by G If non-zero remainder error detectedcan detect all burst errors less than r+1 bits

widely used in practice (Ethernet 80211 WiFi ATM)

5 DataLink Layer 5-14

CRC ExampleCRC ExampleWant

D2r XOR R = nGequivalentlyq y

D2r = nG XOR R equivalentlyq y

if we divide D2r by G want remainder R

R = remainder[ ]D2r

G

5 DataLink Layer 5-15

Link LayerLink Layer

5 1 I d i d 5 6 Li k l i h51 Introduction and services5 2 E d t ti

56 Link-layer switches57 PPP

52 Error detection and correction 5 3Multiple access

58 Link Virtualization ATM MPLS

53Multiple access protocols5 4 Link-layer 54 Link layer Addressing55 Ethernet55 Ethernet

5 DataLink Layer 5-16

Multiple Access Links and ProtocolspTwo types of ldquolinksrdquo

i t t i tpoint-to-pointPPP for dial-up accesspoint-to-point link between Ethernet switch and hostpoint-to-point link between Ethernet switch and host

broadcast (shared wire or medium)old-fashioned Ethernetold fashioned Ethernetupstream HFC80211 wireless LAN

sh d i ( h d RFhumans at a

kt il p t

5 DataLink Layer 5-17

shared wire (eg cabled Ethernet)

shared RF(eg 80211 WiFi)

shared RF(satellite)

cocktail party (shared air acoustical)

Multiple Access protocolsMultiple Access protocolssingle shared broadcast channel single shared broadcast channel two or more simultaneous transmissions by nodes interference

collision if node receives two or more signals at the same timemultiple access protocol

distributed algorithm that determines how nodes share channel ie determine when node can transmitcommunication about channel sharing must use channel itself

f b d h l f di ino out-of-band channel for coordination

5 DataLink Layer 5-18

Ideal Multiple Access ProtocolIdeal Multiple Access Protocol

B d h l f R bBroadcast channel of rate R bps1 when one node wants to transmit it can send at

t Rrate R2 when M nodes want to transmit each can send at

average rate RMaverage rate RM3 fully decentralized

no special node to coordinate transmissionsno special node to coordinate transmissionsno synchronization of clocks slots

4 simple4 simple

5 DataLink Layer 5-19

MAC Protocols a taxonomyMAC Protocols a taxonomyThree broad classes

Channel Partitioningdivide channel into smaller ldquopiecesrdquo (time slots f d )frequency code)allocate piece to node for exclusive use

Random AccessRandom Accesschannel not divided allow collisionsldquorecoverrdquo from collisions

ldquoTaking turnsrdquonodes take turns but nodes with more to send can take longer turns

5 DataLink Layer 5-20

Channel Partitioning MAC protocols TDMAChannel Partitioning MAC protocols TDMA

TDMA time division multiple accessTDMA time division multiple accessaccess to channel in rounds each station gets fixed length slot (length = pkt each station gets fixed length slot (length = pkt trans time) in each round unused slots go idle unused slots go idle example 6-station LAN 134 have pkt slots 256 idle idle

6-slotframe

1 3 4 1 3 4

5 DataLink Layer 5-21

Channel Partitioning MAC protocols FDMAChannel Partitioning MAC protocols FDMA

FDMA frequency division multiple accessFDMA frequency division multiple accesschannel spectrum divided into frequency bandseach station assigned fixed frequency bandeach station assigned fixed frequency bandunused transmission time in frequency bands go idle example 6-station LAN 1 3 4 have pkt frequency example 6-station LAN 134 have pkt frequency bands 256 idle

cy b

ands

freq

uenc

FDM cable

5 DataLink Layer 5-22

f

Random Access ProtocolsRandom Access Protocols

Wh d h k dWhen node has packet to sendtransmit at full channel data rate Rno a priori coordination among nodesno a priori coordination among nodes

two or more transmitting nodes づ ldquocollisionrdquorandom access MAC protocol specifies random access MAC protocol specifies

how to detect collisionshow to recover from collisions (eg via delayed how to recover from collisions (eg via delayed retransmissions)

Examples of random access MAC protocolsslotted ALOHAALOHACSMA CSMACD CSMACA

5 DataLink Layer 5-23

CSMA CSMACD CSMACA

Slotted ALOHASlotted ALOHA

A ti O tiAssumptionsall frames same sizetime divided into equal

Operationwhen node obtains fresh frame transmits in next time divided into equal

size slots (time to transmit 1 frame)

frame transmits in next slot

if no collision node can nodes start to transmit only slot beginning

d h i d

send new frame in next slotif collision node nodes are synchronized

if 2 or more nodes transmit in slot all

if collision node retransmits frame in each subsequent slot transmit in slot all

nodes detect collisionq

with prob p until success

5 DataLink Layer 5-24

Slotted ALOHA

P s ConsProssingle active node can continuously transmit

Conscollisions wasting slotsidle slotscontinuously transmit

at full rate of channelhighly decentralized

idle slotsnodes may be able to detect collision in less highly decentralized

only slots in nodes need to be in sync

than time to transmit packetclock synchronization

5 DataLink Layer 5-25

ysimple

clock synchronization

Slotted Aloha efficiencyymax efficiency find p that maximizes

Efficiency long-run fraction of successful slots p that maximizes

Np(1-p)N-1

for many nodes take

fraction of successful slots (many nodes all with many frames to send)

suppose N nodes with

for many nodes take limit of Np(1-p)N-1

as N goes to infinity

frames to send)

many frames to send each transmits in slot with probability p

g ygives

Max efficiency = 1e = 37with probability pprob that given node has success in a slot =

At best channelused for useful has success in a slot =

p(1-p)N-1

prob that any node has

used for useful transmissions 37of time

5 DataLink Layer 5-26

p ya success = Np(1-p)N-1

Pure (unslotted) ALOHAPure (unslotted) ALOHAunslotted Aloha simpler no synchronizationunslotted Aloha simpler no synchronizationwhen frame first arrives

transmit immediately transmit immediately collision probability increases

frame sent at t0 collides with other frames sent in [t0-1t0+1]0 [ 0 0 ]

5 DataLink Layer 5-27

Pure Aloha efficiencyPure Aloha efficiencyP(success by given node) = P(node transmits) P(success by g ven node) P(node transm ts)

P(no other node transmits in [p0-1p0] P(no other node transmits in [p0-1 p0] P(no other node transmits in [p0 1p0]

= p (1-p)N-1 (1-p)N-1

= p (1-p)2(N-1)= p (1 p)

hellip choosing optimum p and then letting n -gt infty

= 1(2e) = 18

even worse than slotted Aloha

5 DataLink Layer 5-28

CSMA (Carrier Sense Multiple Access)CSMA (Carrier Sense Multiple Access)

CSMA listen before transmitIf channel sensed idle transmit entire framef chann s ns transm t nt r fram

If channel sensed busy defer transmission

human analogy donrsquot interrupt others

5 DataLink Layer 5-29

CSMA collisionsCSMA collisionsc llisi ns c n still ccu

spatial layout of nodes

collisions can still occurpropagation delay means two nodes may not heareach otherrsquos transmission

collisionentire packet transmission time wasted

tnoterole of distance amp propagation delay in determining collision y gprobability

5 DataLink Layer 5-30

CSMACD (Collision Detection)CSMACD (Collision Detection)CSMACD carrier sensing deferral as in CSMACSMACD carrier sensing deferral as in CSMA

collisions detected within short timecolliding transmissions aborted reducing channel colliding transmissions aborted reducing channel wastage

collision detectioncollision detectioneasy in wired LANs measure signal strengths compare transmitted received signalscompare transmitted received signalsdifficult in wireless LANs received signal strength overwhelmed by local transmission strength overwhelmed by local transmission strength

human analogy the polite conversationalist

5 DataLink Layer 5-31

CSMACD collision detectionCSMACD collision detection

5 DataLink Layer 5-32

ldquoTaking Turnsrdquo MAC protocolsTaking Turns MAC protocols

h l i i i M C lchannel partitioning MAC protocolsshare channel efficiently and fairly at high loadinefficient at low load delay in channel access 1N bandwidth allocated even if only 1 active node node

Random access MAC protocolsefficient at low load single node can fully efficient at low load single node can fully utilize channelhigh load collision overheadhigh load collision overhead

ldquotaking turnsrdquo protocolslook for best of both worlds

5 DataLink Layer 5-33

look for best of both worlds

ldquoTaking Turnsrdquo MAC protocolsTaking Turns MAC protocolsPollingPolling

master node ldquoinvitesrdquo slave nodes d tinvites slave nodes to transmit in turntypically used with master

polldata

typically used with ldquodumbrdquo slave devicesconcerns

data

polling overhead latency slavessingle point of failure (master)

5 DataLink Layer 5-34

ldquoTaking Turnsrdquo MAC protocolsTaking Turns MAC protocolsToken passingoken pass ng

control token passed from one node to next

T

sequentiallytoken message (nothing

concernstoken overhead

to send)T

latencysingle point of failure (token)(token)

5 DataLink Layer 5-35

data

Summary of MAC protocolsSummary of MAC protocols

h l i i i b i f dchannel partitioning by time frequency or codeTime Division Frequency Divisiond ss (d i ) random access (dynamic) ALOHA S-ALOHA CSMA CSMACDcarrier sensing easy in some technologies (wire) hard in carrier sensing easy in some technologies (wire) hard in others (wireless)CSMACD used in EthernetCSMACA used in 80211

taking turnslli f l i k ipolling from central site token passing

Bluetooth FDDI IBM Token Ring

5 DataLink Layer 5-36

Link LayerLink Layer

5 1 I d i d 5 6 Li k l i h51 Introduction and services5 2 E d t ti

56 Link-layer switches57 PPP

52 Error detection and correction 5 3Multiple access

58 Link Virtualization ATM MPLS

53Multiple access protocols5 4 Link-Layer 54 Link Layer Addressing55 Ethernet55 Ethernet

5 DataLink Layer 5-37

MAC Addresses and ARPMAC Addresses and ARP

32-bit IP address network-layer addressyused to get datagram to destination IP subnet

MAC (or LAN or physical or Ethernet) MAC (or LAN or physical or Ethernet) address

f n ti n t f m f m n int f t n th function get frame from one interface to another physically-connected interface (same network)48 bit MAC address (for most LANs)48 bit MAC address (for most LANs)

bull burned in NIC ROM also sometimes software settable

5 DataLink Layer 5-38

LAN Addresses and ARPLAN Addresses and ARPEach adapter on LAN has unique LAN address

Broadcast address =FF-FF-FF-FF-FF-FF

1A-2F-BB-76-09-AD

= adapterLAN

(wired ori l )

58-23-D7-FA-20-B071-65-F7-2B-08-53

wireless)

0C-C4-11-6F-E3-98

5 DataLink Layer 5-39

LAN Address (more)LAN Address (more)

M C dd ll i d i i d b IEEEMAC address allocation administered by IEEEmanufacturer buys portion of MAC address space (t ss i ss)(to assure uniqueness)analogy

( ) MAC dd lik S i l S it N b(a) MAC address like Social Security Number(b) IP address like postal address

MAC fl dd づ bili MAC flat address づ portability can move LAN card from one LAN to another

IP hi chic l dd ss NOT p t blIP hierarchical address NOT portableaddress depends on IP subnet to which node is attached

5 DataLink Layer 5-40

ARP Address Resolution ProtocolAR Address Resolut on rotocol

Each IP node (host Question how to determine Each IP node (host router) on LAN has ARP table

Question how to determineMAC address of Bknowing Brsquos IP address

ARP table IPMAC address mappings for

knowing B s IP address

137196778 pp gsome LAN nodes

lt IP address MAC address TTLgtTTL (Tim T Li ) tim

1A-2F-BB-76-09-AD

137196723 137196714

TTL (Time To Live) time after which address mapping will be forgotten ( ll 20 )58-23-D7-FA-20-B071-65-F7-2B-08-53

LAN

(typically 20 min)58 23 D7 FA 20 B0

0C-C4-11-6F-E3-98137 196 7 88

5 DataLink Layer 5-41

137196788

ARP protocol Same LAN (network)

A wants to send datagram t B d Brsquo MAC dd A h ( ) IP tto B and Brsquos MAC address not in Arsquos ARP tableA broadcasts ARP query

A caches (saves) IP-to-MAC address pair in its ARP table until information q y

packet containing Bs IP address

dest MAC address = FF

becomes old (times out) soft state information that times out (goes dest MAC address = FF-

FF-FF-FF-FF-FFall machines on LAN

that times out (goes away) unless refreshed

ARP is ldquoplug-and-playrdquoreceive ARP query

B receives ARP packet replies to A with its (Bs)

p g p ynodes create their ARP tables without intervention from net replies to A with its (B s)

MAC addressframe sent to Arsquos MAC address (unicast)

intervention from net administrator

5 DataLink Layer 5-42

address (unicast)

Addressing routing to another LANwalkthrough send datagram from A to B via R

ssume A kn s Brsquos IP ddress

A74-29-9C-E8-FF-55 88-B2-2F-54-1A-0F

assume A knows B s IP address

1A-23-F9-CD-06-9BE6-E9-00-17-BB-4B

111111111111

A222222222221

R

222222222220111111111110

111111111112B

222222222222

CC-49-DE-D0-AB-7D

49-BD-D2-C7-56-2A

t ARP t bl s i t R f h IP two ARP tables in router R one for each IP network (LAN)

5 DataLink Layer 5-43

A creates IP datagram with source A destination B A uses ARP to get Rrsquos MAC address for 111 111 111 110A uses ARP to get R s MAC address for 111111111110A creates link-layer frame with Rs MAC address as dest frame contains A-to-B IP datagram This is a really importantArsquos NIC sends frame Rrsquos NIC receives frame R r m v s IP d t r m fr m Eth rn t fr m s s its

This is a really importantexample ndash make sure youunderstand

R removes IP datagram from Ethernet frame sees its destined to BR uses ARP to get Brsquos MAC address gR creates frame containing A-to-B IP datagram sends to B

A74-29-9C-E8-FF-55 88-B2-2F-54-1A-0F

1A-23-F9-CD-06-9BE6-E9-00-17-BB-4B

111111111111

A222222222221

R

222222222220111111111110

111111111112

B222222222222

5 DataLink Layer 5-44

RCC-49-DE-D0-AB-7D

49-BD-D2-C7-56-2A

Link LayerLink Layer

5 1 I d i d 5 6 Li k l i h51 Introduction and services5 2 E d t ti

56 Link-layer switches57 PPP

52 Error detection and correction 5 3Multiple access

58 Link Virtualization ATM and MPLS

53Multiple access protocols5 4 Link-Layer 54 Link Layer Addressing55 Ethernet55 Ethernet

5 DataLink Layer 5-45

Ethernetldquodominantrdquo wired LAN technology

cheap $20 for NICfirst widely used LAN technologyy gysimpler cheaper than token LANs and ATMkept up with speed race 10 Mbps ndash 10 Gbps p p p p p

Metcalfersquos Ethernetsketch

5 DataLink Layer 5-46

Star topologyp gybus topology popular through mid 90s

all nodes in same collision domain (can collide with each all nodes in same collision domain (can collide with each other)

today star topology prevails h active switch in center

each ldquospokerdquo runs a (separate) Ethernet protocol (nodes do not collide with each other)

switch

b l bl

5 DataLink Layer 5-47

bus coaxial cable star

Ethernet Frame StructuremSending adapter encapsulates IP datagram (or other g p p g (

network layer protocol packet) in Ethernet frame

Preamble7 bytes with pattern 10101010 followed by one y p ybyte with pattern 10101011used to synchronize receiver sender clock rates

5 DataLink Layer 5-48

Ethernet Frame Structure (more)Ethernet Frame Structure (more)Addresses 6 bytesy

if adapter receives frame with matching destination address or with broadcast address (eg ARP packet) it passes data in frame to network layer protocolpasses data in frame to network layer protocolotherwise adapter discards frame

Type indicates higher layer protocol (mostly IP Type indicates higher layer protocol (mostly IP but others possible eg Novell IPX AppleTalk)CRC checked at receiver if error is detected frame is dropped

5 DataLink Layer 5-49

Ethernet Unreliable connectionlessEthernet Unreliable connectionless

i l N h d h ki b di d connectionless No handshaking between sending and receiving NICs

li bl i i NIC d s rsquot s d ks ks unreliable receiving NIC doesnrsquot send acks or nacks to sending NIC

stream of datagrams passed to network layer can have gaps stream of datagrams passed to network layer can have gaps (missing datagrams)gaps will be filled if app is using TCPotherwise app will see gaps

Ethernetrsquos MAC protocol unslotted CSMACD

5 DataLink Layer 5-50

Ethernet CSMACD algorithmg1 NIC receives datagram 4 If NIC detects another

from network layer creates frame

2 f N C h l dl

transmission while transmitting aborts and sends jam signal2 If NIC senses channel idle

starts frame transmission If NIC senses channel

sends jam signal5 After aborting NIC

enters exponential If NIC senses channel busy waits until channel idle then transmits

enters exponential backoff after mth collision NIC chooses K at

3 If NIC transmits entire frame without detecting

random from 012hellip2m-1 NIC waits K 512 bi i

ganother transmission NIC is done with frame

K512 bit times returns to Step 2

5 DataLink Layer 5-51

Ethernetrsquos CSMACD (more)Ethernet s CSMACD (more)Jam Signal make sure all Exponential Backoffg

other transmitters are aware of collision 48 bits

Bit time 1 microsec for 10

pGoal adapt retransmission attempts to estimated current loadBit time 1 microsec for 10

Mbps Ethernet for K=1023 wait time is about 50 msec

current loadheavy load random wait will be longer

about 50 msec first collision choose K from 01 delay is K 512 bit transmission timestransm ss on t m safter second collision choose K from 0123hellipft t lli i h K

Seeinteract with Javaapplet on AWL Web site

after ten collisions choose K from 01234hellip1023

pphighly recommended

5 DataLink Layer 5-52

CSMACD efficiencyCSMACD efficiency

T d l b 2 d i L NTprop = max prop delay between 2 nodes in LANttrans = time to transmit max-size frame

efficiency 1

=

efficiency goes to 1

transprop ttff y

51+

efficiency goes to 1 as tprop goes to 0as ttrans goes to infinitytrans g y

better performance than ALOHA and simple cheap decentralized

5 DataLink Layer 5-53

p

8023 Ethernet Standards Link amp Physical Layersy y

many different Ethernet standardsycommon MAC protocol and frame formatdifferent speeds 2 Mbps 10 Mbps 100 Mbps 1Gb 10G b1Gbps 10G bpsdifferent physical layer media fiber cable

MAC protocolapplicationtransportnetwork

li k

MAC protocoland frame format

100BASE-TX 100BASE-FX100BASE-T2link

physical100BASE-T4 100BASE-SX 100BASE-BX

5 DataLink Layer 5-54

fiber physical layercopper (twisterpair) physical layer

Manchester encodingManchester encoding

used in 10BaseTeach bit has a transitionallows clocks in sending and receiving nodes to g gsynchronize to each other

no need for a centralized global clock among nodes

5 DataLink Layer 5-55

Hey this is physical-layer stuff

Link LayerLink Layer

5 1 I d i d 5 6 Li k l i h51 Introduction and services5 2 E d t ti

56 Link-layer switches57 PPP

52 Error detection and correction 5 3 Multiple access

58 Link Virtualization ATM MPLS

53 Multiple access protocols5 4 Link-layer 54 Link layer Addressing55 Ethernet55 Ethernet

5 DataLink Layer 5-56

Hubshellip physical-layer (ldquodumbrdquo) repeaters

bits coming in one link go out all other links at bits coming in one link go out all other links at same rateall nodes connected to hub can collide with one anotherno frame bufferinggno CSMACD at hub host NICs detect collisions

twisted pair

hub

5 DataLink Layer 5-57

Switchlink-layer device smarter than hubs take yactive role

store forward Ethernet framesexamine incoming framersquos MAC address selectively forward frame to one-or-more

l k h f f d d outgoing links when frame is to be forwarded on segment uses CSMACD to access segment

transparenthosts are unaware of presence of switches

plug-and-play self-learningswitches do not need to be configured

5 DataLink Layer 5-58

g

Switch allows multiple simultaneous ptransmissions

A

hosts have dedicated direct connection to switch

BCrsquo

switches buffer packetsEthernet protocol used on each incoming link but no

1 2 345

6

each incoming link but no collisions full duplex

each link is its own collision C

45

domainswitching A-to-Arsquo and B-to-Brsquo simultaneously

ArsquoBrsquo

to-B simultaneously without collisions

not possible with dumb hub

switch with six interfaces(123456)

5 DataLink Layer 5-59

Switch TableSwitch Table

Q h d s s it h k th t A

Q how does switch know that Arsquo reachable via interface 4 Brsquo reachable via interface 5

BCrsquo

B reachable via interface 5A each switch has a switch table each entry

1 2 345

6ta ach ntry

(MAC address of host interface to reach host time stamp) C

45

looks like a routing tableQ how are entries created

i t i d i it h t bl

ArsquoBrsquo

maintained in switch table something like a routing protocol

switch with six interfaces(123456)

5 DataLink Layer 5-60

protocol

Switch self-learning Source ASwitch self-learning

s it h l s hi h h sts A A Arsquo

Dest Arsquo

switch learns which hosts can be reached through which interfaces

BCrsquo

which interfaceswhen frame received switch ldquolearnsrdquo location of

d i i LAN

1 2 345

6

sender incoming LAN segmentrecords senderlocation

C

45

pair in switch tableArsquoBrsquo

MAC addr interface TTLMAC addr interface TTLSwitch table

(initially empty)A 1 60

5 DataLink Layer 5-61

Switch frame filteringforwardingWhen frame received

1 record link associated with sending host2 ind x s itch t bl usin MAC d st dd ss2 index switch table using MAC dest address3 if entry found for destination

then then if dest on segment from which frame arrived

then drop the framethen drop the frameelse forward the frame on interface indicated

else flood forward on all but the interface

on which the frame arrived5 DataLink Layer 5-62

on which the frame arrived

Self-learning Source ASelf learning forwarding

lA A Arsquo

Dest Arsquo

exampleBCrsquo

frame destinati n 1 2 345

6A ArsquoA ArsquoA ArsquoA ArsquoA Arsquoframe destination unknown floodd ti ti A

C

45

Arsquo A

destination A location knownselective send

ArsquoBrsquo

MAC addr interface TTL

selective send

MAC addr interface TTLSwitch table

(initially empty)A 1 60Arsquo 4 60

5 DataLink Layer 5-63

Interconnecting switchesg

switches can be connected togetherg

S

S4

A

B

S1

C DF

S2S3

IB C D

E HI

G

Q sending from A to G - how does S1 know to forward frame destined to F via S and S forward frame destined to F via S4 and S3A self learning (works exactly the same as in single-switch case)

5 DataLink Layer 5-64

single switch case)

Self-learning multi-switch exampleSuppose C sends frame to I I responds to C

S

S412

A

B

S1

C DF

S2S3

I

2

B C D

E HI

G

Q show switch tables and packet forwarding in S1 S2 S3 S4

5 DataLink Layer 5-65

Institutional networkInstitutional network

to externalnetwork

mail server

networkrouter web server

IP subnet

5 DataLink Layer 5-66

Switches vs RoutersSwitches vs Routersboth store-and-forward devices

routers network layer devices (examine network layer headers)switches are link layer devicesswitches are link layer devices

routers maintain routing tables implement routing algorithmsgswitches maintain switch tables implement filtering learning algorithmsf g g g

5 DataLink Layer 5-67

Link LayerLink Layer

5 1 I d i d 5 6 H b d i h51 Introduction and services5 2 E d t ti

56 Hubs and switches57 PPP

52 Error detection and correction 5 3Multiple access

58 Link Virtualization ATM

53Multiple access protocols5 4 Link-Layer 54 Link Layer Addressing55 Ethernet55 Ethernet

5 DataLink Layer 5-68

Point to Point Data Link ControlPoint to Point Data Link Controlone sender one receiver one link easier than one sender one receiver one link easier than broadcast link

no Media Access Controlno Media Access Controlno need for explicit MAC addressinge g dialup link ISDN lineeg dialup link ISDN line

popular point-to-point DLC protocolsPPP (point-to-point protocol)PPP (point to point protocol)HDLC High level data link control (Data link used to be considered ldquohigh layerrdquo in protocol used to be considered high layer in protocol stack

5 DataLink Layer 5-69

PPP Design Requirements [RFC 1557]

packet framing encapsulation of network-layer p f m g p u f w ydatagram in data link frame

carry network layer data of any network layer y y y yprotocol (not just IP) at same timeability to demultiplex upwards

bit transparency must carry any bit pattern in the data fielderror detection (no correction)connection liveness detect signal link failure to

k lnetwork layernetwork layer address negotiation endpoint can l fi h th rsquos t k dd ss

5 DataLink Layer 5-70

learnconfigure each otherrsquos network address

PPP non-requirementsPPP non requirements

ti no error correctionrecoveryno flow control

f d d l K out of order delivery OK no need to support multipoint links (eg polling)

E l l Error recovery flow control data re-ordering all relegated to higher layers

5 DataLink Layer 5-71

PPP Data FramePPP Data Frame

Fl d li i (f i )Flag delimiter (framing)Address does nothing (only one option)Control does nothing in the future possible multiple control fieldsP t l l t l t hi h f Protocol upper layer protocol to which frame delivered (eg PPP-LCP IP IPCP etc)

5 DataLink Layer 5-72

PPP Data FramePPP Data Frame

i f l d b i i dinfo upper layer data being carriedcheck cyclic redundancy check for error d t tidetection

5 DataLink Layer 5-73

Byte StuffingByte Stuffingldquodata transparencyrdquo requirement data field must

be allowed to include flag pattern lt01111110gtQ is received lt01111110gt data or flag

Sender adds (ldquostuffsrdquo) extra lt 01111110gt byte after each lt 01111110gt data byteReceiver

two 01111110 bytes in a row discard first byte d continue data reception

single 01111110 flag byte

5 DataLink Layer 5-74

Byte StuffingByte Stuffing

flag bytepatterni din datato send

flag byte pattern plusstuffed byte in transmitted data

5 DataLink Layer 5-75

transmitted data

PPP Data Control ProtocolPPP Data Control ProtocolBefore exchanging network-g g

layer data data link peers mustconfigure PPP link (max frame length authentication)authentication)learnconfigure networklayer informationlayer information

for IP carry IP Control Protocol (IPCP) msgs Protocol (IPCP) msgs (protocol field 8021) to configurelearn IP

5 DataLink Layer 5-76

gaddress

Link LayerLink Layer

5 1 I d i d 5 6 H b d i h51 Introduction and services5 2 E d t ti

56 Hubs and switches57 PPP

52 Error detection and correction 5 3Multiple access

58 Link Virtualization ATM and MPLS

53Multiple access protocols5 4 Link-Layer 54 Link Layer Addressing55 Ethernet55 Ethernet

5 DataLink Layer 5-77

Virtualization of networksVirtualization of networks

Vi li i f f l b i i Virtualization of resources powerful abstraction in systems engineering

ti l s i t l i t l computing examples virtual memory virtual devices

Virtual machines e g javaVirtual machines eg javaIBM VM os from 1960rsquos70rsquos

layering of abstractions donrsquot sweat the details of layering of abstractions don t sweat the details of the lower layer only deal with lower layers abstractlyabstractly

5 DataLink Layer 5-78

The Internet virtualizing networksThe Internet virtualizing networks

1974 multiple unconnected differing in1974 multiple unconnected nets

ARPAnet

hellip differing inaddressing conventionspacket formats

data-over-cable networkspacket satellite network (Aloha)

k d k

perror recoveryrouting

packet radio network

ARPAnet satellite net

5 DataLink Layer 5-79

ARPAnet satell te netA Protocol for Packet Network Intercommunication V Cerf R Kahn IEEE Transactions on CommunicationsMay 1974 pp 637-648

The Internet virtualizing networksThe Internet virtualizing networksInternetwork layer (IP)

addressing internetwork Gateway

ldquoembed internetwork packets in l l k f

addressing internetwork appears as single uniform entity despite underlying local network heterogeneitynetwork of networks

plocal packet format or extract themrdquoroute (at internetwork level) to next gatewaynetwork of networks next gateway

gateway

ARPAnet satellite net

5 DataLink Layer 5-80

ARPAnet satell te net

Cerf amp Kahnrsquos Internetwork ArchitectureCerf amp Kahn s Internetwork ArchitectureWhat is virtualized

two layers of addressing internetwork and local networknew layer (IP) makes everything homogeneous at internetwork layerunderlying local network technology

cablesatellite56K telephone modemtoday ATM MPLS

hellip ldquoinvisiblerdquo at internetwork layer Looks like a link

5 DataLink Layer 5-81

ylayer technology to IP

ATM and MPLSATM and MPLS

P k h ATM MPLS separate networks in their own right

different service models addressing routing from Internet

viewed by Internet as logical link connecting IP routers

just like dialup link is really part of separate network (telephone network)

ATM MPLS of technical interest in their own right

5 DataLink Layer 5-82

Asynchronous Transfer Mode ATMAsynchronous Transfer Mode ATM1990rsquos00 standard for high-speed (155Mbps to g p ( p622 Mbps and higher) Broadband Integrated Service Digital Network architectureGoal integrated end-end transport of carry voice video data

i i i Q i f i id meeting timingQoS requirements of voice video (versus Internet best-effort model)ldquo t ti rdquo t l h t h i l ts i ldquonext generationrdquo telephony technical roots in telephone worldpacket switching (fixed length packets called packet-switching (fixed length packets called ldquocellsrdquo) using virtual circuits

5 DataLink Layer 5-83

ATM architecture ATM architecture AAL AAL

ATM ATMATM ATM

physical physicalphysical physical

d d ti h it h

adaptation layer only at edge of ATM network

end system end systemswitch switch

data segmentationreassemblyroughly analagous to Internet transport layer

ATM layer ldquonetworkrdquo layercell switching routing

5 DataLink Layer 5-84

physical layer

ATM network or link layerATM network or link layerVision end-to-end

t t ldquoATM f transport ldquoATM from desktop to desktoprdquo

ATM is a network ATM

IPnetwork

ATM is a network technology

Reality used to connect

ATMnetwork

Reality used to connect IP backbone routers

ldquoIP over ATMrdquoIP over ATMATM as switched link layer y connecting IP routers

5 DataLink Layer 5-85

ATM Adaptation Layer (AAL)ATM Adaptation Layer (AAL)

TM d i L ( L) ldquo d rdquo ATM Adaptation Layer (AAL) ldquoadaptsrdquo upper layers (IP or native ATM applications) to ATM layer belowlayer belowAAL present only in end systems not in switchesAAL layer segment (headertrailer fields data) AAL layer segment (headertrailer fields data) fragmented across multiple ATM cells

analogy TCP segment in many IP packetsanalogy TCP segment in many IP packets

AAL AAL

physical

ATM

physical

ATM

physical

ATM

physical

ATM

5 DataLink Layer 5-86

physical physicalp y p y

end system end systemswitch switch

ATM Adaptation Layer (AAL) [more]

Different versions of AAL layers depending on ATM y p gservice classAAL1 for CBR (Constant Bit Rate) services eg circuit emulationAAL2 for VBR (Variable Bit Rate) services eg MPEG videoAAL5 for data (eg IP datagrams)

User data

AAL PDU

ATM cell

5 DataLink Layer 5-87

ATM LayeryService transport cells across ATM network

analogous to IP network layeranalogous to IP network layervery different services than IP network layer

Guarantees NetworkArchitecture

ServiceModel Bandwidth Loss Order Timing

Congestionfeedback

Guarantees

Internet

ATM

best effort

CBR

none

constant

no

yes

no

yes

no

yes

no (inferredvia loss)noATM

ATM

CBR

VBR

constantrateguaranteedrate

yes

yes

yes

yes

yes

yes

nocongestionnocongestion

ATM

ATM

ABR

UBR

rateguaranteed minimum

no yes nocongestionyes

5 DataLink Layer 5-88

ATM UBR none no yes no no

ATM Layer Virtual CircuitsATM Layer Virtual CircuitsVC transport cells carried on VC from source to destp

call setup teardown for each call before data can floweach packet carries VC identifier (not destination ID)

it h d t th i t i ldquo t t rdquo f h every switch on source-dest path maintain ldquostaterdquo for each passing connectionlinkswitch resources (bandwidth buffers) may be allocated to ( ff ) m yVC to get circuit-like perf

Permanent VCs (PVCs)long lasting connectionstypically ldquopermanentrdquo route between to IP routers

Switched VCs (SVC)dynamically set up on per-call basis

5 DataLink Layer 5-89

ATM VCsATM VCsAdvantages of ATM VC approachAdvantages of ATM VC approach

QoS performance guarantee for connection mapped to VC (bandwidth delay delay jitter)mapped to VC (bandwidth delay delay jitter)

Drawbacks of ATM VC approachInefficient support of datagram trafficInefficient support of datagram trafficone PVC between each sourcedest pair) does not scale (N2 connections needed) not scale (N 2 connections needed) SVC introduces call setup latency processing overhead for short lived connectionsoverhead for short lived connections

5 DataLink Layer 5-90

ATM Layer ATM cellATM Layer ATM cell5-byte ATM cell headery48-byte payload

Why small payload -gt short cell-creation delay W y m p y yfor digitized voicehalfway between 32 and 64 (compromise)y p

Cell headerCell header

Cell format

5 DataLink Layer 5-91

ATM cell headerATM cell headerVCI virtual channel IDVCI virtual channel ID

will change from link to link thru netPT P l d t p ( RM ll s s d t ll) PT Payload type (eg RM cell versus data cell) CLP Cell Loss Priority bit

CLP 1 i li l i it ll b CLP = 1 implies low priority cell can be discarded if congestion

HEC Header Error ChecksumHEC Header Error Checksumcyclic redundancy check

5 DataLink Layer 5-92

ATM Physical Layer (more)ATM Physical Layer (more)

T i ( bl ) f h i l lTwo pieces (sublayers) of physical layerTransmission Convergence Sublayer (TCS) adapts ATM l b t PMD s bl b lATM layer above to PMD sublayer belowPhysical Medium Dependent depends on physical medium being usedmedium being used

TCS FunctionsTCS FunctionsHeader checksum generation 8 bits CRC C ll d lin ti nCell delineationWith ldquounstructuredrdquo PMD sublayer transmission of idle cells when no data cells to send

5 DataLink Layer 5-93

of idle cells when no data cells to send

ATM Physical LayerATM Physical Layer

Ph l d D d (P D) blPhysical Medium Dependent (PMD) sublayerSONETSDH transmission frame structure (like a

b ) container carrying bits) bit synchronization bandwidth partitions (TDM) several speeds OC3 = 15552 Mbps OC12 = 62208 Mb OC48 2 45 Gb OC192 9 6 GbMbps OC48 = 245 Gbps OC192 = 96 Gbps

TIT3 transmission frame structure (old telephone hierarchy) 1 5 Mbps 45 Mbpstelephone hierarchy) 15 Mbps 45 Mbpsunstructured just cells (busyidle)

5 DataLink Layer 5-94

IP-Over-ATMIP over ATM

Classic IP only3 ldquonetworksrdquo (e g

IP over ATMreplace ldquonetworkrdquo (e g LAN segment) 3 networks (eg

LAN segments)MAC (802 3) and IP

(eg LAN segment) with ATM networkATM addresses IP MAC (8023) and IP

addressesATM addresses IP addresses

ATMATMnetwork

Ethernet Ethernet

5 DataLink Layer 5-95

EthernetLANs

EthernetLANs

IP-Over-ATMapp

transportapp

AALEthIP

transportIP

AALATM

apptransport

IPEth ATM

phyphyEth

ATM

ATMphy

ATMphy

Ethphy

ATMphy

p y

5 DataLink Layer 5-96

Datagram Journey in IP-over-ATM NetworkDatagram Journey in IP-over-ATM Network

at Source HostIP layer maps between IP ATM dest address (using ARP)passes datagram to AAL5AAL5 encapsulates data segments cells passes to ATM layer

ATM network moves cell along VC to destinationat Destination Host

AAL5 reassembles cells into original datagramif CRC OK datagram is passed to IP

5 DataLink Layer 5-97

IP-Over-ATMIP-Over-ATM

IssuesIP datagrams into

ATMnetwork

ATM AAL5 PDUsfrom IP addresses

TM ddto ATM addressesjust like IP dd ss s t addresses to

8023 MAC addresses

EthernetLANs

addresses

5 DataLink Layer 5-98

Multiprotocol label switching (MPLS)Multiprotocol label switching (MPLS)

i i i l l d IP f di b i fi d initial goal speed up IP forwarding by using fixed length label (instead of IP address) to do forwarding forwarding

borrowing ideas from Virtual Circuit (VC) approachbut IP datagram still keeps IP addressg p

PPP or EthernetPPP or Ethernet header

IP header remainder of link-layer frameMPLS header

label Exp S TTL

5 DataLink Layer 5-9920 3 1 5

MPLS capable routersMPLS capable routers

k l b l it h d taka label-switched routerforwards packets to outgoing interface based

l l b l l (d rsquot i t IP dd )only on label value (donrsquot inspect IP address)MPLS forwarding table distinct from IP forwarding tablestables

signaling protocol needed to set up forwardingRSVP TERSVP-TEforwarding possible along paths that IP alone would not allow (eg source-specific routing) not allow (eg source spec f c rout ng) use MPLS for traffic engineering

must co-exist with IP-only routers5 DataLink Layer 5-100

must co exist with IP only routers

MPLS forwarding tablesi t t

MPLS forwarding tables

in out outlabel label dest interface

in out outlabel label dest interface

10 A 012 D 0 label label dest interface

10 6 A 112 9 D 0

12 D 08 A 1

D1

00R6

R3R4R5

0

1

A

1

0

R1R2A

in out outlabel label dest interface

6 A 0in out out

label label dest interface

5 DataLink Layer 5-101

6 - A 0label label dest interface

8 6 A 0

Chapter 5 SummaryChapter 5 Summaryprinciples behind data link layer servicespr nc p s h n ata n ay r s r c s

error detection correctionsharing a broadcast channel multiple accesslink layer addressing

instantiation and implementation of various link l t h l ilayer technologies

Ethernetit h d LANSswitched LANS

PPPi li d k li k l TM MPLvirtualized networks as a link layer ATM MPLS

5 DataLink Layer 5-102

Chapter 5 letrsquos take a breathChapter 5 let s take a breathjourney down protocol stack completejourney down protocol stack complete(except PHY)solid understanding of networking principles solid understanding of networking principles practice

ld t h b t l t f i t ti hellip could stop here hellip but lots of interesting topics

lwirelessmultimediasecurity network management

5 DataLink Layer 5-103

Page 2: Link Layer Link Layer: Introduction

Link layer contextydatagram transferred by transportation analogy

trip from Princeton to different link protocols over different links

Eth n t n fi st link

trip from Princeton to Lausanne

limo Princeton to JFKeg Ethernet on first link frame relay on intermediate links 80211

l l k

plane JFK to Genevatrain Geneva to Lausanne

don last linkeach link protocol provides different

tourist = datagramtransport segment =

i ti li kprovides different services

eg may or may not

communication linktransportation mode = link layer protocoleg may or may not

provide rdt over linklink layer protocoltravel agent = routing algorithm

5 DataLink Layer 5-5

algorithm

Link Layer ServicesLink Layer Servicesframing link accessframing link access

encapsulate datagram into frame adding header trailerchannel access if shared mediumf m mldquoMACrdquo addresses used in frame headers to identify source dest

diff t f IP dd bull different from IP addressreliable delivery between adjacent nodes

we learned how to do this already (chapter 3)we learned how to do this already (chapter 3)seldom used on low bit-error link (fiber some twisted pair)wireless links high error rates

bull Q why both link-level and end-end reliability

5 DataLink Layer 5-6

Link Layer Services (more)Link Layer Services (more)

flow controlpacing between adjacent sending and receiving nodes

error detectionerrors caused by signal attenuation noise

d f receiver detects presence of errors bull signals sender for retransmission or drops frame

tierror correctionreceiver identifies and corrects bit error(s) without resorting to retransmissionresorting to retransmission

half-duplex and full-duplexwith half duplex nodes at both ends of link can transmit

5 DataLink Layer 5-7

p but not at same time

Where is the link layer implementedWhere is the link layer implemented

in each and every hostin each and every hostlink layer implemented in ldquoadaptorrdquo (aka network host schematicadaptor (aka network interface card NIC)

Ethernet card PCMCI cpu memory

applicationtransportnetwork

linkcard 80211 cardimplements link physical layer controller

host bus (e g PCI)

link

layerattaches into hostrsquos system buses

physicaltransmission

(eg PCI)link

physical

ycombination of hardware software

network adaptercard

5 DataLink Layer 5-8

firmware

Adaptors CommunicatingAdaptors Communicating

controller controller

datagram datagram

controller

sending host receiving hostdatagram

frame

sending sideencapsulates datagram in f

receiving sidelooks for errors rdt flow

t l tframeadds error checking bits rdt flow control etc

control etcextracts datagram passes to upper layer at receiving

5 DataLink Layer 5-9

pp y gside

Link LayerLink Layer

5 1 I d i d 5 6 Li k l i h51 Introduction and services5 2 E d t ti

56 Link-layer switches57 PPP

52 Error detection and correction5 3Multiple access

58 Link Virtualization ATM MPLS

53Multiple access protocols5 4 Link-layer 54 Link layer Addressing55 Ethernet55 Ethernet

5 DataLink Layer 5-10

Error DetectionError DetectionEDC= Error Detection and Correction bits (redundancy)D D d b h k l d h d f ld D = Data protected by error checking may include header fields

bull Error detection not 100 reliablebull protocol may miss some errors but rarelybull larger EDC field yields better detection and correction

otherwise

5 DataLink Layer 5-11

Parity CheckingParity CheckingSingle Bit Parity Two Dimensional Bit ParitySingle Bit ParityDetect single bit errors

Two Dimensional Bit ParityDetect and correct single bit errors

0 0

5 DataLink Layer 5-12

Internet checksum (review)Internet checksum (review)

Goal detect ldquoerrorsrdquo (e g flipped bits) in transmitted Goal detect errors (eg flipped bits) in transmitted packet (note used at transport layer only)

Sendertreat segment contents

Receivercompute checksum of received segmentas sequence of 16-bit

integerschecksum addition (1rsquos

received segmentcheck if computed checksum equals checksum field valuechecksum addition (1 s

complement sum) of segment contentss d ts h ks

NO - error detectedYES - no error detected But maybe errors sender puts checksum

value into UDP checksum field

But maybe errors nonetheless

5 DataLink Layer 5-13

Checksumming Cyclic Redundancy CheckChecksumming Cyclic Redundancy Checkview data bits D as a binary numberychoose r+1 bit pattern (generator) Ggoal choose r CRC bits R such that

D R tl di i ibl b G ( d l 2) ltDRgt exactly divisible by G (modulo 2) receiver knows G divides ltDRgt by G If non-zero remainder error detectedcan detect all burst errors less than r+1 bits

widely used in practice (Ethernet 80211 WiFi ATM)

5 DataLink Layer 5-14

CRC ExampleCRC ExampleWant

D2r XOR R = nGequivalentlyq y

D2r = nG XOR R equivalentlyq y

if we divide D2r by G want remainder R

R = remainder[ ]D2r

G

5 DataLink Layer 5-15

Link LayerLink Layer

5 1 I d i d 5 6 Li k l i h51 Introduction and services5 2 E d t ti

56 Link-layer switches57 PPP

52 Error detection and correction 5 3Multiple access

58 Link Virtualization ATM MPLS

53Multiple access protocols5 4 Link-layer 54 Link layer Addressing55 Ethernet55 Ethernet

5 DataLink Layer 5-16

Multiple Access Links and ProtocolspTwo types of ldquolinksrdquo

i t t i tpoint-to-pointPPP for dial-up accesspoint-to-point link between Ethernet switch and hostpoint-to-point link between Ethernet switch and host

broadcast (shared wire or medium)old-fashioned Ethernetold fashioned Ethernetupstream HFC80211 wireless LAN

sh d i ( h d RFhumans at a

kt il p t

5 DataLink Layer 5-17

shared wire (eg cabled Ethernet)

shared RF(eg 80211 WiFi)

shared RF(satellite)

cocktail party (shared air acoustical)

Multiple Access protocolsMultiple Access protocolssingle shared broadcast channel single shared broadcast channel two or more simultaneous transmissions by nodes interference

collision if node receives two or more signals at the same timemultiple access protocol

distributed algorithm that determines how nodes share channel ie determine when node can transmitcommunication about channel sharing must use channel itself

f b d h l f di ino out-of-band channel for coordination

5 DataLink Layer 5-18

Ideal Multiple Access ProtocolIdeal Multiple Access Protocol

B d h l f R bBroadcast channel of rate R bps1 when one node wants to transmit it can send at

t Rrate R2 when M nodes want to transmit each can send at

average rate RMaverage rate RM3 fully decentralized

no special node to coordinate transmissionsno special node to coordinate transmissionsno synchronization of clocks slots

4 simple4 simple

5 DataLink Layer 5-19

MAC Protocols a taxonomyMAC Protocols a taxonomyThree broad classes

Channel Partitioningdivide channel into smaller ldquopiecesrdquo (time slots f d )frequency code)allocate piece to node for exclusive use

Random AccessRandom Accesschannel not divided allow collisionsldquorecoverrdquo from collisions

ldquoTaking turnsrdquonodes take turns but nodes with more to send can take longer turns

5 DataLink Layer 5-20

Channel Partitioning MAC protocols TDMAChannel Partitioning MAC protocols TDMA

TDMA time division multiple accessTDMA time division multiple accessaccess to channel in rounds each station gets fixed length slot (length = pkt each station gets fixed length slot (length = pkt trans time) in each round unused slots go idle unused slots go idle example 6-station LAN 134 have pkt slots 256 idle idle

6-slotframe

1 3 4 1 3 4

5 DataLink Layer 5-21

Channel Partitioning MAC protocols FDMAChannel Partitioning MAC protocols FDMA

FDMA frequency division multiple accessFDMA frequency division multiple accesschannel spectrum divided into frequency bandseach station assigned fixed frequency bandeach station assigned fixed frequency bandunused transmission time in frequency bands go idle example 6-station LAN 1 3 4 have pkt frequency example 6-station LAN 134 have pkt frequency bands 256 idle

cy b

ands

freq

uenc

FDM cable

5 DataLink Layer 5-22

f

Random Access ProtocolsRandom Access Protocols

Wh d h k dWhen node has packet to sendtransmit at full channel data rate Rno a priori coordination among nodesno a priori coordination among nodes

two or more transmitting nodes づ ldquocollisionrdquorandom access MAC protocol specifies random access MAC protocol specifies

how to detect collisionshow to recover from collisions (eg via delayed how to recover from collisions (eg via delayed retransmissions)

Examples of random access MAC protocolsslotted ALOHAALOHACSMA CSMACD CSMACA

5 DataLink Layer 5-23

CSMA CSMACD CSMACA

Slotted ALOHASlotted ALOHA

A ti O tiAssumptionsall frames same sizetime divided into equal

Operationwhen node obtains fresh frame transmits in next time divided into equal

size slots (time to transmit 1 frame)

frame transmits in next slot

if no collision node can nodes start to transmit only slot beginning

d h i d

send new frame in next slotif collision node nodes are synchronized

if 2 or more nodes transmit in slot all

if collision node retransmits frame in each subsequent slot transmit in slot all

nodes detect collisionq

with prob p until success

5 DataLink Layer 5-24

Slotted ALOHA

P s ConsProssingle active node can continuously transmit

Conscollisions wasting slotsidle slotscontinuously transmit

at full rate of channelhighly decentralized

idle slotsnodes may be able to detect collision in less highly decentralized

only slots in nodes need to be in sync

than time to transmit packetclock synchronization

5 DataLink Layer 5-25

ysimple

clock synchronization

Slotted Aloha efficiencyymax efficiency find p that maximizes

Efficiency long-run fraction of successful slots p that maximizes

Np(1-p)N-1

for many nodes take

fraction of successful slots (many nodes all with many frames to send)

suppose N nodes with

for many nodes take limit of Np(1-p)N-1

as N goes to infinity

frames to send)

many frames to send each transmits in slot with probability p

g ygives

Max efficiency = 1e = 37with probability pprob that given node has success in a slot =

At best channelused for useful has success in a slot =

p(1-p)N-1

prob that any node has

used for useful transmissions 37of time

5 DataLink Layer 5-26

p ya success = Np(1-p)N-1

Pure (unslotted) ALOHAPure (unslotted) ALOHAunslotted Aloha simpler no synchronizationunslotted Aloha simpler no synchronizationwhen frame first arrives

transmit immediately transmit immediately collision probability increases

frame sent at t0 collides with other frames sent in [t0-1t0+1]0 [ 0 0 ]

5 DataLink Layer 5-27

Pure Aloha efficiencyPure Aloha efficiencyP(success by given node) = P(node transmits) P(success by g ven node) P(node transm ts)

P(no other node transmits in [p0-1p0] P(no other node transmits in [p0-1 p0] P(no other node transmits in [p0 1p0]

= p (1-p)N-1 (1-p)N-1

= p (1-p)2(N-1)= p (1 p)

hellip choosing optimum p and then letting n -gt infty

= 1(2e) = 18

even worse than slotted Aloha

5 DataLink Layer 5-28

CSMA (Carrier Sense Multiple Access)CSMA (Carrier Sense Multiple Access)

CSMA listen before transmitIf channel sensed idle transmit entire framef chann s ns transm t nt r fram

If channel sensed busy defer transmission

human analogy donrsquot interrupt others

5 DataLink Layer 5-29

CSMA collisionsCSMA collisionsc llisi ns c n still ccu

spatial layout of nodes

collisions can still occurpropagation delay means two nodes may not heareach otherrsquos transmission

collisionentire packet transmission time wasted

tnoterole of distance amp propagation delay in determining collision y gprobability

5 DataLink Layer 5-30

CSMACD (Collision Detection)CSMACD (Collision Detection)CSMACD carrier sensing deferral as in CSMACSMACD carrier sensing deferral as in CSMA

collisions detected within short timecolliding transmissions aborted reducing channel colliding transmissions aborted reducing channel wastage

collision detectioncollision detectioneasy in wired LANs measure signal strengths compare transmitted received signalscompare transmitted received signalsdifficult in wireless LANs received signal strength overwhelmed by local transmission strength overwhelmed by local transmission strength

human analogy the polite conversationalist

5 DataLink Layer 5-31

CSMACD collision detectionCSMACD collision detection

5 DataLink Layer 5-32

ldquoTaking Turnsrdquo MAC protocolsTaking Turns MAC protocols

h l i i i M C lchannel partitioning MAC protocolsshare channel efficiently and fairly at high loadinefficient at low load delay in channel access 1N bandwidth allocated even if only 1 active node node

Random access MAC protocolsefficient at low load single node can fully efficient at low load single node can fully utilize channelhigh load collision overheadhigh load collision overhead

ldquotaking turnsrdquo protocolslook for best of both worlds

5 DataLink Layer 5-33

look for best of both worlds

ldquoTaking Turnsrdquo MAC protocolsTaking Turns MAC protocolsPollingPolling

master node ldquoinvitesrdquo slave nodes d tinvites slave nodes to transmit in turntypically used with master

polldata

typically used with ldquodumbrdquo slave devicesconcerns

data

polling overhead latency slavessingle point of failure (master)

5 DataLink Layer 5-34

ldquoTaking Turnsrdquo MAC protocolsTaking Turns MAC protocolsToken passingoken pass ng

control token passed from one node to next

T

sequentiallytoken message (nothing

concernstoken overhead

to send)T

latencysingle point of failure (token)(token)

5 DataLink Layer 5-35

data

Summary of MAC protocolsSummary of MAC protocols

h l i i i b i f dchannel partitioning by time frequency or codeTime Division Frequency Divisiond ss (d i ) random access (dynamic) ALOHA S-ALOHA CSMA CSMACDcarrier sensing easy in some technologies (wire) hard in carrier sensing easy in some technologies (wire) hard in others (wireless)CSMACD used in EthernetCSMACA used in 80211

taking turnslli f l i k ipolling from central site token passing

Bluetooth FDDI IBM Token Ring

5 DataLink Layer 5-36

Link LayerLink Layer

5 1 I d i d 5 6 Li k l i h51 Introduction and services5 2 E d t ti

56 Link-layer switches57 PPP

52 Error detection and correction 5 3Multiple access

58 Link Virtualization ATM MPLS

53Multiple access protocols5 4 Link-Layer 54 Link Layer Addressing55 Ethernet55 Ethernet

5 DataLink Layer 5-37

MAC Addresses and ARPMAC Addresses and ARP

32-bit IP address network-layer addressyused to get datagram to destination IP subnet

MAC (or LAN or physical or Ethernet) MAC (or LAN or physical or Ethernet) address

f n ti n t f m f m n int f t n th function get frame from one interface to another physically-connected interface (same network)48 bit MAC address (for most LANs)48 bit MAC address (for most LANs)

bull burned in NIC ROM also sometimes software settable

5 DataLink Layer 5-38

LAN Addresses and ARPLAN Addresses and ARPEach adapter on LAN has unique LAN address

Broadcast address =FF-FF-FF-FF-FF-FF

1A-2F-BB-76-09-AD

= adapterLAN

(wired ori l )

58-23-D7-FA-20-B071-65-F7-2B-08-53

wireless)

0C-C4-11-6F-E3-98

5 DataLink Layer 5-39

LAN Address (more)LAN Address (more)

M C dd ll i d i i d b IEEEMAC address allocation administered by IEEEmanufacturer buys portion of MAC address space (t ss i ss)(to assure uniqueness)analogy

( ) MAC dd lik S i l S it N b(a) MAC address like Social Security Number(b) IP address like postal address

MAC fl dd づ bili MAC flat address づ portability can move LAN card from one LAN to another

IP hi chic l dd ss NOT p t blIP hierarchical address NOT portableaddress depends on IP subnet to which node is attached

5 DataLink Layer 5-40

ARP Address Resolution ProtocolAR Address Resolut on rotocol

Each IP node (host Question how to determine Each IP node (host router) on LAN has ARP table

Question how to determineMAC address of Bknowing Brsquos IP address

ARP table IPMAC address mappings for

knowing B s IP address

137196778 pp gsome LAN nodes

lt IP address MAC address TTLgtTTL (Tim T Li ) tim

1A-2F-BB-76-09-AD

137196723 137196714

TTL (Time To Live) time after which address mapping will be forgotten ( ll 20 )58-23-D7-FA-20-B071-65-F7-2B-08-53

LAN

(typically 20 min)58 23 D7 FA 20 B0

0C-C4-11-6F-E3-98137 196 7 88

5 DataLink Layer 5-41

137196788

ARP protocol Same LAN (network)

A wants to send datagram t B d Brsquo MAC dd A h ( ) IP tto B and Brsquos MAC address not in Arsquos ARP tableA broadcasts ARP query

A caches (saves) IP-to-MAC address pair in its ARP table until information q y

packet containing Bs IP address

dest MAC address = FF

becomes old (times out) soft state information that times out (goes dest MAC address = FF-

FF-FF-FF-FF-FFall machines on LAN

that times out (goes away) unless refreshed

ARP is ldquoplug-and-playrdquoreceive ARP query

B receives ARP packet replies to A with its (Bs)

p g p ynodes create their ARP tables without intervention from net replies to A with its (B s)

MAC addressframe sent to Arsquos MAC address (unicast)

intervention from net administrator

5 DataLink Layer 5-42

address (unicast)

Addressing routing to another LANwalkthrough send datagram from A to B via R

ssume A kn s Brsquos IP ddress

A74-29-9C-E8-FF-55 88-B2-2F-54-1A-0F

assume A knows B s IP address

1A-23-F9-CD-06-9BE6-E9-00-17-BB-4B

111111111111

A222222222221

R

222222222220111111111110

111111111112B

222222222222

CC-49-DE-D0-AB-7D

49-BD-D2-C7-56-2A

t ARP t bl s i t R f h IP two ARP tables in router R one for each IP network (LAN)

5 DataLink Layer 5-43

A creates IP datagram with source A destination B A uses ARP to get Rrsquos MAC address for 111 111 111 110A uses ARP to get R s MAC address for 111111111110A creates link-layer frame with Rs MAC address as dest frame contains A-to-B IP datagram This is a really importantArsquos NIC sends frame Rrsquos NIC receives frame R r m v s IP d t r m fr m Eth rn t fr m s s its

This is a really importantexample ndash make sure youunderstand

R removes IP datagram from Ethernet frame sees its destined to BR uses ARP to get Brsquos MAC address gR creates frame containing A-to-B IP datagram sends to B

A74-29-9C-E8-FF-55 88-B2-2F-54-1A-0F

1A-23-F9-CD-06-9BE6-E9-00-17-BB-4B

111111111111

A222222222221

R

222222222220111111111110

111111111112

B222222222222

5 DataLink Layer 5-44

RCC-49-DE-D0-AB-7D

49-BD-D2-C7-56-2A

Link LayerLink Layer

5 1 I d i d 5 6 Li k l i h51 Introduction and services5 2 E d t ti

56 Link-layer switches57 PPP

52 Error detection and correction 5 3Multiple access

58 Link Virtualization ATM and MPLS

53Multiple access protocols5 4 Link-Layer 54 Link Layer Addressing55 Ethernet55 Ethernet

5 DataLink Layer 5-45

Ethernetldquodominantrdquo wired LAN technology

cheap $20 for NICfirst widely used LAN technologyy gysimpler cheaper than token LANs and ATMkept up with speed race 10 Mbps ndash 10 Gbps p p p p p

Metcalfersquos Ethernetsketch

5 DataLink Layer 5-46

Star topologyp gybus topology popular through mid 90s

all nodes in same collision domain (can collide with each all nodes in same collision domain (can collide with each other)

today star topology prevails h active switch in center

each ldquospokerdquo runs a (separate) Ethernet protocol (nodes do not collide with each other)

switch

b l bl

5 DataLink Layer 5-47

bus coaxial cable star

Ethernet Frame StructuremSending adapter encapsulates IP datagram (or other g p p g (

network layer protocol packet) in Ethernet frame

Preamble7 bytes with pattern 10101010 followed by one y p ybyte with pattern 10101011used to synchronize receiver sender clock rates

5 DataLink Layer 5-48

Ethernet Frame Structure (more)Ethernet Frame Structure (more)Addresses 6 bytesy

if adapter receives frame with matching destination address or with broadcast address (eg ARP packet) it passes data in frame to network layer protocolpasses data in frame to network layer protocolotherwise adapter discards frame

Type indicates higher layer protocol (mostly IP Type indicates higher layer protocol (mostly IP but others possible eg Novell IPX AppleTalk)CRC checked at receiver if error is detected frame is dropped

5 DataLink Layer 5-49

Ethernet Unreliable connectionlessEthernet Unreliable connectionless

i l N h d h ki b di d connectionless No handshaking between sending and receiving NICs

li bl i i NIC d s rsquot s d ks ks unreliable receiving NIC doesnrsquot send acks or nacks to sending NIC

stream of datagrams passed to network layer can have gaps stream of datagrams passed to network layer can have gaps (missing datagrams)gaps will be filled if app is using TCPotherwise app will see gaps

Ethernetrsquos MAC protocol unslotted CSMACD

5 DataLink Layer 5-50

Ethernet CSMACD algorithmg1 NIC receives datagram 4 If NIC detects another

from network layer creates frame

2 f N C h l dl

transmission while transmitting aborts and sends jam signal2 If NIC senses channel idle

starts frame transmission If NIC senses channel

sends jam signal5 After aborting NIC

enters exponential If NIC senses channel busy waits until channel idle then transmits

enters exponential backoff after mth collision NIC chooses K at

3 If NIC transmits entire frame without detecting

random from 012hellip2m-1 NIC waits K 512 bi i

ganother transmission NIC is done with frame

K512 bit times returns to Step 2

5 DataLink Layer 5-51

Ethernetrsquos CSMACD (more)Ethernet s CSMACD (more)Jam Signal make sure all Exponential Backoffg

other transmitters are aware of collision 48 bits

Bit time 1 microsec for 10

pGoal adapt retransmission attempts to estimated current loadBit time 1 microsec for 10

Mbps Ethernet for K=1023 wait time is about 50 msec

current loadheavy load random wait will be longer

about 50 msec first collision choose K from 01 delay is K 512 bit transmission timestransm ss on t m safter second collision choose K from 0123hellipft t lli i h K

Seeinteract with Javaapplet on AWL Web site

after ten collisions choose K from 01234hellip1023

pphighly recommended

5 DataLink Layer 5-52

CSMACD efficiencyCSMACD efficiency

T d l b 2 d i L NTprop = max prop delay between 2 nodes in LANttrans = time to transmit max-size frame

efficiency 1

=

efficiency goes to 1

transprop ttff y

51+

efficiency goes to 1 as tprop goes to 0as ttrans goes to infinitytrans g y

better performance than ALOHA and simple cheap decentralized

5 DataLink Layer 5-53

p

8023 Ethernet Standards Link amp Physical Layersy y

many different Ethernet standardsycommon MAC protocol and frame formatdifferent speeds 2 Mbps 10 Mbps 100 Mbps 1Gb 10G b1Gbps 10G bpsdifferent physical layer media fiber cable

MAC protocolapplicationtransportnetwork

li k

MAC protocoland frame format

100BASE-TX 100BASE-FX100BASE-T2link

physical100BASE-T4 100BASE-SX 100BASE-BX

5 DataLink Layer 5-54

fiber physical layercopper (twisterpair) physical layer

Manchester encodingManchester encoding

used in 10BaseTeach bit has a transitionallows clocks in sending and receiving nodes to g gsynchronize to each other

no need for a centralized global clock among nodes

5 DataLink Layer 5-55

Hey this is physical-layer stuff

Link LayerLink Layer

5 1 I d i d 5 6 Li k l i h51 Introduction and services5 2 E d t ti

56 Link-layer switches57 PPP

52 Error detection and correction 5 3 Multiple access

58 Link Virtualization ATM MPLS

53 Multiple access protocols5 4 Link-layer 54 Link layer Addressing55 Ethernet55 Ethernet

5 DataLink Layer 5-56

Hubshellip physical-layer (ldquodumbrdquo) repeaters

bits coming in one link go out all other links at bits coming in one link go out all other links at same rateall nodes connected to hub can collide with one anotherno frame bufferinggno CSMACD at hub host NICs detect collisions

twisted pair

hub

5 DataLink Layer 5-57

Switchlink-layer device smarter than hubs take yactive role

store forward Ethernet framesexamine incoming framersquos MAC address selectively forward frame to one-or-more

l k h f f d d outgoing links when frame is to be forwarded on segment uses CSMACD to access segment

transparenthosts are unaware of presence of switches

plug-and-play self-learningswitches do not need to be configured

5 DataLink Layer 5-58

g

Switch allows multiple simultaneous ptransmissions

A

hosts have dedicated direct connection to switch

BCrsquo

switches buffer packetsEthernet protocol used on each incoming link but no

1 2 345

6

each incoming link but no collisions full duplex

each link is its own collision C

45

domainswitching A-to-Arsquo and B-to-Brsquo simultaneously

ArsquoBrsquo

to-B simultaneously without collisions

not possible with dumb hub

switch with six interfaces(123456)

5 DataLink Layer 5-59

Switch TableSwitch Table

Q h d s s it h k th t A

Q how does switch know that Arsquo reachable via interface 4 Brsquo reachable via interface 5

BCrsquo

B reachable via interface 5A each switch has a switch table each entry

1 2 345

6ta ach ntry

(MAC address of host interface to reach host time stamp) C

45

looks like a routing tableQ how are entries created

i t i d i it h t bl

ArsquoBrsquo

maintained in switch table something like a routing protocol

switch with six interfaces(123456)

5 DataLink Layer 5-60

protocol

Switch self-learning Source ASwitch self-learning

s it h l s hi h h sts A A Arsquo

Dest Arsquo

switch learns which hosts can be reached through which interfaces

BCrsquo

which interfaceswhen frame received switch ldquolearnsrdquo location of

d i i LAN

1 2 345

6

sender incoming LAN segmentrecords senderlocation

C

45

pair in switch tableArsquoBrsquo

MAC addr interface TTLMAC addr interface TTLSwitch table

(initially empty)A 1 60

5 DataLink Layer 5-61

Switch frame filteringforwardingWhen frame received

1 record link associated with sending host2 ind x s itch t bl usin MAC d st dd ss2 index switch table using MAC dest address3 if entry found for destination

then then if dest on segment from which frame arrived

then drop the framethen drop the frameelse forward the frame on interface indicated

else flood forward on all but the interface

on which the frame arrived5 DataLink Layer 5-62

on which the frame arrived

Self-learning Source ASelf learning forwarding

lA A Arsquo

Dest Arsquo

exampleBCrsquo

frame destinati n 1 2 345

6A ArsquoA ArsquoA ArsquoA ArsquoA Arsquoframe destination unknown floodd ti ti A

C

45

Arsquo A

destination A location knownselective send

ArsquoBrsquo

MAC addr interface TTL

selective send

MAC addr interface TTLSwitch table

(initially empty)A 1 60Arsquo 4 60

5 DataLink Layer 5-63

Interconnecting switchesg

switches can be connected togetherg

S

S4

A

B

S1

C DF

S2S3

IB C D

E HI

G

Q sending from A to G - how does S1 know to forward frame destined to F via S and S forward frame destined to F via S4 and S3A self learning (works exactly the same as in single-switch case)

5 DataLink Layer 5-64

single switch case)

Self-learning multi-switch exampleSuppose C sends frame to I I responds to C

S

S412

A

B

S1

C DF

S2S3

I

2

B C D

E HI

G

Q show switch tables and packet forwarding in S1 S2 S3 S4

5 DataLink Layer 5-65

Institutional networkInstitutional network

to externalnetwork

mail server

networkrouter web server

IP subnet

5 DataLink Layer 5-66

Switches vs RoutersSwitches vs Routersboth store-and-forward devices

routers network layer devices (examine network layer headers)switches are link layer devicesswitches are link layer devices

routers maintain routing tables implement routing algorithmsgswitches maintain switch tables implement filtering learning algorithmsf g g g

5 DataLink Layer 5-67

Link LayerLink Layer

5 1 I d i d 5 6 H b d i h51 Introduction and services5 2 E d t ti

56 Hubs and switches57 PPP

52 Error detection and correction 5 3Multiple access

58 Link Virtualization ATM

53Multiple access protocols5 4 Link-Layer 54 Link Layer Addressing55 Ethernet55 Ethernet

5 DataLink Layer 5-68

Point to Point Data Link ControlPoint to Point Data Link Controlone sender one receiver one link easier than one sender one receiver one link easier than broadcast link

no Media Access Controlno Media Access Controlno need for explicit MAC addressinge g dialup link ISDN lineeg dialup link ISDN line

popular point-to-point DLC protocolsPPP (point-to-point protocol)PPP (point to point protocol)HDLC High level data link control (Data link used to be considered ldquohigh layerrdquo in protocol used to be considered high layer in protocol stack

5 DataLink Layer 5-69

PPP Design Requirements [RFC 1557]

packet framing encapsulation of network-layer p f m g p u f w ydatagram in data link frame

carry network layer data of any network layer y y y yprotocol (not just IP) at same timeability to demultiplex upwards

bit transparency must carry any bit pattern in the data fielderror detection (no correction)connection liveness detect signal link failure to

k lnetwork layernetwork layer address negotiation endpoint can l fi h th rsquos t k dd ss

5 DataLink Layer 5-70

learnconfigure each otherrsquos network address

PPP non-requirementsPPP non requirements

ti no error correctionrecoveryno flow control

f d d l K out of order delivery OK no need to support multipoint links (eg polling)

E l l Error recovery flow control data re-ordering all relegated to higher layers

5 DataLink Layer 5-71

PPP Data FramePPP Data Frame

Fl d li i (f i )Flag delimiter (framing)Address does nothing (only one option)Control does nothing in the future possible multiple control fieldsP t l l t l t hi h f Protocol upper layer protocol to which frame delivered (eg PPP-LCP IP IPCP etc)

5 DataLink Layer 5-72

PPP Data FramePPP Data Frame

i f l d b i i dinfo upper layer data being carriedcheck cyclic redundancy check for error d t tidetection

5 DataLink Layer 5-73

Byte StuffingByte Stuffingldquodata transparencyrdquo requirement data field must

be allowed to include flag pattern lt01111110gtQ is received lt01111110gt data or flag

Sender adds (ldquostuffsrdquo) extra lt 01111110gt byte after each lt 01111110gt data byteReceiver

two 01111110 bytes in a row discard first byte d continue data reception

single 01111110 flag byte

5 DataLink Layer 5-74

Byte StuffingByte Stuffing

flag bytepatterni din datato send

flag byte pattern plusstuffed byte in transmitted data

5 DataLink Layer 5-75

transmitted data

PPP Data Control ProtocolPPP Data Control ProtocolBefore exchanging network-g g

layer data data link peers mustconfigure PPP link (max frame length authentication)authentication)learnconfigure networklayer informationlayer information

for IP carry IP Control Protocol (IPCP) msgs Protocol (IPCP) msgs (protocol field 8021) to configurelearn IP

5 DataLink Layer 5-76

gaddress

Link LayerLink Layer

5 1 I d i d 5 6 H b d i h51 Introduction and services5 2 E d t ti

56 Hubs and switches57 PPP

52 Error detection and correction 5 3Multiple access

58 Link Virtualization ATM and MPLS

53Multiple access protocols5 4 Link-Layer 54 Link Layer Addressing55 Ethernet55 Ethernet

5 DataLink Layer 5-77

Virtualization of networksVirtualization of networks

Vi li i f f l b i i Virtualization of resources powerful abstraction in systems engineering

ti l s i t l i t l computing examples virtual memory virtual devices

Virtual machines e g javaVirtual machines eg javaIBM VM os from 1960rsquos70rsquos

layering of abstractions donrsquot sweat the details of layering of abstractions don t sweat the details of the lower layer only deal with lower layers abstractlyabstractly

5 DataLink Layer 5-78

The Internet virtualizing networksThe Internet virtualizing networks

1974 multiple unconnected differing in1974 multiple unconnected nets

ARPAnet

hellip differing inaddressing conventionspacket formats

data-over-cable networkspacket satellite network (Aloha)

k d k

perror recoveryrouting

packet radio network

ARPAnet satellite net

5 DataLink Layer 5-79

ARPAnet satell te netA Protocol for Packet Network Intercommunication V Cerf R Kahn IEEE Transactions on CommunicationsMay 1974 pp 637-648

The Internet virtualizing networksThe Internet virtualizing networksInternetwork layer (IP)

addressing internetwork Gateway

ldquoembed internetwork packets in l l k f

addressing internetwork appears as single uniform entity despite underlying local network heterogeneitynetwork of networks

plocal packet format or extract themrdquoroute (at internetwork level) to next gatewaynetwork of networks next gateway

gateway

ARPAnet satellite net

5 DataLink Layer 5-80

ARPAnet satell te net

Cerf amp Kahnrsquos Internetwork ArchitectureCerf amp Kahn s Internetwork ArchitectureWhat is virtualized

two layers of addressing internetwork and local networknew layer (IP) makes everything homogeneous at internetwork layerunderlying local network technology

cablesatellite56K telephone modemtoday ATM MPLS

hellip ldquoinvisiblerdquo at internetwork layer Looks like a link

5 DataLink Layer 5-81

ylayer technology to IP

ATM and MPLSATM and MPLS

P k h ATM MPLS separate networks in their own right

different service models addressing routing from Internet

viewed by Internet as logical link connecting IP routers

just like dialup link is really part of separate network (telephone network)

ATM MPLS of technical interest in their own right

5 DataLink Layer 5-82

Asynchronous Transfer Mode ATMAsynchronous Transfer Mode ATM1990rsquos00 standard for high-speed (155Mbps to g p ( p622 Mbps and higher) Broadband Integrated Service Digital Network architectureGoal integrated end-end transport of carry voice video data

i i i Q i f i id meeting timingQoS requirements of voice video (versus Internet best-effort model)ldquo t ti rdquo t l h t h i l ts i ldquonext generationrdquo telephony technical roots in telephone worldpacket switching (fixed length packets called packet-switching (fixed length packets called ldquocellsrdquo) using virtual circuits

5 DataLink Layer 5-83

ATM architecture ATM architecture AAL AAL

ATM ATMATM ATM

physical physicalphysical physical

d d ti h it h

adaptation layer only at edge of ATM network

end system end systemswitch switch

data segmentationreassemblyroughly analagous to Internet transport layer

ATM layer ldquonetworkrdquo layercell switching routing

5 DataLink Layer 5-84

physical layer

ATM network or link layerATM network or link layerVision end-to-end

t t ldquoATM f transport ldquoATM from desktop to desktoprdquo

ATM is a network ATM

IPnetwork

ATM is a network technology

Reality used to connect

ATMnetwork

Reality used to connect IP backbone routers

ldquoIP over ATMrdquoIP over ATMATM as switched link layer y connecting IP routers

5 DataLink Layer 5-85

ATM Adaptation Layer (AAL)ATM Adaptation Layer (AAL)

TM d i L ( L) ldquo d rdquo ATM Adaptation Layer (AAL) ldquoadaptsrdquo upper layers (IP or native ATM applications) to ATM layer belowlayer belowAAL present only in end systems not in switchesAAL layer segment (headertrailer fields data) AAL layer segment (headertrailer fields data) fragmented across multiple ATM cells

analogy TCP segment in many IP packetsanalogy TCP segment in many IP packets

AAL AAL

physical

ATM

physical

ATM

physical

ATM

physical

ATM

5 DataLink Layer 5-86

physical physicalp y p y

end system end systemswitch switch

ATM Adaptation Layer (AAL) [more]

Different versions of AAL layers depending on ATM y p gservice classAAL1 for CBR (Constant Bit Rate) services eg circuit emulationAAL2 for VBR (Variable Bit Rate) services eg MPEG videoAAL5 for data (eg IP datagrams)

User data

AAL PDU

ATM cell

5 DataLink Layer 5-87

ATM LayeryService transport cells across ATM network

analogous to IP network layeranalogous to IP network layervery different services than IP network layer

Guarantees NetworkArchitecture

ServiceModel Bandwidth Loss Order Timing

Congestionfeedback

Guarantees

Internet

ATM

best effort

CBR

none

constant

no

yes

no

yes

no

yes

no (inferredvia loss)noATM

ATM

CBR

VBR

constantrateguaranteedrate

yes

yes

yes

yes

yes

yes

nocongestionnocongestion

ATM

ATM

ABR

UBR

rateguaranteed minimum

no yes nocongestionyes

5 DataLink Layer 5-88

ATM UBR none no yes no no

ATM Layer Virtual CircuitsATM Layer Virtual CircuitsVC transport cells carried on VC from source to destp

call setup teardown for each call before data can floweach packet carries VC identifier (not destination ID)

it h d t th i t i ldquo t t rdquo f h every switch on source-dest path maintain ldquostaterdquo for each passing connectionlinkswitch resources (bandwidth buffers) may be allocated to ( ff ) m yVC to get circuit-like perf

Permanent VCs (PVCs)long lasting connectionstypically ldquopermanentrdquo route between to IP routers

Switched VCs (SVC)dynamically set up on per-call basis

5 DataLink Layer 5-89

ATM VCsATM VCsAdvantages of ATM VC approachAdvantages of ATM VC approach

QoS performance guarantee for connection mapped to VC (bandwidth delay delay jitter)mapped to VC (bandwidth delay delay jitter)

Drawbacks of ATM VC approachInefficient support of datagram trafficInefficient support of datagram trafficone PVC between each sourcedest pair) does not scale (N2 connections needed) not scale (N 2 connections needed) SVC introduces call setup latency processing overhead for short lived connectionsoverhead for short lived connections

5 DataLink Layer 5-90

ATM Layer ATM cellATM Layer ATM cell5-byte ATM cell headery48-byte payload

Why small payload -gt short cell-creation delay W y m p y yfor digitized voicehalfway between 32 and 64 (compromise)y p

Cell headerCell header

Cell format

5 DataLink Layer 5-91

ATM cell headerATM cell headerVCI virtual channel IDVCI virtual channel ID

will change from link to link thru netPT P l d t p ( RM ll s s d t ll) PT Payload type (eg RM cell versus data cell) CLP Cell Loss Priority bit

CLP 1 i li l i it ll b CLP = 1 implies low priority cell can be discarded if congestion

HEC Header Error ChecksumHEC Header Error Checksumcyclic redundancy check

5 DataLink Layer 5-92

ATM Physical Layer (more)ATM Physical Layer (more)

T i ( bl ) f h i l lTwo pieces (sublayers) of physical layerTransmission Convergence Sublayer (TCS) adapts ATM l b t PMD s bl b lATM layer above to PMD sublayer belowPhysical Medium Dependent depends on physical medium being usedmedium being used

TCS FunctionsTCS FunctionsHeader checksum generation 8 bits CRC C ll d lin ti nCell delineationWith ldquounstructuredrdquo PMD sublayer transmission of idle cells when no data cells to send

5 DataLink Layer 5-93

of idle cells when no data cells to send

ATM Physical LayerATM Physical Layer

Ph l d D d (P D) blPhysical Medium Dependent (PMD) sublayerSONETSDH transmission frame structure (like a

b ) container carrying bits) bit synchronization bandwidth partitions (TDM) several speeds OC3 = 15552 Mbps OC12 = 62208 Mb OC48 2 45 Gb OC192 9 6 GbMbps OC48 = 245 Gbps OC192 = 96 Gbps

TIT3 transmission frame structure (old telephone hierarchy) 1 5 Mbps 45 Mbpstelephone hierarchy) 15 Mbps 45 Mbpsunstructured just cells (busyidle)

5 DataLink Layer 5-94

IP-Over-ATMIP over ATM

Classic IP only3 ldquonetworksrdquo (e g

IP over ATMreplace ldquonetworkrdquo (e g LAN segment) 3 networks (eg

LAN segments)MAC (802 3) and IP

(eg LAN segment) with ATM networkATM addresses IP MAC (8023) and IP

addressesATM addresses IP addresses

ATMATMnetwork

Ethernet Ethernet

5 DataLink Layer 5-95

EthernetLANs

EthernetLANs

IP-Over-ATMapp

transportapp

AALEthIP

transportIP

AALATM

apptransport

IPEth ATM

phyphyEth

ATM

ATMphy

ATMphy

Ethphy

ATMphy

p y

5 DataLink Layer 5-96

Datagram Journey in IP-over-ATM NetworkDatagram Journey in IP-over-ATM Network

at Source HostIP layer maps between IP ATM dest address (using ARP)passes datagram to AAL5AAL5 encapsulates data segments cells passes to ATM layer

ATM network moves cell along VC to destinationat Destination Host

AAL5 reassembles cells into original datagramif CRC OK datagram is passed to IP

5 DataLink Layer 5-97

IP-Over-ATMIP-Over-ATM

IssuesIP datagrams into

ATMnetwork

ATM AAL5 PDUsfrom IP addresses

TM ddto ATM addressesjust like IP dd ss s t addresses to

8023 MAC addresses

EthernetLANs

addresses

5 DataLink Layer 5-98

Multiprotocol label switching (MPLS)Multiprotocol label switching (MPLS)

i i i l l d IP f di b i fi d initial goal speed up IP forwarding by using fixed length label (instead of IP address) to do forwarding forwarding

borrowing ideas from Virtual Circuit (VC) approachbut IP datagram still keeps IP addressg p

PPP or EthernetPPP or Ethernet header

IP header remainder of link-layer frameMPLS header

label Exp S TTL

5 DataLink Layer 5-9920 3 1 5

MPLS capable routersMPLS capable routers

k l b l it h d taka label-switched routerforwards packets to outgoing interface based

l l b l l (d rsquot i t IP dd )only on label value (donrsquot inspect IP address)MPLS forwarding table distinct from IP forwarding tablestables

signaling protocol needed to set up forwardingRSVP TERSVP-TEforwarding possible along paths that IP alone would not allow (eg source-specific routing) not allow (eg source spec f c rout ng) use MPLS for traffic engineering

must co-exist with IP-only routers5 DataLink Layer 5-100

must co exist with IP only routers

MPLS forwarding tablesi t t

MPLS forwarding tables

in out outlabel label dest interface

in out outlabel label dest interface

10 A 012 D 0 label label dest interface

10 6 A 112 9 D 0

12 D 08 A 1

D1

00R6

R3R4R5

0

1

A

1

0

R1R2A

in out outlabel label dest interface

6 A 0in out out

label label dest interface

5 DataLink Layer 5-101

6 - A 0label label dest interface

8 6 A 0

Chapter 5 SummaryChapter 5 Summaryprinciples behind data link layer servicespr nc p s h n ata n ay r s r c s

error detection correctionsharing a broadcast channel multiple accesslink layer addressing

instantiation and implementation of various link l t h l ilayer technologies

Ethernetit h d LANSswitched LANS

PPPi li d k li k l TM MPLvirtualized networks as a link layer ATM MPLS

5 DataLink Layer 5-102

Chapter 5 letrsquos take a breathChapter 5 let s take a breathjourney down protocol stack completejourney down protocol stack complete(except PHY)solid understanding of networking principles solid understanding of networking principles practice

ld t h b t l t f i t ti hellip could stop here hellip but lots of interesting topics

lwirelessmultimediasecurity network management

5 DataLink Layer 5-103

Page 3: Link Layer Link Layer: Introduction

Adaptors CommunicatingAdaptors Communicating

controller controller

datagram datagram

controller

sending host receiving hostdatagram

frame

sending sideencapsulates datagram in f

receiving sidelooks for errors rdt flow

t l tframeadds error checking bits rdt flow control etc

control etcextracts datagram passes to upper layer at receiving

5 DataLink Layer 5-9

pp y gside

Link LayerLink Layer

5 1 I d i d 5 6 Li k l i h51 Introduction and services5 2 E d t ti

56 Link-layer switches57 PPP

52 Error detection and correction5 3Multiple access

58 Link Virtualization ATM MPLS

53Multiple access protocols5 4 Link-layer 54 Link layer Addressing55 Ethernet55 Ethernet

5 DataLink Layer 5-10

Error DetectionError DetectionEDC= Error Detection and Correction bits (redundancy)D D d b h k l d h d f ld D = Data protected by error checking may include header fields

bull Error detection not 100 reliablebull protocol may miss some errors but rarelybull larger EDC field yields better detection and correction

otherwise

5 DataLink Layer 5-11

Parity CheckingParity CheckingSingle Bit Parity Two Dimensional Bit ParitySingle Bit ParityDetect single bit errors

Two Dimensional Bit ParityDetect and correct single bit errors

0 0

5 DataLink Layer 5-12

Internet checksum (review)Internet checksum (review)

Goal detect ldquoerrorsrdquo (e g flipped bits) in transmitted Goal detect errors (eg flipped bits) in transmitted packet (note used at transport layer only)

Sendertreat segment contents

Receivercompute checksum of received segmentas sequence of 16-bit

integerschecksum addition (1rsquos

received segmentcheck if computed checksum equals checksum field valuechecksum addition (1 s

complement sum) of segment contentss d ts h ks

NO - error detectedYES - no error detected But maybe errors sender puts checksum

value into UDP checksum field

But maybe errors nonetheless

5 DataLink Layer 5-13

Checksumming Cyclic Redundancy CheckChecksumming Cyclic Redundancy Checkview data bits D as a binary numberychoose r+1 bit pattern (generator) Ggoal choose r CRC bits R such that

D R tl di i ibl b G ( d l 2) ltDRgt exactly divisible by G (modulo 2) receiver knows G divides ltDRgt by G If non-zero remainder error detectedcan detect all burst errors less than r+1 bits

widely used in practice (Ethernet 80211 WiFi ATM)

5 DataLink Layer 5-14

CRC ExampleCRC ExampleWant

D2r XOR R = nGequivalentlyq y

D2r = nG XOR R equivalentlyq y

if we divide D2r by G want remainder R

R = remainder[ ]D2r

G

5 DataLink Layer 5-15

Link LayerLink Layer

5 1 I d i d 5 6 Li k l i h51 Introduction and services5 2 E d t ti

56 Link-layer switches57 PPP

52 Error detection and correction 5 3Multiple access

58 Link Virtualization ATM MPLS

53Multiple access protocols5 4 Link-layer 54 Link layer Addressing55 Ethernet55 Ethernet

5 DataLink Layer 5-16

Multiple Access Links and ProtocolspTwo types of ldquolinksrdquo

i t t i tpoint-to-pointPPP for dial-up accesspoint-to-point link between Ethernet switch and hostpoint-to-point link between Ethernet switch and host

broadcast (shared wire or medium)old-fashioned Ethernetold fashioned Ethernetupstream HFC80211 wireless LAN

sh d i ( h d RFhumans at a

kt il p t

5 DataLink Layer 5-17

shared wire (eg cabled Ethernet)

shared RF(eg 80211 WiFi)

shared RF(satellite)

cocktail party (shared air acoustical)

Multiple Access protocolsMultiple Access protocolssingle shared broadcast channel single shared broadcast channel two or more simultaneous transmissions by nodes interference

collision if node receives two or more signals at the same timemultiple access protocol

distributed algorithm that determines how nodes share channel ie determine when node can transmitcommunication about channel sharing must use channel itself

f b d h l f di ino out-of-band channel for coordination

5 DataLink Layer 5-18

Ideal Multiple Access ProtocolIdeal Multiple Access Protocol

B d h l f R bBroadcast channel of rate R bps1 when one node wants to transmit it can send at

t Rrate R2 when M nodes want to transmit each can send at

average rate RMaverage rate RM3 fully decentralized

no special node to coordinate transmissionsno special node to coordinate transmissionsno synchronization of clocks slots

4 simple4 simple

5 DataLink Layer 5-19

MAC Protocols a taxonomyMAC Protocols a taxonomyThree broad classes

Channel Partitioningdivide channel into smaller ldquopiecesrdquo (time slots f d )frequency code)allocate piece to node for exclusive use

Random AccessRandom Accesschannel not divided allow collisionsldquorecoverrdquo from collisions

ldquoTaking turnsrdquonodes take turns but nodes with more to send can take longer turns

5 DataLink Layer 5-20

Channel Partitioning MAC protocols TDMAChannel Partitioning MAC protocols TDMA

TDMA time division multiple accessTDMA time division multiple accessaccess to channel in rounds each station gets fixed length slot (length = pkt each station gets fixed length slot (length = pkt trans time) in each round unused slots go idle unused slots go idle example 6-station LAN 134 have pkt slots 256 idle idle

6-slotframe

1 3 4 1 3 4

5 DataLink Layer 5-21

Channel Partitioning MAC protocols FDMAChannel Partitioning MAC protocols FDMA

FDMA frequency division multiple accessFDMA frequency division multiple accesschannel spectrum divided into frequency bandseach station assigned fixed frequency bandeach station assigned fixed frequency bandunused transmission time in frequency bands go idle example 6-station LAN 1 3 4 have pkt frequency example 6-station LAN 134 have pkt frequency bands 256 idle

cy b

ands

freq

uenc

FDM cable

5 DataLink Layer 5-22

f

Random Access ProtocolsRandom Access Protocols

Wh d h k dWhen node has packet to sendtransmit at full channel data rate Rno a priori coordination among nodesno a priori coordination among nodes

two or more transmitting nodes づ ldquocollisionrdquorandom access MAC protocol specifies random access MAC protocol specifies

how to detect collisionshow to recover from collisions (eg via delayed how to recover from collisions (eg via delayed retransmissions)

Examples of random access MAC protocolsslotted ALOHAALOHACSMA CSMACD CSMACA

5 DataLink Layer 5-23

CSMA CSMACD CSMACA

Slotted ALOHASlotted ALOHA

A ti O tiAssumptionsall frames same sizetime divided into equal

Operationwhen node obtains fresh frame transmits in next time divided into equal

size slots (time to transmit 1 frame)

frame transmits in next slot

if no collision node can nodes start to transmit only slot beginning

d h i d

send new frame in next slotif collision node nodes are synchronized

if 2 or more nodes transmit in slot all

if collision node retransmits frame in each subsequent slot transmit in slot all

nodes detect collisionq

with prob p until success

5 DataLink Layer 5-24

Slotted ALOHA

P s ConsProssingle active node can continuously transmit

Conscollisions wasting slotsidle slotscontinuously transmit

at full rate of channelhighly decentralized

idle slotsnodes may be able to detect collision in less highly decentralized

only slots in nodes need to be in sync

than time to transmit packetclock synchronization

5 DataLink Layer 5-25

ysimple

clock synchronization

Slotted Aloha efficiencyymax efficiency find p that maximizes

Efficiency long-run fraction of successful slots p that maximizes

Np(1-p)N-1

for many nodes take

fraction of successful slots (many nodes all with many frames to send)

suppose N nodes with

for many nodes take limit of Np(1-p)N-1

as N goes to infinity

frames to send)

many frames to send each transmits in slot with probability p

g ygives

Max efficiency = 1e = 37with probability pprob that given node has success in a slot =

At best channelused for useful has success in a slot =

p(1-p)N-1

prob that any node has

used for useful transmissions 37of time

5 DataLink Layer 5-26

p ya success = Np(1-p)N-1

Pure (unslotted) ALOHAPure (unslotted) ALOHAunslotted Aloha simpler no synchronizationunslotted Aloha simpler no synchronizationwhen frame first arrives

transmit immediately transmit immediately collision probability increases

frame sent at t0 collides with other frames sent in [t0-1t0+1]0 [ 0 0 ]

5 DataLink Layer 5-27

Pure Aloha efficiencyPure Aloha efficiencyP(success by given node) = P(node transmits) P(success by g ven node) P(node transm ts)

P(no other node transmits in [p0-1p0] P(no other node transmits in [p0-1 p0] P(no other node transmits in [p0 1p0]

= p (1-p)N-1 (1-p)N-1

= p (1-p)2(N-1)= p (1 p)

hellip choosing optimum p and then letting n -gt infty

= 1(2e) = 18

even worse than slotted Aloha

5 DataLink Layer 5-28

CSMA (Carrier Sense Multiple Access)CSMA (Carrier Sense Multiple Access)

CSMA listen before transmitIf channel sensed idle transmit entire framef chann s ns transm t nt r fram

If channel sensed busy defer transmission

human analogy donrsquot interrupt others

5 DataLink Layer 5-29

CSMA collisionsCSMA collisionsc llisi ns c n still ccu

spatial layout of nodes

collisions can still occurpropagation delay means two nodes may not heareach otherrsquos transmission

collisionentire packet transmission time wasted

tnoterole of distance amp propagation delay in determining collision y gprobability

5 DataLink Layer 5-30

CSMACD (Collision Detection)CSMACD (Collision Detection)CSMACD carrier sensing deferral as in CSMACSMACD carrier sensing deferral as in CSMA

collisions detected within short timecolliding transmissions aborted reducing channel colliding transmissions aborted reducing channel wastage

collision detectioncollision detectioneasy in wired LANs measure signal strengths compare transmitted received signalscompare transmitted received signalsdifficult in wireless LANs received signal strength overwhelmed by local transmission strength overwhelmed by local transmission strength

human analogy the polite conversationalist

5 DataLink Layer 5-31

CSMACD collision detectionCSMACD collision detection

5 DataLink Layer 5-32

ldquoTaking Turnsrdquo MAC protocolsTaking Turns MAC protocols

h l i i i M C lchannel partitioning MAC protocolsshare channel efficiently and fairly at high loadinefficient at low load delay in channel access 1N bandwidth allocated even if only 1 active node node

Random access MAC protocolsefficient at low load single node can fully efficient at low load single node can fully utilize channelhigh load collision overheadhigh load collision overhead

ldquotaking turnsrdquo protocolslook for best of both worlds

5 DataLink Layer 5-33

look for best of both worlds

ldquoTaking Turnsrdquo MAC protocolsTaking Turns MAC protocolsPollingPolling

master node ldquoinvitesrdquo slave nodes d tinvites slave nodes to transmit in turntypically used with master

polldata

typically used with ldquodumbrdquo slave devicesconcerns

data

polling overhead latency slavessingle point of failure (master)

5 DataLink Layer 5-34

ldquoTaking Turnsrdquo MAC protocolsTaking Turns MAC protocolsToken passingoken pass ng

control token passed from one node to next

T

sequentiallytoken message (nothing

concernstoken overhead

to send)T

latencysingle point of failure (token)(token)

5 DataLink Layer 5-35

data

Summary of MAC protocolsSummary of MAC protocols

h l i i i b i f dchannel partitioning by time frequency or codeTime Division Frequency Divisiond ss (d i ) random access (dynamic) ALOHA S-ALOHA CSMA CSMACDcarrier sensing easy in some technologies (wire) hard in carrier sensing easy in some technologies (wire) hard in others (wireless)CSMACD used in EthernetCSMACA used in 80211

taking turnslli f l i k ipolling from central site token passing

Bluetooth FDDI IBM Token Ring

5 DataLink Layer 5-36

Link LayerLink Layer

5 1 I d i d 5 6 Li k l i h51 Introduction and services5 2 E d t ti

56 Link-layer switches57 PPP

52 Error detection and correction 5 3Multiple access

58 Link Virtualization ATM MPLS

53Multiple access protocols5 4 Link-Layer 54 Link Layer Addressing55 Ethernet55 Ethernet

5 DataLink Layer 5-37

MAC Addresses and ARPMAC Addresses and ARP

32-bit IP address network-layer addressyused to get datagram to destination IP subnet

MAC (or LAN or physical or Ethernet) MAC (or LAN or physical or Ethernet) address

f n ti n t f m f m n int f t n th function get frame from one interface to another physically-connected interface (same network)48 bit MAC address (for most LANs)48 bit MAC address (for most LANs)

bull burned in NIC ROM also sometimes software settable

5 DataLink Layer 5-38

LAN Addresses and ARPLAN Addresses and ARPEach adapter on LAN has unique LAN address

Broadcast address =FF-FF-FF-FF-FF-FF

1A-2F-BB-76-09-AD

= adapterLAN

(wired ori l )

58-23-D7-FA-20-B071-65-F7-2B-08-53

wireless)

0C-C4-11-6F-E3-98

5 DataLink Layer 5-39

LAN Address (more)LAN Address (more)

M C dd ll i d i i d b IEEEMAC address allocation administered by IEEEmanufacturer buys portion of MAC address space (t ss i ss)(to assure uniqueness)analogy

( ) MAC dd lik S i l S it N b(a) MAC address like Social Security Number(b) IP address like postal address

MAC fl dd づ bili MAC flat address づ portability can move LAN card from one LAN to another

IP hi chic l dd ss NOT p t blIP hierarchical address NOT portableaddress depends on IP subnet to which node is attached

5 DataLink Layer 5-40

ARP Address Resolution ProtocolAR Address Resolut on rotocol

Each IP node (host Question how to determine Each IP node (host router) on LAN has ARP table

Question how to determineMAC address of Bknowing Brsquos IP address

ARP table IPMAC address mappings for

knowing B s IP address

137196778 pp gsome LAN nodes

lt IP address MAC address TTLgtTTL (Tim T Li ) tim

1A-2F-BB-76-09-AD

137196723 137196714

TTL (Time To Live) time after which address mapping will be forgotten ( ll 20 )58-23-D7-FA-20-B071-65-F7-2B-08-53

LAN

(typically 20 min)58 23 D7 FA 20 B0

0C-C4-11-6F-E3-98137 196 7 88

5 DataLink Layer 5-41

137196788

ARP protocol Same LAN (network)

A wants to send datagram t B d Brsquo MAC dd A h ( ) IP tto B and Brsquos MAC address not in Arsquos ARP tableA broadcasts ARP query

A caches (saves) IP-to-MAC address pair in its ARP table until information q y

packet containing Bs IP address

dest MAC address = FF

becomes old (times out) soft state information that times out (goes dest MAC address = FF-

FF-FF-FF-FF-FFall machines on LAN

that times out (goes away) unless refreshed

ARP is ldquoplug-and-playrdquoreceive ARP query

B receives ARP packet replies to A with its (Bs)

p g p ynodes create their ARP tables without intervention from net replies to A with its (B s)

MAC addressframe sent to Arsquos MAC address (unicast)

intervention from net administrator

5 DataLink Layer 5-42

address (unicast)

Addressing routing to another LANwalkthrough send datagram from A to B via R

ssume A kn s Brsquos IP ddress

A74-29-9C-E8-FF-55 88-B2-2F-54-1A-0F

assume A knows B s IP address

1A-23-F9-CD-06-9BE6-E9-00-17-BB-4B

111111111111

A222222222221

R

222222222220111111111110

111111111112B

222222222222

CC-49-DE-D0-AB-7D

49-BD-D2-C7-56-2A

t ARP t bl s i t R f h IP two ARP tables in router R one for each IP network (LAN)

5 DataLink Layer 5-43

A creates IP datagram with source A destination B A uses ARP to get Rrsquos MAC address for 111 111 111 110A uses ARP to get R s MAC address for 111111111110A creates link-layer frame with Rs MAC address as dest frame contains A-to-B IP datagram This is a really importantArsquos NIC sends frame Rrsquos NIC receives frame R r m v s IP d t r m fr m Eth rn t fr m s s its

This is a really importantexample ndash make sure youunderstand

R removes IP datagram from Ethernet frame sees its destined to BR uses ARP to get Brsquos MAC address gR creates frame containing A-to-B IP datagram sends to B

A74-29-9C-E8-FF-55 88-B2-2F-54-1A-0F

1A-23-F9-CD-06-9BE6-E9-00-17-BB-4B

111111111111

A222222222221

R

222222222220111111111110

111111111112

B222222222222

5 DataLink Layer 5-44

RCC-49-DE-D0-AB-7D

49-BD-D2-C7-56-2A

Link LayerLink Layer

5 1 I d i d 5 6 Li k l i h51 Introduction and services5 2 E d t ti

56 Link-layer switches57 PPP

52 Error detection and correction 5 3Multiple access

58 Link Virtualization ATM and MPLS

53Multiple access protocols5 4 Link-Layer 54 Link Layer Addressing55 Ethernet55 Ethernet

5 DataLink Layer 5-45

Ethernetldquodominantrdquo wired LAN technology

cheap $20 for NICfirst widely used LAN technologyy gysimpler cheaper than token LANs and ATMkept up with speed race 10 Mbps ndash 10 Gbps p p p p p

Metcalfersquos Ethernetsketch

5 DataLink Layer 5-46

Star topologyp gybus topology popular through mid 90s

all nodes in same collision domain (can collide with each all nodes in same collision domain (can collide with each other)

today star topology prevails h active switch in center

each ldquospokerdquo runs a (separate) Ethernet protocol (nodes do not collide with each other)

switch

b l bl

5 DataLink Layer 5-47

bus coaxial cable star

Ethernet Frame StructuremSending adapter encapsulates IP datagram (or other g p p g (

network layer protocol packet) in Ethernet frame

Preamble7 bytes with pattern 10101010 followed by one y p ybyte with pattern 10101011used to synchronize receiver sender clock rates

5 DataLink Layer 5-48

Ethernet Frame Structure (more)Ethernet Frame Structure (more)Addresses 6 bytesy

if adapter receives frame with matching destination address or with broadcast address (eg ARP packet) it passes data in frame to network layer protocolpasses data in frame to network layer protocolotherwise adapter discards frame

Type indicates higher layer protocol (mostly IP Type indicates higher layer protocol (mostly IP but others possible eg Novell IPX AppleTalk)CRC checked at receiver if error is detected frame is dropped

5 DataLink Layer 5-49

Ethernet Unreliable connectionlessEthernet Unreliable connectionless

i l N h d h ki b di d connectionless No handshaking between sending and receiving NICs

li bl i i NIC d s rsquot s d ks ks unreliable receiving NIC doesnrsquot send acks or nacks to sending NIC

stream of datagrams passed to network layer can have gaps stream of datagrams passed to network layer can have gaps (missing datagrams)gaps will be filled if app is using TCPotherwise app will see gaps

Ethernetrsquos MAC protocol unslotted CSMACD

5 DataLink Layer 5-50

Ethernet CSMACD algorithmg1 NIC receives datagram 4 If NIC detects another

from network layer creates frame

2 f N C h l dl

transmission while transmitting aborts and sends jam signal2 If NIC senses channel idle

starts frame transmission If NIC senses channel

sends jam signal5 After aborting NIC

enters exponential If NIC senses channel busy waits until channel idle then transmits

enters exponential backoff after mth collision NIC chooses K at

3 If NIC transmits entire frame without detecting

random from 012hellip2m-1 NIC waits K 512 bi i

ganother transmission NIC is done with frame

K512 bit times returns to Step 2

5 DataLink Layer 5-51

Ethernetrsquos CSMACD (more)Ethernet s CSMACD (more)Jam Signal make sure all Exponential Backoffg

other transmitters are aware of collision 48 bits

Bit time 1 microsec for 10

pGoal adapt retransmission attempts to estimated current loadBit time 1 microsec for 10

Mbps Ethernet for K=1023 wait time is about 50 msec

current loadheavy load random wait will be longer

about 50 msec first collision choose K from 01 delay is K 512 bit transmission timestransm ss on t m safter second collision choose K from 0123hellipft t lli i h K

Seeinteract with Javaapplet on AWL Web site

after ten collisions choose K from 01234hellip1023

pphighly recommended

5 DataLink Layer 5-52

CSMACD efficiencyCSMACD efficiency

T d l b 2 d i L NTprop = max prop delay between 2 nodes in LANttrans = time to transmit max-size frame

efficiency 1

=

efficiency goes to 1

transprop ttff y

51+

efficiency goes to 1 as tprop goes to 0as ttrans goes to infinitytrans g y

better performance than ALOHA and simple cheap decentralized

5 DataLink Layer 5-53

p

8023 Ethernet Standards Link amp Physical Layersy y

many different Ethernet standardsycommon MAC protocol and frame formatdifferent speeds 2 Mbps 10 Mbps 100 Mbps 1Gb 10G b1Gbps 10G bpsdifferent physical layer media fiber cable

MAC protocolapplicationtransportnetwork

li k

MAC protocoland frame format

100BASE-TX 100BASE-FX100BASE-T2link

physical100BASE-T4 100BASE-SX 100BASE-BX

5 DataLink Layer 5-54

fiber physical layercopper (twisterpair) physical layer

Manchester encodingManchester encoding

used in 10BaseTeach bit has a transitionallows clocks in sending and receiving nodes to g gsynchronize to each other

no need for a centralized global clock among nodes

5 DataLink Layer 5-55

Hey this is physical-layer stuff

Link LayerLink Layer

5 1 I d i d 5 6 Li k l i h51 Introduction and services5 2 E d t ti

56 Link-layer switches57 PPP

52 Error detection and correction 5 3 Multiple access

58 Link Virtualization ATM MPLS

53 Multiple access protocols5 4 Link-layer 54 Link layer Addressing55 Ethernet55 Ethernet

5 DataLink Layer 5-56

Hubshellip physical-layer (ldquodumbrdquo) repeaters

bits coming in one link go out all other links at bits coming in one link go out all other links at same rateall nodes connected to hub can collide with one anotherno frame bufferinggno CSMACD at hub host NICs detect collisions

twisted pair

hub

5 DataLink Layer 5-57

Switchlink-layer device smarter than hubs take yactive role

store forward Ethernet framesexamine incoming framersquos MAC address selectively forward frame to one-or-more

l k h f f d d outgoing links when frame is to be forwarded on segment uses CSMACD to access segment

transparenthosts are unaware of presence of switches

plug-and-play self-learningswitches do not need to be configured

5 DataLink Layer 5-58

g

Switch allows multiple simultaneous ptransmissions

A

hosts have dedicated direct connection to switch

BCrsquo

switches buffer packetsEthernet protocol used on each incoming link but no

1 2 345

6

each incoming link but no collisions full duplex

each link is its own collision C

45

domainswitching A-to-Arsquo and B-to-Brsquo simultaneously

ArsquoBrsquo

to-B simultaneously without collisions

not possible with dumb hub

switch with six interfaces(123456)

5 DataLink Layer 5-59

Switch TableSwitch Table

Q h d s s it h k th t A

Q how does switch know that Arsquo reachable via interface 4 Brsquo reachable via interface 5

BCrsquo

B reachable via interface 5A each switch has a switch table each entry

1 2 345

6ta ach ntry

(MAC address of host interface to reach host time stamp) C

45

looks like a routing tableQ how are entries created

i t i d i it h t bl

ArsquoBrsquo

maintained in switch table something like a routing protocol

switch with six interfaces(123456)

5 DataLink Layer 5-60

protocol

Switch self-learning Source ASwitch self-learning

s it h l s hi h h sts A A Arsquo

Dest Arsquo

switch learns which hosts can be reached through which interfaces

BCrsquo

which interfaceswhen frame received switch ldquolearnsrdquo location of

d i i LAN

1 2 345

6

sender incoming LAN segmentrecords senderlocation

C

45

pair in switch tableArsquoBrsquo

MAC addr interface TTLMAC addr interface TTLSwitch table

(initially empty)A 1 60

5 DataLink Layer 5-61

Switch frame filteringforwardingWhen frame received

1 record link associated with sending host2 ind x s itch t bl usin MAC d st dd ss2 index switch table using MAC dest address3 if entry found for destination

then then if dest on segment from which frame arrived

then drop the framethen drop the frameelse forward the frame on interface indicated

else flood forward on all but the interface

on which the frame arrived5 DataLink Layer 5-62

on which the frame arrived

Self-learning Source ASelf learning forwarding

lA A Arsquo

Dest Arsquo

exampleBCrsquo

frame destinati n 1 2 345

6A ArsquoA ArsquoA ArsquoA ArsquoA Arsquoframe destination unknown floodd ti ti A

C

45

Arsquo A

destination A location knownselective send

ArsquoBrsquo

MAC addr interface TTL

selective send

MAC addr interface TTLSwitch table

(initially empty)A 1 60Arsquo 4 60

5 DataLink Layer 5-63

Interconnecting switchesg

switches can be connected togetherg

S

S4

A

B

S1

C DF

S2S3

IB C D

E HI

G

Q sending from A to G - how does S1 know to forward frame destined to F via S and S forward frame destined to F via S4 and S3A self learning (works exactly the same as in single-switch case)

5 DataLink Layer 5-64

single switch case)

Self-learning multi-switch exampleSuppose C sends frame to I I responds to C

S

S412

A

B

S1

C DF

S2S3

I

2

B C D

E HI

G

Q show switch tables and packet forwarding in S1 S2 S3 S4

5 DataLink Layer 5-65

Institutional networkInstitutional network

to externalnetwork

mail server

networkrouter web server

IP subnet

5 DataLink Layer 5-66

Switches vs RoutersSwitches vs Routersboth store-and-forward devices

routers network layer devices (examine network layer headers)switches are link layer devicesswitches are link layer devices

routers maintain routing tables implement routing algorithmsgswitches maintain switch tables implement filtering learning algorithmsf g g g

5 DataLink Layer 5-67

Link LayerLink Layer

5 1 I d i d 5 6 H b d i h51 Introduction and services5 2 E d t ti

56 Hubs and switches57 PPP

52 Error detection and correction 5 3Multiple access

58 Link Virtualization ATM

53Multiple access protocols5 4 Link-Layer 54 Link Layer Addressing55 Ethernet55 Ethernet

5 DataLink Layer 5-68

Point to Point Data Link ControlPoint to Point Data Link Controlone sender one receiver one link easier than one sender one receiver one link easier than broadcast link

no Media Access Controlno Media Access Controlno need for explicit MAC addressinge g dialup link ISDN lineeg dialup link ISDN line

popular point-to-point DLC protocolsPPP (point-to-point protocol)PPP (point to point protocol)HDLC High level data link control (Data link used to be considered ldquohigh layerrdquo in protocol used to be considered high layer in protocol stack

5 DataLink Layer 5-69

PPP Design Requirements [RFC 1557]

packet framing encapsulation of network-layer p f m g p u f w ydatagram in data link frame

carry network layer data of any network layer y y y yprotocol (not just IP) at same timeability to demultiplex upwards

bit transparency must carry any bit pattern in the data fielderror detection (no correction)connection liveness detect signal link failure to

k lnetwork layernetwork layer address negotiation endpoint can l fi h th rsquos t k dd ss

5 DataLink Layer 5-70

learnconfigure each otherrsquos network address

PPP non-requirementsPPP non requirements

ti no error correctionrecoveryno flow control

f d d l K out of order delivery OK no need to support multipoint links (eg polling)

E l l Error recovery flow control data re-ordering all relegated to higher layers

5 DataLink Layer 5-71

PPP Data FramePPP Data Frame

Fl d li i (f i )Flag delimiter (framing)Address does nothing (only one option)Control does nothing in the future possible multiple control fieldsP t l l t l t hi h f Protocol upper layer protocol to which frame delivered (eg PPP-LCP IP IPCP etc)

5 DataLink Layer 5-72

PPP Data FramePPP Data Frame

i f l d b i i dinfo upper layer data being carriedcheck cyclic redundancy check for error d t tidetection

5 DataLink Layer 5-73

Byte StuffingByte Stuffingldquodata transparencyrdquo requirement data field must

be allowed to include flag pattern lt01111110gtQ is received lt01111110gt data or flag

Sender adds (ldquostuffsrdquo) extra lt 01111110gt byte after each lt 01111110gt data byteReceiver

two 01111110 bytes in a row discard first byte d continue data reception

single 01111110 flag byte

5 DataLink Layer 5-74

Byte StuffingByte Stuffing

flag bytepatterni din datato send

flag byte pattern plusstuffed byte in transmitted data

5 DataLink Layer 5-75

transmitted data

PPP Data Control ProtocolPPP Data Control ProtocolBefore exchanging network-g g

layer data data link peers mustconfigure PPP link (max frame length authentication)authentication)learnconfigure networklayer informationlayer information

for IP carry IP Control Protocol (IPCP) msgs Protocol (IPCP) msgs (protocol field 8021) to configurelearn IP

5 DataLink Layer 5-76

gaddress

Link LayerLink Layer

5 1 I d i d 5 6 H b d i h51 Introduction and services5 2 E d t ti

56 Hubs and switches57 PPP

52 Error detection and correction 5 3Multiple access

58 Link Virtualization ATM and MPLS

53Multiple access protocols5 4 Link-Layer 54 Link Layer Addressing55 Ethernet55 Ethernet

5 DataLink Layer 5-77

Virtualization of networksVirtualization of networks

Vi li i f f l b i i Virtualization of resources powerful abstraction in systems engineering

ti l s i t l i t l computing examples virtual memory virtual devices

Virtual machines e g javaVirtual machines eg javaIBM VM os from 1960rsquos70rsquos

layering of abstractions donrsquot sweat the details of layering of abstractions don t sweat the details of the lower layer only deal with lower layers abstractlyabstractly

5 DataLink Layer 5-78

The Internet virtualizing networksThe Internet virtualizing networks

1974 multiple unconnected differing in1974 multiple unconnected nets

ARPAnet

hellip differing inaddressing conventionspacket formats

data-over-cable networkspacket satellite network (Aloha)

k d k

perror recoveryrouting

packet radio network

ARPAnet satellite net

5 DataLink Layer 5-79

ARPAnet satell te netA Protocol for Packet Network Intercommunication V Cerf R Kahn IEEE Transactions on CommunicationsMay 1974 pp 637-648

The Internet virtualizing networksThe Internet virtualizing networksInternetwork layer (IP)

addressing internetwork Gateway

ldquoembed internetwork packets in l l k f

addressing internetwork appears as single uniform entity despite underlying local network heterogeneitynetwork of networks

plocal packet format or extract themrdquoroute (at internetwork level) to next gatewaynetwork of networks next gateway

gateway

ARPAnet satellite net

5 DataLink Layer 5-80

ARPAnet satell te net

Cerf amp Kahnrsquos Internetwork ArchitectureCerf amp Kahn s Internetwork ArchitectureWhat is virtualized

two layers of addressing internetwork and local networknew layer (IP) makes everything homogeneous at internetwork layerunderlying local network technology

cablesatellite56K telephone modemtoday ATM MPLS

hellip ldquoinvisiblerdquo at internetwork layer Looks like a link

5 DataLink Layer 5-81

ylayer technology to IP

ATM and MPLSATM and MPLS

P k h ATM MPLS separate networks in their own right

different service models addressing routing from Internet

viewed by Internet as logical link connecting IP routers

just like dialup link is really part of separate network (telephone network)

ATM MPLS of technical interest in their own right

5 DataLink Layer 5-82

Asynchronous Transfer Mode ATMAsynchronous Transfer Mode ATM1990rsquos00 standard for high-speed (155Mbps to g p ( p622 Mbps and higher) Broadband Integrated Service Digital Network architectureGoal integrated end-end transport of carry voice video data

i i i Q i f i id meeting timingQoS requirements of voice video (versus Internet best-effort model)ldquo t ti rdquo t l h t h i l ts i ldquonext generationrdquo telephony technical roots in telephone worldpacket switching (fixed length packets called packet-switching (fixed length packets called ldquocellsrdquo) using virtual circuits

5 DataLink Layer 5-83

ATM architecture ATM architecture AAL AAL

ATM ATMATM ATM

physical physicalphysical physical

d d ti h it h

adaptation layer only at edge of ATM network

end system end systemswitch switch

data segmentationreassemblyroughly analagous to Internet transport layer

ATM layer ldquonetworkrdquo layercell switching routing

5 DataLink Layer 5-84

physical layer

ATM network or link layerATM network or link layerVision end-to-end

t t ldquoATM f transport ldquoATM from desktop to desktoprdquo

ATM is a network ATM

IPnetwork

ATM is a network technology

Reality used to connect

ATMnetwork

Reality used to connect IP backbone routers

ldquoIP over ATMrdquoIP over ATMATM as switched link layer y connecting IP routers

5 DataLink Layer 5-85

ATM Adaptation Layer (AAL)ATM Adaptation Layer (AAL)

TM d i L ( L) ldquo d rdquo ATM Adaptation Layer (AAL) ldquoadaptsrdquo upper layers (IP or native ATM applications) to ATM layer belowlayer belowAAL present only in end systems not in switchesAAL layer segment (headertrailer fields data) AAL layer segment (headertrailer fields data) fragmented across multiple ATM cells

analogy TCP segment in many IP packetsanalogy TCP segment in many IP packets

AAL AAL

physical

ATM

physical

ATM

physical

ATM

physical

ATM

5 DataLink Layer 5-86

physical physicalp y p y

end system end systemswitch switch

ATM Adaptation Layer (AAL) [more]

Different versions of AAL layers depending on ATM y p gservice classAAL1 for CBR (Constant Bit Rate) services eg circuit emulationAAL2 for VBR (Variable Bit Rate) services eg MPEG videoAAL5 for data (eg IP datagrams)

User data

AAL PDU

ATM cell

5 DataLink Layer 5-87

ATM LayeryService transport cells across ATM network

analogous to IP network layeranalogous to IP network layervery different services than IP network layer

Guarantees NetworkArchitecture

ServiceModel Bandwidth Loss Order Timing

Congestionfeedback

Guarantees

Internet

ATM

best effort

CBR

none

constant

no

yes

no

yes

no

yes

no (inferredvia loss)noATM

ATM

CBR

VBR

constantrateguaranteedrate

yes

yes

yes

yes

yes

yes

nocongestionnocongestion

ATM

ATM

ABR

UBR

rateguaranteed minimum

no yes nocongestionyes

5 DataLink Layer 5-88

ATM UBR none no yes no no

ATM Layer Virtual CircuitsATM Layer Virtual CircuitsVC transport cells carried on VC from source to destp

call setup teardown for each call before data can floweach packet carries VC identifier (not destination ID)

it h d t th i t i ldquo t t rdquo f h every switch on source-dest path maintain ldquostaterdquo for each passing connectionlinkswitch resources (bandwidth buffers) may be allocated to ( ff ) m yVC to get circuit-like perf

Permanent VCs (PVCs)long lasting connectionstypically ldquopermanentrdquo route between to IP routers

Switched VCs (SVC)dynamically set up on per-call basis

5 DataLink Layer 5-89

ATM VCsATM VCsAdvantages of ATM VC approachAdvantages of ATM VC approach

QoS performance guarantee for connection mapped to VC (bandwidth delay delay jitter)mapped to VC (bandwidth delay delay jitter)

Drawbacks of ATM VC approachInefficient support of datagram trafficInefficient support of datagram trafficone PVC between each sourcedest pair) does not scale (N2 connections needed) not scale (N 2 connections needed) SVC introduces call setup latency processing overhead for short lived connectionsoverhead for short lived connections

5 DataLink Layer 5-90

ATM Layer ATM cellATM Layer ATM cell5-byte ATM cell headery48-byte payload

Why small payload -gt short cell-creation delay W y m p y yfor digitized voicehalfway between 32 and 64 (compromise)y p

Cell headerCell header

Cell format

5 DataLink Layer 5-91

ATM cell headerATM cell headerVCI virtual channel IDVCI virtual channel ID

will change from link to link thru netPT P l d t p ( RM ll s s d t ll) PT Payload type (eg RM cell versus data cell) CLP Cell Loss Priority bit

CLP 1 i li l i it ll b CLP = 1 implies low priority cell can be discarded if congestion

HEC Header Error ChecksumHEC Header Error Checksumcyclic redundancy check

5 DataLink Layer 5-92

ATM Physical Layer (more)ATM Physical Layer (more)

T i ( bl ) f h i l lTwo pieces (sublayers) of physical layerTransmission Convergence Sublayer (TCS) adapts ATM l b t PMD s bl b lATM layer above to PMD sublayer belowPhysical Medium Dependent depends on physical medium being usedmedium being used

TCS FunctionsTCS FunctionsHeader checksum generation 8 bits CRC C ll d lin ti nCell delineationWith ldquounstructuredrdquo PMD sublayer transmission of idle cells when no data cells to send

5 DataLink Layer 5-93

of idle cells when no data cells to send

ATM Physical LayerATM Physical Layer

Ph l d D d (P D) blPhysical Medium Dependent (PMD) sublayerSONETSDH transmission frame structure (like a

b ) container carrying bits) bit synchronization bandwidth partitions (TDM) several speeds OC3 = 15552 Mbps OC12 = 62208 Mb OC48 2 45 Gb OC192 9 6 GbMbps OC48 = 245 Gbps OC192 = 96 Gbps

TIT3 transmission frame structure (old telephone hierarchy) 1 5 Mbps 45 Mbpstelephone hierarchy) 15 Mbps 45 Mbpsunstructured just cells (busyidle)

5 DataLink Layer 5-94

IP-Over-ATMIP over ATM

Classic IP only3 ldquonetworksrdquo (e g

IP over ATMreplace ldquonetworkrdquo (e g LAN segment) 3 networks (eg

LAN segments)MAC (802 3) and IP

(eg LAN segment) with ATM networkATM addresses IP MAC (8023) and IP

addressesATM addresses IP addresses

ATMATMnetwork

Ethernet Ethernet

5 DataLink Layer 5-95

EthernetLANs

EthernetLANs

IP-Over-ATMapp

transportapp

AALEthIP

transportIP

AALATM

apptransport

IPEth ATM

phyphyEth

ATM

ATMphy

ATMphy

Ethphy

ATMphy

p y

5 DataLink Layer 5-96

Datagram Journey in IP-over-ATM NetworkDatagram Journey in IP-over-ATM Network

at Source HostIP layer maps between IP ATM dest address (using ARP)passes datagram to AAL5AAL5 encapsulates data segments cells passes to ATM layer

ATM network moves cell along VC to destinationat Destination Host

AAL5 reassembles cells into original datagramif CRC OK datagram is passed to IP

5 DataLink Layer 5-97

IP-Over-ATMIP-Over-ATM

IssuesIP datagrams into

ATMnetwork

ATM AAL5 PDUsfrom IP addresses

TM ddto ATM addressesjust like IP dd ss s t addresses to

8023 MAC addresses

EthernetLANs

addresses

5 DataLink Layer 5-98

Multiprotocol label switching (MPLS)Multiprotocol label switching (MPLS)

i i i l l d IP f di b i fi d initial goal speed up IP forwarding by using fixed length label (instead of IP address) to do forwarding forwarding

borrowing ideas from Virtual Circuit (VC) approachbut IP datagram still keeps IP addressg p

PPP or EthernetPPP or Ethernet header

IP header remainder of link-layer frameMPLS header

label Exp S TTL

5 DataLink Layer 5-9920 3 1 5

MPLS capable routersMPLS capable routers

k l b l it h d taka label-switched routerforwards packets to outgoing interface based

l l b l l (d rsquot i t IP dd )only on label value (donrsquot inspect IP address)MPLS forwarding table distinct from IP forwarding tablestables

signaling protocol needed to set up forwardingRSVP TERSVP-TEforwarding possible along paths that IP alone would not allow (eg source-specific routing) not allow (eg source spec f c rout ng) use MPLS for traffic engineering

must co-exist with IP-only routers5 DataLink Layer 5-100

must co exist with IP only routers

MPLS forwarding tablesi t t

MPLS forwarding tables

in out outlabel label dest interface

in out outlabel label dest interface

10 A 012 D 0 label label dest interface

10 6 A 112 9 D 0

12 D 08 A 1

D1

00R6

R3R4R5

0

1

A

1

0

R1R2A

in out outlabel label dest interface

6 A 0in out out

label label dest interface

5 DataLink Layer 5-101

6 - A 0label label dest interface

8 6 A 0

Chapter 5 SummaryChapter 5 Summaryprinciples behind data link layer servicespr nc p s h n ata n ay r s r c s

error detection correctionsharing a broadcast channel multiple accesslink layer addressing

instantiation and implementation of various link l t h l ilayer technologies

Ethernetit h d LANSswitched LANS

PPPi li d k li k l TM MPLvirtualized networks as a link layer ATM MPLS

5 DataLink Layer 5-102

Chapter 5 letrsquos take a breathChapter 5 let s take a breathjourney down protocol stack completejourney down protocol stack complete(except PHY)solid understanding of networking principles solid understanding of networking principles practice

ld t h b t l t f i t ti hellip could stop here hellip but lots of interesting topics

lwirelessmultimediasecurity network management

5 DataLink Layer 5-103

Page 4: Link Layer Link Layer: Introduction

Internet checksum (review)Internet checksum (review)

Goal detect ldquoerrorsrdquo (e g flipped bits) in transmitted Goal detect errors (eg flipped bits) in transmitted packet (note used at transport layer only)

Sendertreat segment contents

Receivercompute checksum of received segmentas sequence of 16-bit

integerschecksum addition (1rsquos

received segmentcheck if computed checksum equals checksum field valuechecksum addition (1 s

complement sum) of segment contentss d ts h ks

NO - error detectedYES - no error detected But maybe errors sender puts checksum

value into UDP checksum field

But maybe errors nonetheless

5 DataLink Layer 5-13

Checksumming Cyclic Redundancy CheckChecksumming Cyclic Redundancy Checkview data bits D as a binary numberychoose r+1 bit pattern (generator) Ggoal choose r CRC bits R such that

D R tl di i ibl b G ( d l 2) ltDRgt exactly divisible by G (modulo 2) receiver knows G divides ltDRgt by G If non-zero remainder error detectedcan detect all burst errors less than r+1 bits

widely used in practice (Ethernet 80211 WiFi ATM)

5 DataLink Layer 5-14

CRC ExampleCRC ExampleWant

D2r XOR R = nGequivalentlyq y

D2r = nG XOR R equivalentlyq y

if we divide D2r by G want remainder R

R = remainder[ ]D2r

G

5 DataLink Layer 5-15

Link LayerLink Layer

5 1 I d i d 5 6 Li k l i h51 Introduction and services5 2 E d t ti

56 Link-layer switches57 PPP

52 Error detection and correction 5 3Multiple access

58 Link Virtualization ATM MPLS

53Multiple access protocols5 4 Link-layer 54 Link layer Addressing55 Ethernet55 Ethernet

5 DataLink Layer 5-16

Multiple Access Links and ProtocolspTwo types of ldquolinksrdquo

i t t i tpoint-to-pointPPP for dial-up accesspoint-to-point link between Ethernet switch and hostpoint-to-point link between Ethernet switch and host

broadcast (shared wire or medium)old-fashioned Ethernetold fashioned Ethernetupstream HFC80211 wireless LAN

sh d i ( h d RFhumans at a

kt il p t

5 DataLink Layer 5-17

shared wire (eg cabled Ethernet)

shared RF(eg 80211 WiFi)

shared RF(satellite)

cocktail party (shared air acoustical)

Multiple Access protocolsMultiple Access protocolssingle shared broadcast channel single shared broadcast channel two or more simultaneous transmissions by nodes interference

collision if node receives two or more signals at the same timemultiple access protocol

distributed algorithm that determines how nodes share channel ie determine when node can transmitcommunication about channel sharing must use channel itself

f b d h l f di ino out-of-band channel for coordination

5 DataLink Layer 5-18

Ideal Multiple Access ProtocolIdeal Multiple Access Protocol

B d h l f R bBroadcast channel of rate R bps1 when one node wants to transmit it can send at

t Rrate R2 when M nodes want to transmit each can send at

average rate RMaverage rate RM3 fully decentralized

no special node to coordinate transmissionsno special node to coordinate transmissionsno synchronization of clocks slots

4 simple4 simple

5 DataLink Layer 5-19

MAC Protocols a taxonomyMAC Protocols a taxonomyThree broad classes

Channel Partitioningdivide channel into smaller ldquopiecesrdquo (time slots f d )frequency code)allocate piece to node for exclusive use

Random AccessRandom Accesschannel not divided allow collisionsldquorecoverrdquo from collisions

ldquoTaking turnsrdquonodes take turns but nodes with more to send can take longer turns

5 DataLink Layer 5-20

Channel Partitioning MAC protocols TDMAChannel Partitioning MAC protocols TDMA

TDMA time division multiple accessTDMA time division multiple accessaccess to channel in rounds each station gets fixed length slot (length = pkt each station gets fixed length slot (length = pkt trans time) in each round unused slots go idle unused slots go idle example 6-station LAN 134 have pkt slots 256 idle idle

6-slotframe

1 3 4 1 3 4

5 DataLink Layer 5-21

Channel Partitioning MAC protocols FDMAChannel Partitioning MAC protocols FDMA

FDMA frequency division multiple accessFDMA frequency division multiple accesschannel spectrum divided into frequency bandseach station assigned fixed frequency bandeach station assigned fixed frequency bandunused transmission time in frequency bands go idle example 6-station LAN 1 3 4 have pkt frequency example 6-station LAN 134 have pkt frequency bands 256 idle

cy b

ands

freq

uenc

FDM cable

5 DataLink Layer 5-22

f

Random Access ProtocolsRandom Access Protocols

Wh d h k dWhen node has packet to sendtransmit at full channel data rate Rno a priori coordination among nodesno a priori coordination among nodes

two or more transmitting nodes づ ldquocollisionrdquorandom access MAC protocol specifies random access MAC protocol specifies

how to detect collisionshow to recover from collisions (eg via delayed how to recover from collisions (eg via delayed retransmissions)

Examples of random access MAC protocolsslotted ALOHAALOHACSMA CSMACD CSMACA

5 DataLink Layer 5-23

CSMA CSMACD CSMACA

Slotted ALOHASlotted ALOHA

A ti O tiAssumptionsall frames same sizetime divided into equal

Operationwhen node obtains fresh frame transmits in next time divided into equal

size slots (time to transmit 1 frame)

frame transmits in next slot

if no collision node can nodes start to transmit only slot beginning

d h i d

send new frame in next slotif collision node nodes are synchronized

if 2 or more nodes transmit in slot all

if collision node retransmits frame in each subsequent slot transmit in slot all

nodes detect collisionq

with prob p until success

5 DataLink Layer 5-24

Slotted ALOHA

P s ConsProssingle active node can continuously transmit

Conscollisions wasting slotsidle slotscontinuously transmit

at full rate of channelhighly decentralized

idle slotsnodes may be able to detect collision in less highly decentralized

only slots in nodes need to be in sync

than time to transmit packetclock synchronization

5 DataLink Layer 5-25

ysimple

clock synchronization

Slotted Aloha efficiencyymax efficiency find p that maximizes

Efficiency long-run fraction of successful slots p that maximizes

Np(1-p)N-1

for many nodes take

fraction of successful slots (many nodes all with many frames to send)

suppose N nodes with

for many nodes take limit of Np(1-p)N-1

as N goes to infinity

frames to send)

many frames to send each transmits in slot with probability p

g ygives

Max efficiency = 1e = 37with probability pprob that given node has success in a slot =

At best channelused for useful has success in a slot =

p(1-p)N-1

prob that any node has

used for useful transmissions 37of time

5 DataLink Layer 5-26

p ya success = Np(1-p)N-1

Pure (unslotted) ALOHAPure (unslotted) ALOHAunslotted Aloha simpler no synchronizationunslotted Aloha simpler no synchronizationwhen frame first arrives

transmit immediately transmit immediately collision probability increases

frame sent at t0 collides with other frames sent in [t0-1t0+1]0 [ 0 0 ]

5 DataLink Layer 5-27

Pure Aloha efficiencyPure Aloha efficiencyP(success by given node) = P(node transmits) P(success by g ven node) P(node transm ts)

P(no other node transmits in [p0-1p0] P(no other node transmits in [p0-1 p0] P(no other node transmits in [p0 1p0]

= p (1-p)N-1 (1-p)N-1

= p (1-p)2(N-1)= p (1 p)

hellip choosing optimum p and then letting n -gt infty

= 1(2e) = 18

even worse than slotted Aloha

5 DataLink Layer 5-28

CSMA (Carrier Sense Multiple Access)CSMA (Carrier Sense Multiple Access)

CSMA listen before transmitIf channel sensed idle transmit entire framef chann s ns transm t nt r fram

If channel sensed busy defer transmission

human analogy donrsquot interrupt others

5 DataLink Layer 5-29

CSMA collisionsCSMA collisionsc llisi ns c n still ccu

spatial layout of nodes

collisions can still occurpropagation delay means two nodes may not heareach otherrsquos transmission

collisionentire packet transmission time wasted

tnoterole of distance amp propagation delay in determining collision y gprobability

5 DataLink Layer 5-30

CSMACD (Collision Detection)CSMACD (Collision Detection)CSMACD carrier sensing deferral as in CSMACSMACD carrier sensing deferral as in CSMA

collisions detected within short timecolliding transmissions aborted reducing channel colliding transmissions aborted reducing channel wastage

collision detectioncollision detectioneasy in wired LANs measure signal strengths compare transmitted received signalscompare transmitted received signalsdifficult in wireless LANs received signal strength overwhelmed by local transmission strength overwhelmed by local transmission strength

human analogy the polite conversationalist

5 DataLink Layer 5-31

CSMACD collision detectionCSMACD collision detection

5 DataLink Layer 5-32

ldquoTaking Turnsrdquo MAC protocolsTaking Turns MAC protocols

h l i i i M C lchannel partitioning MAC protocolsshare channel efficiently and fairly at high loadinefficient at low load delay in channel access 1N bandwidth allocated even if only 1 active node node

Random access MAC protocolsefficient at low load single node can fully efficient at low load single node can fully utilize channelhigh load collision overheadhigh load collision overhead

ldquotaking turnsrdquo protocolslook for best of both worlds

5 DataLink Layer 5-33

look for best of both worlds

ldquoTaking Turnsrdquo MAC protocolsTaking Turns MAC protocolsPollingPolling

master node ldquoinvitesrdquo slave nodes d tinvites slave nodes to transmit in turntypically used with master

polldata

typically used with ldquodumbrdquo slave devicesconcerns

data

polling overhead latency slavessingle point of failure (master)

5 DataLink Layer 5-34

ldquoTaking Turnsrdquo MAC protocolsTaking Turns MAC protocolsToken passingoken pass ng

control token passed from one node to next

T

sequentiallytoken message (nothing

concernstoken overhead

to send)T

latencysingle point of failure (token)(token)

5 DataLink Layer 5-35

data

Summary of MAC protocolsSummary of MAC protocols

h l i i i b i f dchannel partitioning by time frequency or codeTime Division Frequency Divisiond ss (d i ) random access (dynamic) ALOHA S-ALOHA CSMA CSMACDcarrier sensing easy in some technologies (wire) hard in carrier sensing easy in some technologies (wire) hard in others (wireless)CSMACD used in EthernetCSMACA used in 80211

taking turnslli f l i k ipolling from central site token passing

Bluetooth FDDI IBM Token Ring

5 DataLink Layer 5-36

Link LayerLink Layer

5 1 I d i d 5 6 Li k l i h51 Introduction and services5 2 E d t ti

56 Link-layer switches57 PPP

52 Error detection and correction 5 3Multiple access

58 Link Virtualization ATM MPLS

53Multiple access protocols5 4 Link-Layer 54 Link Layer Addressing55 Ethernet55 Ethernet

5 DataLink Layer 5-37

MAC Addresses and ARPMAC Addresses and ARP

32-bit IP address network-layer addressyused to get datagram to destination IP subnet

MAC (or LAN or physical or Ethernet) MAC (or LAN or physical or Ethernet) address

f n ti n t f m f m n int f t n th function get frame from one interface to another physically-connected interface (same network)48 bit MAC address (for most LANs)48 bit MAC address (for most LANs)

bull burned in NIC ROM also sometimes software settable

5 DataLink Layer 5-38

LAN Addresses and ARPLAN Addresses and ARPEach adapter on LAN has unique LAN address

Broadcast address =FF-FF-FF-FF-FF-FF

1A-2F-BB-76-09-AD

= adapterLAN

(wired ori l )

58-23-D7-FA-20-B071-65-F7-2B-08-53

wireless)

0C-C4-11-6F-E3-98

5 DataLink Layer 5-39

LAN Address (more)LAN Address (more)

M C dd ll i d i i d b IEEEMAC address allocation administered by IEEEmanufacturer buys portion of MAC address space (t ss i ss)(to assure uniqueness)analogy

( ) MAC dd lik S i l S it N b(a) MAC address like Social Security Number(b) IP address like postal address

MAC fl dd づ bili MAC flat address づ portability can move LAN card from one LAN to another

IP hi chic l dd ss NOT p t blIP hierarchical address NOT portableaddress depends on IP subnet to which node is attached

5 DataLink Layer 5-40

ARP Address Resolution ProtocolAR Address Resolut on rotocol

Each IP node (host Question how to determine Each IP node (host router) on LAN has ARP table

Question how to determineMAC address of Bknowing Brsquos IP address

ARP table IPMAC address mappings for

knowing B s IP address

137196778 pp gsome LAN nodes

lt IP address MAC address TTLgtTTL (Tim T Li ) tim

1A-2F-BB-76-09-AD

137196723 137196714

TTL (Time To Live) time after which address mapping will be forgotten ( ll 20 )58-23-D7-FA-20-B071-65-F7-2B-08-53

LAN

(typically 20 min)58 23 D7 FA 20 B0

0C-C4-11-6F-E3-98137 196 7 88

5 DataLink Layer 5-41

137196788

ARP protocol Same LAN (network)

A wants to send datagram t B d Brsquo MAC dd A h ( ) IP tto B and Brsquos MAC address not in Arsquos ARP tableA broadcasts ARP query

A caches (saves) IP-to-MAC address pair in its ARP table until information q y

packet containing Bs IP address

dest MAC address = FF

becomes old (times out) soft state information that times out (goes dest MAC address = FF-

FF-FF-FF-FF-FFall machines on LAN

that times out (goes away) unless refreshed

ARP is ldquoplug-and-playrdquoreceive ARP query

B receives ARP packet replies to A with its (Bs)

p g p ynodes create their ARP tables without intervention from net replies to A with its (B s)

MAC addressframe sent to Arsquos MAC address (unicast)

intervention from net administrator

5 DataLink Layer 5-42

address (unicast)

Addressing routing to another LANwalkthrough send datagram from A to B via R

ssume A kn s Brsquos IP ddress

A74-29-9C-E8-FF-55 88-B2-2F-54-1A-0F

assume A knows B s IP address

1A-23-F9-CD-06-9BE6-E9-00-17-BB-4B

111111111111

A222222222221

R

222222222220111111111110

111111111112B

222222222222

CC-49-DE-D0-AB-7D

49-BD-D2-C7-56-2A

t ARP t bl s i t R f h IP two ARP tables in router R one for each IP network (LAN)

5 DataLink Layer 5-43

A creates IP datagram with source A destination B A uses ARP to get Rrsquos MAC address for 111 111 111 110A uses ARP to get R s MAC address for 111111111110A creates link-layer frame with Rs MAC address as dest frame contains A-to-B IP datagram This is a really importantArsquos NIC sends frame Rrsquos NIC receives frame R r m v s IP d t r m fr m Eth rn t fr m s s its

This is a really importantexample ndash make sure youunderstand

R removes IP datagram from Ethernet frame sees its destined to BR uses ARP to get Brsquos MAC address gR creates frame containing A-to-B IP datagram sends to B

A74-29-9C-E8-FF-55 88-B2-2F-54-1A-0F

1A-23-F9-CD-06-9BE6-E9-00-17-BB-4B

111111111111

A222222222221

R

222222222220111111111110

111111111112

B222222222222

5 DataLink Layer 5-44

RCC-49-DE-D0-AB-7D

49-BD-D2-C7-56-2A

Link LayerLink Layer

5 1 I d i d 5 6 Li k l i h51 Introduction and services5 2 E d t ti

56 Link-layer switches57 PPP

52 Error detection and correction 5 3Multiple access

58 Link Virtualization ATM and MPLS

53Multiple access protocols5 4 Link-Layer 54 Link Layer Addressing55 Ethernet55 Ethernet

5 DataLink Layer 5-45

Ethernetldquodominantrdquo wired LAN technology

cheap $20 for NICfirst widely used LAN technologyy gysimpler cheaper than token LANs and ATMkept up with speed race 10 Mbps ndash 10 Gbps p p p p p

Metcalfersquos Ethernetsketch

5 DataLink Layer 5-46

Star topologyp gybus topology popular through mid 90s

all nodes in same collision domain (can collide with each all nodes in same collision domain (can collide with each other)

today star topology prevails h active switch in center

each ldquospokerdquo runs a (separate) Ethernet protocol (nodes do not collide with each other)

switch

b l bl

5 DataLink Layer 5-47

bus coaxial cable star

Ethernet Frame StructuremSending adapter encapsulates IP datagram (or other g p p g (

network layer protocol packet) in Ethernet frame

Preamble7 bytes with pattern 10101010 followed by one y p ybyte with pattern 10101011used to synchronize receiver sender clock rates

5 DataLink Layer 5-48

Ethernet Frame Structure (more)Ethernet Frame Structure (more)Addresses 6 bytesy

if adapter receives frame with matching destination address or with broadcast address (eg ARP packet) it passes data in frame to network layer protocolpasses data in frame to network layer protocolotherwise adapter discards frame

Type indicates higher layer protocol (mostly IP Type indicates higher layer protocol (mostly IP but others possible eg Novell IPX AppleTalk)CRC checked at receiver if error is detected frame is dropped

5 DataLink Layer 5-49

Ethernet Unreliable connectionlessEthernet Unreliable connectionless

i l N h d h ki b di d connectionless No handshaking between sending and receiving NICs

li bl i i NIC d s rsquot s d ks ks unreliable receiving NIC doesnrsquot send acks or nacks to sending NIC

stream of datagrams passed to network layer can have gaps stream of datagrams passed to network layer can have gaps (missing datagrams)gaps will be filled if app is using TCPotherwise app will see gaps

Ethernetrsquos MAC protocol unslotted CSMACD

5 DataLink Layer 5-50

Ethernet CSMACD algorithmg1 NIC receives datagram 4 If NIC detects another

from network layer creates frame

2 f N C h l dl

transmission while transmitting aborts and sends jam signal2 If NIC senses channel idle

starts frame transmission If NIC senses channel

sends jam signal5 After aborting NIC

enters exponential If NIC senses channel busy waits until channel idle then transmits

enters exponential backoff after mth collision NIC chooses K at

3 If NIC transmits entire frame without detecting

random from 012hellip2m-1 NIC waits K 512 bi i

ganother transmission NIC is done with frame

K512 bit times returns to Step 2

5 DataLink Layer 5-51

Ethernetrsquos CSMACD (more)Ethernet s CSMACD (more)Jam Signal make sure all Exponential Backoffg

other transmitters are aware of collision 48 bits

Bit time 1 microsec for 10

pGoal adapt retransmission attempts to estimated current loadBit time 1 microsec for 10

Mbps Ethernet for K=1023 wait time is about 50 msec

current loadheavy load random wait will be longer

about 50 msec first collision choose K from 01 delay is K 512 bit transmission timestransm ss on t m safter second collision choose K from 0123hellipft t lli i h K

Seeinteract with Javaapplet on AWL Web site

after ten collisions choose K from 01234hellip1023

pphighly recommended

5 DataLink Layer 5-52

CSMACD efficiencyCSMACD efficiency

T d l b 2 d i L NTprop = max prop delay between 2 nodes in LANttrans = time to transmit max-size frame

efficiency 1

=

efficiency goes to 1

transprop ttff y

51+

efficiency goes to 1 as tprop goes to 0as ttrans goes to infinitytrans g y

better performance than ALOHA and simple cheap decentralized

5 DataLink Layer 5-53

p

8023 Ethernet Standards Link amp Physical Layersy y

many different Ethernet standardsycommon MAC protocol and frame formatdifferent speeds 2 Mbps 10 Mbps 100 Mbps 1Gb 10G b1Gbps 10G bpsdifferent physical layer media fiber cable

MAC protocolapplicationtransportnetwork

li k

MAC protocoland frame format

100BASE-TX 100BASE-FX100BASE-T2link

physical100BASE-T4 100BASE-SX 100BASE-BX

5 DataLink Layer 5-54

fiber physical layercopper (twisterpair) physical layer

Manchester encodingManchester encoding

used in 10BaseTeach bit has a transitionallows clocks in sending and receiving nodes to g gsynchronize to each other

no need for a centralized global clock among nodes

5 DataLink Layer 5-55

Hey this is physical-layer stuff

Link LayerLink Layer

5 1 I d i d 5 6 Li k l i h51 Introduction and services5 2 E d t ti

56 Link-layer switches57 PPP

52 Error detection and correction 5 3 Multiple access

58 Link Virtualization ATM MPLS

53 Multiple access protocols5 4 Link-layer 54 Link layer Addressing55 Ethernet55 Ethernet

5 DataLink Layer 5-56

Hubshellip physical-layer (ldquodumbrdquo) repeaters

bits coming in one link go out all other links at bits coming in one link go out all other links at same rateall nodes connected to hub can collide with one anotherno frame bufferinggno CSMACD at hub host NICs detect collisions

twisted pair

hub

5 DataLink Layer 5-57

Switchlink-layer device smarter than hubs take yactive role

store forward Ethernet framesexamine incoming framersquos MAC address selectively forward frame to one-or-more

l k h f f d d outgoing links when frame is to be forwarded on segment uses CSMACD to access segment

transparenthosts are unaware of presence of switches

plug-and-play self-learningswitches do not need to be configured

5 DataLink Layer 5-58

g

Switch allows multiple simultaneous ptransmissions

A

hosts have dedicated direct connection to switch

BCrsquo

switches buffer packetsEthernet protocol used on each incoming link but no

1 2 345

6

each incoming link but no collisions full duplex

each link is its own collision C

45

domainswitching A-to-Arsquo and B-to-Brsquo simultaneously

ArsquoBrsquo

to-B simultaneously without collisions

not possible with dumb hub

switch with six interfaces(123456)

5 DataLink Layer 5-59

Switch TableSwitch Table

Q h d s s it h k th t A

Q how does switch know that Arsquo reachable via interface 4 Brsquo reachable via interface 5

BCrsquo

B reachable via interface 5A each switch has a switch table each entry

1 2 345

6ta ach ntry

(MAC address of host interface to reach host time stamp) C

45

looks like a routing tableQ how are entries created

i t i d i it h t bl

ArsquoBrsquo

maintained in switch table something like a routing protocol

switch with six interfaces(123456)

5 DataLink Layer 5-60

protocol

Switch self-learning Source ASwitch self-learning

s it h l s hi h h sts A A Arsquo

Dest Arsquo

switch learns which hosts can be reached through which interfaces

BCrsquo

which interfaceswhen frame received switch ldquolearnsrdquo location of

d i i LAN

1 2 345

6

sender incoming LAN segmentrecords senderlocation

C

45

pair in switch tableArsquoBrsquo

MAC addr interface TTLMAC addr interface TTLSwitch table

(initially empty)A 1 60

5 DataLink Layer 5-61

Switch frame filteringforwardingWhen frame received

1 record link associated with sending host2 ind x s itch t bl usin MAC d st dd ss2 index switch table using MAC dest address3 if entry found for destination

then then if dest on segment from which frame arrived

then drop the framethen drop the frameelse forward the frame on interface indicated

else flood forward on all but the interface

on which the frame arrived5 DataLink Layer 5-62

on which the frame arrived

Self-learning Source ASelf learning forwarding

lA A Arsquo

Dest Arsquo

exampleBCrsquo

frame destinati n 1 2 345

6A ArsquoA ArsquoA ArsquoA ArsquoA Arsquoframe destination unknown floodd ti ti A

C

45

Arsquo A

destination A location knownselective send

ArsquoBrsquo

MAC addr interface TTL

selective send

MAC addr interface TTLSwitch table

(initially empty)A 1 60Arsquo 4 60

5 DataLink Layer 5-63

Interconnecting switchesg

switches can be connected togetherg

S

S4

A

B

S1

C DF

S2S3

IB C D

E HI

G

Q sending from A to G - how does S1 know to forward frame destined to F via S and S forward frame destined to F via S4 and S3A self learning (works exactly the same as in single-switch case)

5 DataLink Layer 5-64

single switch case)

Self-learning multi-switch exampleSuppose C sends frame to I I responds to C

S

S412

A

B

S1

C DF

S2S3

I

2

B C D

E HI

G

Q show switch tables and packet forwarding in S1 S2 S3 S4

5 DataLink Layer 5-65

Institutional networkInstitutional network

to externalnetwork

mail server

networkrouter web server

IP subnet

5 DataLink Layer 5-66

Switches vs RoutersSwitches vs Routersboth store-and-forward devices

routers network layer devices (examine network layer headers)switches are link layer devicesswitches are link layer devices

routers maintain routing tables implement routing algorithmsgswitches maintain switch tables implement filtering learning algorithmsf g g g

5 DataLink Layer 5-67

Link LayerLink Layer

5 1 I d i d 5 6 H b d i h51 Introduction and services5 2 E d t ti

56 Hubs and switches57 PPP

52 Error detection and correction 5 3Multiple access

58 Link Virtualization ATM

53Multiple access protocols5 4 Link-Layer 54 Link Layer Addressing55 Ethernet55 Ethernet

5 DataLink Layer 5-68

Point to Point Data Link ControlPoint to Point Data Link Controlone sender one receiver one link easier than one sender one receiver one link easier than broadcast link

no Media Access Controlno Media Access Controlno need for explicit MAC addressinge g dialup link ISDN lineeg dialup link ISDN line

popular point-to-point DLC protocolsPPP (point-to-point protocol)PPP (point to point protocol)HDLC High level data link control (Data link used to be considered ldquohigh layerrdquo in protocol used to be considered high layer in protocol stack

5 DataLink Layer 5-69

PPP Design Requirements [RFC 1557]

packet framing encapsulation of network-layer p f m g p u f w ydatagram in data link frame

carry network layer data of any network layer y y y yprotocol (not just IP) at same timeability to demultiplex upwards

bit transparency must carry any bit pattern in the data fielderror detection (no correction)connection liveness detect signal link failure to

k lnetwork layernetwork layer address negotiation endpoint can l fi h th rsquos t k dd ss

5 DataLink Layer 5-70

learnconfigure each otherrsquos network address

PPP non-requirementsPPP non requirements

ti no error correctionrecoveryno flow control

f d d l K out of order delivery OK no need to support multipoint links (eg polling)

E l l Error recovery flow control data re-ordering all relegated to higher layers

5 DataLink Layer 5-71

PPP Data FramePPP Data Frame

Fl d li i (f i )Flag delimiter (framing)Address does nothing (only one option)Control does nothing in the future possible multiple control fieldsP t l l t l t hi h f Protocol upper layer protocol to which frame delivered (eg PPP-LCP IP IPCP etc)

5 DataLink Layer 5-72

PPP Data FramePPP Data Frame

i f l d b i i dinfo upper layer data being carriedcheck cyclic redundancy check for error d t tidetection

5 DataLink Layer 5-73

Byte StuffingByte Stuffingldquodata transparencyrdquo requirement data field must

be allowed to include flag pattern lt01111110gtQ is received lt01111110gt data or flag

Sender adds (ldquostuffsrdquo) extra lt 01111110gt byte after each lt 01111110gt data byteReceiver

two 01111110 bytes in a row discard first byte d continue data reception

single 01111110 flag byte

5 DataLink Layer 5-74

Byte StuffingByte Stuffing

flag bytepatterni din datato send

flag byte pattern plusstuffed byte in transmitted data

5 DataLink Layer 5-75

transmitted data

PPP Data Control ProtocolPPP Data Control ProtocolBefore exchanging network-g g

layer data data link peers mustconfigure PPP link (max frame length authentication)authentication)learnconfigure networklayer informationlayer information

for IP carry IP Control Protocol (IPCP) msgs Protocol (IPCP) msgs (protocol field 8021) to configurelearn IP

5 DataLink Layer 5-76

gaddress

Link LayerLink Layer

5 1 I d i d 5 6 H b d i h51 Introduction and services5 2 E d t ti

56 Hubs and switches57 PPP

52 Error detection and correction 5 3Multiple access

58 Link Virtualization ATM and MPLS

53Multiple access protocols5 4 Link-Layer 54 Link Layer Addressing55 Ethernet55 Ethernet

5 DataLink Layer 5-77

Virtualization of networksVirtualization of networks

Vi li i f f l b i i Virtualization of resources powerful abstraction in systems engineering

ti l s i t l i t l computing examples virtual memory virtual devices

Virtual machines e g javaVirtual machines eg javaIBM VM os from 1960rsquos70rsquos

layering of abstractions donrsquot sweat the details of layering of abstractions don t sweat the details of the lower layer only deal with lower layers abstractlyabstractly

5 DataLink Layer 5-78

The Internet virtualizing networksThe Internet virtualizing networks

1974 multiple unconnected differing in1974 multiple unconnected nets

ARPAnet

hellip differing inaddressing conventionspacket formats

data-over-cable networkspacket satellite network (Aloha)

k d k

perror recoveryrouting

packet radio network

ARPAnet satellite net

5 DataLink Layer 5-79

ARPAnet satell te netA Protocol for Packet Network Intercommunication V Cerf R Kahn IEEE Transactions on CommunicationsMay 1974 pp 637-648

The Internet virtualizing networksThe Internet virtualizing networksInternetwork layer (IP)

addressing internetwork Gateway

ldquoembed internetwork packets in l l k f

addressing internetwork appears as single uniform entity despite underlying local network heterogeneitynetwork of networks

plocal packet format or extract themrdquoroute (at internetwork level) to next gatewaynetwork of networks next gateway

gateway

ARPAnet satellite net

5 DataLink Layer 5-80

ARPAnet satell te net

Cerf amp Kahnrsquos Internetwork ArchitectureCerf amp Kahn s Internetwork ArchitectureWhat is virtualized

two layers of addressing internetwork and local networknew layer (IP) makes everything homogeneous at internetwork layerunderlying local network technology

cablesatellite56K telephone modemtoday ATM MPLS

hellip ldquoinvisiblerdquo at internetwork layer Looks like a link

5 DataLink Layer 5-81

ylayer technology to IP

ATM and MPLSATM and MPLS

P k h ATM MPLS separate networks in their own right

different service models addressing routing from Internet

viewed by Internet as logical link connecting IP routers

just like dialup link is really part of separate network (telephone network)

ATM MPLS of technical interest in their own right

5 DataLink Layer 5-82

Asynchronous Transfer Mode ATMAsynchronous Transfer Mode ATM1990rsquos00 standard for high-speed (155Mbps to g p ( p622 Mbps and higher) Broadband Integrated Service Digital Network architectureGoal integrated end-end transport of carry voice video data

i i i Q i f i id meeting timingQoS requirements of voice video (versus Internet best-effort model)ldquo t ti rdquo t l h t h i l ts i ldquonext generationrdquo telephony technical roots in telephone worldpacket switching (fixed length packets called packet-switching (fixed length packets called ldquocellsrdquo) using virtual circuits

5 DataLink Layer 5-83

ATM architecture ATM architecture AAL AAL

ATM ATMATM ATM

physical physicalphysical physical

d d ti h it h

adaptation layer only at edge of ATM network

end system end systemswitch switch

data segmentationreassemblyroughly analagous to Internet transport layer

ATM layer ldquonetworkrdquo layercell switching routing

5 DataLink Layer 5-84

physical layer

ATM network or link layerATM network or link layerVision end-to-end

t t ldquoATM f transport ldquoATM from desktop to desktoprdquo

ATM is a network ATM

IPnetwork

ATM is a network technology

Reality used to connect

ATMnetwork

Reality used to connect IP backbone routers

ldquoIP over ATMrdquoIP over ATMATM as switched link layer y connecting IP routers

5 DataLink Layer 5-85

ATM Adaptation Layer (AAL)ATM Adaptation Layer (AAL)

TM d i L ( L) ldquo d rdquo ATM Adaptation Layer (AAL) ldquoadaptsrdquo upper layers (IP or native ATM applications) to ATM layer belowlayer belowAAL present only in end systems not in switchesAAL layer segment (headertrailer fields data) AAL layer segment (headertrailer fields data) fragmented across multiple ATM cells

analogy TCP segment in many IP packetsanalogy TCP segment in many IP packets

AAL AAL

physical

ATM

physical

ATM

physical

ATM

physical

ATM

5 DataLink Layer 5-86

physical physicalp y p y

end system end systemswitch switch

ATM Adaptation Layer (AAL) [more]

Different versions of AAL layers depending on ATM y p gservice classAAL1 for CBR (Constant Bit Rate) services eg circuit emulationAAL2 for VBR (Variable Bit Rate) services eg MPEG videoAAL5 for data (eg IP datagrams)

User data

AAL PDU

ATM cell

5 DataLink Layer 5-87

ATM LayeryService transport cells across ATM network

analogous to IP network layeranalogous to IP network layervery different services than IP network layer

Guarantees NetworkArchitecture

ServiceModel Bandwidth Loss Order Timing

Congestionfeedback

Guarantees

Internet

ATM

best effort

CBR

none

constant

no

yes

no

yes

no

yes

no (inferredvia loss)noATM

ATM

CBR

VBR

constantrateguaranteedrate

yes

yes

yes

yes

yes

yes

nocongestionnocongestion

ATM

ATM

ABR

UBR

rateguaranteed minimum

no yes nocongestionyes

5 DataLink Layer 5-88

ATM UBR none no yes no no

ATM Layer Virtual CircuitsATM Layer Virtual CircuitsVC transport cells carried on VC from source to destp

call setup teardown for each call before data can floweach packet carries VC identifier (not destination ID)

it h d t th i t i ldquo t t rdquo f h every switch on source-dest path maintain ldquostaterdquo for each passing connectionlinkswitch resources (bandwidth buffers) may be allocated to ( ff ) m yVC to get circuit-like perf

Permanent VCs (PVCs)long lasting connectionstypically ldquopermanentrdquo route between to IP routers

Switched VCs (SVC)dynamically set up on per-call basis

5 DataLink Layer 5-89

ATM VCsATM VCsAdvantages of ATM VC approachAdvantages of ATM VC approach

QoS performance guarantee for connection mapped to VC (bandwidth delay delay jitter)mapped to VC (bandwidth delay delay jitter)

Drawbacks of ATM VC approachInefficient support of datagram trafficInefficient support of datagram trafficone PVC between each sourcedest pair) does not scale (N2 connections needed) not scale (N 2 connections needed) SVC introduces call setup latency processing overhead for short lived connectionsoverhead for short lived connections

5 DataLink Layer 5-90

ATM Layer ATM cellATM Layer ATM cell5-byte ATM cell headery48-byte payload

Why small payload -gt short cell-creation delay W y m p y yfor digitized voicehalfway between 32 and 64 (compromise)y p

Cell headerCell header

Cell format

5 DataLink Layer 5-91

ATM cell headerATM cell headerVCI virtual channel IDVCI virtual channel ID

will change from link to link thru netPT P l d t p ( RM ll s s d t ll) PT Payload type (eg RM cell versus data cell) CLP Cell Loss Priority bit

CLP 1 i li l i it ll b CLP = 1 implies low priority cell can be discarded if congestion

HEC Header Error ChecksumHEC Header Error Checksumcyclic redundancy check

5 DataLink Layer 5-92

ATM Physical Layer (more)ATM Physical Layer (more)

T i ( bl ) f h i l lTwo pieces (sublayers) of physical layerTransmission Convergence Sublayer (TCS) adapts ATM l b t PMD s bl b lATM layer above to PMD sublayer belowPhysical Medium Dependent depends on physical medium being usedmedium being used

TCS FunctionsTCS FunctionsHeader checksum generation 8 bits CRC C ll d lin ti nCell delineationWith ldquounstructuredrdquo PMD sublayer transmission of idle cells when no data cells to send

5 DataLink Layer 5-93

of idle cells when no data cells to send

ATM Physical LayerATM Physical Layer

Ph l d D d (P D) blPhysical Medium Dependent (PMD) sublayerSONETSDH transmission frame structure (like a

b ) container carrying bits) bit synchronization bandwidth partitions (TDM) several speeds OC3 = 15552 Mbps OC12 = 62208 Mb OC48 2 45 Gb OC192 9 6 GbMbps OC48 = 245 Gbps OC192 = 96 Gbps

TIT3 transmission frame structure (old telephone hierarchy) 1 5 Mbps 45 Mbpstelephone hierarchy) 15 Mbps 45 Mbpsunstructured just cells (busyidle)

5 DataLink Layer 5-94

IP-Over-ATMIP over ATM

Classic IP only3 ldquonetworksrdquo (e g

IP over ATMreplace ldquonetworkrdquo (e g LAN segment) 3 networks (eg

LAN segments)MAC (802 3) and IP

(eg LAN segment) with ATM networkATM addresses IP MAC (8023) and IP

addressesATM addresses IP addresses

ATMATMnetwork

Ethernet Ethernet

5 DataLink Layer 5-95

EthernetLANs

EthernetLANs

IP-Over-ATMapp

transportapp

AALEthIP

transportIP

AALATM

apptransport

IPEth ATM

phyphyEth

ATM

ATMphy

ATMphy

Ethphy

ATMphy

p y

5 DataLink Layer 5-96

Datagram Journey in IP-over-ATM NetworkDatagram Journey in IP-over-ATM Network

at Source HostIP layer maps between IP ATM dest address (using ARP)passes datagram to AAL5AAL5 encapsulates data segments cells passes to ATM layer

ATM network moves cell along VC to destinationat Destination Host

AAL5 reassembles cells into original datagramif CRC OK datagram is passed to IP

5 DataLink Layer 5-97

IP-Over-ATMIP-Over-ATM

IssuesIP datagrams into

ATMnetwork

ATM AAL5 PDUsfrom IP addresses

TM ddto ATM addressesjust like IP dd ss s t addresses to

8023 MAC addresses

EthernetLANs

addresses

5 DataLink Layer 5-98

Multiprotocol label switching (MPLS)Multiprotocol label switching (MPLS)

i i i l l d IP f di b i fi d initial goal speed up IP forwarding by using fixed length label (instead of IP address) to do forwarding forwarding

borrowing ideas from Virtual Circuit (VC) approachbut IP datagram still keeps IP addressg p

PPP or EthernetPPP or Ethernet header

IP header remainder of link-layer frameMPLS header

label Exp S TTL

5 DataLink Layer 5-9920 3 1 5

MPLS capable routersMPLS capable routers

k l b l it h d taka label-switched routerforwards packets to outgoing interface based

l l b l l (d rsquot i t IP dd )only on label value (donrsquot inspect IP address)MPLS forwarding table distinct from IP forwarding tablestables

signaling protocol needed to set up forwardingRSVP TERSVP-TEforwarding possible along paths that IP alone would not allow (eg source-specific routing) not allow (eg source spec f c rout ng) use MPLS for traffic engineering

must co-exist with IP-only routers5 DataLink Layer 5-100

must co exist with IP only routers

MPLS forwarding tablesi t t

MPLS forwarding tables

in out outlabel label dest interface

in out outlabel label dest interface

10 A 012 D 0 label label dest interface

10 6 A 112 9 D 0

12 D 08 A 1

D1

00R6

R3R4R5

0

1

A

1

0

R1R2A

in out outlabel label dest interface

6 A 0in out out

label label dest interface

5 DataLink Layer 5-101

6 - A 0label label dest interface

8 6 A 0

Chapter 5 SummaryChapter 5 Summaryprinciples behind data link layer servicespr nc p s h n ata n ay r s r c s

error detection correctionsharing a broadcast channel multiple accesslink layer addressing

instantiation and implementation of various link l t h l ilayer technologies

Ethernetit h d LANSswitched LANS

PPPi li d k li k l TM MPLvirtualized networks as a link layer ATM MPLS

5 DataLink Layer 5-102

Chapter 5 letrsquos take a breathChapter 5 let s take a breathjourney down protocol stack completejourney down protocol stack complete(except PHY)solid understanding of networking principles solid understanding of networking principles practice

ld t h b t l t f i t ti hellip could stop here hellip but lots of interesting topics

lwirelessmultimediasecurity network management

5 DataLink Layer 5-103

Page 5: Link Layer Link Layer: Introduction

Multiple Access Links and ProtocolspTwo types of ldquolinksrdquo

i t t i tpoint-to-pointPPP for dial-up accesspoint-to-point link between Ethernet switch and hostpoint-to-point link between Ethernet switch and host

broadcast (shared wire or medium)old-fashioned Ethernetold fashioned Ethernetupstream HFC80211 wireless LAN

sh d i ( h d RFhumans at a

kt il p t

5 DataLink Layer 5-17

shared wire (eg cabled Ethernet)

shared RF(eg 80211 WiFi)

shared RF(satellite)

cocktail party (shared air acoustical)

Multiple Access protocolsMultiple Access protocolssingle shared broadcast channel single shared broadcast channel two or more simultaneous transmissions by nodes interference

collision if node receives two or more signals at the same timemultiple access protocol

distributed algorithm that determines how nodes share channel ie determine when node can transmitcommunication about channel sharing must use channel itself

f b d h l f di ino out-of-band channel for coordination

5 DataLink Layer 5-18

Ideal Multiple Access ProtocolIdeal Multiple Access Protocol

B d h l f R bBroadcast channel of rate R bps1 when one node wants to transmit it can send at

t Rrate R2 when M nodes want to transmit each can send at

average rate RMaverage rate RM3 fully decentralized

no special node to coordinate transmissionsno special node to coordinate transmissionsno synchronization of clocks slots

4 simple4 simple

5 DataLink Layer 5-19

MAC Protocols a taxonomyMAC Protocols a taxonomyThree broad classes

Channel Partitioningdivide channel into smaller ldquopiecesrdquo (time slots f d )frequency code)allocate piece to node for exclusive use

Random AccessRandom Accesschannel not divided allow collisionsldquorecoverrdquo from collisions

ldquoTaking turnsrdquonodes take turns but nodes with more to send can take longer turns

5 DataLink Layer 5-20

Channel Partitioning MAC protocols TDMAChannel Partitioning MAC protocols TDMA

TDMA time division multiple accessTDMA time division multiple accessaccess to channel in rounds each station gets fixed length slot (length = pkt each station gets fixed length slot (length = pkt trans time) in each round unused slots go idle unused slots go idle example 6-station LAN 134 have pkt slots 256 idle idle

6-slotframe

1 3 4 1 3 4

5 DataLink Layer 5-21

Channel Partitioning MAC protocols FDMAChannel Partitioning MAC protocols FDMA

FDMA frequency division multiple accessFDMA frequency division multiple accesschannel spectrum divided into frequency bandseach station assigned fixed frequency bandeach station assigned fixed frequency bandunused transmission time in frequency bands go idle example 6-station LAN 1 3 4 have pkt frequency example 6-station LAN 134 have pkt frequency bands 256 idle

cy b

ands

freq

uenc

FDM cable

5 DataLink Layer 5-22

f

Random Access ProtocolsRandom Access Protocols

Wh d h k dWhen node has packet to sendtransmit at full channel data rate Rno a priori coordination among nodesno a priori coordination among nodes

two or more transmitting nodes づ ldquocollisionrdquorandom access MAC protocol specifies random access MAC protocol specifies

how to detect collisionshow to recover from collisions (eg via delayed how to recover from collisions (eg via delayed retransmissions)

Examples of random access MAC protocolsslotted ALOHAALOHACSMA CSMACD CSMACA

5 DataLink Layer 5-23

CSMA CSMACD CSMACA

Slotted ALOHASlotted ALOHA

A ti O tiAssumptionsall frames same sizetime divided into equal

Operationwhen node obtains fresh frame transmits in next time divided into equal

size slots (time to transmit 1 frame)

frame transmits in next slot

if no collision node can nodes start to transmit only slot beginning

d h i d

send new frame in next slotif collision node nodes are synchronized

if 2 or more nodes transmit in slot all

if collision node retransmits frame in each subsequent slot transmit in slot all

nodes detect collisionq

with prob p until success

5 DataLink Layer 5-24

Slotted ALOHA

P s ConsProssingle active node can continuously transmit

Conscollisions wasting slotsidle slotscontinuously transmit

at full rate of channelhighly decentralized

idle slotsnodes may be able to detect collision in less highly decentralized

only slots in nodes need to be in sync

than time to transmit packetclock synchronization

5 DataLink Layer 5-25

ysimple

clock synchronization

Slotted Aloha efficiencyymax efficiency find p that maximizes

Efficiency long-run fraction of successful slots p that maximizes

Np(1-p)N-1

for many nodes take

fraction of successful slots (many nodes all with many frames to send)

suppose N nodes with

for many nodes take limit of Np(1-p)N-1

as N goes to infinity

frames to send)

many frames to send each transmits in slot with probability p

g ygives

Max efficiency = 1e = 37with probability pprob that given node has success in a slot =

At best channelused for useful has success in a slot =

p(1-p)N-1

prob that any node has

used for useful transmissions 37of time

5 DataLink Layer 5-26

p ya success = Np(1-p)N-1

Pure (unslotted) ALOHAPure (unslotted) ALOHAunslotted Aloha simpler no synchronizationunslotted Aloha simpler no synchronizationwhen frame first arrives

transmit immediately transmit immediately collision probability increases

frame sent at t0 collides with other frames sent in [t0-1t0+1]0 [ 0 0 ]

5 DataLink Layer 5-27

Pure Aloha efficiencyPure Aloha efficiencyP(success by given node) = P(node transmits) P(success by g ven node) P(node transm ts)

P(no other node transmits in [p0-1p0] P(no other node transmits in [p0-1 p0] P(no other node transmits in [p0 1p0]

= p (1-p)N-1 (1-p)N-1

= p (1-p)2(N-1)= p (1 p)

hellip choosing optimum p and then letting n -gt infty

= 1(2e) = 18

even worse than slotted Aloha

5 DataLink Layer 5-28

CSMA (Carrier Sense Multiple Access)CSMA (Carrier Sense Multiple Access)

CSMA listen before transmitIf channel sensed idle transmit entire framef chann s ns transm t nt r fram

If channel sensed busy defer transmission

human analogy donrsquot interrupt others

5 DataLink Layer 5-29

CSMA collisionsCSMA collisionsc llisi ns c n still ccu

spatial layout of nodes

collisions can still occurpropagation delay means two nodes may not heareach otherrsquos transmission

collisionentire packet transmission time wasted

tnoterole of distance amp propagation delay in determining collision y gprobability

5 DataLink Layer 5-30

CSMACD (Collision Detection)CSMACD (Collision Detection)CSMACD carrier sensing deferral as in CSMACSMACD carrier sensing deferral as in CSMA

collisions detected within short timecolliding transmissions aborted reducing channel colliding transmissions aborted reducing channel wastage

collision detectioncollision detectioneasy in wired LANs measure signal strengths compare transmitted received signalscompare transmitted received signalsdifficult in wireless LANs received signal strength overwhelmed by local transmission strength overwhelmed by local transmission strength

human analogy the polite conversationalist

5 DataLink Layer 5-31

CSMACD collision detectionCSMACD collision detection

5 DataLink Layer 5-32

ldquoTaking Turnsrdquo MAC protocolsTaking Turns MAC protocols

h l i i i M C lchannel partitioning MAC protocolsshare channel efficiently and fairly at high loadinefficient at low load delay in channel access 1N bandwidth allocated even if only 1 active node node

Random access MAC protocolsefficient at low load single node can fully efficient at low load single node can fully utilize channelhigh load collision overheadhigh load collision overhead

ldquotaking turnsrdquo protocolslook for best of both worlds

5 DataLink Layer 5-33

look for best of both worlds

ldquoTaking Turnsrdquo MAC protocolsTaking Turns MAC protocolsPollingPolling

master node ldquoinvitesrdquo slave nodes d tinvites slave nodes to transmit in turntypically used with master

polldata

typically used with ldquodumbrdquo slave devicesconcerns

data

polling overhead latency slavessingle point of failure (master)

5 DataLink Layer 5-34

ldquoTaking Turnsrdquo MAC protocolsTaking Turns MAC protocolsToken passingoken pass ng

control token passed from one node to next

T

sequentiallytoken message (nothing

concernstoken overhead

to send)T

latencysingle point of failure (token)(token)

5 DataLink Layer 5-35

data

Summary of MAC protocolsSummary of MAC protocols

h l i i i b i f dchannel partitioning by time frequency or codeTime Division Frequency Divisiond ss (d i ) random access (dynamic) ALOHA S-ALOHA CSMA CSMACDcarrier sensing easy in some technologies (wire) hard in carrier sensing easy in some technologies (wire) hard in others (wireless)CSMACD used in EthernetCSMACA used in 80211

taking turnslli f l i k ipolling from central site token passing

Bluetooth FDDI IBM Token Ring

5 DataLink Layer 5-36

Link LayerLink Layer

5 1 I d i d 5 6 Li k l i h51 Introduction and services5 2 E d t ti

56 Link-layer switches57 PPP

52 Error detection and correction 5 3Multiple access

58 Link Virtualization ATM MPLS

53Multiple access protocols5 4 Link-Layer 54 Link Layer Addressing55 Ethernet55 Ethernet

5 DataLink Layer 5-37

MAC Addresses and ARPMAC Addresses and ARP

32-bit IP address network-layer addressyused to get datagram to destination IP subnet

MAC (or LAN or physical or Ethernet) MAC (or LAN or physical or Ethernet) address

f n ti n t f m f m n int f t n th function get frame from one interface to another physically-connected interface (same network)48 bit MAC address (for most LANs)48 bit MAC address (for most LANs)

bull burned in NIC ROM also sometimes software settable

5 DataLink Layer 5-38

LAN Addresses and ARPLAN Addresses and ARPEach adapter on LAN has unique LAN address

Broadcast address =FF-FF-FF-FF-FF-FF

1A-2F-BB-76-09-AD

= adapterLAN

(wired ori l )

58-23-D7-FA-20-B071-65-F7-2B-08-53

wireless)

0C-C4-11-6F-E3-98

5 DataLink Layer 5-39

LAN Address (more)LAN Address (more)

M C dd ll i d i i d b IEEEMAC address allocation administered by IEEEmanufacturer buys portion of MAC address space (t ss i ss)(to assure uniqueness)analogy

( ) MAC dd lik S i l S it N b(a) MAC address like Social Security Number(b) IP address like postal address

MAC fl dd づ bili MAC flat address づ portability can move LAN card from one LAN to another

IP hi chic l dd ss NOT p t blIP hierarchical address NOT portableaddress depends on IP subnet to which node is attached

5 DataLink Layer 5-40

ARP Address Resolution ProtocolAR Address Resolut on rotocol

Each IP node (host Question how to determine Each IP node (host router) on LAN has ARP table

Question how to determineMAC address of Bknowing Brsquos IP address

ARP table IPMAC address mappings for

knowing B s IP address

137196778 pp gsome LAN nodes

lt IP address MAC address TTLgtTTL (Tim T Li ) tim

1A-2F-BB-76-09-AD

137196723 137196714

TTL (Time To Live) time after which address mapping will be forgotten ( ll 20 )58-23-D7-FA-20-B071-65-F7-2B-08-53

LAN

(typically 20 min)58 23 D7 FA 20 B0

0C-C4-11-6F-E3-98137 196 7 88

5 DataLink Layer 5-41

137196788

ARP protocol Same LAN (network)

A wants to send datagram t B d Brsquo MAC dd A h ( ) IP tto B and Brsquos MAC address not in Arsquos ARP tableA broadcasts ARP query

A caches (saves) IP-to-MAC address pair in its ARP table until information q y

packet containing Bs IP address

dest MAC address = FF

becomes old (times out) soft state information that times out (goes dest MAC address = FF-

FF-FF-FF-FF-FFall machines on LAN

that times out (goes away) unless refreshed

ARP is ldquoplug-and-playrdquoreceive ARP query

B receives ARP packet replies to A with its (Bs)

p g p ynodes create their ARP tables without intervention from net replies to A with its (B s)

MAC addressframe sent to Arsquos MAC address (unicast)

intervention from net administrator

5 DataLink Layer 5-42

address (unicast)

Addressing routing to another LANwalkthrough send datagram from A to B via R

ssume A kn s Brsquos IP ddress

A74-29-9C-E8-FF-55 88-B2-2F-54-1A-0F

assume A knows B s IP address

1A-23-F9-CD-06-9BE6-E9-00-17-BB-4B

111111111111

A222222222221

R

222222222220111111111110

111111111112B

222222222222

CC-49-DE-D0-AB-7D

49-BD-D2-C7-56-2A

t ARP t bl s i t R f h IP two ARP tables in router R one for each IP network (LAN)

5 DataLink Layer 5-43

A creates IP datagram with source A destination B A uses ARP to get Rrsquos MAC address for 111 111 111 110A uses ARP to get R s MAC address for 111111111110A creates link-layer frame with Rs MAC address as dest frame contains A-to-B IP datagram This is a really importantArsquos NIC sends frame Rrsquos NIC receives frame R r m v s IP d t r m fr m Eth rn t fr m s s its

This is a really importantexample ndash make sure youunderstand

R removes IP datagram from Ethernet frame sees its destined to BR uses ARP to get Brsquos MAC address gR creates frame containing A-to-B IP datagram sends to B

A74-29-9C-E8-FF-55 88-B2-2F-54-1A-0F

1A-23-F9-CD-06-9BE6-E9-00-17-BB-4B

111111111111

A222222222221

R

222222222220111111111110

111111111112

B222222222222

5 DataLink Layer 5-44

RCC-49-DE-D0-AB-7D

49-BD-D2-C7-56-2A

Link LayerLink Layer

5 1 I d i d 5 6 Li k l i h51 Introduction and services5 2 E d t ti

56 Link-layer switches57 PPP

52 Error detection and correction 5 3Multiple access

58 Link Virtualization ATM and MPLS

53Multiple access protocols5 4 Link-Layer 54 Link Layer Addressing55 Ethernet55 Ethernet

5 DataLink Layer 5-45

Ethernetldquodominantrdquo wired LAN technology

cheap $20 for NICfirst widely used LAN technologyy gysimpler cheaper than token LANs and ATMkept up with speed race 10 Mbps ndash 10 Gbps p p p p p

Metcalfersquos Ethernetsketch

5 DataLink Layer 5-46

Star topologyp gybus topology popular through mid 90s

all nodes in same collision domain (can collide with each all nodes in same collision domain (can collide with each other)

today star topology prevails h active switch in center

each ldquospokerdquo runs a (separate) Ethernet protocol (nodes do not collide with each other)

switch

b l bl

5 DataLink Layer 5-47

bus coaxial cable star

Ethernet Frame StructuremSending adapter encapsulates IP datagram (or other g p p g (

network layer protocol packet) in Ethernet frame

Preamble7 bytes with pattern 10101010 followed by one y p ybyte with pattern 10101011used to synchronize receiver sender clock rates

5 DataLink Layer 5-48

Ethernet Frame Structure (more)Ethernet Frame Structure (more)Addresses 6 bytesy

if adapter receives frame with matching destination address or with broadcast address (eg ARP packet) it passes data in frame to network layer protocolpasses data in frame to network layer protocolotherwise adapter discards frame

Type indicates higher layer protocol (mostly IP Type indicates higher layer protocol (mostly IP but others possible eg Novell IPX AppleTalk)CRC checked at receiver if error is detected frame is dropped

5 DataLink Layer 5-49

Ethernet Unreliable connectionlessEthernet Unreliable connectionless

i l N h d h ki b di d connectionless No handshaking between sending and receiving NICs

li bl i i NIC d s rsquot s d ks ks unreliable receiving NIC doesnrsquot send acks or nacks to sending NIC

stream of datagrams passed to network layer can have gaps stream of datagrams passed to network layer can have gaps (missing datagrams)gaps will be filled if app is using TCPotherwise app will see gaps

Ethernetrsquos MAC protocol unslotted CSMACD

5 DataLink Layer 5-50

Ethernet CSMACD algorithmg1 NIC receives datagram 4 If NIC detects another

from network layer creates frame

2 f N C h l dl

transmission while transmitting aborts and sends jam signal2 If NIC senses channel idle

starts frame transmission If NIC senses channel

sends jam signal5 After aborting NIC

enters exponential If NIC senses channel busy waits until channel idle then transmits

enters exponential backoff after mth collision NIC chooses K at

3 If NIC transmits entire frame without detecting

random from 012hellip2m-1 NIC waits K 512 bi i

ganother transmission NIC is done with frame

K512 bit times returns to Step 2

5 DataLink Layer 5-51

Ethernetrsquos CSMACD (more)Ethernet s CSMACD (more)Jam Signal make sure all Exponential Backoffg

other transmitters are aware of collision 48 bits

Bit time 1 microsec for 10

pGoal adapt retransmission attempts to estimated current loadBit time 1 microsec for 10

Mbps Ethernet for K=1023 wait time is about 50 msec

current loadheavy load random wait will be longer

about 50 msec first collision choose K from 01 delay is K 512 bit transmission timestransm ss on t m safter second collision choose K from 0123hellipft t lli i h K

Seeinteract with Javaapplet on AWL Web site

after ten collisions choose K from 01234hellip1023

pphighly recommended

5 DataLink Layer 5-52

CSMACD efficiencyCSMACD efficiency

T d l b 2 d i L NTprop = max prop delay between 2 nodes in LANttrans = time to transmit max-size frame

efficiency 1

=

efficiency goes to 1

transprop ttff y

51+

efficiency goes to 1 as tprop goes to 0as ttrans goes to infinitytrans g y

better performance than ALOHA and simple cheap decentralized

5 DataLink Layer 5-53

p

8023 Ethernet Standards Link amp Physical Layersy y

many different Ethernet standardsycommon MAC protocol and frame formatdifferent speeds 2 Mbps 10 Mbps 100 Mbps 1Gb 10G b1Gbps 10G bpsdifferent physical layer media fiber cable

MAC protocolapplicationtransportnetwork

li k

MAC protocoland frame format

100BASE-TX 100BASE-FX100BASE-T2link

physical100BASE-T4 100BASE-SX 100BASE-BX

5 DataLink Layer 5-54

fiber physical layercopper (twisterpair) physical layer

Manchester encodingManchester encoding

used in 10BaseTeach bit has a transitionallows clocks in sending and receiving nodes to g gsynchronize to each other

no need for a centralized global clock among nodes

5 DataLink Layer 5-55

Hey this is physical-layer stuff

Link LayerLink Layer

5 1 I d i d 5 6 Li k l i h51 Introduction and services5 2 E d t ti

56 Link-layer switches57 PPP

52 Error detection and correction 5 3 Multiple access

58 Link Virtualization ATM MPLS

53 Multiple access protocols5 4 Link-layer 54 Link layer Addressing55 Ethernet55 Ethernet

5 DataLink Layer 5-56

Hubshellip physical-layer (ldquodumbrdquo) repeaters

bits coming in one link go out all other links at bits coming in one link go out all other links at same rateall nodes connected to hub can collide with one anotherno frame bufferinggno CSMACD at hub host NICs detect collisions

twisted pair

hub

5 DataLink Layer 5-57

Switchlink-layer device smarter than hubs take yactive role

store forward Ethernet framesexamine incoming framersquos MAC address selectively forward frame to one-or-more

l k h f f d d outgoing links when frame is to be forwarded on segment uses CSMACD to access segment

transparenthosts are unaware of presence of switches

plug-and-play self-learningswitches do not need to be configured

5 DataLink Layer 5-58

g

Switch allows multiple simultaneous ptransmissions

A

hosts have dedicated direct connection to switch

BCrsquo

switches buffer packetsEthernet protocol used on each incoming link but no

1 2 345

6

each incoming link but no collisions full duplex

each link is its own collision C

45

domainswitching A-to-Arsquo and B-to-Brsquo simultaneously

ArsquoBrsquo

to-B simultaneously without collisions

not possible with dumb hub

switch with six interfaces(123456)

5 DataLink Layer 5-59

Switch TableSwitch Table

Q h d s s it h k th t A

Q how does switch know that Arsquo reachable via interface 4 Brsquo reachable via interface 5

BCrsquo

B reachable via interface 5A each switch has a switch table each entry

1 2 345

6ta ach ntry

(MAC address of host interface to reach host time stamp) C

45

looks like a routing tableQ how are entries created

i t i d i it h t bl

ArsquoBrsquo

maintained in switch table something like a routing protocol

switch with six interfaces(123456)

5 DataLink Layer 5-60

protocol

Switch self-learning Source ASwitch self-learning

s it h l s hi h h sts A A Arsquo

Dest Arsquo

switch learns which hosts can be reached through which interfaces

BCrsquo

which interfaceswhen frame received switch ldquolearnsrdquo location of

d i i LAN

1 2 345

6

sender incoming LAN segmentrecords senderlocation

C

45

pair in switch tableArsquoBrsquo

MAC addr interface TTLMAC addr interface TTLSwitch table

(initially empty)A 1 60

5 DataLink Layer 5-61

Switch frame filteringforwardingWhen frame received

1 record link associated with sending host2 ind x s itch t bl usin MAC d st dd ss2 index switch table using MAC dest address3 if entry found for destination

then then if dest on segment from which frame arrived

then drop the framethen drop the frameelse forward the frame on interface indicated

else flood forward on all but the interface

on which the frame arrived5 DataLink Layer 5-62

on which the frame arrived

Self-learning Source ASelf learning forwarding

lA A Arsquo

Dest Arsquo

exampleBCrsquo

frame destinati n 1 2 345

6A ArsquoA ArsquoA ArsquoA ArsquoA Arsquoframe destination unknown floodd ti ti A

C

45

Arsquo A

destination A location knownselective send

ArsquoBrsquo

MAC addr interface TTL

selective send

MAC addr interface TTLSwitch table

(initially empty)A 1 60Arsquo 4 60

5 DataLink Layer 5-63

Interconnecting switchesg

switches can be connected togetherg

S

S4

A

B

S1

C DF

S2S3

IB C D

E HI

G

Q sending from A to G - how does S1 know to forward frame destined to F via S and S forward frame destined to F via S4 and S3A self learning (works exactly the same as in single-switch case)

5 DataLink Layer 5-64

single switch case)

Self-learning multi-switch exampleSuppose C sends frame to I I responds to C

S

S412

A

B

S1

C DF

S2S3

I

2

B C D

E HI

G

Q show switch tables and packet forwarding in S1 S2 S3 S4

5 DataLink Layer 5-65

Institutional networkInstitutional network

to externalnetwork

mail server

networkrouter web server

IP subnet

5 DataLink Layer 5-66

Switches vs RoutersSwitches vs Routersboth store-and-forward devices

routers network layer devices (examine network layer headers)switches are link layer devicesswitches are link layer devices

routers maintain routing tables implement routing algorithmsgswitches maintain switch tables implement filtering learning algorithmsf g g g

5 DataLink Layer 5-67

Link LayerLink Layer

5 1 I d i d 5 6 H b d i h51 Introduction and services5 2 E d t ti

56 Hubs and switches57 PPP

52 Error detection and correction 5 3Multiple access

58 Link Virtualization ATM

53Multiple access protocols5 4 Link-Layer 54 Link Layer Addressing55 Ethernet55 Ethernet

5 DataLink Layer 5-68

Point to Point Data Link ControlPoint to Point Data Link Controlone sender one receiver one link easier than one sender one receiver one link easier than broadcast link

no Media Access Controlno Media Access Controlno need for explicit MAC addressinge g dialup link ISDN lineeg dialup link ISDN line

popular point-to-point DLC protocolsPPP (point-to-point protocol)PPP (point to point protocol)HDLC High level data link control (Data link used to be considered ldquohigh layerrdquo in protocol used to be considered high layer in protocol stack

5 DataLink Layer 5-69

PPP Design Requirements [RFC 1557]

packet framing encapsulation of network-layer p f m g p u f w ydatagram in data link frame

carry network layer data of any network layer y y y yprotocol (not just IP) at same timeability to demultiplex upwards

bit transparency must carry any bit pattern in the data fielderror detection (no correction)connection liveness detect signal link failure to

k lnetwork layernetwork layer address negotiation endpoint can l fi h th rsquos t k dd ss

5 DataLink Layer 5-70

learnconfigure each otherrsquos network address

PPP non-requirementsPPP non requirements

ti no error correctionrecoveryno flow control

f d d l K out of order delivery OK no need to support multipoint links (eg polling)

E l l Error recovery flow control data re-ordering all relegated to higher layers

5 DataLink Layer 5-71

PPP Data FramePPP Data Frame

Fl d li i (f i )Flag delimiter (framing)Address does nothing (only one option)Control does nothing in the future possible multiple control fieldsP t l l t l t hi h f Protocol upper layer protocol to which frame delivered (eg PPP-LCP IP IPCP etc)

5 DataLink Layer 5-72

PPP Data FramePPP Data Frame

i f l d b i i dinfo upper layer data being carriedcheck cyclic redundancy check for error d t tidetection

5 DataLink Layer 5-73

Byte StuffingByte Stuffingldquodata transparencyrdquo requirement data field must

be allowed to include flag pattern lt01111110gtQ is received lt01111110gt data or flag

Sender adds (ldquostuffsrdquo) extra lt 01111110gt byte after each lt 01111110gt data byteReceiver

two 01111110 bytes in a row discard first byte d continue data reception

single 01111110 flag byte

5 DataLink Layer 5-74

Byte StuffingByte Stuffing

flag bytepatterni din datato send

flag byte pattern plusstuffed byte in transmitted data

5 DataLink Layer 5-75

transmitted data

PPP Data Control ProtocolPPP Data Control ProtocolBefore exchanging network-g g

layer data data link peers mustconfigure PPP link (max frame length authentication)authentication)learnconfigure networklayer informationlayer information

for IP carry IP Control Protocol (IPCP) msgs Protocol (IPCP) msgs (protocol field 8021) to configurelearn IP

5 DataLink Layer 5-76

gaddress

Link LayerLink Layer

5 1 I d i d 5 6 H b d i h51 Introduction and services5 2 E d t ti

56 Hubs and switches57 PPP

52 Error detection and correction 5 3Multiple access

58 Link Virtualization ATM and MPLS

53Multiple access protocols5 4 Link-Layer 54 Link Layer Addressing55 Ethernet55 Ethernet

5 DataLink Layer 5-77

Virtualization of networksVirtualization of networks

Vi li i f f l b i i Virtualization of resources powerful abstraction in systems engineering

ti l s i t l i t l computing examples virtual memory virtual devices

Virtual machines e g javaVirtual machines eg javaIBM VM os from 1960rsquos70rsquos

layering of abstractions donrsquot sweat the details of layering of abstractions don t sweat the details of the lower layer only deal with lower layers abstractlyabstractly

5 DataLink Layer 5-78

The Internet virtualizing networksThe Internet virtualizing networks

1974 multiple unconnected differing in1974 multiple unconnected nets

ARPAnet

hellip differing inaddressing conventionspacket formats

data-over-cable networkspacket satellite network (Aloha)

k d k

perror recoveryrouting

packet radio network

ARPAnet satellite net

5 DataLink Layer 5-79

ARPAnet satell te netA Protocol for Packet Network Intercommunication V Cerf R Kahn IEEE Transactions on CommunicationsMay 1974 pp 637-648

The Internet virtualizing networksThe Internet virtualizing networksInternetwork layer (IP)

addressing internetwork Gateway

ldquoembed internetwork packets in l l k f

addressing internetwork appears as single uniform entity despite underlying local network heterogeneitynetwork of networks

plocal packet format or extract themrdquoroute (at internetwork level) to next gatewaynetwork of networks next gateway

gateway

ARPAnet satellite net

5 DataLink Layer 5-80

ARPAnet satell te net

Cerf amp Kahnrsquos Internetwork ArchitectureCerf amp Kahn s Internetwork ArchitectureWhat is virtualized

two layers of addressing internetwork and local networknew layer (IP) makes everything homogeneous at internetwork layerunderlying local network technology

cablesatellite56K telephone modemtoday ATM MPLS

hellip ldquoinvisiblerdquo at internetwork layer Looks like a link

5 DataLink Layer 5-81

ylayer technology to IP

ATM and MPLSATM and MPLS

P k h ATM MPLS separate networks in their own right

different service models addressing routing from Internet

viewed by Internet as logical link connecting IP routers

just like dialup link is really part of separate network (telephone network)

ATM MPLS of technical interest in their own right

5 DataLink Layer 5-82

Asynchronous Transfer Mode ATMAsynchronous Transfer Mode ATM1990rsquos00 standard for high-speed (155Mbps to g p ( p622 Mbps and higher) Broadband Integrated Service Digital Network architectureGoal integrated end-end transport of carry voice video data

i i i Q i f i id meeting timingQoS requirements of voice video (versus Internet best-effort model)ldquo t ti rdquo t l h t h i l ts i ldquonext generationrdquo telephony technical roots in telephone worldpacket switching (fixed length packets called packet-switching (fixed length packets called ldquocellsrdquo) using virtual circuits

5 DataLink Layer 5-83

ATM architecture ATM architecture AAL AAL

ATM ATMATM ATM

physical physicalphysical physical

d d ti h it h

adaptation layer only at edge of ATM network

end system end systemswitch switch

data segmentationreassemblyroughly analagous to Internet transport layer

ATM layer ldquonetworkrdquo layercell switching routing

5 DataLink Layer 5-84

physical layer

ATM network or link layerATM network or link layerVision end-to-end

t t ldquoATM f transport ldquoATM from desktop to desktoprdquo

ATM is a network ATM

IPnetwork

ATM is a network technology

Reality used to connect

ATMnetwork

Reality used to connect IP backbone routers

ldquoIP over ATMrdquoIP over ATMATM as switched link layer y connecting IP routers

5 DataLink Layer 5-85

ATM Adaptation Layer (AAL)ATM Adaptation Layer (AAL)

TM d i L ( L) ldquo d rdquo ATM Adaptation Layer (AAL) ldquoadaptsrdquo upper layers (IP or native ATM applications) to ATM layer belowlayer belowAAL present only in end systems not in switchesAAL layer segment (headertrailer fields data) AAL layer segment (headertrailer fields data) fragmented across multiple ATM cells

analogy TCP segment in many IP packetsanalogy TCP segment in many IP packets

AAL AAL

physical

ATM

physical

ATM

physical

ATM

physical

ATM

5 DataLink Layer 5-86

physical physicalp y p y

end system end systemswitch switch

ATM Adaptation Layer (AAL) [more]

Different versions of AAL layers depending on ATM y p gservice classAAL1 for CBR (Constant Bit Rate) services eg circuit emulationAAL2 for VBR (Variable Bit Rate) services eg MPEG videoAAL5 for data (eg IP datagrams)

User data

AAL PDU

ATM cell

5 DataLink Layer 5-87

ATM LayeryService transport cells across ATM network

analogous to IP network layeranalogous to IP network layervery different services than IP network layer

Guarantees NetworkArchitecture

ServiceModel Bandwidth Loss Order Timing

Congestionfeedback

Guarantees

Internet

ATM

best effort

CBR

none

constant

no

yes

no

yes

no

yes

no (inferredvia loss)noATM

ATM

CBR

VBR

constantrateguaranteedrate

yes

yes

yes

yes

yes

yes

nocongestionnocongestion

ATM

ATM

ABR

UBR

rateguaranteed minimum

no yes nocongestionyes

5 DataLink Layer 5-88

ATM UBR none no yes no no

ATM Layer Virtual CircuitsATM Layer Virtual CircuitsVC transport cells carried on VC from source to destp

call setup teardown for each call before data can floweach packet carries VC identifier (not destination ID)

it h d t th i t i ldquo t t rdquo f h every switch on source-dest path maintain ldquostaterdquo for each passing connectionlinkswitch resources (bandwidth buffers) may be allocated to ( ff ) m yVC to get circuit-like perf

Permanent VCs (PVCs)long lasting connectionstypically ldquopermanentrdquo route between to IP routers

Switched VCs (SVC)dynamically set up on per-call basis

5 DataLink Layer 5-89

ATM VCsATM VCsAdvantages of ATM VC approachAdvantages of ATM VC approach

QoS performance guarantee for connection mapped to VC (bandwidth delay delay jitter)mapped to VC (bandwidth delay delay jitter)

Drawbacks of ATM VC approachInefficient support of datagram trafficInefficient support of datagram trafficone PVC between each sourcedest pair) does not scale (N2 connections needed) not scale (N 2 connections needed) SVC introduces call setup latency processing overhead for short lived connectionsoverhead for short lived connections

5 DataLink Layer 5-90

ATM Layer ATM cellATM Layer ATM cell5-byte ATM cell headery48-byte payload

Why small payload -gt short cell-creation delay W y m p y yfor digitized voicehalfway between 32 and 64 (compromise)y p

Cell headerCell header

Cell format

5 DataLink Layer 5-91

ATM cell headerATM cell headerVCI virtual channel IDVCI virtual channel ID

will change from link to link thru netPT P l d t p ( RM ll s s d t ll) PT Payload type (eg RM cell versus data cell) CLP Cell Loss Priority bit

CLP 1 i li l i it ll b CLP = 1 implies low priority cell can be discarded if congestion

HEC Header Error ChecksumHEC Header Error Checksumcyclic redundancy check

5 DataLink Layer 5-92

ATM Physical Layer (more)ATM Physical Layer (more)

T i ( bl ) f h i l lTwo pieces (sublayers) of physical layerTransmission Convergence Sublayer (TCS) adapts ATM l b t PMD s bl b lATM layer above to PMD sublayer belowPhysical Medium Dependent depends on physical medium being usedmedium being used

TCS FunctionsTCS FunctionsHeader checksum generation 8 bits CRC C ll d lin ti nCell delineationWith ldquounstructuredrdquo PMD sublayer transmission of idle cells when no data cells to send

5 DataLink Layer 5-93

of idle cells when no data cells to send

ATM Physical LayerATM Physical Layer

Ph l d D d (P D) blPhysical Medium Dependent (PMD) sublayerSONETSDH transmission frame structure (like a

b ) container carrying bits) bit synchronization bandwidth partitions (TDM) several speeds OC3 = 15552 Mbps OC12 = 62208 Mb OC48 2 45 Gb OC192 9 6 GbMbps OC48 = 245 Gbps OC192 = 96 Gbps

TIT3 transmission frame structure (old telephone hierarchy) 1 5 Mbps 45 Mbpstelephone hierarchy) 15 Mbps 45 Mbpsunstructured just cells (busyidle)

5 DataLink Layer 5-94

IP-Over-ATMIP over ATM

Classic IP only3 ldquonetworksrdquo (e g

IP over ATMreplace ldquonetworkrdquo (e g LAN segment) 3 networks (eg

LAN segments)MAC (802 3) and IP

(eg LAN segment) with ATM networkATM addresses IP MAC (8023) and IP

addressesATM addresses IP addresses

ATMATMnetwork

Ethernet Ethernet

5 DataLink Layer 5-95

EthernetLANs

EthernetLANs

IP-Over-ATMapp

transportapp

AALEthIP

transportIP

AALATM

apptransport

IPEth ATM

phyphyEth

ATM

ATMphy

ATMphy

Ethphy

ATMphy

p y

5 DataLink Layer 5-96

Datagram Journey in IP-over-ATM NetworkDatagram Journey in IP-over-ATM Network

at Source HostIP layer maps between IP ATM dest address (using ARP)passes datagram to AAL5AAL5 encapsulates data segments cells passes to ATM layer

ATM network moves cell along VC to destinationat Destination Host

AAL5 reassembles cells into original datagramif CRC OK datagram is passed to IP

5 DataLink Layer 5-97

IP-Over-ATMIP-Over-ATM

IssuesIP datagrams into

ATMnetwork

ATM AAL5 PDUsfrom IP addresses

TM ddto ATM addressesjust like IP dd ss s t addresses to

8023 MAC addresses

EthernetLANs

addresses

5 DataLink Layer 5-98

Multiprotocol label switching (MPLS)Multiprotocol label switching (MPLS)

i i i l l d IP f di b i fi d initial goal speed up IP forwarding by using fixed length label (instead of IP address) to do forwarding forwarding

borrowing ideas from Virtual Circuit (VC) approachbut IP datagram still keeps IP addressg p

PPP or EthernetPPP or Ethernet header

IP header remainder of link-layer frameMPLS header

label Exp S TTL

5 DataLink Layer 5-9920 3 1 5

MPLS capable routersMPLS capable routers

k l b l it h d taka label-switched routerforwards packets to outgoing interface based

l l b l l (d rsquot i t IP dd )only on label value (donrsquot inspect IP address)MPLS forwarding table distinct from IP forwarding tablestables

signaling protocol needed to set up forwardingRSVP TERSVP-TEforwarding possible along paths that IP alone would not allow (eg source-specific routing) not allow (eg source spec f c rout ng) use MPLS for traffic engineering

must co-exist with IP-only routers5 DataLink Layer 5-100

must co exist with IP only routers

MPLS forwarding tablesi t t

MPLS forwarding tables

in out outlabel label dest interface

in out outlabel label dest interface

10 A 012 D 0 label label dest interface

10 6 A 112 9 D 0

12 D 08 A 1

D1

00R6

R3R4R5

0

1

A

1

0

R1R2A

in out outlabel label dest interface

6 A 0in out out

label label dest interface

5 DataLink Layer 5-101

6 - A 0label label dest interface

8 6 A 0

Chapter 5 SummaryChapter 5 Summaryprinciples behind data link layer servicespr nc p s h n ata n ay r s r c s

error detection correctionsharing a broadcast channel multiple accesslink layer addressing

instantiation and implementation of various link l t h l ilayer technologies

Ethernetit h d LANSswitched LANS

PPPi li d k li k l TM MPLvirtualized networks as a link layer ATM MPLS

5 DataLink Layer 5-102

Chapter 5 letrsquos take a breathChapter 5 let s take a breathjourney down protocol stack completejourney down protocol stack complete(except PHY)solid understanding of networking principles solid understanding of networking principles practice

ld t h b t l t f i t ti hellip could stop here hellip but lots of interesting topics

lwirelessmultimediasecurity network management

5 DataLink Layer 5-103

Page 6: Link Layer Link Layer: Introduction

Channel Partitioning MAC protocols TDMAChannel Partitioning MAC protocols TDMA

TDMA time division multiple accessTDMA time division multiple accessaccess to channel in rounds each station gets fixed length slot (length = pkt each station gets fixed length slot (length = pkt trans time) in each round unused slots go idle unused slots go idle example 6-station LAN 134 have pkt slots 256 idle idle

6-slotframe

1 3 4 1 3 4

5 DataLink Layer 5-21

Channel Partitioning MAC protocols FDMAChannel Partitioning MAC protocols FDMA

FDMA frequency division multiple accessFDMA frequency division multiple accesschannel spectrum divided into frequency bandseach station assigned fixed frequency bandeach station assigned fixed frequency bandunused transmission time in frequency bands go idle example 6-station LAN 1 3 4 have pkt frequency example 6-station LAN 134 have pkt frequency bands 256 idle

cy b

ands

freq

uenc

FDM cable

5 DataLink Layer 5-22

f

Random Access ProtocolsRandom Access Protocols

Wh d h k dWhen node has packet to sendtransmit at full channel data rate Rno a priori coordination among nodesno a priori coordination among nodes

two or more transmitting nodes づ ldquocollisionrdquorandom access MAC protocol specifies random access MAC protocol specifies

how to detect collisionshow to recover from collisions (eg via delayed how to recover from collisions (eg via delayed retransmissions)

Examples of random access MAC protocolsslotted ALOHAALOHACSMA CSMACD CSMACA

5 DataLink Layer 5-23

CSMA CSMACD CSMACA

Slotted ALOHASlotted ALOHA

A ti O tiAssumptionsall frames same sizetime divided into equal

Operationwhen node obtains fresh frame transmits in next time divided into equal

size slots (time to transmit 1 frame)

frame transmits in next slot

if no collision node can nodes start to transmit only slot beginning

d h i d

send new frame in next slotif collision node nodes are synchronized

if 2 or more nodes transmit in slot all

if collision node retransmits frame in each subsequent slot transmit in slot all

nodes detect collisionq

with prob p until success

5 DataLink Layer 5-24

Slotted ALOHA

P s ConsProssingle active node can continuously transmit

Conscollisions wasting slotsidle slotscontinuously transmit

at full rate of channelhighly decentralized

idle slotsnodes may be able to detect collision in less highly decentralized

only slots in nodes need to be in sync

than time to transmit packetclock synchronization

5 DataLink Layer 5-25

ysimple

clock synchronization

Slotted Aloha efficiencyymax efficiency find p that maximizes

Efficiency long-run fraction of successful slots p that maximizes

Np(1-p)N-1

for many nodes take

fraction of successful slots (many nodes all with many frames to send)

suppose N nodes with

for many nodes take limit of Np(1-p)N-1

as N goes to infinity

frames to send)

many frames to send each transmits in slot with probability p

g ygives

Max efficiency = 1e = 37with probability pprob that given node has success in a slot =

At best channelused for useful has success in a slot =

p(1-p)N-1

prob that any node has

used for useful transmissions 37of time

5 DataLink Layer 5-26

p ya success = Np(1-p)N-1

Pure (unslotted) ALOHAPure (unslotted) ALOHAunslotted Aloha simpler no synchronizationunslotted Aloha simpler no synchronizationwhen frame first arrives

transmit immediately transmit immediately collision probability increases

frame sent at t0 collides with other frames sent in [t0-1t0+1]0 [ 0 0 ]

5 DataLink Layer 5-27

Pure Aloha efficiencyPure Aloha efficiencyP(success by given node) = P(node transmits) P(success by g ven node) P(node transm ts)

P(no other node transmits in [p0-1p0] P(no other node transmits in [p0-1 p0] P(no other node transmits in [p0 1p0]

= p (1-p)N-1 (1-p)N-1

= p (1-p)2(N-1)= p (1 p)

hellip choosing optimum p and then letting n -gt infty

= 1(2e) = 18

even worse than slotted Aloha

5 DataLink Layer 5-28

CSMA (Carrier Sense Multiple Access)CSMA (Carrier Sense Multiple Access)

CSMA listen before transmitIf channel sensed idle transmit entire framef chann s ns transm t nt r fram

If channel sensed busy defer transmission

human analogy donrsquot interrupt others

5 DataLink Layer 5-29

CSMA collisionsCSMA collisionsc llisi ns c n still ccu

spatial layout of nodes

collisions can still occurpropagation delay means two nodes may not heareach otherrsquos transmission

collisionentire packet transmission time wasted

tnoterole of distance amp propagation delay in determining collision y gprobability

5 DataLink Layer 5-30

CSMACD (Collision Detection)CSMACD (Collision Detection)CSMACD carrier sensing deferral as in CSMACSMACD carrier sensing deferral as in CSMA

collisions detected within short timecolliding transmissions aborted reducing channel colliding transmissions aborted reducing channel wastage

collision detectioncollision detectioneasy in wired LANs measure signal strengths compare transmitted received signalscompare transmitted received signalsdifficult in wireless LANs received signal strength overwhelmed by local transmission strength overwhelmed by local transmission strength

human analogy the polite conversationalist

5 DataLink Layer 5-31

CSMACD collision detectionCSMACD collision detection

5 DataLink Layer 5-32

ldquoTaking Turnsrdquo MAC protocolsTaking Turns MAC protocols

h l i i i M C lchannel partitioning MAC protocolsshare channel efficiently and fairly at high loadinefficient at low load delay in channel access 1N bandwidth allocated even if only 1 active node node

Random access MAC protocolsefficient at low load single node can fully efficient at low load single node can fully utilize channelhigh load collision overheadhigh load collision overhead

ldquotaking turnsrdquo protocolslook for best of both worlds

5 DataLink Layer 5-33

look for best of both worlds

ldquoTaking Turnsrdquo MAC protocolsTaking Turns MAC protocolsPollingPolling

master node ldquoinvitesrdquo slave nodes d tinvites slave nodes to transmit in turntypically used with master

polldata

typically used with ldquodumbrdquo slave devicesconcerns

data

polling overhead latency slavessingle point of failure (master)

5 DataLink Layer 5-34

ldquoTaking Turnsrdquo MAC protocolsTaking Turns MAC protocolsToken passingoken pass ng

control token passed from one node to next

T

sequentiallytoken message (nothing

concernstoken overhead

to send)T

latencysingle point of failure (token)(token)

5 DataLink Layer 5-35

data

Summary of MAC protocolsSummary of MAC protocols

h l i i i b i f dchannel partitioning by time frequency or codeTime Division Frequency Divisiond ss (d i ) random access (dynamic) ALOHA S-ALOHA CSMA CSMACDcarrier sensing easy in some technologies (wire) hard in carrier sensing easy in some technologies (wire) hard in others (wireless)CSMACD used in EthernetCSMACA used in 80211

taking turnslli f l i k ipolling from central site token passing

Bluetooth FDDI IBM Token Ring

5 DataLink Layer 5-36

Link LayerLink Layer

5 1 I d i d 5 6 Li k l i h51 Introduction and services5 2 E d t ti

56 Link-layer switches57 PPP

52 Error detection and correction 5 3Multiple access

58 Link Virtualization ATM MPLS

53Multiple access protocols5 4 Link-Layer 54 Link Layer Addressing55 Ethernet55 Ethernet

5 DataLink Layer 5-37

MAC Addresses and ARPMAC Addresses and ARP

32-bit IP address network-layer addressyused to get datagram to destination IP subnet

MAC (or LAN or physical or Ethernet) MAC (or LAN or physical or Ethernet) address

f n ti n t f m f m n int f t n th function get frame from one interface to another physically-connected interface (same network)48 bit MAC address (for most LANs)48 bit MAC address (for most LANs)

bull burned in NIC ROM also sometimes software settable

5 DataLink Layer 5-38

LAN Addresses and ARPLAN Addresses and ARPEach adapter on LAN has unique LAN address

Broadcast address =FF-FF-FF-FF-FF-FF

1A-2F-BB-76-09-AD

= adapterLAN

(wired ori l )

58-23-D7-FA-20-B071-65-F7-2B-08-53

wireless)

0C-C4-11-6F-E3-98

5 DataLink Layer 5-39

LAN Address (more)LAN Address (more)

M C dd ll i d i i d b IEEEMAC address allocation administered by IEEEmanufacturer buys portion of MAC address space (t ss i ss)(to assure uniqueness)analogy

( ) MAC dd lik S i l S it N b(a) MAC address like Social Security Number(b) IP address like postal address

MAC fl dd づ bili MAC flat address づ portability can move LAN card from one LAN to another

IP hi chic l dd ss NOT p t blIP hierarchical address NOT portableaddress depends on IP subnet to which node is attached

5 DataLink Layer 5-40

ARP Address Resolution ProtocolAR Address Resolut on rotocol

Each IP node (host Question how to determine Each IP node (host router) on LAN has ARP table

Question how to determineMAC address of Bknowing Brsquos IP address

ARP table IPMAC address mappings for

knowing B s IP address

137196778 pp gsome LAN nodes

lt IP address MAC address TTLgtTTL (Tim T Li ) tim

1A-2F-BB-76-09-AD

137196723 137196714

TTL (Time To Live) time after which address mapping will be forgotten ( ll 20 )58-23-D7-FA-20-B071-65-F7-2B-08-53

LAN

(typically 20 min)58 23 D7 FA 20 B0

0C-C4-11-6F-E3-98137 196 7 88

5 DataLink Layer 5-41

137196788

ARP protocol Same LAN (network)

A wants to send datagram t B d Brsquo MAC dd A h ( ) IP tto B and Brsquos MAC address not in Arsquos ARP tableA broadcasts ARP query

A caches (saves) IP-to-MAC address pair in its ARP table until information q y

packet containing Bs IP address

dest MAC address = FF

becomes old (times out) soft state information that times out (goes dest MAC address = FF-

FF-FF-FF-FF-FFall machines on LAN

that times out (goes away) unless refreshed

ARP is ldquoplug-and-playrdquoreceive ARP query

B receives ARP packet replies to A with its (Bs)

p g p ynodes create their ARP tables without intervention from net replies to A with its (B s)

MAC addressframe sent to Arsquos MAC address (unicast)

intervention from net administrator

5 DataLink Layer 5-42

address (unicast)

Addressing routing to another LANwalkthrough send datagram from A to B via R

ssume A kn s Brsquos IP ddress

A74-29-9C-E8-FF-55 88-B2-2F-54-1A-0F

assume A knows B s IP address

1A-23-F9-CD-06-9BE6-E9-00-17-BB-4B

111111111111

A222222222221

R

222222222220111111111110

111111111112B

222222222222

CC-49-DE-D0-AB-7D

49-BD-D2-C7-56-2A

t ARP t bl s i t R f h IP two ARP tables in router R one for each IP network (LAN)

5 DataLink Layer 5-43

A creates IP datagram with source A destination B A uses ARP to get Rrsquos MAC address for 111 111 111 110A uses ARP to get R s MAC address for 111111111110A creates link-layer frame with Rs MAC address as dest frame contains A-to-B IP datagram This is a really importantArsquos NIC sends frame Rrsquos NIC receives frame R r m v s IP d t r m fr m Eth rn t fr m s s its

This is a really importantexample ndash make sure youunderstand

R removes IP datagram from Ethernet frame sees its destined to BR uses ARP to get Brsquos MAC address gR creates frame containing A-to-B IP datagram sends to B

A74-29-9C-E8-FF-55 88-B2-2F-54-1A-0F

1A-23-F9-CD-06-9BE6-E9-00-17-BB-4B

111111111111

A222222222221

R

222222222220111111111110

111111111112

B222222222222

5 DataLink Layer 5-44

RCC-49-DE-D0-AB-7D

49-BD-D2-C7-56-2A

Link LayerLink Layer

5 1 I d i d 5 6 Li k l i h51 Introduction and services5 2 E d t ti

56 Link-layer switches57 PPP

52 Error detection and correction 5 3Multiple access

58 Link Virtualization ATM and MPLS

53Multiple access protocols5 4 Link-Layer 54 Link Layer Addressing55 Ethernet55 Ethernet

5 DataLink Layer 5-45

Ethernetldquodominantrdquo wired LAN technology

cheap $20 for NICfirst widely used LAN technologyy gysimpler cheaper than token LANs and ATMkept up with speed race 10 Mbps ndash 10 Gbps p p p p p

Metcalfersquos Ethernetsketch

5 DataLink Layer 5-46

Star topologyp gybus topology popular through mid 90s

all nodes in same collision domain (can collide with each all nodes in same collision domain (can collide with each other)

today star topology prevails h active switch in center

each ldquospokerdquo runs a (separate) Ethernet protocol (nodes do not collide with each other)

switch

b l bl

5 DataLink Layer 5-47

bus coaxial cable star

Ethernet Frame StructuremSending adapter encapsulates IP datagram (or other g p p g (

network layer protocol packet) in Ethernet frame

Preamble7 bytes with pattern 10101010 followed by one y p ybyte with pattern 10101011used to synchronize receiver sender clock rates

5 DataLink Layer 5-48

Ethernet Frame Structure (more)Ethernet Frame Structure (more)Addresses 6 bytesy

if adapter receives frame with matching destination address or with broadcast address (eg ARP packet) it passes data in frame to network layer protocolpasses data in frame to network layer protocolotherwise adapter discards frame

Type indicates higher layer protocol (mostly IP Type indicates higher layer protocol (mostly IP but others possible eg Novell IPX AppleTalk)CRC checked at receiver if error is detected frame is dropped

5 DataLink Layer 5-49

Ethernet Unreliable connectionlessEthernet Unreliable connectionless

i l N h d h ki b di d connectionless No handshaking between sending and receiving NICs

li bl i i NIC d s rsquot s d ks ks unreliable receiving NIC doesnrsquot send acks or nacks to sending NIC

stream of datagrams passed to network layer can have gaps stream of datagrams passed to network layer can have gaps (missing datagrams)gaps will be filled if app is using TCPotherwise app will see gaps

Ethernetrsquos MAC protocol unslotted CSMACD

5 DataLink Layer 5-50

Ethernet CSMACD algorithmg1 NIC receives datagram 4 If NIC detects another

from network layer creates frame

2 f N C h l dl

transmission while transmitting aborts and sends jam signal2 If NIC senses channel idle

starts frame transmission If NIC senses channel

sends jam signal5 After aborting NIC

enters exponential If NIC senses channel busy waits until channel idle then transmits

enters exponential backoff after mth collision NIC chooses K at

3 If NIC transmits entire frame without detecting

random from 012hellip2m-1 NIC waits K 512 bi i

ganother transmission NIC is done with frame

K512 bit times returns to Step 2

5 DataLink Layer 5-51

Ethernetrsquos CSMACD (more)Ethernet s CSMACD (more)Jam Signal make sure all Exponential Backoffg

other transmitters are aware of collision 48 bits

Bit time 1 microsec for 10

pGoal adapt retransmission attempts to estimated current loadBit time 1 microsec for 10

Mbps Ethernet for K=1023 wait time is about 50 msec

current loadheavy load random wait will be longer

about 50 msec first collision choose K from 01 delay is K 512 bit transmission timestransm ss on t m safter second collision choose K from 0123hellipft t lli i h K

Seeinteract with Javaapplet on AWL Web site

after ten collisions choose K from 01234hellip1023

pphighly recommended

5 DataLink Layer 5-52

CSMACD efficiencyCSMACD efficiency

T d l b 2 d i L NTprop = max prop delay between 2 nodes in LANttrans = time to transmit max-size frame

efficiency 1

=

efficiency goes to 1

transprop ttff y

51+

efficiency goes to 1 as tprop goes to 0as ttrans goes to infinitytrans g y

better performance than ALOHA and simple cheap decentralized

5 DataLink Layer 5-53

p

8023 Ethernet Standards Link amp Physical Layersy y

many different Ethernet standardsycommon MAC protocol and frame formatdifferent speeds 2 Mbps 10 Mbps 100 Mbps 1Gb 10G b1Gbps 10G bpsdifferent physical layer media fiber cable

MAC protocolapplicationtransportnetwork

li k

MAC protocoland frame format

100BASE-TX 100BASE-FX100BASE-T2link

physical100BASE-T4 100BASE-SX 100BASE-BX

5 DataLink Layer 5-54

fiber physical layercopper (twisterpair) physical layer

Manchester encodingManchester encoding

used in 10BaseTeach bit has a transitionallows clocks in sending and receiving nodes to g gsynchronize to each other

no need for a centralized global clock among nodes

5 DataLink Layer 5-55

Hey this is physical-layer stuff

Link LayerLink Layer

5 1 I d i d 5 6 Li k l i h51 Introduction and services5 2 E d t ti

56 Link-layer switches57 PPP

52 Error detection and correction 5 3 Multiple access

58 Link Virtualization ATM MPLS

53 Multiple access protocols5 4 Link-layer 54 Link layer Addressing55 Ethernet55 Ethernet

5 DataLink Layer 5-56

Hubshellip physical-layer (ldquodumbrdquo) repeaters

bits coming in one link go out all other links at bits coming in one link go out all other links at same rateall nodes connected to hub can collide with one anotherno frame bufferinggno CSMACD at hub host NICs detect collisions

twisted pair

hub

5 DataLink Layer 5-57

Switchlink-layer device smarter than hubs take yactive role

store forward Ethernet framesexamine incoming framersquos MAC address selectively forward frame to one-or-more

l k h f f d d outgoing links when frame is to be forwarded on segment uses CSMACD to access segment

transparenthosts are unaware of presence of switches

plug-and-play self-learningswitches do not need to be configured

5 DataLink Layer 5-58

g

Switch allows multiple simultaneous ptransmissions

A

hosts have dedicated direct connection to switch

BCrsquo

switches buffer packetsEthernet protocol used on each incoming link but no

1 2 345

6

each incoming link but no collisions full duplex

each link is its own collision C

45

domainswitching A-to-Arsquo and B-to-Brsquo simultaneously

ArsquoBrsquo

to-B simultaneously without collisions

not possible with dumb hub

switch with six interfaces(123456)

5 DataLink Layer 5-59

Switch TableSwitch Table

Q h d s s it h k th t A

Q how does switch know that Arsquo reachable via interface 4 Brsquo reachable via interface 5

BCrsquo

B reachable via interface 5A each switch has a switch table each entry

1 2 345

6ta ach ntry

(MAC address of host interface to reach host time stamp) C

45

looks like a routing tableQ how are entries created

i t i d i it h t bl

ArsquoBrsquo

maintained in switch table something like a routing protocol

switch with six interfaces(123456)

5 DataLink Layer 5-60

protocol

Switch self-learning Source ASwitch self-learning

s it h l s hi h h sts A A Arsquo

Dest Arsquo

switch learns which hosts can be reached through which interfaces

BCrsquo

which interfaceswhen frame received switch ldquolearnsrdquo location of

d i i LAN

1 2 345

6

sender incoming LAN segmentrecords senderlocation

C

45

pair in switch tableArsquoBrsquo

MAC addr interface TTLMAC addr interface TTLSwitch table

(initially empty)A 1 60

5 DataLink Layer 5-61

Switch frame filteringforwardingWhen frame received

1 record link associated with sending host2 ind x s itch t bl usin MAC d st dd ss2 index switch table using MAC dest address3 if entry found for destination

then then if dest on segment from which frame arrived

then drop the framethen drop the frameelse forward the frame on interface indicated

else flood forward on all but the interface

on which the frame arrived5 DataLink Layer 5-62

on which the frame arrived

Self-learning Source ASelf learning forwarding

lA A Arsquo

Dest Arsquo

exampleBCrsquo

frame destinati n 1 2 345

6A ArsquoA ArsquoA ArsquoA ArsquoA Arsquoframe destination unknown floodd ti ti A

C

45

Arsquo A

destination A location knownselective send

ArsquoBrsquo

MAC addr interface TTL

selective send

MAC addr interface TTLSwitch table

(initially empty)A 1 60Arsquo 4 60

5 DataLink Layer 5-63

Interconnecting switchesg

switches can be connected togetherg

S

S4

A

B

S1

C DF

S2S3

IB C D

E HI

G

Q sending from A to G - how does S1 know to forward frame destined to F via S and S forward frame destined to F via S4 and S3A self learning (works exactly the same as in single-switch case)

5 DataLink Layer 5-64

single switch case)

Self-learning multi-switch exampleSuppose C sends frame to I I responds to C

S

S412

A

B

S1

C DF

S2S3

I

2

B C D

E HI

G

Q show switch tables and packet forwarding in S1 S2 S3 S4

5 DataLink Layer 5-65

Institutional networkInstitutional network

to externalnetwork

mail server

networkrouter web server

IP subnet

5 DataLink Layer 5-66

Switches vs RoutersSwitches vs Routersboth store-and-forward devices

routers network layer devices (examine network layer headers)switches are link layer devicesswitches are link layer devices

routers maintain routing tables implement routing algorithmsgswitches maintain switch tables implement filtering learning algorithmsf g g g

5 DataLink Layer 5-67

Link LayerLink Layer

5 1 I d i d 5 6 H b d i h51 Introduction and services5 2 E d t ti

56 Hubs and switches57 PPP

52 Error detection and correction 5 3Multiple access

58 Link Virtualization ATM

53Multiple access protocols5 4 Link-Layer 54 Link Layer Addressing55 Ethernet55 Ethernet

5 DataLink Layer 5-68

Point to Point Data Link ControlPoint to Point Data Link Controlone sender one receiver one link easier than one sender one receiver one link easier than broadcast link

no Media Access Controlno Media Access Controlno need for explicit MAC addressinge g dialup link ISDN lineeg dialup link ISDN line

popular point-to-point DLC protocolsPPP (point-to-point protocol)PPP (point to point protocol)HDLC High level data link control (Data link used to be considered ldquohigh layerrdquo in protocol used to be considered high layer in protocol stack

5 DataLink Layer 5-69

PPP Design Requirements [RFC 1557]

packet framing encapsulation of network-layer p f m g p u f w ydatagram in data link frame

carry network layer data of any network layer y y y yprotocol (not just IP) at same timeability to demultiplex upwards

bit transparency must carry any bit pattern in the data fielderror detection (no correction)connection liveness detect signal link failure to

k lnetwork layernetwork layer address negotiation endpoint can l fi h th rsquos t k dd ss

5 DataLink Layer 5-70

learnconfigure each otherrsquos network address

PPP non-requirementsPPP non requirements

ti no error correctionrecoveryno flow control

f d d l K out of order delivery OK no need to support multipoint links (eg polling)

E l l Error recovery flow control data re-ordering all relegated to higher layers

5 DataLink Layer 5-71

PPP Data FramePPP Data Frame

Fl d li i (f i )Flag delimiter (framing)Address does nothing (only one option)Control does nothing in the future possible multiple control fieldsP t l l t l t hi h f Protocol upper layer protocol to which frame delivered (eg PPP-LCP IP IPCP etc)

5 DataLink Layer 5-72

PPP Data FramePPP Data Frame

i f l d b i i dinfo upper layer data being carriedcheck cyclic redundancy check for error d t tidetection

5 DataLink Layer 5-73

Byte StuffingByte Stuffingldquodata transparencyrdquo requirement data field must

be allowed to include flag pattern lt01111110gtQ is received lt01111110gt data or flag

Sender adds (ldquostuffsrdquo) extra lt 01111110gt byte after each lt 01111110gt data byteReceiver

two 01111110 bytes in a row discard first byte d continue data reception

single 01111110 flag byte

5 DataLink Layer 5-74

Byte StuffingByte Stuffing

flag bytepatterni din datato send

flag byte pattern plusstuffed byte in transmitted data

5 DataLink Layer 5-75

transmitted data

PPP Data Control ProtocolPPP Data Control ProtocolBefore exchanging network-g g

layer data data link peers mustconfigure PPP link (max frame length authentication)authentication)learnconfigure networklayer informationlayer information

for IP carry IP Control Protocol (IPCP) msgs Protocol (IPCP) msgs (protocol field 8021) to configurelearn IP

5 DataLink Layer 5-76

gaddress

Link LayerLink Layer

5 1 I d i d 5 6 H b d i h51 Introduction and services5 2 E d t ti

56 Hubs and switches57 PPP

52 Error detection and correction 5 3Multiple access

58 Link Virtualization ATM and MPLS

53Multiple access protocols5 4 Link-Layer 54 Link Layer Addressing55 Ethernet55 Ethernet

5 DataLink Layer 5-77

Virtualization of networksVirtualization of networks

Vi li i f f l b i i Virtualization of resources powerful abstraction in systems engineering

ti l s i t l i t l computing examples virtual memory virtual devices

Virtual machines e g javaVirtual machines eg javaIBM VM os from 1960rsquos70rsquos

layering of abstractions donrsquot sweat the details of layering of abstractions don t sweat the details of the lower layer only deal with lower layers abstractlyabstractly

5 DataLink Layer 5-78

The Internet virtualizing networksThe Internet virtualizing networks

1974 multiple unconnected differing in1974 multiple unconnected nets

ARPAnet

hellip differing inaddressing conventionspacket formats

data-over-cable networkspacket satellite network (Aloha)

k d k

perror recoveryrouting

packet radio network

ARPAnet satellite net

5 DataLink Layer 5-79

ARPAnet satell te netA Protocol for Packet Network Intercommunication V Cerf R Kahn IEEE Transactions on CommunicationsMay 1974 pp 637-648

The Internet virtualizing networksThe Internet virtualizing networksInternetwork layer (IP)

addressing internetwork Gateway

ldquoembed internetwork packets in l l k f

addressing internetwork appears as single uniform entity despite underlying local network heterogeneitynetwork of networks

plocal packet format or extract themrdquoroute (at internetwork level) to next gatewaynetwork of networks next gateway

gateway

ARPAnet satellite net

5 DataLink Layer 5-80

ARPAnet satell te net

Cerf amp Kahnrsquos Internetwork ArchitectureCerf amp Kahn s Internetwork ArchitectureWhat is virtualized

two layers of addressing internetwork and local networknew layer (IP) makes everything homogeneous at internetwork layerunderlying local network technology

cablesatellite56K telephone modemtoday ATM MPLS

hellip ldquoinvisiblerdquo at internetwork layer Looks like a link

5 DataLink Layer 5-81

ylayer technology to IP

ATM and MPLSATM and MPLS

P k h ATM MPLS separate networks in their own right

different service models addressing routing from Internet

viewed by Internet as logical link connecting IP routers

just like dialup link is really part of separate network (telephone network)

ATM MPLS of technical interest in their own right

5 DataLink Layer 5-82

Asynchronous Transfer Mode ATMAsynchronous Transfer Mode ATM1990rsquos00 standard for high-speed (155Mbps to g p ( p622 Mbps and higher) Broadband Integrated Service Digital Network architectureGoal integrated end-end transport of carry voice video data

i i i Q i f i id meeting timingQoS requirements of voice video (versus Internet best-effort model)ldquo t ti rdquo t l h t h i l ts i ldquonext generationrdquo telephony technical roots in telephone worldpacket switching (fixed length packets called packet-switching (fixed length packets called ldquocellsrdquo) using virtual circuits

5 DataLink Layer 5-83

ATM architecture ATM architecture AAL AAL

ATM ATMATM ATM

physical physicalphysical physical

d d ti h it h

adaptation layer only at edge of ATM network

end system end systemswitch switch

data segmentationreassemblyroughly analagous to Internet transport layer

ATM layer ldquonetworkrdquo layercell switching routing

5 DataLink Layer 5-84

physical layer

ATM network or link layerATM network or link layerVision end-to-end

t t ldquoATM f transport ldquoATM from desktop to desktoprdquo

ATM is a network ATM

IPnetwork

ATM is a network technology

Reality used to connect

ATMnetwork

Reality used to connect IP backbone routers

ldquoIP over ATMrdquoIP over ATMATM as switched link layer y connecting IP routers

5 DataLink Layer 5-85

ATM Adaptation Layer (AAL)ATM Adaptation Layer (AAL)

TM d i L ( L) ldquo d rdquo ATM Adaptation Layer (AAL) ldquoadaptsrdquo upper layers (IP or native ATM applications) to ATM layer belowlayer belowAAL present only in end systems not in switchesAAL layer segment (headertrailer fields data) AAL layer segment (headertrailer fields data) fragmented across multiple ATM cells

analogy TCP segment in many IP packetsanalogy TCP segment in many IP packets

AAL AAL

physical

ATM

physical

ATM

physical

ATM

physical

ATM

5 DataLink Layer 5-86

physical physicalp y p y

end system end systemswitch switch

ATM Adaptation Layer (AAL) [more]

Different versions of AAL layers depending on ATM y p gservice classAAL1 for CBR (Constant Bit Rate) services eg circuit emulationAAL2 for VBR (Variable Bit Rate) services eg MPEG videoAAL5 for data (eg IP datagrams)

User data

AAL PDU

ATM cell

5 DataLink Layer 5-87

ATM LayeryService transport cells across ATM network

analogous to IP network layeranalogous to IP network layervery different services than IP network layer

Guarantees NetworkArchitecture

ServiceModel Bandwidth Loss Order Timing

Congestionfeedback

Guarantees

Internet

ATM

best effort

CBR

none

constant

no

yes

no

yes

no

yes

no (inferredvia loss)noATM

ATM

CBR

VBR

constantrateguaranteedrate

yes

yes

yes

yes

yes

yes

nocongestionnocongestion

ATM

ATM

ABR

UBR

rateguaranteed minimum

no yes nocongestionyes

5 DataLink Layer 5-88

ATM UBR none no yes no no

ATM Layer Virtual CircuitsATM Layer Virtual CircuitsVC transport cells carried on VC from source to destp

call setup teardown for each call before data can floweach packet carries VC identifier (not destination ID)

it h d t th i t i ldquo t t rdquo f h every switch on source-dest path maintain ldquostaterdquo for each passing connectionlinkswitch resources (bandwidth buffers) may be allocated to ( ff ) m yVC to get circuit-like perf

Permanent VCs (PVCs)long lasting connectionstypically ldquopermanentrdquo route between to IP routers

Switched VCs (SVC)dynamically set up on per-call basis

5 DataLink Layer 5-89

ATM VCsATM VCsAdvantages of ATM VC approachAdvantages of ATM VC approach

QoS performance guarantee for connection mapped to VC (bandwidth delay delay jitter)mapped to VC (bandwidth delay delay jitter)

Drawbacks of ATM VC approachInefficient support of datagram trafficInefficient support of datagram trafficone PVC between each sourcedest pair) does not scale (N2 connections needed) not scale (N 2 connections needed) SVC introduces call setup latency processing overhead for short lived connectionsoverhead for short lived connections

5 DataLink Layer 5-90

ATM Layer ATM cellATM Layer ATM cell5-byte ATM cell headery48-byte payload

Why small payload -gt short cell-creation delay W y m p y yfor digitized voicehalfway between 32 and 64 (compromise)y p

Cell headerCell header

Cell format

5 DataLink Layer 5-91

ATM cell headerATM cell headerVCI virtual channel IDVCI virtual channel ID

will change from link to link thru netPT P l d t p ( RM ll s s d t ll) PT Payload type (eg RM cell versus data cell) CLP Cell Loss Priority bit

CLP 1 i li l i it ll b CLP = 1 implies low priority cell can be discarded if congestion

HEC Header Error ChecksumHEC Header Error Checksumcyclic redundancy check

5 DataLink Layer 5-92

ATM Physical Layer (more)ATM Physical Layer (more)

T i ( bl ) f h i l lTwo pieces (sublayers) of physical layerTransmission Convergence Sublayer (TCS) adapts ATM l b t PMD s bl b lATM layer above to PMD sublayer belowPhysical Medium Dependent depends on physical medium being usedmedium being used

TCS FunctionsTCS FunctionsHeader checksum generation 8 bits CRC C ll d lin ti nCell delineationWith ldquounstructuredrdquo PMD sublayer transmission of idle cells when no data cells to send

5 DataLink Layer 5-93

of idle cells when no data cells to send

ATM Physical LayerATM Physical Layer

Ph l d D d (P D) blPhysical Medium Dependent (PMD) sublayerSONETSDH transmission frame structure (like a

b ) container carrying bits) bit synchronization bandwidth partitions (TDM) several speeds OC3 = 15552 Mbps OC12 = 62208 Mb OC48 2 45 Gb OC192 9 6 GbMbps OC48 = 245 Gbps OC192 = 96 Gbps

TIT3 transmission frame structure (old telephone hierarchy) 1 5 Mbps 45 Mbpstelephone hierarchy) 15 Mbps 45 Mbpsunstructured just cells (busyidle)

5 DataLink Layer 5-94

IP-Over-ATMIP over ATM

Classic IP only3 ldquonetworksrdquo (e g

IP over ATMreplace ldquonetworkrdquo (e g LAN segment) 3 networks (eg

LAN segments)MAC (802 3) and IP

(eg LAN segment) with ATM networkATM addresses IP MAC (8023) and IP

addressesATM addresses IP addresses

ATMATMnetwork

Ethernet Ethernet

5 DataLink Layer 5-95

EthernetLANs

EthernetLANs

IP-Over-ATMapp

transportapp

AALEthIP

transportIP

AALATM

apptransport

IPEth ATM

phyphyEth

ATM

ATMphy

ATMphy

Ethphy

ATMphy

p y

5 DataLink Layer 5-96

Datagram Journey in IP-over-ATM NetworkDatagram Journey in IP-over-ATM Network

at Source HostIP layer maps between IP ATM dest address (using ARP)passes datagram to AAL5AAL5 encapsulates data segments cells passes to ATM layer

ATM network moves cell along VC to destinationat Destination Host

AAL5 reassembles cells into original datagramif CRC OK datagram is passed to IP

5 DataLink Layer 5-97

IP-Over-ATMIP-Over-ATM

IssuesIP datagrams into

ATMnetwork

ATM AAL5 PDUsfrom IP addresses

TM ddto ATM addressesjust like IP dd ss s t addresses to

8023 MAC addresses

EthernetLANs

addresses

5 DataLink Layer 5-98

Multiprotocol label switching (MPLS)Multiprotocol label switching (MPLS)

i i i l l d IP f di b i fi d initial goal speed up IP forwarding by using fixed length label (instead of IP address) to do forwarding forwarding

borrowing ideas from Virtual Circuit (VC) approachbut IP datagram still keeps IP addressg p

PPP or EthernetPPP or Ethernet header

IP header remainder of link-layer frameMPLS header

label Exp S TTL

5 DataLink Layer 5-9920 3 1 5

MPLS capable routersMPLS capable routers

k l b l it h d taka label-switched routerforwards packets to outgoing interface based

l l b l l (d rsquot i t IP dd )only on label value (donrsquot inspect IP address)MPLS forwarding table distinct from IP forwarding tablestables

signaling protocol needed to set up forwardingRSVP TERSVP-TEforwarding possible along paths that IP alone would not allow (eg source-specific routing) not allow (eg source spec f c rout ng) use MPLS for traffic engineering

must co-exist with IP-only routers5 DataLink Layer 5-100

must co exist with IP only routers

MPLS forwarding tablesi t t

MPLS forwarding tables

in out outlabel label dest interface

in out outlabel label dest interface

10 A 012 D 0 label label dest interface

10 6 A 112 9 D 0

12 D 08 A 1

D1

00R6

R3R4R5

0

1

A

1

0

R1R2A

in out outlabel label dest interface

6 A 0in out out

label label dest interface

5 DataLink Layer 5-101

6 - A 0label label dest interface

8 6 A 0

Chapter 5 SummaryChapter 5 Summaryprinciples behind data link layer servicespr nc p s h n ata n ay r s r c s

error detection correctionsharing a broadcast channel multiple accesslink layer addressing

instantiation and implementation of various link l t h l ilayer technologies

Ethernetit h d LANSswitched LANS

PPPi li d k li k l TM MPLvirtualized networks as a link layer ATM MPLS

5 DataLink Layer 5-102

Chapter 5 letrsquos take a breathChapter 5 let s take a breathjourney down protocol stack completejourney down protocol stack complete(except PHY)solid understanding of networking principles solid understanding of networking principles practice

ld t h b t l t f i t ti hellip could stop here hellip but lots of interesting topics

lwirelessmultimediasecurity network management

5 DataLink Layer 5-103

Page 7: Link Layer Link Layer: Introduction

Slotted ALOHA

P s ConsProssingle active node can continuously transmit

Conscollisions wasting slotsidle slotscontinuously transmit

at full rate of channelhighly decentralized

idle slotsnodes may be able to detect collision in less highly decentralized

only slots in nodes need to be in sync

than time to transmit packetclock synchronization

5 DataLink Layer 5-25

ysimple

clock synchronization

Slotted Aloha efficiencyymax efficiency find p that maximizes

Efficiency long-run fraction of successful slots p that maximizes

Np(1-p)N-1

for many nodes take

fraction of successful slots (many nodes all with many frames to send)

suppose N nodes with

for many nodes take limit of Np(1-p)N-1

as N goes to infinity

frames to send)

many frames to send each transmits in slot with probability p

g ygives

Max efficiency = 1e = 37with probability pprob that given node has success in a slot =

At best channelused for useful has success in a slot =

p(1-p)N-1

prob that any node has

used for useful transmissions 37of time

5 DataLink Layer 5-26

p ya success = Np(1-p)N-1

Pure (unslotted) ALOHAPure (unslotted) ALOHAunslotted Aloha simpler no synchronizationunslotted Aloha simpler no synchronizationwhen frame first arrives

transmit immediately transmit immediately collision probability increases

frame sent at t0 collides with other frames sent in [t0-1t0+1]0 [ 0 0 ]

5 DataLink Layer 5-27

Pure Aloha efficiencyPure Aloha efficiencyP(success by given node) = P(node transmits) P(success by g ven node) P(node transm ts)

P(no other node transmits in [p0-1p0] P(no other node transmits in [p0-1 p0] P(no other node transmits in [p0 1p0]

= p (1-p)N-1 (1-p)N-1

= p (1-p)2(N-1)= p (1 p)

hellip choosing optimum p and then letting n -gt infty

= 1(2e) = 18

even worse than slotted Aloha

5 DataLink Layer 5-28

CSMA (Carrier Sense Multiple Access)CSMA (Carrier Sense Multiple Access)

CSMA listen before transmitIf channel sensed idle transmit entire framef chann s ns transm t nt r fram

If channel sensed busy defer transmission

human analogy donrsquot interrupt others

5 DataLink Layer 5-29

CSMA collisionsCSMA collisionsc llisi ns c n still ccu

spatial layout of nodes

collisions can still occurpropagation delay means two nodes may not heareach otherrsquos transmission

collisionentire packet transmission time wasted

tnoterole of distance amp propagation delay in determining collision y gprobability

5 DataLink Layer 5-30

CSMACD (Collision Detection)CSMACD (Collision Detection)CSMACD carrier sensing deferral as in CSMACSMACD carrier sensing deferral as in CSMA

collisions detected within short timecolliding transmissions aborted reducing channel colliding transmissions aborted reducing channel wastage

collision detectioncollision detectioneasy in wired LANs measure signal strengths compare transmitted received signalscompare transmitted received signalsdifficult in wireless LANs received signal strength overwhelmed by local transmission strength overwhelmed by local transmission strength

human analogy the polite conversationalist

5 DataLink Layer 5-31

CSMACD collision detectionCSMACD collision detection

5 DataLink Layer 5-32

ldquoTaking Turnsrdquo MAC protocolsTaking Turns MAC protocols

h l i i i M C lchannel partitioning MAC protocolsshare channel efficiently and fairly at high loadinefficient at low load delay in channel access 1N bandwidth allocated even if only 1 active node node

Random access MAC protocolsefficient at low load single node can fully efficient at low load single node can fully utilize channelhigh load collision overheadhigh load collision overhead

ldquotaking turnsrdquo protocolslook for best of both worlds

5 DataLink Layer 5-33

look for best of both worlds

ldquoTaking Turnsrdquo MAC protocolsTaking Turns MAC protocolsPollingPolling

master node ldquoinvitesrdquo slave nodes d tinvites slave nodes to transmit in turntypically used with master

polldata

typically used with ldquodumbrdquo slave devicesconcerns

data

polling overhead latency slavessingle point of failure (master)

5 DataLink Layer 5-34

ldquoTaking Turnsrdquo MAC protocolsTaking Turns MAC protocolsToken passingoken pass ng

control token passed from one node to next

T

sequentiallytoken message (nothing

concernstoken overhead

to send)T

latencysingle point of failure (token)(token)

5 DataLink Layer 5-35

data

Summary of MAC protocolsSummary of MAC protocols

h l i i i b i f dchannel partitioning by time frequency or codeTime Division Frequency Divisiond ss (d i ) random access (dynamic) ALOHA S-ALOHA CSMA CSMACDcarrier sensing easy in some technologies (wire) hard in carrier sensing easy in some technologies (wire) hard in others (wireless)CSMACD used in EthernetCSMACA used in 80211

taking turnslli f l i k ipolling from central site token passing

Bluetooth FDDI IBM Token Ring

5 DataLink Layer 5-36

Link LayerLink Layer

5 1 I d i d 5 6 Li k l i h51 Introduction and services5 2 E d t ti

56 Link-layer switches57 PPP

52 Error detection and correction 5 3Multiple access

58 Link Virtualization ATM MPLS

53Multiple access protocols5 4 Link-Layer 54 Link Layer Addressing55 Ethernet55 Ethernet

5 DataLink Layer 5-37

MAC Addresses and ARPMAC Addresses and ARP

32-bit IP address network-layer addressyused to get datagram to destination IP subnet

MAC (or LAN or physical or Ethernet) MAC (or LAN or physical or Ethernet) address

f n ti n t f m f m n int f t n th function get frame from one interface to another physically-connected interface (same network)48 bit MAC address (for most LANs)48 bit MAC address (for most LANs)

bull burned in NIC ROM also sometimes software settable

5 DataLink Layer 5-38

LAN Addresses and ARPLAN Addresses and ARPEach adapter on LAN has unique LAN address

Broadcast address =FF-FF-FF-FF-FF-FF

1A-2F-BB-76-09-AD

= adapterLAN

(wired ori l )

58-23-D7-FA-20-B071-65-F7-2B-08-53

wireless)

0C-C4-11-6F-E3-98

5 DataLink Layer 5-39

LAN Address (more)LAN Address (more)

M C dd ll i d i i d b IEEEMAC address allocation administered by IEEEmanufacturer buys portion of MAC address space (t ss i ss)(to assure uniqueness)analogy

( ) MAC dd lik S i l S it N b(a) MAC address like Social Security Number(b) IP address like postal address

MAC fl dd づ bili MAC flat address づ portability can move LAN card from one LAN to another

IP hi chic l dd ss NOT p t blIP hierarchical address NOT portableaddress depends on IP subnet to which node is attached

5 DataLink Layer 5-40

ARP Address Resolution ProtocolAR Address Resolut on rotocol

Each IP node (host Question how to determine Each IP node (host router) on LAN has ARP table

Question how to determineMAC address of Bknowing Brsquos IP address

ARP table IPMAC address mappings for

knowing B s IP address

137196778 pp gsome LAN nodes

lt IP address MAC address TTLgtTTL (Tim T Li ) tim

1A-2F-BB-76-09-AD

137196723 137196714

TTL (Time To Live) time after which address mapping will be forgotten ( ll 20 )58-23-D7-FA-20-B071-65-F7-2B-08-53

LAN

(typically 20 min)58 23 D7 FA 20 B0

0C-C4-11-6F-E3-98137 196 7 88

5 DataLink Layer 5-41

137196788

ARP protocol Same LAN (network)

A wants to send datagram t B d Brsquo MAC dd A h ( ) IP tto B and Brsquos MAC address not in Arsquos ARP tableA broadcasts ARP query

A caches (saves) IP-to-MAC address pair in its ARP table until information q y

packet containing Bs IP address

dest MAC address = FF

becomes old (times out) soft state information that times out (goes dest MAC address = FF-

FF-FF-FF-FF-FFall machines on LAN

that times out (goes away) unless refreshed

ARP is ldquoplug-and-playrdquoreceive ARP query

B receives ARP packet replies to A with its (Bs)

p g p ynodes create their ARP tables without intervention from net replies to A with its (B s)

MAC addressframe sent to Arsquos MAC address (unicast)

intervention from net administrator

5 DataLink Layer 5-42

address (unicast)

Addressing routing to another LANwalkthrough send datagram from A to B via R

ssume A kn s Brsquos IP ddress

A74-29-9C-E8-FF-55 88-B2-2F-54-1A-0F

assume A knows B s IP address

1A-23-F9-CD-06-9BE6-E9-00-17-BB-4B

111111111111

A222222222221

R

222222222220111111111110

111111111112B

222222222222

CC-49-DE-D0-AB-7D

49-BD-D2-C7-56-2A

t ARP t bl s i t R f h IP two ARP tables in router R one for each IP network (LAN)

5 DataLink Layer 5-43

A creates IP datagram with source A destination B A uses ARP to get Rrsquos MAC address for 111 111 111 110A uses ARP to get R s MAC address for 111111111110A creates link-layer frame with Rs MAC address as dest frame contains A-to-B IP datagram This is a really importantArsquos NIC sends frame Rrsquos NIC receives frame R r m v s IP d t r m fr m Eth rn t fr m s s its

This is a really importantexample ndash make sure youunderstand

R removes IP datagram from Ethernet frame sees its destined to BR uses ARP to get Brsquos MAC address gR creates frame containing A-to-B IP datagram sends to B

A74-29-9C-E8-FF-55 88-B2-2F-54-1A-0F

1A-23-F9-CD-06-9BE6-E9-00-17-BB-4B

111111111111

A222222222221

R

222222222220111111111110

111111111112

B222222222222

5 DataLink Layer 5-44

RCC-49-DE-D0-AB-7D

49-BD-D2-C7-56-2A

Link LayerLink Layer

5 1 I d i d 5 6 Li k l i h51 Introduction and services5 2 E d t ti

56 Link-layer switches57 PPP

52 Error detection and correction 5 3Multiple access

58 Link Virtualization ATM and MPLS

53Multiple access protocols5 4 Link-Layer 54 Link Layer Addressing55 Ethernet55 Ethernet

5 DataLink Layer 5-45

Ethernetldquodominantrdquo wired LAN technology

cheap $20 for NICfirst widely used LAN technologyy gysimpler cheaper than token LANs and ATMkept up with speed race 10 Mbps ndash 10 Gbps p p p p p

Metcalfersquos Ethernetsketch

5 DataLink Layer 5-46

Star topologyp gybus topology popular through mid 90s

all nodes in same collision domain (can collide with each all nodes in same collision domain (can collide with each other)

today star topology prevails h active switch in center

each ldquospokerdquo runs a (separate) Ethernet protocol (nodes do not collide with each other)

switch

b l bl

5 DataLink Layer 5-47

bus coaxial cable star

Ethernet Frame StructuremSending adapter encapsulates IP datagram (or other g p p g (

network layer protocol packet) in Ethernet frame

Preamble7 bytes with pattern 10101010 followed by one y p ybyte with pattern 10101011used to synchronize receiver sender clock rates

5 DataLink Layer 5-48

Ethernet Frame Structure (more)Ethernet Frame Structure (more)Addresses 6 bytesy

if adapter receives frame with matching destination address or with broadcast address (eg ARP packet) it passes data in frame to network layer protocolpasses data in frame to network layer protocolotherwise adapter discards frame

Type indicates higher layer protocol (mostly IP Type indicates higher layer protocol (mostly IP but others possible eg Novell IPX AppleTalk)CRC checked at receiver if error is detected frame is dropped

5 DataLink Layer 5-49

Ethernet Unreliable connectionlessEthernet Unreliable connectionless

i l N h d h ki b di d connectionless No handshaking between sending and receiving NICs

li bl i i NIC d s rsquot s d ks ks unreliable receiving NIC doesnrsquot send acks or nacks to sending NIC

stream of datagrams passed to network layer can have gaps stream of datagrams passed to network layer can have gaps (missing datagrams)gaps will be filled if app is using TCPotherwise app will see gaps

Ethernetrsquos MAC protocol unslotted CSMACD

5 DataLink Layer 5-50

Ethernet CSMACD algorithmg1 NIC receives datagram 4 If NIC detects another

from network layer creates frame

2 f N C h l dl

transmission while transmitting aborts and sends jam signal2 If NIC senses channel idle

starts frame transmission If NIC senses channel

sends jam signal5 After aborting NIC

enters exponential If NIC senses channel busy waits until channel idle then transmits

enters exponential backoff after mth collision NIC chooses K at

3 If NIC transmits entire frame without detecting

random from 012hellip2m-1 NIC waits K 512 bi i

ganother transmission NIC is done with frame

K512 bit times returns to Step 2

5 DataLink Layer 5-51

Ethernetrsquos CSMACD (more)Ethernet s CSMACD (more)Jam Signal make sure all Exponential Backoffg

other transmitters are aware of collision 48 bits

Bit time 1 microsec for 10

pGoal adapt retransmission attempts to estimated current loadBit time 1 microsec for 10

Mbps Ethernet for K=1023 wait time is about 50 msec

current loadheavy load random wait will be longer

about 50 msec first collision choose K from 01 delay is K 512 bit transmission timestransm ss on t m safter second collision choose K from 0123hellipft t lli i h K

Seeinteract with Javaapplet on AWL Web site

after ten collisions choose K from 01234hellip1023

pphighly recommended

5 DataLink Layer 5-52

CSMACD efficiencyCSMACD efficiency

T d l b 2 d i L NTprop = max prop delay between 2 nodes in LANttrans = time to transmit max-size frame

efficiency 1

=

efficiency goes to 1

transprop ttff y

51+

efficiency goes to 1 as tprop goes to 0as ttrans goes to infinitytrans g y

better performance than ALOHA and simple cheap decentralized

5 DataLink Layer 5-53

p

8023 Ethernet Standards Link amp Physical Layersy y

many different Ethernet standardsycommon MAC protocol and frame formatdifferent speeds 2 Mbps 10 Mbps 100 Mbps 1Gb 10G b1Gbps 10G bpsdifferent physical layer media fiber cable

MAC protocolapplicationtransportnetwork

li k

MAC protocoland frame format

100BASE-TX 100BASE-FX100BASE-T2link

physical100BASE-T4 100BASE-SX 100BASE-BX

5 DataLink Layer 5-54

fiber physical layercopper (twisterpair) physical layer

Manchester encodingManchester encoding

used in 10BaseTeach bit has a transitionallows clocks in sending and receiving nodes to g gsynchronize to each other

no need for a centralized global clock among nodes

5 DataLink Layer 5-55

Hey this is physical-layer stuff

Link LayerLink Layer

5 1 I d i d 5 6 Li k l i h51 Introduction and services5 2 E d t ti

56 Link-layer switches57 PPP

52 Error detection and correction 5 3 Multiple access

58 Link Virtualization ATM MPLS

53 Multiple access protocols5 4 Link-layer 54 Link layer Addressing55 Ethernet55 Ethernet

5 DataLink Layer 5-56

Hubshellip physical-layer (ldquodumbrdquo) repeaters

bits coming in one link go out all other links at bits coming in one link go out all other links at same rateall nodes connected to hub can collide with one anotherno frame bufferinggno CSMACD at hub host NICs detect collisions

twisted pair

hub

5 DataLink Layer 5-57

Switchlink-layer device smarter than hubs take yactive role

store forward Ethernet framesexamine incoming framersquos MAC address selectively forward frame to one-or-more

l k h f f d d outgoing links when frame is to be forwarded on segment uses CSMACD to access segment

transparenthosts are unaware of presence of switches

plug-and-play self-learningswitches do not need to be configured

5 DataLink Layer 5-58

g

Switch allows multiple simultaneous ptransmissions

A

hosts have dedicated direct connection to switch

BCrsquo

switches buffer packetsEthernet protocol used on each incoming link but no

1 2 345

6

each incoming link but no collisions full duplex

each link is its own collision C

45

domainswitching A-to-Arsquo and B-to-Brsquo simultaneously

ArsquoBrsquo

to-B simultaneously without collisions

not possible with dumb hub

switch with six interfaces(123456)

5 DataLink Layer 5-59

Switch TableSwitch Table

Q h d s s it h k th t A

Q how does switch know that Arsquo reachable via interface 4 Brsquo reachable via interface 5

BCrsquo

B reachable via interface 5A each switch has a switch table each entry

1 2 345

6ta ach ntry

(MAC address of host interface to reach host time stamp) C

45

looks like a routing tableQ how are entries created

i t i d i it h t bl

ArsquoBrsquo

maintained in switch table something like a routing protocol

switch with six interfaces(123456)

5 DataLink Layer 5-60

protocol

Switch self-learning Source ASwitch self-learning

s it h l s hi h h sts A A Arsquo

Dest Arsquo

switch learns which hosts can be reached through which interfaces

BCrsquo

which interfaceswhen frame received switch ldquolearnsrdquo location of

d i i LAN

1 2 345

6

sender incoming LAN segmentrecords senderlocation

C

45

pair in switch tableArsquoBrsquo

MAC addr interface TTLMAC addr interface TTLSwitch table

(initially empty)A 1 60

5 DataLink Layer 5-61

Switch frame filteringforwardingWhen frame received

1 record link associated with sending host2 ind x s itch t bl usin MAC d st dd ss2 index switch table using MAC dest address3 if entry found for destination

then then if dest on segment from which frame arrived

then drop the framethen drop the frameelse forward the frame on interface indicated

else flood forward on all but the interface

on which the frame arrived5 DataLink Layer 5-62

on which the frame arrived

Self-learning Source ASelf learning forwarding

lA A Arsquo

Dest Arsquo

exampleBCrsquo

frame destinati n 1 2 345

6A ArsquoA ArsquoA ArsquoA ArsquoA Arsquoframe destination unknown floodd ti ti A

C

45

Arsquo A

destination A location knownselective send

ArsquoBrsquo

MAC addr interface TTL

selective send

MAC addr interface TTLSwitch table

(initially empty)A 1 60Arsquo 4 60

5 DataLink Layer 5-63

Interconnecting switchesg

switches can be connected togetherg

S

S4

A

B

S1

C DF

S2S3

IB C D

E HI

G

Q sending from A to G - how does S1 know to forward frame destined to F via S and S forward frame destined to F via S4 and S3A self learning (works exactly the same as in single-switch case)

5 DataLink Layer 5-64

single switch case)

Self-learning multi-switch exampleSuppose C sends frame to I I responds to C

S

S412

A

B

S1

C DF

S2S3

I

2

B C D

E HI

G

Q show switch tables and packet forwarding in S1 S2 S3 S4

5 DataLink Layer 5-65

Institutional networkInstitutional network

to externalnetwork

mail server

networkrouter web server

IP subnet

5 DataLink Layer 5-66

Switches vs RoutersSwitches vs Routersboth store-and-forward devices

routers network layer devices (examine network layer headers)switches are link layer devicesswitches are link layer devices

routers maintain routing tables implement routing algorithmsgswitches maintain switch tables implement filtering learning algorithmsf g g g

5 DataLink Layer 5-67

Link LayerLink Layer

5 1 I d i d 5 6 H b d i h51 Introduction and services5 2 E d t ti

56 Hubs and switches57 PPP

52 Error detection and correction 5 3Multiple access

58 Link Virtualization ATM

53Multiple access protocols5 4 Link-Layer 54 Link Layer Addressing55 Ethernet55 Ethernet

5 DataLink Layer 5-68

Point to Point Data Link ControlPoint to Point Data Link Controlone sender one receiver one link easier than one sender one receiver one link easier than broadcast link

no Media Access Controlno Media Access Controlno need for explicit MAC addressinge g dialup link ISDN lineeg dialup link ISDN line

popular point-to-point DLC protocolsPPP (point-to-point protocol)PPP (point to point protocol)HDLC High level data link control (Data link used to be considered ldquohigh layerrdquo in protocol used to be considered high layer in protocol stack

5 DataLink Layer 5-69

PPP Design Requirements [RFC 1557]

packet framing encapsulation of network-layer p f m g p u f w ydatagram in data link frame

carry network layer data of any network layer y y y yprotocol (not just IP) at same timeability to demultiplex upwards

bit transparency must carry any bit pattern in the data fielderror detection (no correction)connection liveness detect signal link failure to

k lnetwork layernetwork layer address negotiation endpoint can l fi h th rsquos t k dd ss

5 DataLink Layer 5-70

learnconfigure each otherrsquos network address

PPP non-requirementsPPP non requirements

ti no error correctionrecoveryno flow control

f d d l K out of order delivery OK no need to support multipoint links (eg polling)

E l l Error recovery flow control data re-ordering all relegated to higher layers

5 DataLink Layer 5-71

PPP Data FramePPP Data Frame

Fl d li i (f i )Flag delimiter (framing)Address does nothing (only one option)Control does nothing in the future possible multiple control fieldsP t l l t l t hi h f Protocol upper layer protocol to which frame delivered (eg PPP-LCP IP IPCP etc)

5 DataLink Layer 5-72

PPP Data FramePPP Data Frame

i f l d b i i dinfo upper layer data being carriedcheck cyclic redundancy check for error d t tidetection

5 DataLink Layer 5-73

Byte StuffingByte Stuffingldquodata transparencyrdquo requirement data field must

be allowed to include flag pattern lt01111110gtQ is received lt01111110gt data or flag

Sender adds (ldquostuffsrdquo) extra lt 01111110gt byte after each lt 01111110gt data byteReceiver

two 01111110 bytes in a row discard first byte d continue data reception

single 01111110 flag byte

5 DataLink Layer 5-74

Byte StuffingByte Stuffing

flag bytepatterni din datato send

flag byte pattern plusstuffed byte in transmitted data

5 DataLink Layer 5-75

transmitted data

PPP Data Control ProtocolPPP Data Control ProtocolBefore exchanging network-g g

layer data data link peers mustconfigure PPP link (max frame length authentication)authentication)learnconfigure networklayer informationlayer information

for IP carry IP Control Protocol (IPCP) msgs Protocol (IPCP) msgs (protocol field 8021) to configurelearn IP

5 DataLink Layer 5-76

gaddress

Link LayerLink Layer

5 1 I d i d 5 6 H b d i h51 Introduction and services5 2 E d t ti

56 Hubs and switches57 PPP

52 Error detection and correction 5 3Multiple access

58 Link Virtualization ATM and MPLS

53Multiple access protocols5 4 Link-Layer 54 Link Layer Addressing55 Ethernet55 Ethernet

5 DataLink Layer 5-77

Virtualization of networksVirtualization of networks

Vi li i f f l b i i Virtualization of resources powerful abstraction in systems engineering

ti l s i t l i t l computing examples virtual memory virtual devices

Virtual machines e g javaVirtual machines eg javaIBM VM os from 1960rsquos70rsquos

layering of abstractions donrsquot sweat the details of layering of abstractions don t sweat the details of the lower layer only deal with lower layers abstractlyabstractly

5 DataLink Layer 5-78

The Internet virtualizing networksThe Internet virtualizing networks

1974 multiple unconnected differing in1974 multiple unconnected nets

ARPAnet

hellip differing inaddressing conventionspacket formats

data-over-cable networkspacket satellite network (Aloha)

k d k

perror recoveryrouting

packet radio network

ARPAnet satellite net

5 DataLink Layer 5-79

ARPAnet satell te netA Protocol for Packet Network Intercommunication V Cerf R Kahn IEEE Transactions on CommunicationsMay 1974 pp 637-648

The Internet virtualizing networksThe Internet virtualizing networksInternetwork layer (IP)

addressing internetwork Gateway

ldquoembed internetwork packets in l l k f

addressing internetwork appears as single uniform entity despite underlying local network heterogeneitynetwork of networks

plocal packet format or extract themrdquoroute (at internetwork level) to next gatewaynetwork of networks next gateway

gateway

ARPAnet satellite net

5 DataLink Layer 5-80

ARPAnet satell te net

Cerf amp Kahnrsquos Internetwork ArchitectureCerf amp Kahn s Internetwork ArchitectureWhat is virtualized

two layers of addressing internetwork and local networknew layer (IP) makes everything homogeneous at internetwork layerunderlying local network technology

cablesatellite56K telephone modemtoday ATM MPLS

hellip ldquoinvisiblerdquo at internetwork layer Looks like a link

5 DataLink Layer 5-81

ylayer technology to IP

ATM and MPLSATM and MPLS

P k h ATM MPLS separate networks in their own right

different service models addressing routing from Internet

viewed by Internet as logical link connecting IP routers

just like dialup link is really part of separate network (telephone network)

ATM MPLS of technical interest in their own right

5 DataLink Layer 5-82

Asynchronous Transfer Mode ATMAsynchronous Transfer Mode ATM1990rsquos00 standard for high-speed (155Mbps to g p ( p622 Mbps and higher) Broadband Integrated Service Digital Network architectureGoal integrated end-end transport of carry voice video data

i i i Q i f i id meeting timingQoS requirements of voice video (versus Internet best-effort model)ldquo t ti rdquo t l h t h i l ts i ldquonext generationrdquo telephony technical roots in telephone worldpacket switching (fixed length packets called packet-switching (fixed length packets called ldquocellsrdquo) using virtual circuits

5 DataLink Layer 5-83

ATM architecture ATM architecture AAL AAL

ATM ATMATM ATM

physical physicalphysical physical

d d ti h it h

adaptation layer only at edge of ATM network

end system end systemswitch switch

data segmentationreassemblyroughly analagous to Internet transport layer

ATM layer ldquonetworkrdquo layercell switching routing

5 DataLink Layer 5-84

physical layer

ATM network or link layerATM network or link layerVision end-to-end

t t ldquoATM f transport ldquoATM from desktop to desktoprdquo

ATM is a network ATM

IPnetwork

ATM is a network technology

Reality used to connect

ATMnetwork

Reality used to connect IP backbone routers

ldquoIP over ATMrdquoIP over ATMATM as switched link layer y connecting IP routers

5 DataLink Layer 5-85

ATM Adaptation Layer (AAL)ATM Adaptation Layer (AAL)

TM d i L ( L) ldquo d rdquo ATM Adaptation Layer (AAL) ldquoadaptsrdquo upper layers (IP or native ATM applications) to ATM layer belowlayer belowAAL present only in end systems not in switchesAAL layer segment (headertrailer fields data) AAL layer segment (headertrailer fields data) fragmented across multiple ATM cells

analogy TCP segment in many IP packetsanalogy TCP segment in many IP packets

AAL AAL

physical

ATM

physical

ATM

physical

ATM

physical

ATM

5 DataLink Layer 5-86

physical physicalp y p y

end system end systemswitch switch

ATM Adaptation Layer (AAL) [more]

Different versions of AAL layers depending on ATM y p gservice classAAL1 for CBR (Constant Bit Rate) services eg circuit emulationAAL2 for VBR (Variable Bit Rate) services eg MPEG videoAAL5 for data (eg IP datagrams)

User data

AAL PDU

ATM cell

5 DataLink Layer 5-87

ATM LayeryService transport cells across ATM network

analogous to IP network layeranalogous to IP network layervery different services than IP network layer

Guarantees NetworkArchitecture

ServiceModel Bandwidth Loss Order Timing

Congestionfeedback

Guarantees

Internet

ATM

best effort

CBR

none

constant

no

yes

no

yes

no

yes

no (inferredvia loss)noATM

ATM

CBR

VBR

constantrateguaranteedrate

yes

yes

yes

yes

yes

yes

nocongestionnocongestion

ATM

ATM

ABR

UBR

rateguaranteed minimum

no yes nocongestionyes

5 DataLink Layer 5-88

ATM UBR none no yes no no

ATM Layer Virtual CircuitsATM Layer Virtual CircuitsVC transport cells carried on VC from source to destp

call setup teardown for each call before data can floweach packet carries VC identifier (not destination ID)

it h d t th i t i ldquo t t rdquo f h every switch on source-dest path maintain ldquostaterdquo for each passing connectionlinkswitch resources (bandwidth buffers) may be allocated to ( ff ) m yVC to get circuit-like perf

Permanent VCs (PVCs)long lasting connectionstypically ldquopermanentrdquo route between to IP routers

Switched VCs (SVC)dynamically set up on per-call basis

5 DataLink Layer 5-89

ATM VCsATM VCsAdvantages of ATM VC approachAdvantages of ATM VC approach

QoS performance guarantee for connection mapped to VC (bandwidth delay delay jitter)mapped to VC (bandwidth delay delay jitter)

Drawbacks of ATM VC approachInefficient support of datagram trafficInefficient support of datagram trafficone PVC between each sourcedest pair) does not scale (N2 connections needed) not scale (N 2 connections needed) SVC introduces call setup latency processing overhead for short lived connectionsoverhead for short lived connections

5 DataLink Layer 5-90

ATM Layer ATM cellATM Layer ATM cell5-byte ATM cell headery48-byte payload

Why small payload -gt short cell-creation delay W y m p y yfor digitized voicehalfway between 32 and 64 (compromise)y p

Cell headerCell header

Cell format

5 DataLink Layer 5-91

ATM cell headerATM cell headerVCI virtual channel IDVCI virtual channel ID

will change from link to link thru netPT P l d t p ( RM ll s s d t ll) PT Payload type (eg RM cell versus data cell) CLP Cell Loss Priority bit

CLP 1 i li l i it ll b CLP = 1 implies low priority cell can be discarded if congestion

HEC Header Error ChecksumHEC Header Error Checksumcyclic redundancy check

5 DataLink Layer 5-92

ATM Physical Layer (more)ATM Physical Layer (more)

T i ( bl ) f h i l lTwo pieces (sublayers) of physical layerTransmission Convergence Sublayer (TCS) adapts ATM l b t PMD s bl b lATM layer above to PMD sublayer belowPhysical Medium Dependent depends on physical medium being usedmedium being used

TCS FunctionsTCS FunctionsHeader checksum generation 8 bits CRC C ll d lin ti nCell delineationWith ldquounstructuredrdquo PMD sublayer transmission of idle cells when no data cells to send

5 DataLink Layer 5-93

of idle cells when no data cells to send

ATM Physical LayerATM Physical Layer

Ph l d D d (P D) blPhysical Medium Dependent (PMD) sublayerSONETSDH transmission frame structure (like a

b ) container carrying bits) bit synchronization bandwidth partitions (TDM) several speeds OC3 = 15552 Mbps OC12 = 62208 Mb OC48 2 45 Gb OC192 9 6 GbMbps OC48 = 245 Gbps OC192 = 96 Gbps

TIT3 transmission frame structure (old telephone hierarchy) 1 5 Mbps 45 Mbpstelephone hierarchy) 15 Mbps 45 Mbpsunstructured just cells (busyidle)

5 DataLink Layer 5-94

IP-Over-ATMIP over ATM

Classic IP only3 ldquonetworksrdquo (e g

IP over ATMreplace ldquonetworkrdquo (e g LAN segment) 3 networks (eg

LAN segments)MAC (802 3) and IP

(eg LAN segment) with ATM networkATM addresses IP MAC (8023) and IP

addressesATM addresses IP addresses

ATMATMnetwork

Ethernet Ethernet

5 DataLink Layer 5-95

EthernetLANs

EthernetLANs

IP-Over-ATMapp

transportapp

AALEthIP

transportIP

AALATM

apptransport

IPEth ATM

phyphyEth

ATM

ATMphy

ATMphy

Ethphy

ATMphy

p y

5 DataLink Layer 5-96

Datagram Journey in IP-over-ATM NetworkDatagram Journey in IP-over-ATM Network

at Source HostIP layer maps between IP ATM dest address (using ARP)passes datagram to AAL5AAL5 encapsulates data segments cells passes to ATM layer

ATM network moves cell along VC to destinationat Destination Host

AAL5 reassembles cells into original datagramif CRC OK datagram is passed to IP

5 DataLink Layer 5-97

IP-Over-ATMIP-Over-ATM

IssuesIP datagrams into

ATMnetwork

ATM AAL5 PDUsfrom IP addresses

TM ddto ATM addressesjust like IP dd ss s t addresses to

8023 MAC addresses

EthernetLANs

addresses

5 DataLink Layer 5-98

Multiprotocol label switching (MPLS)Multiprotocol label switching (MPLS)

i i i l l d IP f di b i fi d initial goal speed up IP forwarding by using fixed length label (instead of IP address) to do forwarding forwarding

borrowing ideas from Virtual Circuit (VC) approachbut IP datagram still keeps IP addressg p

PPP or EthernetPPP or Ethernet header

IP header remainder of link-layer frameMPLS header

label Exp S TTL

5 DataLink Layer 5-9920 3 1 5

MPLS capable routersMPLS capable routers

k l b l it h d taka label-switched routerforwards packets to outgoing interface based

l l b l l (d rsquot i t IP dd )only on label value (donrsquot inspect IP address)MPLS forwarding table distinct from IP forwarding tablestables

signaling protocol needed to set up forwardingRSVP TERSVP-TEforwarding possible along paths that IP alone would not allow (eg source-specific routing) not allow (eg source spec f c rout ng) use MPLS for traffic engineering

must co-exist with IP-only routers5 DataLink Layer 5-100

must co exist with IP only routers

MPLS forwarding tablesi t t

MPLS forwarding tables

in out outlabel label dest interface

in out outlabel label dest interface

10 A 012 D 0 label label dest interface

10 6 A 112 9 D 0

12 D 08 A 1

D1

00R6

R3R4R5

0

1

A

1

0

R1R2A

in out outlabel label dest interface

6 A 0in out out

label label dest interface

5 DataLink Layer 5-101

6 - A 0label label dest interface

8 6 A 0

Chapter 5 SummaryChapter 5 Summaryprinciples behind data link layer servicespr nc p s h n ata n ay r s r c s

error detection correctionsharing a broadcast channel multiple accesslink layer addressing

instantiation and implementation of various link l t h l ilayer technologies

Ethernetit h d LANSswitched LANS

PPPi li d k li k l TM MPLvirtualized networks as a link layer ATM MPLS

5 DataLink Layer 5-102

Chapter 5 letrsquos take a breathChapter 5 let s take a breathjourney down protocol stack completejourney down protocol stack complete(except PHY)solid understanding of networking principles solid understanding of networking principles practice

ld t h b t l t f i t ti hellip could stop here hellip but lots of interesting topics

lwirelessmultimediasecurity network management

5 DataLink Layer 5-103

Page 8: Link Layer Link Layer: Introduction

CSMA (Carrier Sense Multiple Access)CSMA (Carrier Sense Multiple Access)

CSMA listen before transmitIf channel sensed idle transmit entire framef chann s ns transm t nt r fram

If channel sensed busy defer transmission

human analogy donrsquot interrupt others

5 DataLink Layer 5-29

CSMA collisionsCSMA collisionsc llisi ns c n still ccu

spatial layout of nodes

collisions can still occurpropagation delay means two nodes may not heareach otherrsquos transmission

collisionentire packet transmission time wasted

tnoterole of distance amp propagation delay in determining collision y gprobability

5 DataLink Layer 5-30

CSMACD (Collision Detection)CSMACD (Collision Detection)CSMACD carrier sensing deferral as in CSMACSMACD carrier sensing deferral as in CSMA

collisions detected within short timecolliding transmissions aborted reducing channel colliding transmissions aborted reducing channel wastage

collision detectioncollision detectioneasy in wired LANs measure signal strengths compare transmitted received signalscompare transmitted received signalsdifficult in wireless LANs received signal strength overwhelmed by local transmission strength overwhelmed by local transmission strength

human analogy the polite conversationalist

5 DataLink Layer 5-31

CSMACD collision detectionCSMACD collision detection

5 DataLink Layer 5-32

ldquoTaking Turnsrdquo MAC protocolsTaking Turns MAC protocols

h l i i i M C lchannel partitioning MAC protocolsshare channel efficiently and fairly at high loadinefficient at low load delay in channel access 1N bandwidth allocated even if only 1 active node node

Random access MAC protocolsefficient at low load single node can fully efficient at low load single node can fully utilize channelhigh load collision overheadhigh load collision overhead

ldquotaking turnsrdquo protocolslook for best of both worlds

5 DataLink Layer 5-33

look for best of both worlds

ldquoTaking Turnsrdquo MAC protocolsTaking Turns MAC protocolsPollingPolling

master node ldquoinvitesrdquo slave nodes d tinvites slave nodes to transmit in turntypically used with master

polldata

typically used with ldquodumbrdquo slave devicesconcerns

data

polling overhead latency slavessingle point of failure (master)

5 DataLink Layer 5-34

ldquoTaking Turnsrdquo MAC protocolsTaking Turns MAC protocolsToken passingoken pass ng

control token passed from one node to next

T

sequentiallytoken message (nothing

concernstoken overhead

to send)T

latencysingle point of failure (token)(token)

5 DataLink Layer 5-35

data

Summary of MAC protocolsSummary of MAC protocols

h l i i i b i f dchannel partitioning by time frequency or codeTime Division Frequency Divisiond ss (d i ) random access (dynamic) ALOHA S-ALOHA CSMA CSMACDcarrier sensing easy in some technologies (wire) hard in carrier sensing easy in some technologies (wire) hard in others (wireless)CSMACD used in EthernetCSMACA used in 80211

taking turnslli f l i k ipolling from central site token passing

Bluetooth FDDI IBM Token Ring

5 DataLink Layer 5-36

Link LayerLink Layer

5 1 I d i d 5 6 Li k l i h51 Introduction and services5 2 E d t ti

56 Link-layer switches57 PPP

52 Error detection and correction 5 3Multiple access

58 Link Virtualization ATM MPLS

53Multiple access protocols5 4 Link-Layer 54 Link Layer Addressing55 Ethernet55 Ethernet

5 DataLink Layer 5-37

MAC Addresses and ARPMAC Addresses and ARP

32-bit IP address network-layer addressyused to get datagram to destination IP subnet

MAC (or LAN or physical or Ethernet) MAC (or LAN or physical or Ethernet) address

f n ti n t f m f m n int f t n th function get frame from one interface to another physically-connected interface (same network)48 bit MAC address (for most LANs)48 bit MAC address (for most LANs)

bull burned in NIC ROM also sometimes software settable

5 DataLink Layer 5-38

LAN Addresses and ARPLAN Addresses and ARPEach adapter on LAN has unique LAN address

Broadcast address =FF-FF-FF-FF-FF-FF

1A-2F-BB-76-09-AD

= adapterLAN

(wired ori l )

58-23-D7-FA-20-B071-65-F7-2B-08-53

wireless)

0C-C4-11-6F-E3-98

5 DataLink Layer 5-39

LAN Address (more)LAN Address (more)

M C dd ll i d i i d b IEEEMAC address allocation administered by IEEEmanufacturer buys portion of MAC address space (t ss i ss)(to assure uniqueness)analogy

( ) MAC dd lik S i l S it N b(a) MAC address like Social Security Number(b) IP address like postal address

MAC fl dd づ bili MAC flat address づ portability can move LAN card from one LAN to another

IP hi chic l dd ss NOT p t blIP hierarchical address NOT portableaddress depends on IP subnet to which node is attached

5 DataLink Layer 5-40

ARP Address Resolution ProtocolAR Address Resolut on rotocol

Each IP node (host Question how to determine Each IP node (host router) on LAN has ARP table

Question how to determineMAC address of Bknowing Brsquos IP address

ARP table IPMAC address mappings for

knowing B s IP address

137196778 pp gsome LAN nodes

lt IP address MAC address TTLgtTTL (Tim T Li ) tim

1A-2F-BB-76-09-AD

137196723 137196714

TTL (Time To Live) time after which address mapping will be forgotten ( ll 20 )58-23-D7-FA-20-B071-65-F7-2B-08-53

LAN

(typically 20 min)58 23 D7 FA 20 B0

0C-C4-11-6F-E3-98137 196 7 88

5 DataLink Layer 5-41

137196788

ARP protocol Same LAN (network)

A wants to send datagram t B d Brsquo MAC dd A h ( ) IP tto B and Brsquos MAC address not in Arsquos ARP tableA broadcasts ARP query

A caches (saves) IP-to-MAC address pair in its ARP table until information q y

packet containing Bs IP address

dest MAC address = FF

becomes old (times out) soft state information that times out (goes dest MAC address = FF-

FF-FF-FF-FF-FFall machines on LAN

that times out (goes away) unless refreshed

ARP is ldquoplug-and-playrdquoreceive ARP query

B receives ARP packet replies to A with its (Bs)

p g p ynodes create their ARP tables without intervention from net replies to A with its (B s)

MAC addressframe sent to Arsquos MAC address (unicast)

intervention from net administrator

5 DataLink Layer 5-42

address (unicast)

Addressing routing to another LANwalkthrough send datagram from A to B via R

ssume A kn s Brsquos IP ddress

A74-29-9C-E8-FF-55 88-B2-2F-54-1A-0F

assume A knows B s IP address

1A-23-F9-CD-06-9BE6-E9-00-17-BB-4B

111111111111

A222222222221

R

222222222220111111111110

111111111112B

222222222222

CC-49-DE-D0-AB-7D

49-BD-D2-C7-56-2A

t ARP t bl s i t R f h IP two ARP tables in router R one for each IP network (LAN)

5 DataLink Layer 5-43

A creates IP datagram with source A destination B A uses ARP to get Rrsquos MAC address for 111 111 111 110A uses ARP to get R s MAC address for 111111111110A creates link-layer frame with Rs MAC address as dest frame contains A-to-B IP datagram This is a really importantArsquos NIC sends frame Rrsquos NIC receives frame R r m v s IP d t r m fr m Eth rn t fr m s s its

This is a really importantexample ndash make sure youunderstand

R removes IP datagram from Ethernet frame sees its destined to BR uses ARP to get Brsquos MAC address gR creates frame containing A-to-B IP datagram sends to B

A74-29-9C-E8-FF-55 88-B2-2F-54-1A-0F

1A-23-F9-CD-06-9BE6-E9-00-17-BB-4B

111111111111

A222222222221

R

222222222220111111111110

111111111112

B222222222222

5 DataLink Layer 5-44

RCC-49-DE-D0-AB-7D

49-BD-D2-C7-56-2A

Link LayerLink Layer

5 1 I d i d 5 6 Li k l i h51 Introduction and services5 2 E d t ti

56 Link-layer switches57 PPP

52 Error detection and correction 5 3Multiple access

58 Link Virtualization ATM and MPLS

53Multiple access protocols5 4 Link-Layer 54 Link Layer Addressing55 Ethernet55 Ethernet

5 DataLink Layer 5-45

Ethernetldquodominantrdquo wired LAN technology

cheap $20 for NICfirst widely used LAN technologyy gysimpler cheaper than token LANs and ATMkept up with speed race 10 Mbps ndash 10 Gbps p p p p p

Metcalfersquos Ethernetsketch

5 DataLink Layer 5-46

Star topologyp gybus topology popular through mid 90s

all nodes in same collision domain (can collide with each all nodes in same collision domain (can collide with each other)

today star topology prevails h active switch in center

each ldquospokerdquo runs a (separate) Ethernet protocol (nodes do not collide with each other)

switch

b l bl

5 DataLink Layer 5-47

bus coaxial cable star

Ethernet Frame StructuremSending adapter encapsulates IP datagram (or other g p p g (

network layer protocol packet) in Ethernet frame

Preamble7 bytes with pattern 10101010 followed by one y p ybyte with pattern 10101011used to synchronize receiver sender clock rates

5 DataLink Layer 5-48

Ethernet Frame Structure (more)Ethernet Frame Structure (more)Addresses 6 bytesy

if adapter receives frame with matching destination address or with broadcast address (eg ARP packet) it passes data in frame to network layer protocolpasses data in frame to network layer protocolotherwise adapter discards frame

Type indicates higher layer protocol (mostly IP Type indicates higher layer protocol (mostly IP but others possible eg Novell IPX AppleTalk)CRC checked at receiver if error is detected frame is dropped

5 DataLink Layer 5-49

Ethernet Unreliable connectionlessEthernet Unreliable connectionless

i l N h d h ki b di d connectionless No handshaking between sending and receiving NICs

li bl i i NIC d s rsquot s d ks ks unreliable receiving NIC doesnrsquot send acks or nacks to sending NIC

stream of datagrams passed to network layer can have gaps stream of datagrams passed to network layer can have gaps (missing datagrams)gaps will be filled if app is using TCPotherwise app will see gaps

Ethernetrsquos MAC protocol unslotted CSMACD

5 DataLink Layer 5-50

Ethernet CSMACD algorithmg1 NIC receives datagram 4 If NIC detects another

from network layer creates frame

2 f N C h l dl

transmission while transmitting aborts and sends jam signal2 If NIC senses channel idle

starts frame transmission If NIC senses channel

sends jam signal5 After aborting NIC

enters exponential If NIC senses channel busy waits until channel idle then transmits

enters exponential backoff after mth collision NIC chooses K at

3 If NIC transmits entire frame without detecting

random from 012hellip2m-1 NIC waits K 512 bi i

ganother transmission NIC is done with frame

K512 bit times returns to Step 2

5 DataLink Layer 5-51

Ethernetrsquos CSMACD (more)Ethernet s CSMACD (more)Jam Signal make sure all Exponential Backoffg

other transmitters are aware of collision 48 bits

Bit time 1 microsec for 10

pGoal adapt retransmission attempts to estimated current loadBit time 1 microsec for 10

Mbps Ethernet for K=1023 wait time is about 50 msec

current loadheavy load random wait will be longer

about 50 msec first collision choose K from 01 delay is K 512 bit transmission timestransm ss on t m safter second collision choose K from 0123hellipft t lli i h K

Seeinteract with Javaapplet on AWL Web site

after ten collisions choose K from 01234hellip1023

pphighly recommended

5 DataLink Layer 5-52

CSMACD efficiencyCSMACD efficiency

T d l b 2 d i L NTprop = max prop delay between 2 nodes in LANttrans = time to transmit max-size frame

efficiency 1

=

efficiency goes to 1

transprop ttff y

51+

efficiency goes to 1 as tprop goes to 0as ttrans goes to infinitytrans g y

better performance than ALOHA and simple cheap decentralized

5 DataLink Layer 5-53

p

8023 Ethernet Standards Link amp Physical Layersy y

many different Ethernet standardsycommon MAC protocol and frame formatdifferent speeds 2 Mbps 10 Mbps 100 Mbps 1Gb 10G b1Gbps 10G bpsdifferent physical layer media fiber cable

MAC protocolapplicationtransportnetwork

li k

MAC protocoland frame format

100BASE-TX 100BASE-FX100BASE-T2link

physical100BASE-T4 100BASE-SX 100BASE-BX

5 DataLink Layer 5-54

fiber physical layercopper (twisterpair) physical layer

Manchester encodingManchester encoding

used in 10BaseTeach bit has a transitionallows clocks in sending and receiving nodes to g gsynchronize to each other

no need for a centralized global clock among nodes

5 DataLink Layer 5-55

Hey this is physical-layer stuff

Link LayerLink Layer

5 1 I d i d 5 6 Li k l i h51 Introduction and services5 2 E d t ti

56 Link-layer switches57 PPP

52 Error detection and correction 5 3 Multiple access

58 Link Virtualization ATM MPLS

53 Multiple access protocols5 4 Link-layer 54 Link layer Addressing55 Ethernet55 Ethernet

5 DataLink Layer 5-56

Hubshellip physical-layer (ldquodumbrdquo) repeaters

bits coming in one link go out all other links at bits coming in one link go out all other links at same rateall nodes connected to hub can collide with one anotherno frame bufferinggno CSMACD at hub host NICs detect collisions

twisted pair

hub

5 DataLink Layer 5-57

Switchlink-layer device smarter than hubs take yactive role

store forward Ethernet framesexamine incoming framersquos MAC address selectively forward frame to one-or-more

l k h f f d d outgoing links when frame is to be forwarded on segment uses CSMACD to access segment

transparenthosts are unaware of presence of switches

plug-and-play self-learningswitches do not need to be configured

5 DataLink Layer 5-58

g

Switch allows multiple simultaneous ptransmissions

A

hosts have dedicated direct connection to switch

BCrsquo

switches buffer packetsEthernet protocol used on each incoming link but no

1 2 345

6

each incoming link but no collisions full duplex

each link is its own collision C

45

domainswitching A-to-Arsquo and B-to-Brsquo simultaneously

ArsquoBrsquo

to-B simultaneously without collisions

not possible with dumb hub

switch with six interfaces(123456)

5 DataLink Layer 5-59

Switch TableSwitch Table

Q h d s s it h k th t A

Q how does switch know that Arsquo reachable via interface 4 Brsquo reachable via interface 5

BCrsquo

B reachable via interface 5A each switch has a switch table each entry

1 2 345

6ta ach ntry

(MAC address of host interface to reach host time stamp) C

45

looks like a routing tableQ how are entries created

i t i d i it h t bl

ArsquoBrsquo

maintained in switch table something like a routing protocol

switch with six interfaces(123456)

5 DataLink Layer 5-60

protocol

Switch self-learning Source ASwitch self-learning

s it h l s hi h h sts A A Arsquo

Dest Arsquo

switch learns which hosts can be reached through which interfaces

BCrsquo

which interfaceswhen frame received switch ldquolearnsrdquo location of

d i i LAN

1 2 345

6

sender incoming LAN segmentrecords senderlocation

C

45

pair in switch tableArsquoBrsquo

MAC addr interface TTLMAC addr interface TTLSwitch table

(initially empty)A 1 60

5 DataLink Layer 5-61

Switch frame filteringforwardingWhen frame received

1 record link associated with sending host2 ind x s itch t bl usin MAC d st dd ss2 index switch table using MAC dest address3 if entry found for destination

then then if dest on segment from which frame arrived

then drop the framethen drop the frameelse forward the frame on interface indicated

else flood forward on all but the interface

on which the frame arrived5 DataLink Layer 5-62

on which the frame arrived

Self-learning Source ASelf learning forwarding

lA A Arsquo

Dest Arsquo

exampleBCrsquo

frame destinati n 1 2 345

6A ArsquoA ArsquoA ArsquoA ArsquoA Arsquoframe destination unknown floodd ti ti A

C

45

Arsquo A

destination A location knownselective send

ArsquoBrsquo

MAC addr interface TTL

selective send

MAC addr interface TTLSwitch table

(initially empty)A 1 60Arsquo 4 60

5 DataLink Layer 5-63

Interconnecting switchesg

switches can be connected togetherg

S

S4

A

B

S1

C DF

S2S3

IB C D

E HI

G

Q sending from A to G - how does S1 know to forward frame destined to F via S and S forward frame destined to F via S4 and S3A self learning (works exactly the same as in single-switch case)

5 DataLink Layer 5-64

single switch case)

Self-learning multi-switch exampleSuppose C sends frame to I I responds to C

S

S412

A

B

S1

C DF

S2S3

I

2

B C D

E HI

G

Q show switch tables and packet forwarding in S1 S2 S3 S4

5 DataLink Layer 5-65

Institutional networkInstitutional network

to externalnetwork

mail server

networkrouter web server

IP subnet

5 DataLink Layer 5-66

Switches vs RoutersSwitches vs Routersboth store-and-forward devices

routers network layer devices (examine network layer headers)switches are link layer devicesswitches are link layer devices

routers maintain routing tables implement routing algorithmsgswitches maintain switch tables implement filtering learning algorithmsf g g g

5 DataLink Layer 5-67

Link LayerLink Layer

5 1 I d i d 5 6 H b d i h51 Introduction and services5 2 E d t ti

56 Hubs and switches57 PPP

52 Error detection and correction 5 3Multiple access

58 Link Virtualization ATM

53Multiple access protocols5 4 Link-Layer 54 Link Layer Addressing55 Ethernet55 Ethernet

5 DataLink Layer 5-68

Point to Point Data Link ControlPoint to Point Data Link Controlone sender one receiver one link easier than one sender one receiver one link easier than broadcast link

no Media Access Controlno Media Access Controlno need for explicit MAC addressinge g dialup link ISDN lineeg dialup link ISDN line

popular point-to-point DLC protocolsPPP (point-to-point protocol)PPP (point to point protocol)HDLC High level data link control (Data link used to be considered ldquohigh layerrdquo in protocol used to be considered high layer in protocol stack

5 DataLink Layer 5-69

PPP Design Requirements [RFC 1557]

packet framing encapsulation of network-layer p f m g p u f w ydatagram in data link frame

carry network layer data of any network layer y y y yprotocol (not just IP) at same timeability to demultiplex upwards

bit transparency must carry any bit pattern in the data fielderror detection (no correction)connection liveness detect signal link failure to

k lnetwork layernetwork layer address negotiation endpoint can l fi h th rsquos t k dd ss

5 DataLink Layer 5-70

learnconfigure each otherrsquos network address

PPP non-requirementsPPP non requirements

ti no error correctionrecoveryno flow control

f d d l K out of order delivery OK no need to support multipoint links (eg polling)

E l l Error recovery flow control data re-ordering all relegated to higher layers

5 DataLink Layer 5-71

PPP Data FramePPP Data Frame

Fl d li i (f i )Flag delimiter (framing)Address does nothing (only one option)Control does nothing in the future possible multiple control fieldsP t l l t l t hi h f Protocol upper layer protocol to which frame delivered (eg PPP-LCP IP IPCP etc)

5 DataLink Layer 5-72

PPP Data FramePPP Data Frame

i f l d b i i dinfo upper layer data being carriedcheck cyclic redundancy check for error d t tidetection

5 DataLink Layer 5-73

Byte StuffingByte Stuffingldquodata transparencyrdquo requirement data field must

be allowed to include flag pattern lt01111110gtQ is received lt01111110gt data or flag

Sender adds (ldquostuffsrdquo) extra lt 01111110gt byte after each lt 01111110gt data byteReceiver

two 01111110 bytes in a row discard first byte d continue data reception

single 01111110 flag byte

5 DataLink Layer 5-74

Byte StuffingByte Stuffing

flag bytepatterni din datato send

flag byte pattern plusstuffed byte in transmitted data

5 DataLink Layer 5-75

transmitted data

PPP Data Control ProtocolPPP Data Control ProtocolBefore exchanging network-g g

layer data data link peers mustconfigure PPP link (max frame length authentication)authentication)learnconfigure networklayer informationlayer information

for IP carry IP Control Protocol (IPCP) msgs Protocol (IPCP) msgs (protocol field 8021) to configurelearn IP

5 DataLink Layer 5-76

gaddress

Link LayerLink Layer

5 1 I d i d 5 6 H b d i h51 Introduction and services5 2 E d t ti

56 Hubs and switches57 PPP

52 Error detection and correction 5 3Multiple access

58 Link Virtualization ATM and MPLS

53Multiple access protocols5 4 Link-Layer 54 Link Layer Addressing55 Ethernet55 Ethernet

5 DataLink Layer 5-77

Virtualization of networksVirtualization of networks

Vi li i f f l b i i Virtualization of resources powerful abstraction in systems engineering

ti l s i t l i t l computing examples virtual memory virtual devices

Virtual machines e g javaVirtual machines eg javaIBM VM os from 1960rsquos70rsquos

layering of abstractions donrsquot sweat the details of layering of abstractions don t sweat the details of the lower layer only deal with lower layers abstractlyabstractly

5 DataLink Layer 5-78

The Internet virtualizing networksThe Internet virtualizing networks

1974 multiple unconnected differing in1974 multiple unconnected nets

ARPAnet

hellip differing inaddressing conventionspacket formats

data-over-cable networkspacket satellite network (Aloha)

k d k

perror recoveryrouting

packet radio network

ARPAnet satellite net

5 DataLink Layer 5-79

ARPAnet satell te netA Protocol for Packet Network Intercommunication V Cerf R Kahn IEEE Transactions on CommunicationsMay 1974 pp 637-648

The Internet virtualizing networksThe Internet virtualizing networksInternetwork layer (IP)

addressing internetwork Gateway

ldquoembed internetwork packets in l l k f

addressing internetwork appears as single uniform entity despite underlying local network heterogeneitynetwork of networks

plocal packet format or extract themrdquoroute (at internetwork level) to next gatewaynetwork of networks next gateway

gateway

ARPAnet satellite net

5 DataLink Layer 5-80

ARPAnet satell te net

Cerf amp Kahnrsquos Internetwork ArchitectureCerf amp Kahn s Internetwork ArchitectureWhat is virtualized

two layers of addressing internetwork and local networknew layer (IP) makes everything homogeneous at internetwork layerunderlying local network technology

cablesatellite56K telephone modemtoday ATM MPLS

hellip ldquoinvisiblerdquo at internetwork layer Looks like a link

5 DataLink Layer 5-81

ylayer technology to IP

ATM and MPLSATM and MPLS

P k h ATM MPLS separate networks in their own right

different service models addressing routing from Internet

viewed by Internet as logical link connecting IP routers

just like dialup link is really part of separate network (telephone network)

ATM MPLS of technical interest in their own right

5 DataLink Layer 5-82

Asynchronous Transfer Mode ATMAsynchronous Transfer Mode ATM1990rsquos00 standard for high-speed (155Mbps to g p ( p622 Mbps and higher) Broadband Integrated Service Digital Network architectureGoal integrated end-end transport of carry voice video data

i i i Q i f i id meeting timingQoS requirements of voice video (versus Internet best-effort model)ldquo t ti rdquo t l h t h i l ts i ldquonext generationrdquo telephony technical roots in telephone worldpacket switching (fixed length packets called packet-switching (fixed length packets called ldquocellsrdquo) using virtual circuits

5 DataLink Layer 5-83

ATM architecture ATM architecture AAL AAL

ATM ATMATM ATM

physical physicalphysical physical

d d ti h it h

adaptation layer only at edge of ATM network

end system end systemswitch switch

data segmentationreassemblyroughly analagous to Internet transport layer

ATM layer ldquonetworkrdquo layercell switching routing

5 DataLink Layer 5-84

physical layer

ATM network or link layerATM network or link layerVision end-to-end

t t ldquoATM f transport ldquoATM from desktop to desktoprdquo

ATM is a network ATM

IPnetwork

ATM is a network technology

Reality used to connect

ATMnetwork

Reality used to connect IP backbone routers

ldquoIP over ATMrdquoIP over ATMATM as switched link layer y connecting IP routers

5 DataLink Layer 5-85

ATM Adaptation Layer (AAL)ATM Adaptation Layer (AAL)

TM d i L ( L) ldquo d rdquo ATM Adaptation Layer (AAL) ldquoadaptsrdquo upper layers (IP or native ATM applications) to ATM layer belowlayer belowAAL present only in end systems not in switchesAAL layer segment (headertrailer fields data) AAL layer segment (headertrailer fields data) fragmented across multiple ATM cells

analogy TCP segment in many IP packetsanalogy TCP segment in many IP packets

AAL AAL

physical

ATM

physical

ATM

physical

ATM

physical

ATM

5 DataLink Layer 5-86

physical physicalp y p y

end system end systemswitch switch

ATM Adaptation Layer (AAL) [more]

Different versions of AAL layers depending on ATM y p gservice classAAL1 for CBR (Constant Bit Rate) services eg circuit emulationAAL2 for VBR (Variable Bit Rate) services eg MPEG videoAAL5 for data (eg IP datagrams)

User data

AAL PDU

ATM cell

5 DataLink Layer 5-87

ATM LayeryService transport cells across ATM network

analogous to IP network layeranalogous to IP network layervery different services than IP network layer

Guarantees NetworkArchitecture

ServiceModel Bandwidth Loss Order Timing

Congestionfeedback

Guarantees

Internet

ATM

best effort

CBR

none

constant

no

yes

no

yes

no

yes

no (inferredvia loss)noATM

ATM

CBR

VBR

constantrateguaranteedrate

yes

yes

yes

yes

yes

yes

nocongestionnocongestion

ATM

ATM

ABR

UBR

rateguaranteed minimum

no yes nocongestionyes

5 DataLink Layer 5-88

ATM UBR none no yes no no

ATM Layer Virtual CircuitsATM Layer Virtual CircuitsVC transport cells carried on VC from source to destp

call setup teardown for each call before data can floweach packet carries VC identifier (not destination ID)

it h d t th i t i ldquo t t rdquo f h every switch on source-dest path maintain ldquostaterdquo for each passing connectionlinkswitch resources (bandwidth buffers) may be allocated to ( ff ) m yVC to get circuit-like perf

Permanent VCs (PVCs)long lasting connectionstypically ldquopermanentrdquo route between to IP routers

Switched VCs (SVC)dynamically set up on per-call basis

5 DataLink Layer 5-89

ATM VCsATM VCsAdvantages of ATM VC approachAdvantages of ATM VC approach

QoS performance guarantee for connection mapped to VC (bandwidth delay delay jitter)mapped to VC (bandwidth delay delay jitter)

Drawbacks of ATM VC approachInefficient support of datagram trafficInefficient support of datagram trafficone PVC between each sourcedest pair) does not scale (N2 connections needed) not scale (N 2 connections needed) SVC introduces call setup latency processing overhead for short lived connectionsoverhead for short lived connections

5 DataLink Layer 5-90

ATM Layer ATM cellATM Layer ATM cell5-byte ATM cell headery48-byte payload

Why small payload -gt short cell-creation delay W y m p y yfor digitized voicehalfway between 32 and 64 (compromise)y p

Cell headerCell header

Cell format

5 DataLink Layer 5-91

ATM cell headerATM cell headerVCI virtual channel IDVCI virtual channel ID

will change from link to link thru netPT P l d t p ( RM ll s s d t ll) PT Payload type (eg RM cell versus data cell) CLP Cell Loss Priority bit

CLP 1 i li l i it ll b CLP = 1 implies low priority cell can be discarded if congestion

HEC Header Error ChecksumHEC Header Error Checksumcyclic redundancy check

5 DataLink Layer 5-92

ATM Physical Layer (more)ATM Physical Layer (more)

T i ( bl ) f h i l lTwo pieces (sublayers) of physical layerTransmission Convergence Sublayer (TCS) adapts ATM l b t PMD s bl b lATM layer above to PMD sublayer belowPhysical Medium Dependent depends on physical medium being usedmedium being used

TCS FunctionsTCS FunctionsHeader checksum generation 8 bits CRC C ll d lin ti nCell delineationWith ldquounstructuredrdquo PMD sublayer transmission of idle cells when no data cells to send

5 DataLink Layer 5-93

of idle cells when no data cells to send

ATM Physical LayerATM Physical Layer

Ph l d D d (P D) blPhysical Medium Dependent (PMD) sublayerSONETSDH transmission frame structure (like a

b ) container carrying bits) bit synchronization bandwidth partitions (TDM) several speeds OC3 = 15552 Mbps OC12 = 62208 Mb OC48 2 45 Gb OC192 9 6 GbMbps OC48 = 245 Gbps OC192 = 96 Gbps

TIT3 transmission frame structure (old telephone hierarchy) 1 5 Mbps 45 Mbpstelephone hierarchy) 15 Mbps 45 Mbpsunstructured just cells (busyidle)

5 DataLink Layer 5-94

IP-Over-ATMIP over ATM

Classic IP only3 ldquonetworksrdquo (e g

IP over ATMreplace ldquonetworkrdquo (e g LAN segment) 3 networks (eg

LAN segments)MAC (802 3) and IP

(eg LAN segment) with ATM networkATM addresses IP MAC (8023) and IP

addressesATM addresses IP addresses

ATMATMnetwork

Ethernet Ethernet

5 DataLink Layer 5-95

EthernetLANs

EthernetLANs

IP-Over-ATMapp

transportapp

AALEthIP

transportIP

AALATM

apptransport

IPEth ATM

phyphyEth

ATM

ATMphy

ATMphy

Ethphy

ATMphy

p y

5 DataLink Layer 5-96

Datagram Journey in IP-over-ATM NetworkDatagram Journey in IP-over-ATM Network

at Source HostIP layer maps between IP ATM dest address (using ARP)passes datagram to AAL5AAL5 encapsulates data segments cells passes to ATM layer

ATM network moves cell along VC to destinationat Destination Host

AAL5 reassembles cells into original datagramif CRC OK datagram is passed to IP

5 DataLink Layer 5-97

IP-Over-ATMIP-Over-ATM

IssuesIP datagrams into

ATMnetwork

ATM AAL5 PDUsfrom IP addresses

TM ddto ATM addressesjust like IP dd ss s t addresses to

8023 MAC addresses

EthernetLANs

addresses

5 DataLink Layer 5-98

Multiprotocol label switching (MPLS)Multiprotocol label switching (MPLS)

i i i l l d IP f di b i fi d initial goal speed up IP forwarding by using fixed length label (instead of IP address) to do forwarding forwarding

borrowing ideas from Virtual Circuit (VC) approachbut IP datagram still keeps IP addressg p

PPP or EthernetPPP or Ethernet header

IP header remainder of link-layer frameMPLS header

label Exp S TTL

5 DataLink Layer 5-9920 3 1 5

MPLS capable routersMPLS capable routers

k l b l it h d taka label-switched routerforwards packets to outgoing interface based

l l b l l (d rsquot i t IP dd )only on label value (donrsquot inspect IP address)MPLS forwarding table distinct from IP forwarding tablestables

signaling protocol needed to set up forwardingRSVP TERSVP-TEforwarding possible along paths that IP alone would not allow (eg source-specific routing) not allow (eg source spec f c rout ng) use MPLS for traffic engineering

must co-exist with IP-only routers5 DataLink Layer 5-100

must co exist with IP only routers

MPLS forwarding tablesi t t

MPLS forwarding tables

in out outlabel label dest interface

in out outlabel label dest interface

10 A 012 D 0 label label dest interface

10 6 A 112 9 D 0

12 D 08 A 1

D1

00R6

R3R4R5

0

1

A

1

0

R1R2A

in out outlabel label dest interface

6 A 0in out out

label label dest interface

5 DataLink Layer 5-101

6 - A 0label label dest interface

8 6 A 0

Chapter 5 SummaryChapter 5 Summaryprinciples behind data link layer servicespr nc p s h n ata n ay r s r c s

error detection correctionsharing a broadcast channel multiple accesslink layer addressing

instantiation and implementation of various link l t h l ilayer technologies

Ethernetit h d LANSswitched LANS

PPPi li d k li k l TM MPLvirtualized networks as a link layer ATM MPLS

5 DataLink Layer 5-102

Chapter 5 letrsquos take a breathChapter 5 let s take a breathjourney down protocol stack completejourney down protocol stack complete(except PHY)solid understanding of networking principles solid understanding of networking principles practice

ld t h b t l t f i t ti hellip could stop here hellip but lots of interesting topics

lwirelessmultimediasecurity network management

5 DataLink Layer 5-103

Page 9: Link Layer Link Layer: Introduction

ldquoTaking Turnsrdquo MAC protocolsTaking Turns MAC protocols

h l i i i M C lchannel partitioning MAC protocolsshare channel efficiently and fairly at high loadinefficient at low load delay in channel access 1N bandwidth allocated even if only 1 active node node

Random access MAC protocolsefficient at low load single node can fully efficient at low load single node can fully utilize channelhigh load collision overheadhigh load collision overhead

ldquotaking turnsrdquo protocolslook for best of both worlds

5 DataLink Layer 5-33

look for best of both worlds

ldquoTaking Turnsrdquo MAC protocolsTaking Turns MAC protocolsPollingPolling

master node ldquoinvitesrdquo slave nodes d tinvites slave nodes to transmit in turntypically used with master

polldata

typically used with ldquodumbrdquo slave devicesconcerns

data

polling overhead latency slavessingle point of failure (master)

5 DataLink Layer 5-34

ldquoTaking Turnsrdquo MAC protocolsTaking Turns MAC protocolsToken passingoken pass ng

control token passed from one node to next

T

sequentiallytoken message (nothing

concernstoken overhead

to send)T

latencysingle point of failure (token)(token)

5 DataLink Layer 5-35

data

Summary of MAC protocolsSummary of MAC protocols

h l i i i b i f dchannel partitioning by time frequency or codeTime Division Frequency Divisiond ss (d i ) random access (dynamic) ALOHA S-ALOHA CSMA CSMACDcarrier sensing easy in some technologies (wire) hard in carrier sensing easy in some technologies (wire) hard in others (wireless)CSMACD used in EthernetCSMACA used in 80211

taking turnslli f l i k ipolling from central site token passing

Bluetooth FDDI IBM Token Ring

5 DataLink Layer 5-36

Link LayerLink Layer

5 1 I d i d 5 6 Li k l i h51 Introduction and services5 2 E d t ti

56 Link-layer switches57 PPP

52 Error detection and correction 5 3Multiple access

58 Link Virtualization ATM MPLS

53Multiple access protocols5 4 Link-Layer 54 Link Layer Addressing55 Ethernet55 Ethernet

5 DataLink Layer 5-37

MAC Addresses and ARPMAC Addresses and ARP

32-bit IP address network-layer addressyused to get datagram to destination IP subnet

MAC (or LAN or physical or Ethernet) MAC (or LAN or physical or Ethernet) address

f n ti n t f m f m n int f t n th function get frame from one interface to another physically-connected interface (same network)48 bit MAC address (for most LANs)48 bit MAC address (for most LANs)

bull burned in NIC ROM also sometimes software settable

5 DataLink Layer 5-38

LAN Addresses and ARPLAN Addresses and ARPEach adapter on LAN has unique LAN address

Broadcast address =FF-FF-FF-FF-FF-FF

1A-2F-BB-76-09-AD

= adapterLAN

(wired ori l )

58-23-D7-FA-20-B071-65-F7-2B-08-53

wireless)

0C-C4-11-6F-E3-98

5 DataLink Layer 5-39

LAN Address (more)LAN Address (more)

M C dd ll i d i i d b IEEEMAC address allocation administered by IEEEmanufacturer buys portion of MAC address space (t ss i ss)(to assure uniqueness)analogy

( ) MAC dd lik S i l S it N b(a) MAC address like Social Security Number(b) IP address like postal address

MAC fl dd づ bili MAC flat address づ portability can move LAN card from one LAN to another

IP hi chic l dd ss NOT p t blIP hierarchical address NOT portableaddress depends on IP subnet to which node is attached

5 DataLink Layer 5-40

ARP Address Resolution ProtocolAR Address Resolut on rotocol

Each IP node (host Question how to determine Each IP node (host router) on LAN has ARP table

Question how to determineMAC address of Bknowing Brsquos IP address

ARP table IPMAC address mappings for

knowing B s IP address

137196778 pp gsome LAN nodes

lt IP address MAC address TTLgtTTL (Tim T Li ) tim

1A-2F-BB-76-09-AD

137196723 137196714

TTL (Time To Live) time after which address mapping will be forgotten ( ll 20 )58-23-D7-FA-20-B071-65-F7-2B-08-53

LAN

(typically 20 min)58 23 D7 FA 20 B0

0C-C4-11-6F-E3-98137 196 7 88

5 DataLink Layer 5-41

137196788

ARP protocol Same LAN (network)

A wants to send datagram t B d Brsquo MAC dd A h ( ) IP tto B and Brsquos MAC address not in Arsquos ARP tableA broadcasts ARP query

A caches (saves) IP-to-MAC address pair in its ARP table until information q y

packet containing Bs IP address

dest MAC address = FF

becomes old (times out) soft state information that times out (goes dest MAC address = FF-

FF-FF-FF-FF-FFall machines on LAN

that times out (goes away) unless refreshed

ARP is ldquoplug-and-playrdquoreceive ARP query

B receives ARP packet replies to A with its (Bs)

p g p ynodes create their ARP tables without intervention from net replies to A with its (B s)

MAC addressframe sent to Arsquos MAC address (unicast)

intervention from net administrator

5 DataLink Layer 5-42

address (unicast)

Addressing routing to another LANwalkthrough send datagram from A to B via R

ssume A kn s Brsquos IP ddress

A74-29-9C-E8-FF-55 88-B2-2F-54-1A-0F

assume A knows B s IP address

1A-23-F9-CD-06-9BE6-E9-00-17-BB-4B

111111111111

A222222222221

R

222222222220111111111110

111111111112B

222222222222

CC-49-DE-D0-AB-7D

49-BD-D2-C7-56-2A

t ARP t bl s i t R f h IP two ARP tables in router R one for each IP network (LAN)

5 DataLink Layer 5-43

A creates IP datagram with source A destination B A uses ARP to get Rrsquos MAC address for 111 111 111 110A uses ARP to get R s MAC address for 111111111110A creates link-layer frame with Rs MAC address as dest frame contains A-to-B IP datagram This is a really importantArsquos NIC sends frame Rrsquos NIC receives frame R r m v s IP d t r m fr m Eth rn t fr m s s its

This is a really importantexample ndash make sure youunderstand

R removes IP datagram from Ethernet frame sees its destined to BR uses ARP to get Brsquos MAC address gR creates frame containing A-to-B IP datagram sends to B

A74-29-9C-E8-FF-55 88-B2-2F-54-1A-0F

1A-23-F9-CD-06-9BE6-E9-00-17-BB-4B

111111111111

A222222222221

R

222222222220111111111110

111111111112

B222222222222

5 DataLink Layer 5-44

RCC-49-DE-D0-AB-7D

49-BD-D2-C7-56-2A

Link LayerLink Layer

5 1 I d i d 5 6 Li k l i h51 Introduction and services5 2 E d t ti

56 Link-layer switches57 PPP

52 Error detection and correction 5 3Multiple access

58 Link Virtualization ATM and MPLS

53Multiple access protocols5 4 Link-Layer 54 Link Layer Addressing55 Ethernet55 Ethernet

5 DataLink Layer 5-45

Ethernetldquodominantrdquo wired LAN technology

cheap $20 for NICfirst widely used LAN technologyy gysimpler cheaper than token LANs and ATMkept up with speed race 10 Mbps ndash 10 Gbps p p p p p

Metcalfersquos Ethernetsketch

5 DataLink Layer 5-46

Star topologyp gybus topology popular through mid 90s

all nodes in same collision domain (can collide with each all nodes in same collision domain (can collide with each other)

today star topology prevails h active switch in center

each ldquospokerdquo runs a (separate) Ethernet protocol (nodes do not collide with each other)

switch

b l bl

5 DataLink Layer 5-47

bus coaxial cable star

Ethernet Frame StructuremSending adapter encapsulates IP datagram (or other g p p g (

network layer protocol packet) in Ethernet frame

Preamble7 bytes with pattern 10101010 followed by one y p ybyte with pattern 10101011used to synchronize receiver sender clock rates

5 DataLink Layer 5-48

Ethernet Frame Structure (more)Ethernet Frame Structure (more)Addresses 6 bytesy

if adapter receives frame with matching destination address or with broadcast address (eg ARP packet) it passes data in frame to network layer protocolpasses data in frame to network layer protocolotherwise adapter discards frame

Type indicates higher layer protocol (mostly IP Type indicates higher layer protocol (mostly IP but others possible eg Novell IPX AppleTalk)CRC checked at receiver if error is detected frame is dropped

5 DataLink Layer 5-49

Ethernet Unreliable connectionlessEthernet Unreliable connectionless

i l N h d h ki b di d connectionless No handshaking between sending and receiving NICs

li bl i i NIC d s rsquot s d ks ks unreliable receiving NIC doesnrsquot send acks or nacks to sending NIC

stream of datagrams passed to network layer can have gaps stream of datagrams passed to network layer can have gaps (missing datagrams)gaps will be filled if app is using TCPotherwise app will see gaps

Ethernetrsquos MAC protocol unslotted CSMACD

5 DataLink Layer 5-50

Ethernet CSMACD algorithmg1 NIC receives datagram 4 If NIC detects another

from network layer creates frame

2 f N C h l dl

transmission while transmitting aborts and sends jam signal2 If NIC senses channel idle

starts frame transmission If NIC senses channel

sends jam signal5 After aborting NIC

enters exponential If NIC senses channel busy waits until channel idle then transmits

enters exponential backoff after mth collision NIC chooses K at

3 If NIC transmits entire frame without detecting

random from 012hellip2m-1 NIC waits K 512 bi i

ganother transmission NIC is done with frame

K512 bit times returns to Step 2

5 DataLink Layer 5-51

Ethernetrsquos CSMACD (more)Ethernet s CSMACD (more)Jam Signal make sure all Exponential Backoffg

other transmitters are aware of collision 48 bits

Bit time 1 microsec for 10

pGoal adapt retransmission attempts to estimated current loadBit time 1 microsec for 10

Mbps Ethernet for K=1023 wait time is about 50 msec

current loadheavy load random wait will be longer

about 50 msec first collision choose K from 01 delay is K 512 bit transmission timestransm ss on t m safter second collision choose K from 0123hellipft t lli i h K

Seeinteract with Javaapplet on AWL Web site

after ten collisions choose K from 01234hellip1023

pphighly recommended

5 DataLink Layer 5-52

CSMACD efficiencyCSMACD efficiency

T d l b 2 d i L NTprop = max prop delay between 2 nodes in LANttrans = time to transmit max-size frame

efficiency 1

=

efficiency goes to 1

transprop ttff y

51+

efficiency goes to 1 as tprop goes to 0as ttrans goes to infinitytrans g y

better performance than ALOHA and simple cheap decentralized

5 DataLink Layer 5-53

p

8023 Ethernet Standards Link amp Physical Layersy y

many different Ethernet standardsycommon MAC protocol and frame formatdifferent speeds 2 Mbps 10 Mbps 100 Mbps 1Gb 10G b1Gbps 10G bpsdifferent physical layer media fiber cable

MAC protocolapplicationtransportnetwork

li k

MAC protocoland frame format

100BASE-TX 100BASE-FX100BASE-T2link

physical100BASE-T4 100BASE-SX 100BASE-BX

5 DataLink Layer 5-54

fiber physical layercopper (twisterpair) physical layer

Manchester encodingManchester encoding

used in 10BaseTeach bit has a transitionallows clocks in sending and receiving nodes to g gsynchronize to each other

no need for a centralized global clock among nodes

5 DataLink Layer 5-55

Hey this is physical-layer stuff

Link LayerLink Layer

5 1 I d i d 5 6 Li k l i h51 Introduction and services5 2 E d t ti

56 Link-layer switches57 PPP

52 Error detection and correction 5 3 Multiple access

58 Link Virtualization ATM MPLS

53 Multiple access protocols5 4 Link-layer 54 Link layer Addressing55 Ethernet55 Ethernet

5 DataLink Layer 5-56

Hubshellip physical-layer (ldquodumbrdquo) repeaters

bits coming in one link go out all other links at bits coming in one link go out all other links at same rateall nodes connected to hub can collide with one anotherno frame bufferinggno CSMACD at hub host NICs detect collisions

twisted pair

hub

5 DataLink Layer 5-57

Switchlink-layer device smarter than hubs take yactive role

store forward Ethernet framesexamine incoming framersquos MAC address selectively forward frame to one-or-more

l k h f f d d outgoing links when frame is to be forwarded on segment uses CSMACD to access segment

transparenthosts are unaware of presence of switches

plug-and-play self-learningswitches do not need to be configured

5 DataLink Layer 5-58

g

Switch allows multiple simultaneous ptransmissions

A

hosts have dedicated direct connection to switch

BCrsquo

switches buffer packetsEthernet protocol used on each incoming link but no

1 2 345

6

each incoming link but no collisions full duplex

each link is its own collision C

45

domainswitching A-to-Arsquo and B-to-Brsquo simultaneously

ArsquoBrsquo

to-B simultaneously without collisions

not possible with dumb hub

switch with six interfaces(123456)

5 DataLink Layer 5-59

Switch TableSwitch Table

Q h d s s it h k th t A

Q how does switch know that Arsquo reachable via interface 4 Brsquo reachable via interface 5

BCrsquo

B reachable via interface 5A each switch has a switch table each entry

1 2 345

6ta ach ntry

(MAC address of host interface to reach host time stamp) C

45

looks like a routing tableQ how are entries created

i t i d i it h t bl

ArsquoBrsquo

maintained in switch table something like a routing protocol

switch with six interfaces(123456)

5 DataLink Layer 5-60

protocol

Switch self-learning Source ASwitch self-learning

s it h l s hi h h sts A A Arsquo

Dest Arsquo

switch learns which hosts can be reached through which interfaces

BCrsquo

which interfaceswhen frame received switch ldquolearnsrdquo location of

d i i LAN

1 2 345

6

sender incoming LAN segmentrecords senderlocation

C

45

pair in switch tableArsquoBrsquo

MAC addr interface TTLMAC addr interface TTLSwitch table

(initially empty)A 1 60

5 DataLink Layer 5-61

Switch frame filteringforwardingWhen frame received

1 record link associated with sending host2 ind x s itch t bl usin MAC d st dd ss2 index switch table using MAC dest address3 if entry found for destination

then then if dest on segment from which frame arrived

then drop the framethen drop the frameelse forward the frame on interface indicated

else flood forward on all but the interface

on which the frame arrived5 DataLink Layer 5-62

on which the frame arrived

Self-learning Source ASelf learning forwarding

lA A Arsquo

Dest Arsquo

exampleBCrsquo

frame destinati n 1 2 345

6A ArsquoA ArsquoA ArsquoA ArsquoA Arsquoframe destination unknown floodd ti ti A

C

45

Arsquo A

destination A location knownselective send

ArsquoBrsquo

MAC addr interface TTL

selective send

MAC addr interface TTLSwitch table

(initially empty)A 1 60Arsquo 4 60

5 DataLink Layer 5-63

Interconnecting switchesg

switches can be connected togetherg

S

S4

A

B

S1

C DF

S2S3

IB C D

E HI

G

Q sending from A to G - how does S1 know to forward frame destined to F via S and S forward frame destined to F via S4 and S3A self learning (works exactly the same as in single-switch case)

5 DataLink Layer 5-64

single switch case)

Self-learning multi-switch exampleSuppose C sends frame to I I responds to C

S

S412

A

B

S1

C DF

S2S3

I

2

B C D

E HI

G

Q show switch tables and packet forwarding in S1 S2 S3 S4

5 DataLink Layer 5-65

Institutional networkInstitutional network

to externalnetwork

mail server

networkrouter web server

IP subnet

5 DataLink Layer 5-66

Switches vs RoutersSwitches vs Routersboth store-and-forward devices

routers network layer devices (examine network layer headers)switches are link layer devicesswitches are link layer devices

routers maintain routing tables implement routing algorithmsgswitches maintain switch tables implement filtering learning algorithmsf g g g

5 DataLink Layer 5-67

Link LayerLink Layer

5 1 I d i d 5 6 H b d i h51 Introduction and services5 2 E d t ti

56 Hubs and switches57 PPP

52 Error detection and correction 5 3Multiple access

58 Link Virtualization ATM

53Multiple access protocols5 4 Link-Layer 54 Link Layer Addressing55 Ethernet55 Ethernet

5 DataLink Layer 5-68

Point to Point Data Link ControlPoint to Point Data Link Controlone sender one receiver one link easier than one sender one receiver one link easier than broadcast link

no Media Access Controlno Media Access Controlno need for explicit MAC addressinge g dialup link ISDN lineeg dialup link ISDN line

popular point-to-point DLC protocolsPPP (point-to-point protocol)PPP (point to point protocol)HDLC High level data link control (Data link used to be considered ldquohigh layerrdquo in protocol used to be considered high layer in protocol stack

5 DataLink Layer 5-69

PPP Design Requirements [RFC 1557]

packet framing encapsulation of network-layer p f m g p u f w ydatagram in data link frame

carry network layer data of any network layer y y y yprotocol (not just IP) at same timeability to demultiplex upwards

bit transparency must carry any bit pattern in the data fielderror detection (no correction)connection liveness detect signal link failure to

k lnetwork layernetwork layer address negotiation endpoint can l fi h th rsquos t k dd ss

5 DataLink Layer 5-70

learnconfigure each otherrsquos network address

PPP non-requirementsPPP non requirements

ti no error correctionrecoveryno flow control

f d d l K out of order delivery OK no need to support multipoint links (eg polling)

E l l Error recovery flow control data re-ordering all relegated to higher layers

5 DataLink Layer 5-71

PPP Data FramePPP Data Frame

Fl d li i (f i )Flag delimiter (framing)Address does nothing (only one option)Control does nothing in the future possible multiple control fieldsP t l l t l t hi h f Protocol upper layer protocol to which frame delivered (eg PPP-LCP IP IPCP etc)

5 DataLink Layer 5-72

PPP Data FramePPP Data Frame

i f l d b i i dinfo upper layer data being carriedcheck cyclic redundancy check for error d t tidetection

5 DataLink Layer 5-73

Byte StuffingByte Stuffingldquodata transparencyrdquo requirement data field must

be allowed to include flag pattern lt01111110gtQ is received lt01111110gt data or flag

Sender adds (ldquostuffsrdquo) extra lt 01111110gt byte after each lt 01111110gt data byteReceiver

two 01111110 bytes in a row discard first byte d continue data reception

single 01111110 flag byte

5 DataLink Layer 5-74

Byte StuffingByte Stuffing

flag bytepatterni din datato send

flag byte pattern plusstuffed byte in transmitted data

5 DataLink Layer 5-75

transmitted data

PPP Data Control ProtocolPPP Data Control ProtocolBefore exchanging network-g g

layer data data link peers mustconfigure PPP link (max frame length authentication)authentication)learnconfigure networklayer informationlayer information

for IP carry IP Control Protocol (IPCP) msgs Protocol (IPCP) msgs (protocol field 8021) to configurelearn IP

5 DataLink Layer 5-76

gaddress

Link LayerLink Layer

5 1 I d i d 5 6 H b d i h51 Introduction and services5 2 E d t ti

56 Hubs and switches57 PPP

52 Error detection and correction 5 3Multiple access

58 Link Virtualization ATM and MPLS

53Multiple access protocols5 4 Link-Layer 54 Link Layer Addressing55 Ethernet55 Ethernet

5 DataLink Layer 5-77

Virtualization of networksVirtualization of networks

Vi li i f f l b i i Virtualization of resources powerful abstraction in systems engineering

ti l s i t l i t l computing examples virtual memory virtual devices

Virtual machines e g javaVirtual machines eg javaIBM VM os from 1960rsquos70rsquos

layering of abstractions donrsquot sweat the details of layering of abstractions don t sweat the details of the lower layer only deal with lower layers abstractlyabstractly

5 DataLink Layer 5-78

The Internet virtualizing networksThe Internet virtualizing networks

1974 multiple unconnected differing in1974 multiple unconnected nets

ARPAnet

hellip differing inaddressing conventionspacket formats

data-over-cable networkspacket satellite network (Aloha)

k d k

perror recoveryrouting

packet radio network

ARPAnet satellite net

5 DataLink Layer 5-79

ARPAnet satell te netA Protocol for Packet Network Intercommunication V Cerf R Kahn IEEE Transactions on CommunicationsMay 1974 pp 637-648

The Internet virtualizing networksThe Internet virtualizing networksInternetwork layer (IP)

addressing internetwork Gateway

ldquoembed internetwork packets in l l k f

addressing internetwork appears as single uniform entity despite underlying local network heterogeneitynetwork of networks

plocal packet format or extract themrdquoroute (at internetwork level) to next gatewaynetwork of networks next gateway

gateway

ARPAnet satellite net

5 DataLink Layer 5-80

ARPAnet satell te net

Cerf amp Kahnrsquos Internetwork ArchitectureCerf amp Kahn s Internetwork ArchitectureWhat is virtualized

two layers of addressing internetwork and local networknew layer (IP) makes everything homogeneous at internetwork layerunderlying local network technology

cablesatellite56K telephone modemtoday ATM MPLS

hellip ldquoinvisiblerdquo at internetwork layer Looks like a link

5 DataLink Layer 5-81

ylayer technology to IP

ATM and MPLSATM and MPLS

P k h ATM MPLS separate networks in their own right

different service models addressing routing from Internet

viewed by Internet as logical link connecting IP routers

just like dialup link is really part of separate network (telephone network)

ATM MPLS of technical interest in their own right

5 DataLink Layer 5-82

Asynchronous Transfer Mode ATMAsynchronous Transfer Mode ATM1990rsquos00 standard for high-speed (155Mbps to g p ( p622 Mbps and higher) Broadband Integrated Service Digital Network architectureGoal integrated end-end transport of carry voice video data

i i i Q i f i id meeting timingQoS requirements of voice video (versus Internet best-effort model)ldquo t ti rdquo t l h t h i l ts i ldquonext generationrdquo telephony technical roots in telephone worldpacket switching (fixed length packets called packet-switching (fixed length packets called ldquocellsrdquo) using virtual circuits

5 DataLink Layer 5-83

ATM architecture ATM architecture AAL AAL

ATM ATMATM ATM

physical physicalphysical physical

d d ti h it h

adaptation layer only at edge of ATM network

end system end systemswitch switch

data segmentationreassemblyroughly analagous to Internet transport layer

ATM layer ldquonetworkrdquo layercell switching routing

5 DataLink Layer 5-84

physical layer

ATM network or link layerATM network or link layerVision end-to-end

t t ldquoATM f transport ldquoATM from desktop to desktoprdquo

ATM is a network ATM

IPnetwork

ATM is a network technology

Reality used to connect

ATMnetwork

Reality used to connect IP backbone routers

ldquoIP over ATMrdquoIP over ATMATM as switched link layer y connecting IP routers

5 DataLink Layer 5-85

ATM Adaptation Layer (AAL)ATM Adaptation Layer (AAL)

TM d i L ( L) ldquo d rdquo ATM Adaptation Layer (AAL) ldquoadaptsrdquo upper layers (IP or native ATM applications) to ATM layer belowlayer belowAAL present only in end systems not in switchesAAL layer segment (headertrailer fields data) AAL layer segment (headertrailer fields data) fragmented across multiple ATM cells

analogy TCP segment in many IP packetsanalogy TCP segment in many IP packets

AAL AAL

physical

ATM

physical

ATM

physical

ATM

physical

ATM

5 DataLink Layer 5-86

physical physicalp y p y

end system end systemswitch switch

ATM Adaptation Layer (AAL) [more]

Different versions of AAL layers depending on ATM y p gservice classAAL1 for CBR (Constant Bit Rate) services eg circuit emulationAAL2 for VBR (Variable Bit Rate) services eg MPEG videoAAL5 for data (eg IP datagrams)

User data

AAL PDU

ATM cell

5 DataLink Layer 5-87

ATM LayeryService transport cells across ATM network

analogous to IP network layeranalogous to IP network layervery different services than IP network layer

Guarantees NetworkArchitecture

ServiceModel Bandwidth Loss Order Timing

Congestionfeedback

Guarantees

Internet

ATM

best effort

CBR

none

constant

no

yes

no

yes

no

yes

no (inferredvia loss)noATM

ATM

CBR

VBR

constantrateguaranteedrate

yes

yes

yes

yes

yes

yes

nocongestionnocongestion

ATM

ATM

ABR

UBR

rateguaranteed minimum

no yes nocongestionyes

5 DataLink Layer 5-88

ATM UBR none no yes no no

ATM Layer Virtual CircuitsATM Layer Virtual CircuitsVC transport cells carried on VC from source to destp

call setup teardown for each call before data can floweach packet carries VC identifier (not destination ID)

it h d t th i t i ldquo t t rdquo f h every switch on source-dest path maintain ldquostaterdquo for each passing connectionlinkswitch resources (bandwidth buffers) may be allocated to ( ff ) m yVC to get circuit-like perf

Permanent VCs (PVCs)long lasting connectionstypically ldquopermanentrdquo route between to IP routers

Switched VCs (SVC)dynamically set up on per-call basis

5 DataLink Layer 5-89

ATM VCsATM VCsAdvantages of ATM VC approachAdvantages of ATM VC approach

QoS performance guarantee for connection mapped to VC (bandwidth delay delay jitter)mapped to VC (bandwidth delay delay jitter)

Drawbacks of ATM VC approachInefficient support of datagram trafficInefficient support of datagram trafficone PVC between each sourcedest pair) does not scale (N2 connections needed) not scale (N 2 connections needed) SVC introduces call setup latency processing overhead for short lived connectionsoverhead for short lived connections

5 DataLink Layer 5-90

ATM Layer ATM cellATM Layer ATM cell5-byte ATM cell headery48-byte payload

Why small payload -gt short cell-creation delay W y m p y yfor digitized voicehalfway between 32 and 64 (compromise)y p

Cell headerCell header

Cell format

5 DataLink Layer 5-91

ATM cell headerATM cell headerVCI virtual channel IDVCI virtual channel ID

will change from link to link thru netPT P l d t p ( RM ll s s d t ll) PT Payload type (eg RM cell versus data cell) CLP Cell Loss Priority bit

CLP 1 i li l i it ll b CLP = 1 implies low priority cell can be discarded if congestion

HEC Header Error ChecksumHEC Header Error Checksumcyclic redundancy check

5 DataLink Layer 5-92

ATM Physical Layer (more)ATM Physical Layer (more)

T i ( bl ) f h i l lTwo pieces (sublayers) of physical layerTransmission Convergence Sublayer (TCS) adapts ATM l b t PMD s bl b lATM layer above to PMD sublayer belowPhysical Medium Dependent depends on physical medium being usedmedium being used

TCS FunctionsTCS FunctionsHeader checksum generation 8 bits CRC C ll d lin ti nCell delineationWith ldquounstructuredrdquo PMD sublayer transmission of idle cells when no data cells to send

5 DataLink Layer 5-93

of idle cells when no data cells to send

ATM Physical LayerATM Physical Layer

Ph l d D d (P D) blPhysical Medium Dependent (PMD) sublayerSONETSDH transmission frame structure (like a

b ) container carrying bits) bit synchronization bandwidth partitions (TDM) several speeds OC3 = 15552 Mbps OC12 = 62208 Mb OC48 2 45 Gb OC192 9 6 GbMbps OC48 = 245 Gbps OC192 = 96 Gbps

TIT3 transmission frame structure (old telephone hierarchy) 1 5 Mbps 45 Mbpstelephone hierarchy) 15 Mbps 45 Mbpsunstructured just cells (busyidle)

5 DataLink Layer 5-94

IP-Over-ATMIP over ATM

Classic IP only3 ldquonetworksrdquo (e g

IP over ATMreplace ldquonetworkrdquo (e g LAN segment) 3 networks (eg

LAN segments)MAC (802 3) and IP

(eg LAN segment) with ATM networkATM addresses IP MAC (8023) and IP

addressesATM addresses IP addresses

ATMATMnetwork

Ethernet Ethernet

5 DataLink Layer 5-95

EthernetLANs

EthernetLANs

IP-Over-ATMapp

transportapp

AALEthIP

transportIP

AALATM

apptransport

IPEth ATM

phyphyEth

ATM

ATMphy

ATMphy

Ethphy

ATMphy

p y

5 DataLink Layer 5-96

Datagram Journey in IP-over-ATM NetworkDatagram Journey in IP-over-ATM Network

at Source HostIP layer maps between IP ATM dest address (using ARP)passes datagram to AAL5AAL5 encapsulates data segments cells passes to ATM layer

ATM network moves cell along VC to destinationat Destination Host

AAL5 reassembles cells into original datagramif CRC OK datagram is passed to IP

5 DataLink Layer 5-97

IP-Over-ATMIP-Over-ATM

IssuesIP datagrams into

ATMnetwork

ATM AAL5 PDUsfrom IP addresses

TM ddto ATM addressesjust like IP dd ss s t addresses to

8023 MAC addresses

EthernetLANs

addresses

5 DataLink Layer 5-98

Multiprotocol label switching (MPLS)Multiprotocol label switching (MPLS)

i i i l l d IP f di b i fi d initial goal speed up IP forwarding by using fixed length label (instead of IP address) to do forwarding forwarding

borrowing ideas from Virtual Circuit (VC) approachbut IP datagram still keeps IP addressg p

PPP or EthernetPPP or Ethernet header

IP header remainder of link-layer frameMPLS header

label Exp S TTL

5 DataLink Layer 5-9920 3 1 5

MPLS capable routersMPLS capable routers

k l b l it h d taka label-switched routerforwards packets to outgoing interface based

l l b l l (d rsquot i t IP dd )only on label value (donrsquot inspect IP address)MPLS forwarding table distinct from IP forwarding tablestables

signaling protocol needed to set up forwardingRSVP TERSVP-TEforwarding possible along paths that IP alone would not allow (eg source-specific routing) not allow (eg source spec f c rout ng) use MPLS for traffic engineering

must co-exist with IP-only routers5 DataLink Layer 5-100

must co exist with IP only routers

MPLS forwarding tablesi t t

MPLS forwarding tables

in out outlabel label dest interface

in out outlabel label dest interface

10 A 012 D 0 label label dest interface

10 6 A 112 9 D 0

12 D 08 A 1

D1

00R6

R3R4R5

0

1

A

1

0

R1R2A

in out outlabel label dest interface

6 A 0in out out

label label dest interface

5 DataLink Layer 5-101

6 - A 0label label dest interface

8 6 A 0

Chapter 5 SummaryChapter 5 Summaryprinciples behind data link layer servicespr nc p s h n ata n ay r s r c s

error detection correctionsharing a broadcast channel multiple accesslink layer addressing

instantiation and implementation of various link l t h l ilayer technologies

Ethernetit h d LANSswitched LANS

PPPi li d k li k l TM MPLvirtualized networks as a link layer ATM MPLS

5 DataLink Layer 5-102

Chapter 5 letrsquos take a breathChapter 5 let s take a breathjourney down protocol stack completejourney down protocol stack complete(except PHY)solid understanding of networking principles solid understanding of networking principles practice

ld t h b t l t f i t ti hellip could stop here hellip but lots of interesting topics

lwirelessmultimediasecurity network management

5 DataLink Layer 5-103

Page 10: Link Layer Link Layer: Introduction

Link LayerLink Layer

5 1 I d i d 5 6 Li k l i h51 Introduction and services5 2 E d t ti

56 Link-layer switches57 PPP

52 Error detection and correction 5 3Multiple access

58 Link Virtualization ATM MPLS

53Multiple access protocols5 4 Link-Layer 54 Link Layer Addressing55 Ethernet55 Ethernet

5 DataLink Layer 5-37

MAC Addresses and ARPMAC Addresses and ARP

32-bit IP address network-layer addressyused to get datagram to destination IP subnet

MAC (or LAN or physical or Ethernet) MAC (or LAN or physical or Ethernet) address

f n ti n t f m f m n int f t n th function get frame from one interface to another physically-connected interface (same network)48 bit MAC address (for most LANs)48 bit MAC address (for most LANs)

bull burned in NIC ROM also sometimes software settable

5 DataLink Layer 5-38

LAN Addresses and ARPLAN Addresses and ARPEach adapter on LAN has unique LAN address

Broadcast address =FF-FF-FF-FF-FF-FF

1A-2F-BB-76-09-AD

= adapterLAN

(wired ori l )

58-23-D7-FA-20-B071-65-F7-2B-08-53

wireless)

0C-C4-11-6F-E3-98

5 DataLink Layer 5-39

LAN Address (more)LAN Address (more)

M C dd ll i d i i d b IEEEMAC address allocation administered by IEEEmanufacturer buys portion of MAC address space (t ss i ss)(to assure uniqueness)analogy

( ) MAC dd lik S i l S it N b(a) MAC address like Social Security Number(b) IP address like postal address

MAC fl dd づ bili MAC flat address づ portability can move LAN card from one LAN to another

IP hi chic l dd ss NOT p t blIP hierarchical address NOT portableaddress depends on IP subnet to which node is attached

5 DataLink Layer 5-40

ARP Address Resolution ProtocolAR Address Resolut on rotocol

Each IP node (host Question how to determine Each IP node (host router) on LAN has ARP table

Question how to determineMAC address of Bknowing Brsquos IP address

ARP table IPMAC address mappings for

knowing B s IP address

137196778 pp gsome LAN nodes

lt IP address MAC address TTLgtTTL (Tim T Li ) tim

1A-2F-BB-76-09-AD

137196723 137196714

TTL (Time To Live) time after which address mapping will be forgotten ( ll 20 )58-23-D7-FA-20-B071-65-F7-2B-08-53

LAN

(typically 20 min)58 23 D7 FA 20 B0

0C-C4-11-6F-E3-98137 196 7 88

5 DataLink Layer 5-41

137196788

ARP protocol Same LAN (network)

A wants to send datagram t B d Brsquo MAC dd A h ( ) IP tto B and Brsquos MAC address not in Arsquos ARP tableA broadcasts ARP query

A caches (saves) IP-to-MAC address pair in its ARP table until information q y

packet containing Bs IP address

dest MAC address = FF

becomes old (times out) soft state information that times out (goes dest MAC address = FF-

FF-FF-FF-FF-FFall machines on LAN

that times out (goes away) unless refreshed

ARP is ldquoplug-and-playrdquoreceive ARP query

B receives ARP packet replies to A with its (Bs)

p g p ynodes create their ARP tables without intervention from net replies to A with its (B s)

MAC addressframe sent to Arsquos MAC address (unicast)

intervention from net administrator

5 DataLink Layer 5-42

address (unicast)

Addressing routing to another LANwalkthrough send datagram from A to B via R

ssume A kn s Brsquos IP ddress

A74-29-9C-E8-FF-55 88-B2-2F-54-1A-0F

assume A knows B s IP address

1A-23-F9-CD-06-9BE6-E9-00-17-BB-4B

111111111111

A222222222221

R

222222222220111111111110

111111111112B

222222222222

CC-49-DE-D0-AB-7D

49-BD-D2-C7-56-2A

t ARP t bl s i t R f h IP two ARP tables in router R one for each IP network (LAN)

5 DataLink Layer 5-43

A creates IP datagram with source A destination B A uses ARP to get Rrsquos MAC address for 111 111 111 110A uses ARP to get R s MAC address for 111111111110A creates link-layer frame with Rs MAC address as dest frame contains A-to-B IP datagram This is a really importantArsquos NIC sends frame Rrsquos NIC receives frame R r m v s IP d t r m fr m Eth rn t fr m s s its

This is a really importantexample ndash make sure youunderstand

R removes IP datagram from Ethernet frame sees its destined to BR uses ARP to get Brsquos MAC address gR creates frame containing A-to-B IP datagram sends to B

A74-29-9C-E8-FF-55 88-B2-2F-54-1A-0F

1A-23-F9-CD-06-9BE6-E9-00-17-BB-4B

111111111111

A222222222221

R

222222222220111111111110

111111111112

B222222222222

5 DataLink Layer 5-44

RCC-49-DE-D0-AB-7D

49-BD-D2-C7-56-2A

Link LayerLink Layer

5 1 I d i d 5 6 Li k l i h51 Introduction and services5 2 E d t ti

56 Link-layer switches57 PPP

52 Error detection and correction 5 3Multiple access

58 Link Virtualization ATM and MPLS

53Multiple access protocols5 4 Link-Layer 54 Link Layer Addressing55 Ethernet55 Ethernet

5 DataLink Layer 5-45

Ethernetldquodominantrdquo wired LAN technology

cheap $20 for NICfirst widely used LAN technologyy gysimpler cheaper than token LANs and ATMkept up with speed race 10 Mbps ndash 10 Gbps p p p p p

Metcalfersquos Ethernetsketch

5 DataLink Layer 5-46

Star topologyp gybus topology popular through mid 90s

all nodes in same collision domain (can collide with each all nodes in same collision domain (can collide with each other)

today star topology prevails h active switch in center

each ldquospokerdquo runs a (separate) Ethernet protocol (nodes do not collide with each other)

switch

b l bl

5 DataLink Layer 5-47

bus coaxial cable star

Ethernet Frame StructuremSending adapter encapsulates IP datagram (or other g p p g (

network layer protocol packet) in Ethernet frame

Preamble7 bytes with pattern 10101010 followed by one y p ybyte with pattern 10101011used to synchronize receiver sender clock rates

5 DataLink Layer 5-48

Ethernet Frame Structure (more)Ethernet Frame Structure (more)Addresses 6 bytesy

if adapter receives frame with matching destination address or with broadcast address (eg ARP packet) it passes data in frame to network layer protocolpasses data in frame to network layer protocolotherwise adapter discards frame

Type indicates higher layer protocol (mostly IP Type indicates higher layer protocol (mostly IP but others possible eg Novell IPX AppleTalk)CRC checked at receiver if error is detected frame is dropped

5 DataLink Layer 5-49

Ethernet Unreliable connectionlessEthernet Unreliable connectionless

i l N h d h ki b di d connectionless No handshaking between sending and receiving NICs

li bl i i NIC d s rsquot s d ks ks unreliable receiving NIC doesnrsquot send acks or nacks to sending NIC

stream of datagrams passed to network layer can have gaps stream of datagrams passed to network layer can have gaps (missing datagrams)gaps will be filled if app is using TCPotherwise app will see gaps

Ethernetrsquos MAC protocol unslotted CSMACD

5 DataLink Layer 5-50

Ethernet CSMACD algorithmg1 NIC receives datagram 4 If NIC detects another

from network layer creates frame

2 f N C h l dl

transmission while transmitting aborts and sends jam signal2 If NIC senses channel idle

starts frame transmission If NIC senses channel

sends jam signal5 After aborting NIC

enters exponential If NIC senses channel busy waits until channel idle then transmits

enters exponential backoff after mth collision NIC chooses K at

3 If NIC transmits entire frame without detecting

random from 012hellip2m-1 NIC waits K 512 bi i

ganother transmission NIC is done with frame

K512 bit times returns to Step 2

5 DataLink Layer 5-51

Ethernetrsquos CSMACD (more)Ethernet s CSMACD (more)Jam Signal make sure all Exponential Backoffg

other transmitters are aware of collision 48 bits

Bit time 1 microsec for 10

pGoal adapt retransmission attempts to estimated current loadBit time 1 microsec for 10

Mbps Ethernet for K=1023 wait time is about 50 msec

current loadheavy load random wait will be longer

about 50 msec first collision choose K from 01 delay is K 512 bit transmission timestransm ss on t m safter second collision choose K from 0123hellipft t lli i h K

Seeinteract with Javaapplet on AWL Web site

after ten collisions choose K from 01234hellip1023

pphighly recommended

5 DataLink Layer 5-52

CSMACD efficiencyCSMACD efficiency

T d l b 2 d i L NTprop = max prop delay between 2 nodes in LANttrans = time to transmit max-size frame

efficiency 1

=

efficiency goes to 1

transprop ttff y

51+

efficiency goes to 1 as tprop goes to 0as ttrans goes to infinitytrans g y

better performance than ALOHA and simple cheap decentralized

5 DataLink Layer 5-53

p

8023 Ethernet Standards Link amp Physical Layersy y

many different Ethernet standardsycommon MAC protocol and frame formatdifferent speeds 2 Mbps 10 Mbps 100 Mbps 1Gb 10G b1Gbps 10G bpsdifferent physical layer media fiber cable

MAC protocolapplicationtransportnetwork

li k

MAC protocoland frame format

100BASE-TX 100BASE-FX100BASE-T2link

physical100BASE-T4 100BASE-SX 100BASE-BX

5 DataLink Layer 5-54

fiber physical layercopper (twisterpair) physical layer

Manchester encodingManchester encoding

used in 10BaseTeach bit has a transitionallows clocks in sending and receiving nodes to g gsynchronize to each other

no need for a centralized global clock among nodes

5 DataLink Layer 5-55

Hey this is physical-layer stuff

Link LayerLink Layer

5 1 I d i d 5 6 Li k l i h51 Introduction and services5 2 E d t ti

56 Link-layer switches57 PPP

52 Error detection and correction 5 3 Multiple access

58 Link Virtualization ATM MPLS

53 Multiple access protocols5 4 Link-layer 54 Link layer Addressing55 Ethernet55 Ethernet

5 DataLink Layer 5-56

Hubshellip physical-layer (ldquodumbrdquo) repeaters

bits coming in one link go out all other links at bits coming in one link go out all other links at same rateall nodes connected to hub can collide with one anotherno frame bufferinggno CSMACD at hub host NICs detect collisions

twisted pair

hub

5 DataLink Layer 5-57

Switchlink-layer device smarter than hubs take yactive role

store forward Ethernet framesexamine incoming framersquos MAC address selectively forward frame to one-or-more

l k h f f d d outgoing links when frame is to be forwarded on segment uses CSMACD to access segment

transparenthosts are unaware of presence of switches

plug-and-play self-learningswitches do not need to be configured

5 DataLink Layer 5-58

g

Switch allows multiple simultaneous ptransmissions

A

hosts have dedicated direct connection to switch

BCrsquo

switches buffer packetsEthernet protocol used on each incoming link but no

1 2 345

6

each incoming link but no collisions full duplex

each link is its own collision C

45

domainswitching A-to-Arsquo and B-to-Brsquo simultaneously

ArsquoBrsquo

to-B simultaneously without collisions

not possible with dumb hub

switch with six interfaces(123456)

5 DataLink Layer 5-59

Switch TableSwitch Table

Q h d s s it h k th t A

Q how does switch know that Arsquo reachable via interface 4 Brsquo reachable via interface 5

BCrsquo

B reachable via interface 5A each switch has a switch table each entry

1 2 345

6ta ach ntry

(MAC address of host interface to reach host time stamp) C

45

looks like a routing tableQ how are entries created

i t i d i it h t bl

ArsquoBrsquo

maintained in switch table something like a routing protocol

switch with six interfaces(123456)

5 DataLink Layer 5-60

protocol

Switch self-learning Source ASwitch self-learning

s it h l s hi h h sts A A Arsquo

Dest Arsquo

switch learns which hosts can be reached through which interfaces

BCrsquo

which interfaceswhen frame received switch ldquolearnsrdquo location of

d i i LAN

1 2 345

6

sender incoming LAN segmentrecords senderlocation

C

45

pair in switch tableArsquoBrsquo

MAC addr interface TTLMAC addr interface TTLSwitch table

(initially empty)A 1 60

5 DataLink Layer 5-61

Switch frame filteringforwardingWhen frame received

1 record link associated with sending host2 ind x s itch t bl usin MAC d st dd ss2 index switch table using MAC dest address3 if entry found for destination

then then if dest on segment from which frame arrived

then drop the framethen drop the frameelse forward the frame on interface indicated

else flood forward on all but the interface

on which the frame arrived5 DataLink Layer 5-62

on which the frame arrived

Self-learning Source ASelf learning forwarding

lA A Arsquo

Dest Arsquo

exampleBCrsquo

frame destinati n 1 2 345

6A ArsquoA ArsquoA ArsquoA ArsquoA Arsquoframe destination unknown floodd ti ti A

C

45

Arsquo A

destination A location knownselective send

ArsquoBrsquo

MAC addr interface TTL

selective send

MAC addr interface TTLSwitch table

(initially empty)A 1 60Arsquo 4 60

5 DataLink Layer 5-63

Interconnecting switchesg

switches can be connected togetherg

S

S4

A

B

S1

C DF

S2S3

IB C D

E HI

G

Q sending from A to G - how does S1 know to forward frame destined to F via S and S forward frame destined to F via S4 and S3A self learning (works exactly the same as in single-switch case)

5 DataLink Layer 5-64

single switch case)

Self-learning multi-switch exampleSuppose C sends frame to I I responds to C

S

S412

A

B

S1

C DF

S2S3

I

2

B C D

E HI

G

Q show switch tables and packet forwarding in S1 S2 S3 S4

5 DataLink Layer 5-65

Institutional networkInstitutional network

to externalnetwork

mail server

networkrouter web server

IP subnet

5 DataLink Layer 5-66

Switches vs RoutersSwitches vs Routersboth store-and-forward devices

routers network layer devices (examine network layer headers)switches are link layer devicesswitches are link layer devices

routers maintain routing tables implement routing algorithmsgswitches maintain switch tables implement filtering learning algorithmsf g g g

5 DataLink Layer 5-67

Link LayerLink Layer

5 1 I d i d 5 6 H b d i h51 Introduction and services5 2 E d t ti

56 Hubs and switches57 PPP

52 Error detection and correction 5 3Multiple access

58 Link Virtualization ATM

53Multiple access protocols5 4 Link-Layer 54 Link Layer Addressing55 Ethernet55 Ethernet

5 DataLink Layer 5-68

Point to Point Data Link ControlPoint to Point Data Link Controlone sender one receiver one link easier than one sender one receiver one link easier than broadcast link

no Media Access Controlno Media Access Controlno need for explicit MAC addressinge g dialup link ISDN lineeg dialup link ISDN line

popular point-to-point DLC protocolsPPP (point-to-point protocol)PPP (point to point protocol)HDLC High level data link control (Data link used to be considered ldquohigh layerrdquo in protocol used to be considered high layer in protocol stack

5 DataLink Layer 5-69

PPP Design Requirements [RFC 1557]

packet framing encapsulation of network-layer p f m g p u f w ydatagram in data link frame

carry network layer data of any network layer y y y yprotocol (not just IP) at same timeability to demultiplex upwards

bit transparency must carry any bit pattern in the data fielderror detection (no correction)connection liveness detect signal link failure to

k lnetwork layernetwork layer address negotiation endpoint can l fi h th rsquos t k dd ss

5 DataLink Layer 5-70

learnconfigure each otherrsquos network address

PPP non-requirementsPPP non requirements

ti no error correctionrecoveryno flow control

f d d l K out of order delivery OK no need to support multipoint links (eg polling)

E l l Error recovery flow control data re-ordering all relegated to higher layers

5 DataLink Layer 5-71

PPP Data FramePPP Data Frame

Fl d li i (f i )Flag delimiter (framing)Address does nothing (only one option)Control does nothing in the future possible multiple control fieldsP t l l t l t hi h f Protocol upper layer protocol to which frame delivered (eg PPP-LCP IP IPCP etc)

5 DataLink Layer 5-72

PPP Data FramePPP Data Frame

i f l d b i i dinfo upper layer data being carriedcheck cyclic redundancy check for error d t tidetection

5 DataLink Layer 5-73

Byte StuffingByte Stuffingldquodata transparencyrdquo requirement data field must

be allowed to include flag pattern lt01111110gtQ is received lt01111110gt data or flag

Sender adds (ldquostuffsrdquo) extra lt 01111110gt byte after each lt 01111110gt data byteReceiver

two 01111110 bytes in a row discard first byte d continue data reception

single 01111110 flag byte

5 DataLink Layer 5-74

Byte StuffingByte Stuffing

flag bytepatterni din datato send

flag byte pattern plusstuffed byte in transmitted data

5 DataLink Layer 5-75

transmitted data

PPP Data Control ProtocolPPP Data Control ProtocolBefore exchanging network-g g

layer data data link peers mustconfigure PPP link (max frame length authentication)authentication)learnconfigure networklayer informationlayer information

for IP carry IP Control Protocol (IPCP) msgs Protocol (IPCP) msgs (protocol field 8021) to configurelearn IP

5 DataLink Layer 5-76

gaddress

Link LayerLink Layer

5 1 I d i d 5 6 H b d i h51 Introduction and services5 2 E d t ti

56 Hubs and switches57 PPP

52 Error detection and correction 5 3Multiple access

58 Link Virtualization ATM and MPLS

53Multiple access protocols5 4 Link-Layer 54 Link Layer Addressing55 Ethernet55 Ethernet

5 DataLink Layer 5-77

Virtualization of networksVirtualization of networks

Vi li i f f l b i i Virtualization of resources powerful abstraction in systems engineering

ti l s i t l i t l computing examples virtual memory virtual devices

Virtual machines e g javaVirtual machines eg javaIBM VM os from 1960rsquos70rsquos

layering of abstractions donrsquot sweat the details of layering of abstractions don t sweat the details of the lower layer only deal with lower layers abstractlyabstractly

5 DataLink Layer 5-78

The Internet virtualizing networksThe Internet virtualizing networks

1974 multiple unconnected differing in1974 multiple unconnected nets

ARPAnet

hellip differing inaddressing conventionspacket formats

data-over-cable networkspacket satellite network (Aloha)

k d k

perror recoveryrouting

packet radio network

ARPAnet satellite net

5 DataLink Layer 5-79

ARPAnet satell te netA Protocol for Packet Network Intercommunication V Cerf R Kahn IEEE Transactions on CommunicationsMay 1974 pp 637-648

The Internet virtualizing networksThe Internet virtualizing networksInternetwork layer (IP)

addressing internetwork Gateway

ldquoembed internetwork packets in l l k f

addressing internetwork appears as single uniform entity despite underlying local network heterogeneitynetwork of networks

plocal packet format or extract themrdquoroute (at internetwork level) to next gatewaynetwork of networks next gateway

gateway

ARPAnet satellite net

5 DataLink Layer 5-80

ARPAnet satell te net

Cerf amp Kahnrsquos Internetwork ArchitectureCerf amp Kahn s Internetwork ArchitectureWhat is virtualized

two layers of addressing internetwork and local networknew layer (IP) makes everything homogeneous at internetwork layerunderlying local network technology

cablesatellite56K telephone modemtoday ATM MPLS

hellip ldquoinvisiblerdquo at internetwork layer Looks like a link

5 DataLink Layer 5-81

ylayer technology to IP

ATM and MPLSATM and MPLS

P k h ATM MPLS separate networks in their own right

different service models addressing routing from Internet

viewed by Internet as logical link connecting IP routers

just like dialup link is really part of separate network (telephone network)

ATM MPLS of technical interest in their own right

5 DataLink Layer 5-82

Asynchronous Transfer Mode ATMAsynchronous Transfer Mode ATM1990rsquos00 standard for high-speed (155Mbps to g p ( p622 Mbps and higher) Broadband Integrated Service Digital Network architectureGoal integrated end-end transport of carry voice video data

i i i Q i f i id meeting timingQoS requirements of voice video (versus Internet best-effort model)ldquo t ti rdquo t l h t h i l ts i ldquonext generationrdquo telephony technical roots in telephone worldpacket switching (fixed length packets called packet-switching (fixed length packets called ldquocellsrdquo) using virtual circuits

5 DataLink Layer 5-83

ATM architecture ATM architecture AAL AAL

ATM ATMATM ATM

physical physicalphysical physical

d d ti h it h

adaptation layer only at edge of ATM network

end system end systemswitch switch

data segmentationreassemblyroughly analagous to Internet transport layer

ATM layer ldquonetworkrdquo layercell switching routing

5 DataLink Layer 5-84

physical layer

ATM network or link layerATM network or link layerVision end-to-end

t t ldquoATM f transport ldquoATM from desktop to desktoprdquo

ATM is a network ATM

IPnetwork

ATM is a network technology

Reality used to connect

ATMnetwork

Reality used to connect IP backbone routers

ldquoIP over ATMrdquoIP over ATMATM as switched link layer y connecting IP routers

5 DataLink Layer 5-85

ATM Adaptation Layer (AAL)ATM Adaptation Layer (AAL)

TM d i L ( L) ldquo d rdquo ATM Adaptation Layer (AAL) ldquoadaptsrdquo upper layers (IP or native ATM applications) to ATM layer belowlayer belowAAL present only in end systems not in switchesAAL layer segment (headertrailer fields data) AAL layer segment (headertrailer fields data) fragmented across multiple ATM cells

analogy TCP segment in many IP packetsanalogy TCP segment in many IP packets

AAL AAL

physical

ATM

physical

ATM

physical

ATM

physical

ATM

5 DataLink Layer 5-86

physical physicalp y p y

end system end systemswitch switch

ATM Adaptation Layer (AAL) [more]

Different versions of AAL layers depending on ATM y p gservice classAAL1 for CBR (Constant Bit Rate) services eg circuit emulationAAL2 for VBR (Variable Bit Rate) services eg MPEG videoAAL5 for data (eg IP datagrams)

User data

AAL PDU

ATM cell

5 DataLink Layer 5-87

ATM LayeryService transport cells across ATM network

analogous to IP network layeranalogous to IP network layervery different services than IP network layer

Guarantees NetworkArchitecture

ServiceModel Bandwidth Loss Order Timing

Congestionfeedback

Guarantees

Internet

ATM

best effort

CBR

none

constant

no

yes

no

yes

no

yes

no (inferredvia loss)noATM

ATM

CBR

VBR

constantrateguaranteedrate

yes

yes

yes

yes

yes

yes

nocongestionnocongestion

ATM

ATM

ABR

UBR

rateguaranteed minimum

no yes nocongestionyes

5 DataLink Layer 5-88

ATM UBR none no yes no no

ATM Layer Virtual CircuitsATM Layer Virtual CircuitsVC transport cells carried on VC from source to destp

call setup teardown for each call before data can floweach packet carries VC identifier (not destination ID)

it h d t th i t i ldquo t t rdquo f h every switch on source-dest path maintain ldquostaterdquo for each passing connectionlinkswitch resources (bandwidth buffers) may be allocated to ( ff ) m yVC to get circuit-like perf

Permanent VCs (PVCs)long lasting connectionstypically ldquopermanentrdquo route between to IP routers

Switched VCs (SVC)dynamically set up on per-call basis

5 DataLink Layer 5-89

ATM VCsATM VCsAdvantages of ATM VC approachAdvantages of ATM VC approach

QoS performance guarantee for connection mapped to VC (bandwidth delay delay jitter)mapped to VC (bandwidth delay delay jitter)

Drawbacks of ATM VC approachInefficient support of datagram trafficInefficient support of datagram trafficone PVC between each sourcedest pair) does not scale (N2 connections needed) not scale (N 2 connections needed) SVC introduces call setup latency processing overhead for short lived connectionsoverhead for short lived connections

5 DataLink Layer 5-90

ATM Layer ATM cellATM Layer ATM cell5-byte ATM cell headery48-byte payload

Why small payload -gt short cell-creation delay W y m p y yfor digitized voicehalfway between 32 and 64 (compromise)y p

Cell headerCell header

Cell format

5 DataLink Layer 5-91

ATM cell headerATM cell headerVCI virtual channel IDVCI virtual channel ID

will change from link to link thru netPT P l d t p ( RM ll s s d t ll) PT Payload type (eg RM cell versus data cell) CLP Cell Loss Priority bit

CLP 1 i li l i it ll b CLP = 1 implies low priority cell can be discarded if congestion

HEC Header Error ChecksumHEC Header Error Checksumcyclic redundancy check

5 DataLink Layer 5-92

ATM Physical Layer (more)ATM Physical Layer (more)

T i ( bl ) f h i l lTwo pieces (sublayers) of physical layerTransmission Convergence Sublayer (TCS) adapts ATM l b t PMD s bl b lATM layer above to PMD sublayer belowPhysical Medium Dependent depends on physical medium being usedmedium being used

TCS FunctionsTCS FunctionsHeader checksum generation 8 bits CRC C ll d lin ti nCell delineationWith ldquounstructuredrdquo PMD sublayer transmission of idle cells when no data cells to send

5 DataLink Layer 5-93

of idle cells when no data cells to send

ATM Physical LayerATM Physical Layer

Ph l d D d (P D) blPhysical Medium Dependent (PMD) sublayerSONETSDH transmission frame structure (like a

b ) container carrying bits) bit synchronization bandwidth partitions (TDM) several speeds OC3 = 15552 Mbps OC12 = 62208 Mb OC48 2 45 Gb OC192 9 6 GbMbps OC48 = 245 Gbps OC192 = 96 Gbps

TIT3 transmission frame structure (old telephone hierarchy) 1 5 Mbps 45 Mbpstelephone hierarchy) 15 Mbps 45 Mbpsunstructured just cells (busyidle)

5 DataLink Layer 5-94

IP-Over-ATMIP over ATM

Classic IP only3 ldquonetworksrdquo (e g

IP over ATMreplace ldquonetworkrdquo (e g LAN segment) 3 networks (eg

LAN segments)MAC (802 3) and IP

(eg LAN segment) with ATM networkATM addresses IP MAC (8023) and IP

addressesATM addresses IP addresses

ATMATMnetwork

Ethernet Ethernet

5 DataLink Layer 5-95

EthernetLANs

EthernetLANs

IP-Over-ATMapp

transportapp

AALEthIP

transportIP

AALATM

apptransport

IPEth ATM

phyphyEth

ATM

ATMphy

ATMphy

Ethphy

ATMphy

p y

5 DataLink Layer 5-96

Datagram Journey in IP-over-ATM NetworkDatagram Journey in IP-over-ATM Network

at Source HostIP layer maps between IP ATM dest address (using ARP)passes datagram to AAL5AAL5 encapsulates data segments cells passes to ATM layer

ATM network moves cell along VC to destinationat Destination Host

AAL5 reassembles cells into original datagramif CRC OK datagram is passed to IP

5 DataLink Layer 5-97

IP-Over-ATMIP-Over-ATM

IssuesIP datagrams into

ATMnetwork

ATM AAL5 PDUsfrom IP addresses

TM ddto ATM addressesjust like IP dd ss s t addresses to

8023 MAC addresses

EthernetLANs

addresses

5 DataLink Layer 5-98

Multiprotocol label switching (MPLS)Multiprotocol label switching (MPLS)

i i i l l d IP f di b i fi d initial goal speed up IP forwarding by using fixed length label (instead of IP address) to do forwarding forwarding

borrowing ideas from Virtual Circuit (VC) approachbut IP datagram still keeps IP addressg p

PPP or EthernetPPP or Ethernet header

IP header remainder of link-layer frameMPLS header

label Exp S TTL

5 DataLink Layer 5-9920 3 1 5

MPLS capable routersMPLS capable routers

k l b l it h d taka label-switched routerforwards packets to outgoing interface based

l l b l l (d rsquot i t IP dd )only on label value (donrsquot inspect IP address)MPLS forwarding table distinct from IP forwarding tablestables

signaling protocol needed to set up forwardingRSVP TERSVP-TEforwarding possible along paths that IP alone would not allow (eg source-specific routing) not allow (eg source spec f c rout ng) use MPLS for traffic engineering

must co-exist with IP-only routers5 DataLink Layer 5-100

must co exist with IP only routers

MPLS forwarding tablesi t t

MPLS forwarding tables

in out outlabel label dest interface

in out outlabel label dest interface

10 A 012 D 0 label label dest interface

10 6 A 112 9 D 0

12 D 08 A 1

D1

00R6

R3R4R5

0

1

A

1

0

R1R2A

in out outlabel label dest interface

6 A 0in out out

label label dest interface

5 DataLink Layer 5-101

6 - A 0label label dest interface

8 6 A 0

Chapter 5 SummaryChapter 5 Summaryprinciples behind data link layer servicespr nc p s h n ata n ay r s r c s

error detection correctionsharing a broadcast channel multiple accesslink layer addressing

instantiation and implementation of various link l t h l ilayer technologies

Ethernetit h d LANSswitched LANS

PPPi li d k li k l TM MPLvirtualized networks as a link layer ATM MPLS

5 DataLink Layer 5-102

Chapter 5 letrsquos take a breathChapter 5 let s take a breathjourney down protocol stack completejourney down protocol stack complete(except PHY)solid understanding of networking principles solid understanding of networking principles practice

ld t h b t l t f i t ti hellip could stop here hellip but lots of interesting topics

lwirelessmultimediasecurity network management

5 DataLink Layer 5-103

Page 11: Link Layer Link Layer: Introduction

ARP Address Resolution ProtocolAR Address Resolut on rotocol

Each IP node (host Question how to determine Each IP node (host router) on LAN has ARP table

Question how to determineMAC address of Bknowing Brsquos IP address

ARP table IPMAC address mappings for

knowing B s IP address

137196778 pp gsome LAN nodes

lt IP address MAC address TTLgtTTL (Tim T Li ) tim

1A-2F-BB-76-09-AD

137196723 137196714

TTL (Time To Live) time after which address mapping will be forgotten ( ll 20 )58-23-D7-FA-20-B071-65-F7-2B-08-53

LAN

(typically 20 min)58 23 D7 FA 20 B0

0C-C4-11-6F-E3-98137 196 7 88

5 DataLink Layer 5-41

137196788

ARP protocol Same LAN (network)

A wants to send datagram t B d Brsquo MAC dd A h ( ) IP tto B and Brsquos MAC address not in Arsquos ARP tableA broadcasts ARP query

A caches (saves) IP-to-MAC address pair in its ARP table until information q y

packet containing Bs IP address

dest MAC address = FF

becomes old (times out) soft state information that times out (goes dest MAC address = FF-

FF-FF-FF-FF-FFall machines on LAN

that times out (goes away) unless refreshed

ARP is ldquoplug-and-playrdquoreceive ARP query

B receives ARP packet replies to A with its (Bs)

p g p ynodes create their ARP tables without intervention from net replies to A with its (B s)

MAC addressframe sent to Arsquos MAC address (unicast)

intervention from net administrator

5 DataLink Layer 5-42

address (unicast)

Addressing routing to another LANwalkthrough send datagram from A to B via R

ssume A kn s Brsquos IP ddress

A74-29-9C-E8-FF-55 88-B2-2F-54-1A-0F

assume A knows B s IP address

1A-23-F9-CD-06-9BE6-E9-00-17-BB-4B

111111111111

A222222222221

R

222222222220111111111110

111111111112B

222222222222

CC-49-DE-D0-AB-7D

49-BD-D2-C7-56-2A

t ARP t bl s i t R f h IP two ARP tables in router R one for each IP network (LAN)

5 DataLink Layer 5-43

A creates IP datagram with source A destination B A uses ARP to get Rrsquos MAC address for 111 111 111 110A uses ARP to get R s MAC address for 111111111110A creates link-layer frame with Rs MAC address as dest frame contains A-to-B IP datagram This is a really importantArsquos NIC sends frame Rrsquos NIC receives frame R r m v s IP d t r m fr m Eth rn t fr m s s its

This is a really importantexample ndash make sure youunderstand

R removes IP datagram from Ethernet frame sees its destined to BR uses ARP to get Brsquos MAC address gR creates frame containing A-to-B IP datagram sends to B

A74-29-9C-E8-FF-55 88-B2-2F-54-1A-0F

1A-23-F9-CD-06-9BE6-E9-00-17-BB-4B

111111111111

A222222222221

R

222222222220111111111110

111111111112

B222222222222

5 DataLink Layer 5-44

RCC-49-DE-D0-AB-7D

49-BD-D2-C7-56-2A

Link LayerLink Layer

5 1 I d i d 5 6 Li k l i h51 Introduction and services5 2 E d t ti

56 Link-layer switches57 PPP

52 Error detection and correction 5 3Multiple access

58 Link Virtualization ATM and MPLS

53Multiple access protocols5 4 Link-Layer 54 Link Layer Addressing55 Ethernet55 Ethernet

5 DataLink Layer 5-45

Ethernetldquodominantrdquo wired LAN technology

cheap $20 for NICfirst widely used LAN technologyy gysimpler cheaper than token LANs and ATMkept up with speed race 10 Mbps ndash 10 Gbps p p p p p

Metcalfersquos Ethernetsketch

5 DataLink Layer 5-46

Star topologyp gybus topology popular through mid 90s

all nodes in same collision domain (can collide with each all nodes in same collision domain (can collide with each other)

today star topology prevails h active switch in center

each ldquospokerdquo runs a (separate) Ethernet protocol (nodes do not collide with each other)

switch

b l bl

5 DataLink Layer 5-47

bus coaxial cable star

Ethernet Frame StructuremSending adapter encapsulates IP datagram (or other g p p g (

network layer protocol packet) in Ethernet frame

Preamble7 bytes with pattern 10101010 followed by one y p ybyte with pattern 10101011used to synchronize receiver sender clock rates

5 DataLink Layer 5-48

Ethernet Frame Structure (more)Ethernet Frame Structure (more)Addresses 6 bytesy

if adapter receives frame with matching destination address or with broadcast address (eg ARP packet) it passes data in frame to network layer protocolpasses data in frame to network layer protocolotherwise adapter discards frame

Type indicates higher layer protocol (mostly IP Type indicates higher layer protocol (mostly IP but others possible eg Novell IPX AppleTalk)CRC checked at receiver if error is detected frame is dropped

5 DataLink Layer 5-49

Ethernet Unreliable connectionlessEthernet Unreliable connectionless

i l N h d h ki b di d connectionless No handshaking between sending and receiving NICs

li bl i i NIC d s rsquot s d ks ks unreliable receiving NIC doesnrsquot send acks or nacks to sending NIC

stream of datagrams passed to network layer can have gaps stream of datagrams passed to network layer can have gaps (missing datagrams)gaps will be filled if app is using TCPotherwise app will see gaps

Ethernetrsquos MAC protocol unslotted CSMACD

5 DataLink Layer 5-50

Ethernet CSMACD algorithmg1 NIC receives datagram 4 If NIC detects another

from network layer creates frame

2 f N C h l dl

transmission while transmitting aborts and sends jam signal2 If NIC senses channel idle

starts frame transmission If NIC senses channel

sends jam signal5 After aborting NIC

enters exponential If NIC senses channel busy waits until channel idle then transmits

enters exponential backoff after mth collision NIC chooses K at

3 If NIC transmits entire frame without detecting

random from 012hellip2m-1 NIC waits K 512 bi i

ganother transmission NIC is done with frame

K512 bit times returns to Step 2

5 DataLink Layer 5-51

Ethernetrsquos CSMACD (more)Ethernet s CSMACD (more)Jam Signal make sure all Exponential Backoffg

other transmitters are aware of collision 48 bits

Bit time 1 microsec for 10

pGoal adapt retransmission attempts to estimated current loadBit time 1 microsec for 10

Mbps Ethernet for K=1023 wait time is about 50 msec

current loadheavy load random wait will be longer

about 50 msec first collision choose K from 01 delay is K 512 bit transmission timestransm ss on t m safter second collision choose K from 0123hellipft t lli i h K

Seeinteract with Javaapplet on AWL Web site

after ten collisions choose K from 01234hellip1023

pphighly recommended

5 DataLink Layer 5-52

CSMACD efficiencyCSMACD efficiency

T d l b 2 d i L NTprop = max prop delay between 2 nodes in LANttrans = time to transmit max-size frame

efficiency 1

=

efficiency goes to 1

transprop ttff y

51+

efficiency goes to 1 as tprop goes to 0as ttrans goes to infinitytrans g y

better performance than ALOHA and simple cheap decentralized

5 DataLink Layer 5-53

p

8023 Ethernet Standards Link amp Physical Layersy y

many different Ethernet standardsycommon MAC protocol and frame formatdifferent speeds 2 Mbps 10 Mbps 100 Mbps 1Gb 10G b1Gbps 10G bpsdifferent physical layer media fiber cable

MAC protocolapplicationtransportnetwork

li k

MAC protocoland frame format

100BASE-TX 100BASE-FX100BASE-T2link

physical100BASE-T4 100BASE-SX 100BASE-BX

5 DataLink Layer 5-54

fiber physical layercopper (twisterpair) physical layer

Manchester encodingManchester encoding

used in 10BaseTeach bit has a transitionallows clocks in sending and receiving nodes to g gsynchronize to each other

no need for a centralized global clock among nodes

5 DataLink Layer 5-55

Hey this is physical-layer stuff

Link LayerLink Layer

5 1 I d i d 5 6 Li k l i h51 Introduction and services5 2 E d t ti

56 Link-layer switches57 PPP

52 Error detection and correction 5 3 Multiple access

58 Link Virtualization ATM MPLS

53 Multiple access protocols5 4 Link-layer 54 Link layer Addressing55 Ethernet55 Ethernet

5 DataLink Layer 5-56

Hubshellip physical-layer (ldquodumbrdquo) repeaters

bits coming in one link go out all other links at bits coming in one link go out all other links at same rateall nodes connected to hub can collide with one anotherno frame bufferinggno CSMACD at hub host NICs detect collisions

twisted pair

hub

5 DataLink Layer 5-57

Switchlink-layer device smarter than hubs take yactive role

store forward Ethernet framesexamine incoming framersquos MAC address selectively forward frame to one-or-more

l k h f f d d outgoing links when frame is to be forwarded on segment uses CSMACD to access segment

transparenthosts are unaware of presence of switches

plug-and-play self-learningswitches do not need to be configured

5 DataLink Layer 5-58

g

Switch allows multiple simultaneous ptransmissions

A

hosts have dedicated direct connection to switch

BCrsquo

switches buffer packetsEthernet protocol used on each incoming link but no

1 2 345

6

each incoming link but no collisions full duplex

each link is its own collision C

45

domainswitching A-to-Arsquo and B-to-Brsquo simultaneously

ArsquoBrsquo

to-B simultaneously without collisions

not possible with dumb hub

switch with six interfaces(123456)

5 DataLink Layer 5-59

Switch TableSwitch Table

Q h d s s it h k th t A

Q how does switch know that Arsquo reachable via interface 4 Brsquo reachable via interface 5

BCrsquo

B reachable via interface 5A each switch has a switch table each entry

1 2 345

6ta ach ntry

(MAC address of host interface to reach host time stamp) C

45

looks like a routing tableQ how are entries created

i t i d i it h t bl

ArsquoBrsquo

maintained in switch table something like a routing protocol

switch with six interfaces(123456)

5 DataLink Layer 5-60

protocol

Switch self-learning Source ASwitch self-learning

s it h l s hi h h sts A A Arsquo

Dest Arsquo

switch learns which hosts can be reached through which interfaces

BCrsquo

which interfaceswhen frame received switch ldquolearnsrdquo location of

d i i LAN

1 2 345

6

sender incoming LAN segmentrecords senderlocation

C

45

pair in switch tableArsquoBrsquo

MAC addr interface TTLMAC addr interface TTLSwitch table

(initially empty)A 1 60

5 DataLink Layer 5-61

Switch frame filteringforwardingWhen frame received

1 record link associated with sending host2 ind x s itch t bl usin MAC d st dd ss2 index switch table using MAC dest address3 if entry found for destination

then then if dest on segment from which frame arrived

then drop the framethen drop the frameelse forward the frame on interface indicated

else flood forward on all but the interface

on which the frame arrived5 DataLink Layer 5-62

on which the frame arrived

Self-learning Source ASelf learning forwarding

lA A Arsquo

Dest Arsquo

exampleBCrsquo

frame destinati n 1 2 345

6A ArsquoA ArsquoA ArsquoA ArsquoA Arsquoframe destination unknown floodd ti ti A

C

45

Arsquo A

destination A location knownselective send

ArsquoBrsquo

MAC addr interface TTL

selective send

MAC addr interface TTLSwitch table

(initially empty)A 1 60Arsquo 4 60

5 DataLink Layer 5-63

Interconnecting switchesg

switches can be connected togetherg

S

S4

A

B

S1

C DF

S2S3

IB C D

E HI

G

Q sending from A to G - how does S1 know to forward frame destined to F via S and S forward frame destined to F via S4 and S3A self learning (works exactly the same as in single-switch case)

5 DataLink Layer 5-64

single switch case)

Self-learning multi-switch exampleSuppose C sends frame to I I responds to C

S

S412

A

B

S1

C DF

S2S3

I

2

B C D

E HI

G

Q show switch tables and packet forwarding in S1 S2 S3 S4

5 DataLink Layer 5-65

Institutional networkInstitutional network

to externalnetwork

mail server

networkrouter web server

IP subnet

5 DataLink Layer 5-66

Switches vs RoutersSwitches vs Routersboth store-and-forward devices

routers network layer devices (examine network layer headers)switches are link layer devicesswitches are link layer devices

routers maintain routing tables implement routing algorithmsgswitches maintain switch tables implement filtering learning algorithmsf g g g

5 DataLink Layer 5-67

Link LayerLink Layer

5 1 I d i d 5 6 H b d i h51 Introduction and services5 2 E d t ti

56 Hubs and switches57 PPP

52 Error detection and correction 5 3Multiple access

58 Link Virtualization ATM

53Multiple access protocols5 4 Link-Layer 54 Link Layer Addressing55 Ethernet55 Ethernet

5 DataLink Layer 5-68

Point to Point Data Link ControlPoint to Point Data Link Controlone sender one receiver one link easier than one sender one receiver one link easier than broadcast link

no Media Access Controlno Media Access Controlno need for explicit MAC addressinge g dialup link ISDN lineeg dialup link ISDN line

popular point-to-point DLC protocolsPPP (point-to-point protocol)PPP (point to point protocol)HDLC High level data link control (Data link used to be considered ldquohigh layerrdquo in protocol used to be considered high layer in protocol stack

5 DataLink Layer 5-69

PPP Design Requirements [RFC 1557]

packet framing encapsulation of network-layer p f m g p u f w ydatagram in data link frame

carry network layer data of any network layer y y y yprotocol (not just IP) at same timeability to demultiplex upwards

bit transparency must carry any bit pattern in the data fielderror detection (no correction)connection liveness detect signal link failure to

k lnetwork layernetwork layer address negotiation endpoint can l fi h th rsquos t k dd ss

5 DataLink Layer 5-70

learnconfigure each otherrsquos network address

PPP non-requirementsPPP non requirements

ti no error correctionrecoveryno flow control

f d d l K out of order delivery OK no need to support multipoint links (eg polling)

E l l Error recovery flow control data re-ordering all relegated to higher layers

5 DataLink Layer 5-71

PPP Data FramePPP Data Frame

Fl d li i (f i )Flag delimiter (framing)Address does nothing (only one option)Control does nothing in the future possible multiple control fieldsP t l l t l t hi h f Protocol upper layer protocol to which frame delivered (eg PPP-LCP IP IPCP etc)

5 DataLink Layer 5-72

PPP Data FramePPP Data Frame

i f l d b i i dinfo upper layer data being carriedcheck cyclic redundancy check for error d t tidetection

5 DataLink Layer 5-73

Byte StuffingByte Stuffingldquodata transparencyrdquo requirement data field must

be allowed to include flag pattern lt01111110gtQ is received lt01111110gt data or flag

Sender adds (ldquostuffsrdquo) extra lt 01111110gt byte after each lt 01111110gt data byteReceiver

two 01111110 bytes in a row discard first byte d continue data reception

single 01111110 flag byte

5 DataLink Layer 5-74

Byte StuffingByte Stuffing

flag bytepatterni din datato send

flag byte pattern plusstuffed byte in transmitted data

5 DataLink Layer 5-75

transmitted data

PPP Data Control ProtocolPPP Data Control ProtocolBefore exchanging network-g g

layer data data link peers mustconfigure PPP link (max frame length authentication)authentication)learnconfigure networklayer informationlayer information

for IP carry IP Control Protocol (IPCP) msgs Protocol (IPCP) msgs (protocol field 8021) to configurelearn IP

5 DataLink Layer 5-76

gaddress

Link LayerLink Layer

5 1 I d i d 5 6 H b d i h51 Introduction and services5 2 E d t ti

56 Hubs and switches57 PPP

52 Error detection and correction 5 3Multiple access

58 Link Virtualization ATM and MPLS

53Multiple access protocols5 4 Link-Layer 54 Link Layer Addressing55 Ethernet55 Ethernet

5 DataLink Layer 5-77

Virtualization of networksVirtualization of networks

Vi li i f f l b i i Virtualization of resources powerful abstraction in systems engineering

ti l s i t l i t l computing examples virtual memory virtual devices

Virtual machines e g javaVirtual machines eg javaIBM VM os from 1960rsquos70rsquos

layering of abstractions donrsquot sweat the details of layering of abstractions don t sweat the details of the lower layer only deal with lower layers abstractlyabstractly

5 DataLink Layer 5-78

The Internet virtualizing networksThe Internet virtualizing networks

1974 multiple unconnected differing in1974 multiple unconnected nets

ARPAnet

hellip differing inaddressing conventionspacket formats

data-over-cable networkspacket satellite network (Aloha)

k d k

perror recoveryrouting

packet radio network

ARPAnet satellite net

5 DataLink Layer 5-79

ARPAnet satell te netA Protocol for Packet Network Intercommunication V Cerf R Kahn IEEE Transactions on CommunicationsMay 1974 pp 637-648

The Internet virtualizing networksThe Internet virtualizing networksInternetwork layer (IP)

addressing internetwork Gateway

ldquoembed internetwork packets in l l k f

addressing internetwork appears as single uniform entity despite underlying local network heterogeneitynetwork of networks

plocal packet format or extract themrdquoroute (at internetwork level) to next gatewaynetwork of networks next gateway

gateway

ARPAnet satellite net

5 DataLink Layer 5-80

ARPAnet satell te net

Cerf amp Kahnrsquos Internetwork ArchitectureCerf amp Kahn s Internetwork ArchitectureWhat is virtualized

two layers of addressing internetwork and local networknew layer (IP) makes everything homogeneous at internetwork layerunderlying local network technology

cablesatellite56K telephone modemtoday ATM MPLS

hellip ldquoinvisiblerdquo at internetwork layer Looks like a link

5 DataLink Layer 5-81

ylayer technology to IP

ATM and MPLSATM and MPLS

P k h ATM MPLS separate networks in their own right

different service models addressing routing from Internet

viewed by Internet as logical link connecting IP routers

just like dialup link is really part of separate network (telephone network)

ATM MPLS of technical interest in their own right

5 DataLink Layer 5-82

Asynchronous Transfer Mode ATMAsynchronous Transfer Mode ATM1990rsquos00 standard for high-speed (155Mbps to g p ( p622 Mbps and higher) Broadband Integrated Service Digital Network architectureGoal integrated end-end transport of carry voice video data

i i i Q i f i id meeting timingQoS requirements of voice video (versus Internet best-effort model)ldquo t ti rdquo t l h t h i l ts i ldquonext generationrdquo telephony technical roots in telephone worldpacket switching (fixed length packets called packet-switching (fixed length packets called ldquocellsrdquo) using virtual circuits

5 DataLink Layer 5-83

ATM architecture ATM architecture AAL AAL

ATM ATMATM ATM

physical physicalphysical physical

d d ti h it h

adaptation layer only at edge of ATM network

end system end systemswitch switch

data segmentationreassemblyroughly analagous to Internet transport layer

ATM layer ldquonetworkrdquo layercell switching routing

5 DataLink Layer 5-84

physical layer

ATM network or link layerATM network or link layerVision end-to-end

t t ldquoATM f transport ldquoATM from desktop to desktoprdquo

ATM is a network ATM

IPnetwork

ATM is a network technology

Reality used to connect

ATMnetwork

Reality used to connect IP backbone routers

ldquoIP over ATMrdquoIP over ATMATM as switched link layer y connecting IP routers

5 DataLink Layer 5-85

ATM Adaptation Layer (AAL)ATM Adaptation Layer (AAL)

TM d i L ( L) ldquo d rdquo ATM Adaptation Layer (AAL) ldquoadaptsrdquo upper layers (IP or native ATM applications) to ATM layer belowlayer belowAAL present only in end systems not in switchesAAL layer segment (headertrailer fields data) AAL layer segment (headertrailer fields data) fragmented across multiple ATM cells

analogy TCP segment in many IP packetsanalogy TCP segment in many IP packets

AAL AAL

physical

ATM

physical

ATM

physical

ATM

physical

ATM

5 DataLink Layer 5-86

physical physicalp y p y

end system end systemswitch switch

ATM Adaptation Layer (AAL) [more]

Different versions of AAL layers depending on ATM y p gservice classAAL1 for CBR (Constant Bit Rate) services eg circuit emulationAAL2 for VBR (Variable Bit Rate) services eg MPEG videoAAL5 for data (eg IP datagrams)

User data

AAL PDU

ATM cell

5 DataLink Layer 5-87

ATM LayeryService transport cells across ATM network

analogous to IP network layeranalogous to IP network layervery different services than IP network layer

Guarantees NetworkArchitecture

ServiceModel Bandwidth Loss Order Timing

Congestionfeedback

Guarantees

Internet

ATM

best effort

CBR

none

constant

no

yes

no

yes

no

yes

no (inferredvia loss)noATM

ATM

CBR

VBR

constantrateguaranteedrate

yes

yes

yes

yes

yes

yes

nocongestionnocongestion

ATM

ATM

ABR

UBR

rateguaranteed minimum

no yes nocongestionyes

5 DataLink Layer 5-88

ATM UBR none no yes no no

ATM Layer Virtual CircuitsATM Layer Virtual CircuitsVC transport cells carried on VC from source to destp

call setup teardown for each call before data can floweach packet carries VC identifier (not destination ID)

it h d t th i t i ldquo t t rdquo f h every switch on source-dest path maintain ldquostaterdquo for each passing connectionlinkswitch resources (bandwidth buffers) may be allocated to ( ff ) m yVC to get circuit-like perf

Permanent VCs (PVCs)long lasting connectionstypically ldquopermanentrdquo route between to IP routers

Switched VCs (SVC)dynamically set up on per-call basis

5 DataLink Layer 5-89

ATM VCsATM VCsAdvantages of ATM VC approachAdvantages of ATM VC approach

QoS performance guarantee for connection mapped to VC (bandwidth delay delay jitter)mapped to VC (bandwidth delay delay jitter)

Drawbacks of ATM VC approachInefficient support of datagram trafficInefficient support of datagram trafficone PVC between each sourcedest pair) does not scale (N2 connections needed) not scale (N 2 connections needed) SVC introduces call setup latency processing overhead for short lived connectionsoverhead for short lived connections

5 DataLink Layer 5-90

ATM Layer ATM cellATM Layer ATM cell5-byte ATM cell headery48-byte payload

Why small payload -gt short cell-creation delay W y m p y yfor digitized voicehalfway between 32 and 64 (compromise)y p

Cell headerCell header

Cell format

5 DataLink Layer 5-91

ATM cell headerATM cell headerVCI virtual channel IDVCI virtual channel ID

will change from link to link thru netPT P l d t p ( RM ll s s d t ll) PT Payload type (eg RM cell versus data cell) CLP Cell Loss Priority bit

CLP 1 i li l i it ll b CLP = 1 implies low priority cell can be discarded if congestion

HEC Header Error ChecksumHEC Header Error Checksumcyclic redundancy check

5 DataLink Layer 5-92

ATM Physical Layer (more)ATM Physical Layer (more)

T i ( bl ) f h i l lTwo pieces (sublayers) of physical layerTransmission Convergence Sublayer (TCS) adapts ATM l b t PMD s bl b lATM layer above to PMD sublayer belowPhysical Medium Dependent depends on physical medium being usedmedium being used

TCS FunctionsTCS FunctionsHeader checksum generation 8 bits CRC C ll d lin ti nCell delineationWith ldquounstructuredrdquo PMD sublayer transmission of idle cells when no data cells to send

5 DataLink Layer 5-93

of idle cells when no data cells to send

ATM Physical LayerATM Physical Layer

Ph l d D d (P D) blPhysical Medium Dependent (PMD) sublayerSONETSDH transmission frame structure (like a

b ) container carrying bits) bit synchronization bandwidth partitions (TDM) several speeds OC3 = 15552 Mbps OC12 = 62208 Mb OC48 2 45 Gb OC192 9 6 GbMbps OC48 = 245 Gbps OC192 = 96 Gbps

TIT3 transmission frame structure (old telephone hierarchy) 1 5 Mbps 45 Mbpstelephone hierarchy) 15 Mbps 45 Mbpsunstructured just cells (busyidle)

5 DataLink Layer 5-94

IP-Over-ATMIP over ATM

Classic IP only3 ldquonetworksrdquo (e g

IP over ATMreplace ldquonetworkrdquo (e g LAN segment) 3 networks (eg

LAN segments)MAC (802 3) and IP

(eg LAN segment) with ATM networkATM addresses IP MAC (8023) and IP

addressesATM addresses IP addresses

ATMATMnetwork

Ethernet Ethernet

5 DataLink Layer 5-95

EthernetLANs

EthernetLANs

IP-Over-ATMapp

transportapp

AALEthIP

transportIP

AALATM

apptransport

IPEth ATM

phyphyEth

ATM

ATMphy

ATMphy

Ethphy

ATMphy

p y

5 DataLink Layer 5-96

Datagram Journey in IP-over-ATM NetworkDatagram Journey in IP-over-ATM Network

at Source HostIP layer maps between IP ATM dest address (using ARP)passes datagram to AAL5AAL5 encapsulates data segments cells passes to ATM layer

ATM network moves cell along VC to destinationat Destination Host

AAL5 reassembles cells into original datagramif CRC OK datagram is passed to IP

5 DataLink Layer 5-97

IP-Over-ATMIP-Over-ATM

IssuesIP datagrams into

ATMnetwork

ATM AAL5 PDUsfrom IP addresses

TM ddto ATM addressesjust like IP dd ss s t addresses to

8023 MAC addresses

EthernetLANs

addresses

5 DataLink Layer 5-98

Multiprotocol label switching (MPLS)Multiprotocol label switching (MPLS)

i i i l l d IP f di b i fi d initial goal speed up IP forwarding by using fixed length label (instead of IP address) to do forwarding forwarding

borrowing ideas from Virtual Circuit (VC) approachbut IP datagram still keeps IP addressg p

PPP or EthernetPPP or Ethernet header

IP header remainder of link-layer frameMPLS header

label Exp S TTL

5 DataLink Layer 5-9920 3 1 5

MPLS capable routersMPLS capable routers

k l b l it h d taka label-switched routerforwards packets to outgoing interface based

l l b l l (d rsquot i t IP dd )only on label value (donrsquot inspect IP address)MPLS forwarding table distinct from IP forwarding tablestables

signaling protocol needed to set up forwardingRSVP TERSVP-TEforwarding possible along paths that IP alone would not allow (eg source-specific routing) not allow (eg source spec f c rout ng) use MPLS for traffic engineering

must co-exist with IP-only routers5 DataLink Layer 5-100

must co exist with IP only routers

MPLS forwarding tablesi t t

MPLS forwarding tables

in out outlabel label dest interface

in out outlabel label dest interface

10 A 012 D 0 label label dest interface

10 6 A 112 9 D 0

12 D 08 A 1

D1

00R6

R3R4R5

0

1

A

1

0

R1R2A

in out outlabel label dest interface

6 A 0in out out

label label dest interface

5 DataLink Layer 5-101

6 - A 0label label dest interface

8 6 A 0

Chapter 5 SummaryChapter 5 Summaryprinciples behind data link layer servicespr nc p s h n ata n ay r s r c s

error detection correctionsharing a broadcast channel multiple accesslink layer addressing

instantiation and implementation of various link l t h l ilayer technologies

Ethernetit h d LANSswitched LANS

PPPi li d k li k l TM MPLvirtualized networks as a link layer ATM MPLS

5 DataLink Layer 5-102

Chapter 5 letrsquos take a breathChapter 5 let s take a breathjourney down protocol stack completejourney down protocol stack complete(except PHY)solid understanding of networking principles solid understanding of networking principles practice

ld t h b t l t f i t ti hellip could stop here hellip but lots of interesting topics

lwirelessmultimediasecurity network management

5 DataLink Layer 5-103

Page 12: Link Layer Link Layer: Introduction

Link LayerLink Layer

5 1 I d i d 5 6 Li k l i h51 Introduction and services5 2 E d t ti

56 Link-layer switches57 PPP

52 Error detection and correction 5 3Multiple access

58 Link Virtualization ATM and MPLS

53Multiple access protocols5 4 Link-Layer 54 Link Layer Addressing55 Ethernet55 Ethernet

5 DataLink Layer 5-45

Ethernetldquodominantrdquo wired LAN technology

cheap $20 for NICfirst widely used LAN technologyy gysimpler cheaper than token LANs and ATMkept up with speed race 10 Mbps ndash 10 Gbps p p p p p

Metcalfersquos Ethernetsketch

5 DataLink Layer 5-46

Star topologyp gybus topology popular through mid 90s

all nodes in same collision domain (can collide with each all nodes in same collision domain (can collide with each other)

today star topology prevails h active switch in center

each ldquospokerdquo runs a (separate) Ethernet protocol (nodes do not collide with each other)

switch

b l bl

5 DataLink Layer 5-47

bus coaxial cable star

Ethernet Frame StructuremSending adapter encapsulates IP datagram (or other g p p g (

network layer protocol packet) in Ethernet frame

Preamble7 bytes with pattern 10101010 followed by one y p ybyte with pattern 10101011used to synchronize receiver sender clock rates

5 DataLink Layer 5-48

Ethernet Frame Structure (more)Ethernet Frame Structure (more)Addresses 6 bytesy

if adapter receives frame with matching destination address or with broadcast address (eg ARP packet) it passes data in frame to network layer protocolpasses data in frame to network layer protocolotherwise adapter discards frame

Type indicates higher layer protocol (mostly IP Type indicates higher layer protocol (mostly IP but others possible eg Novell IPX AppleTalk)CRC checked at receiver if error is detected frame is dropped

5 DataLink Layer 5-49

Ethernet Unreliable connectionlessEthernet Unreliable connectionless

i l N h d h ki b di d connectionless No handshaking between sending and receiving NICs

li bl i i NIC d s rsquot s d ks ks unreliable receiving NIC doesnrsquot send acks or nacks to sending NIC

stream of datagrams passed to network layer can have gaps stream of datagrams passed to network layer can have gaps (missing datagrams)gaps will be filled if app is using TCPotherwise app will see gaps

Ethernetrsquos MAC protocol unslotted CSMACD

5 DataLink Layer 5-50

Ethernet CSMACD algorithmg1 NIC receives datagram 4 If NIC detects another

from network layer creates frame

2 f N C h l dl

transmission while transmitting aborts and sends jam signal2 If NIC senses channel idle

starts frame transmission If NIC senses channel

sends jam signal5 After aborting NIC

enters exponential If NIC senses channel busy waits until channel idle then transmits

enters exponential backoff after mth collision NIC chooses K at

3 If NIC transmits entire frame without detecting

random from 012hellip2m-1 NIC waits K 512 bi i

ganother transmission NIC is done with frame

K512 bit times returns to Step 2

5 DataLink Layer 5-51

Ethernetrsquos CSMACD (more)Ethernet s CSMACD (more)Jam Signal make sure all Exponential Backoffg

other transmitters are aware of collision 48 bits

Bit time 1 microsec for 10

pGoal adapt retransmission attempts to estimated current loadBit time 1 microsec for 10

Mbps Ethernet for K=1023 wait time is about 50 msec

current loadheavy load random wait will be longer

about 50 msec first collision choose K from 01 delay is K 512 bit transmission timestransm ss on t m safter second collision choose K from 0123hellipft t lli i h K

Seeinteract with Javaapplet on AWL Web site

after ten collisions choose K from 01234hellip1023

pphighly recommended

5 DataLink Layer 5-52

CSMACD efficiencyCSMACD efficiency

T d l b 2 d i L NTprop = max prop delay between 2 nodes in LANttrans = time to transmit max-size frame

efficiency 1

=

efficiency goes to 1

transprop ttff y

51+

efficiency goes to 1 as tprop goes to 0as ttrans goes to infinitytrans g y

better performance than ALOHA and simple cheap decentralized

5 DataLink Layer 5-53

p

8023 Ethernet Standards Link amp Physical Layersy y

many different Ethernet standardsycommon MAC protocol and frame formatdifferent speeds 2 Mbps 10 Mbps 100 Mbps 1Gb 10G b1Gbps 10G bpsdifferent physical layer media fiber cable

MAC protocolapplicationtransportnetwork

li k

MAC protocoland frame format

100BASE-TX 100BASE-FX100BASE-T2link

physical100BASE-T4 100BASE-SX 100BASE-BX

5 DataLink Layer 5-54

fiber physical layercopper (twisterpair) physical layer

Manchester encodingManchester encoding

used in 10BaseTeach bit has a transitionallows clocks in sending and receiving nodes to g gsynchronize to each other

no need for a centralized global clock among nodes

5 DataLink Layer 5-55

Hey this is physical-layer stuff

Link LayerLink Layer

5 1 I d i d 5 6 Li k l i h51 Introduction and services5 2 E d t ti

56 Link-layer switches57 PPP

52 Error detection and correction 5 3 Multiple access

58 Link Virtualization ATM MPLS

53 Multiple access protocols5 4 Link-layer 54 Link layer Addressing55 Ethernet55 Ethernet

5 DataLink Layer 5-56

Hubshellip physical-layer (ldquodumbrdquo) repeaters

bits coming in one link go out all other links at bits coming in one link go out all other links at same rateall nodes connected to hub can collide with one anotherno frame bufferinggno CSMACD at hub host NICs detect collisions

twisted pair

hub

5 DataLink Layer 5-57

Switchlink-layer device smarter than hubs take yactive role

store forward Ethernet framesexamine incoming framersquos MAC address selectively forward frame to one-or-more

l k h f f d d outgoing links when frame is to be forwarded on segment uses CSMACD to access segment

transparenthosts are unaware of presence of switches

plug-and-play self-learningswitches do not need to be configured

5 DataLink Layer 5-58

g

Switch allows multiple simultaneous ptransmissions

A

hosts have dedicated direct connection to switch

BCrsquo

switches buffer packetsEthernet protocol used on each incoming link but no

1 2 345

6

each incoming link but no collisions full duplex

each link is its own collision C

45

domainswitching A-to-Arsquo and B-to-Brsquo simultaneously

ArsquoBrsquo

to-B simultaneously without collisions

not possible with dumb hub

switch with six interfaces(123456)

5 DataLink Layer 5-59

Switch TableSwitch Table

Q h d s s it h k th t A

Q how does switch know that Arsquo reachable via interface 4 Brsquo reachable via interface 5

BCrsquo

B reachable via interface 5A each switch has a switch table each entry

1 2 345

6ta ach ntry

(MAC address of host interface to reach host time stamp) C

45

looks like a routing tableQ how are entries created

i t i d i it h t bl

ArsquoBrsquo

maintained in switch table something like a routing protocol

switch with six interfaces(123456)

5 DataLink Layer 5-60

protocol

Switch self-learning Source ASwitch self-learning

s it h l s hi h h sts A A Arsquo

Dest Arsquo

switch learns which hosts can be reached through which interfaces

BCrsquo

which interfaceswhen frame received switch ldquolearnsrdquo location of

d i i LAN

1 2 345

6

sender incoming LAN segmentrecords senderlocation

C

45

pair in switch tableArsquoBrsquo

MAC addr interface TTLMAC addr interface TTLSwitch table

(initially empty)A 1 60

5 DataLink Layer 5-61

Switch frame filteringforwardingWhen frame received

1 record link associated with sending host2 ind x s itch t bl usin MAC d st dd ss2 index switch table using MAC dest address3 if entry found for destination

then then if dest on segment from which frame arrived

then drop the framethen drop the frameelse forward the frame on interface indicated

else flood forward on all but the interface

on which the frame arrived5 DataLink Layer 5-62

on which the frame arrived

Self-learning Source ASelf learning forwarding

lA A Arsquo

Dest Arsquo

exampleBCrsquo

frame destinati n 1 2 345

6A ArsquoA ArsquoA ArsquoA ArsquoA Arsquoframe destination unknown floodd ti ti A

C

45

Arsquo A

destination A location knownselective send

ArsquoBrsquo

MAC addr interface TTL

selective send

MAC addr interface TTLSwitch table

(initially empty)A 1 60Arsquo 4 60

5 DataLink Layer 5-63

Interconnecting switchesg

switches can be connected togetherg

S

S4

A

B

S1

C DF

S2S3

IB C D

E HI

G

Q sending from A to G - how does S1 know to forward frame destined to F via S and S forward frame destined to F via S4 and S3A self learning (works exactly the same as in single-switch case)

5 DataLink Layer 5-64

single switch case)

Self-learning multi-switch exampleSuppose C sends frame to I I responds to C

S

S412

A

B

S1

C DF

S2S3

I

2

B C D

E HI

G

Q show switch tables and packet forwarding in S1 S2 S3 S4

5 DataLink Layer 5-65

Institutional networkInstitutional network

to externalnetwork

mail server

networkrouter web server

IP subnet

5 DataLink Layer 5-66

Switches vs RoutersSwitches vs Routersboth store-and-forward devices

routers network layer devices (examine network layer headers)switches are link layer devicesswitches are link layer devices

routers maintain routing tables implement routing algorithmsgswitches maintain switch tables implement filtering learning algorithmsf g g g

5 DataLink Layer 5-67

Link LayerLink Layer

5 1 I d i d 5 6 H b d i h51 Introduction and services5 2 E d t ti

56 Hubs and switches57 PPP

52 Error detection and correction 5 3Multiple access

58 Link Virtualization ATM

53Multiple access protocols5 4 Link-Layer 54 Link Layer Addressing55 Ethernet55 Ethernet

5 DataLink Layer 5-68

Point to Point Data Link ControlPoint to Point Data Link Controlone sender one receiver one link easier than one sender one receiver one link easier than broadcast link

no Media Access Controlno Media Access Controlno need for explicit MAC addressinge g dialup link ISDN lineeg dialup link ISDN line

popular point-to-point DLC protocolsPPP (point-to-point protocol)PPP (point to point protocol)HDLC High level data link control (Data link used to be considered ldquohigh layerrdquo in protocol used to be considered high layer in protocol stack

5 DataLink Layer 5-69

PPP Design Requirements [RFC 1557]

packet framing encapsulation of network-layer p f m g p u f w ydatagram in data link frame

carry network layer data of any network layer y y y yprotocol (not just IP) at same timeability to demultiplex upwards

bit transparency must carry any bit pattern in the data fielderror detection (no correction)connection liveness detect signal link failure to

k lnetwork layernetwork layer address negotiation endpoint can l fi h th rsquos t k dd ss

5 DataLink Layer 5-70

learnconfigure each otherrsquos network address

PPP non-requirementsPPP non requirements

ti no error correctionrecoveryno flow control

f d d l K out of order delivery OK no need to support multipoint links (eg polling)

E l l Error recovery flow control data re-ordering all relegated to higher layers

5 DataLink Layer 5-71

PPP Data FramePPP Data Frame

Fl d li i (f i )Flag delimiter (framing)Address does nothing (only one option)Control does nothing in the future possible multiple control fieldsP t l l t l t hi h f Protocol upper layer protocol to which frame delivered (eg PPP-LCP IP IPCP etc)

5 DataLink Layer 5-72

PPP Data FramePPP Data Frame

i f l d b i i dinfo upper layer data being carriedcheck cyclic redundancy check for error d t tidetection

5 DataLink Layer 5-73

Byte StuffingByte Stuffingldquodata transparencyrdquo requirement data field must

be allowed to include flag pattern lt01111110gtQ is received lt01111110gt data or flag

Sender adds (ldquostuffsrdquo) extra lt 01111110gt byte after each lt 01111110gt data byteReceiver

two 01111110 bytes in a row discard first byte d continue data reception

single 01111110 flag byte

5 DataLink Layer 5-74

Byte StuffingByte Stuffing

flag bytepatterni din datato send

flag byte pattern plusstuffed byte in transmitted data

5 DataLink Layer 5-75

transmitted data

PPP Data Control ProtocolPPP Data Control ProtocolBefore exchanging network-g g

layer data data link peers mustconfigure PPP link (max frame length authentication)authentication)learnconfigure networklayer informationlayer information

for IP carry IP Control Protocol (IPCP) msgs Protocol (IPCP) msgs (protocol field 8021) to configurelearn IP

5 DataLink Layer 5-76

gaddress

Link LayerLink Layer

5 1 I d i d 5 6 H b d i h51 Introduction and services5 2 E d t ti

56 Hubs and switches57 PPP

52 Error detection and correction 5 3Multiple access

58 Link Virtualization ATM and MPLS

53Multiple access protocols5 4 Link-Layer 54 Link Layer Addressing55 Ethernet55 Ethernet

5 DataLink Layer 5-77

Virtualization of networksVirtualization of networks

Vi li i f f l b i i Virtualization of resources powerful abstraction in systems engineering

ti l s i t l i t l computing examples virtual memory virtual devices

Virtual machines e g javaVirtual machines eg javaIBM VM os from 1960rsquos70rsquos

layering of abstractions donrsquot sweat the details of layering of abstractions don t sweat the details of the lower layer only deal with lower layers abstractlyabstractly

5 DataLink Layer 5-78

The Internet virtualizing networksThe Internet virtualizing networks

1974 multiple unconnected differing in1974 multiple unconnected nets

ARPAnet

hellip differing inaddressing conventionspacket formats

data-over-cable networkspacket satellite network (Aloha)

k d k

perror recoveryrouting

packet radio network

ARPAnet satellite net

5 DataLink Layer 5-79

ARPAnet satell te netA Protocol for Packet Network Intercommunication V Cerf R Kahn IEEE Transactions on CommunicationsMay 1974 pp 637-648

The Internet virtualizing networksThe Internet virtualizing networksInternetwork layer (IP)

addressing internetwork Gateway

ldquoembed internetwork packets in l l k f

addressing internetwork appears as single uniform entity despite underlying local network heterogeneitynetwork of networks

plocal packet format or extract themrdquoroute (at internetwork level) to next gatewaynetwork of networks next gateway

gateway

ARPAnet satellite net

5 DataLink Layer 5-80

ARPAnet satell te net

Cerf amp Kahnrsquos Internetwork ArchitectureCerf amp Kahn s Internetwork ArchitectureWhat is virtualized

two layers of addressing internetwork and local networknew layer (IP) makes everything homogeneous at internetwork layerunderlying local network technology

cablesatellite56K telephone modemtoday ATM MPLS

hellip ldquoinvisiblerdquo at internetwork layer Looks like a link

5 DataLink Layer 5-81

ylayer technology to IP

ATM and MPLSATM and MPLS

P k h ATM MPLS separate networks in their own right

different service models addressing routing from Internet

viewed by Internet as logical link connecting IP routers

just like dialup link is really part of separate network (telephone network)

ATM MPLS of technical interest in their own right

5 DataLink Layer 5-82

Asynchronous Transfer Mode ATMAsynchronous Transfer Mode ATM1990rsquos00 standard for high-speed (155Mbps to g p ( p622 Mbps and higher) Broadband Integrated Service Digital Network architectureGoal integrated end-end transport of carry voice video data

i i i Q i f i id meeting timingQoS requirements of voice video (versus Internet best-effort model)ldquo t ti rdquo t l h t h i l ts i ldquonext generationrdquo telephony technical roots in telephone worldpacket switching (fixed length packets called packet-switching (fixed length packets called ldquocellsrdquo) using virtual circuits

5 DataLink Layer 5-83

ATM architecture ATM architecture AAL AAL

ATM ATMATM ATM

physical physicalphysical physical

d d ti h it h

adaptation layer only at edge of ATM network

end system end systemswitch switch

data segmentationreassemblyroughly analagous to Internet transport layer

ATM layer ldquonetworkrdquo layercell switching routing

5 DataLink Layer 5-84

physical layer

ATM network or link layerATM network or link layerVision end-to-end

t t ldquoATM f transport ldquoATM from desktop to desktoprdquo

ATM is a network ATM

IPnetwork

ATM is a network technology

Reality used to connect

ATMnetwork

Reality used to connect IP backbone routers

ldquoIP over ATMrdquoIP over ATMATM as switched link layer y connecting IP routers

5 DataLink Layer 5-85

ATM Adaptation Layer (AAL)ATM Adaptation Layer (AAL)

TM d i L ( L) ldquo d rdquo ATM Adaptation Layer (AAL) ldquoadaptsrdquo upper layers (IP or native ATM applications) to ATM layer belowlayer belowAAL present only in end systems not in switchesAAL layer segment (headertrailer fields data) AAL layer segment (headertrailer fields data) fragmented across multiple ATM cells

analogy TCP segment in many IP packetsanalogy TCP segment in many IP packets

AAL AAL

physical

ATM

physical

ATM

physical

ATM

physical

ATM

5 DataLink Layer 5-86

physical physicalp y p y

end system end systemswitch switch

ATM Adaptation Layer (AAL) [more]

Different versions of AAL layers depending on ATM y p gservice classAAL1 for CBR (Constant Bit Rate) services eg circuit emulationAAL2 for VBR (Variable Bit Rate) services eg MPEG videoAAL5 for data (eg IP datagrams)

User data

AAL PDU

ATM cell

5 DataLink Layer 5-87

ATM LayeryService transport cells across ATM network

analogous to IP network layeranalogous to IP network layervery different services than IP network layer

Guarantees NetworkArchitecture

ServiceModel Bandwidth Loss Order Timing

Congestionfeedback

Guarantees

Internet

ATM

best effort

CBR

none

constant

no

yes

no

yes

no

yes

no (inferredvia loss)noATM

ATM

CBR

VBR

constantrateguaranteedrate

yes

yes

yes

yes

yes

yes

nocongestionnocongestion

ATM

ATM

ABR

UBR

rateguaranteed minimum

no yes nocongestionyes

5 DataLink Layer 5-88

ATM UBR none no yes no no

ATM Layer Virtual CircuitsATM Layer Virtual CircuitsVC transport cells carried on VC from source to destp

call setup teardown for each call before data can floweach packet carries VC identifier (not destination ID)

it h d t th i t i ldquo t t rdquo f h every switch on source-dest path maintain ldquostaterdquo for each passing connectionlinkswitch resources (bandwidth buffers) may be allocated to ( ff ) m yVC to get circuit-like perf

Permanent VCs (PVCs)long lasting connectionstypically ldquopermanentrdquo route between to IP routers

Switched VCs (SVC)dynamically set up on per-call basis

5 DataLink Layer 5-89

ATM VCsATM VCsAdvantages of ATM VC approachAdvantages of ATM VC approach

QoS performance guarantee for connection mapped to VC (bandwidth delay delay jitter)mapped to VC (bandwidth delay delay jitter)

Drawbacks of ATM VC approachInefficient support of datagram trafficInefficient support of datagram trafficone PVC between each sourcedest pair) does not scale (N2 connections needed) not scale (N 2 connections needed) SVC introduces call setup latency processing overhead for short lived connectionsoverhead for short lived connections

5 DataLink Layer 5-90

ATM Layer ATM cellATM Layer ATM cell5-byte ATM cell headery48-byte payload

Why small payload -gt short cell-creation delay W y m p y yfor digitized voicehalfway between 32 and 64 (compromise)y p

Cell headerCell header

Cell format

5 DataLink Layer 5-91

ATM cell headerATM cell headerVCI virtual channel IDVCI virtual channel ID

will change from link to link thru netPT P l d t p ( RM ll s s d t ll) PT Payload type (eg RM cell versus data cell) CLP Cell Loss Priority bit

CLP 1 i li l i it ll b CLP = 1 implies low priority cell can be discarded if congestion

HEC Header Error ChecksumHEC Header Error Checksumcyclic redundancy check

5 DataLink Layer 5-92

ATM Physical Layer (more)ATM Physical Layer (more)

T i ( bl ) f h i l lTwo pieces (sublayers) of physical layerTransmission Convergence Sublayer (TCS) adapts ATM l b t PMD s bl b lATM layer above to PMD sublayer belowPhysical Medium Dependent depends on physical medium being usedmedium being used

TCS FunctionsTCS FunctionsHeader checksum generation 8 bits CRC C ll d lin ti nCell delineationWith ldquounstructuredrdquo PMD sublayer transmission of idle cells when no data cells to send

5 DataLink Layer 5-93

of idle cells when no data cells to send

ATM Physical LayerATM Physical Layer

Ph l d D d (P D) blPhysical Medium Dependent (PMD) sublayerSONETSDH transmission frame structure (like a

b ) container carrying bits) bit synchronization bandwidth partitions (TDM) several speeds OC3 = 15552 Mbps OC12 = 62208 Mb OC48 2 45 Gb OC192 9 6 GbMbps OC48 = 245 Gbps OC192 = 96 Gbps

TIT3 transmission frame structure (old telephone hierarchy) 1 5 Mbps 45 Mbpstelephone hierarchy) 15 Mbps 45 Mbpsunstructured just cells (busyidle)

5 DataLink Layer 5-94

IP-Over-ATMIP over ATM

Classic IP only3 ldquonetworksrdquo (e g

IP over ATMreplace ldquonetworkrdquo (e g LAN segment) 3 networks (eg

LAN segments)MAC (802 3) and IP

(eg LAN segment) with ATM networkATM addresses IP MAC (8023) and IP

addressesATM addresses IP addresses

ATMATMnetwork

Ethernet Ethernet

5 DataLink Layer 5-95

EthernetLANs

EthernetLANs

IP-Over-ATMapp

transportapp

AALEthIP

transportIP

AALATM

apptransport

IPEth ATM

phyphyEth

ATM

ATMphy

ATMphy

Ethphy

ATMphy

p y

5 DataLink Layer 5-96

Datagram Journey in IP-over-ATM NetworkDatagram Journey in IP-over-ATM Network

at Source HostIP layer maps between IP ATM dest address (using ARP)passes datagram to AAL5AAL5 encapsulates data segments cells passes to ATM layer

ATM network moves cell along VC to destinationat Destination Host

AAL5 reassembles cells into original datagramif CRC OK datagram is passed to IP

5 DataLink Layer 5-97

IP-Over-ATMIP-Over-ATM

IssuesIP datagrams into

ATMnetwork

ATM AAL5 PDUsfrom IP addresses

TM ddto ATM addressesjust like IP dd ss s t addresses to

8023 MAC addresses

EthernetLANs

addresses

5 DataLink Layer 5-98

Multiprotocol label switching (MPLS)Multiprotocol label switching (MPLS)

i i i l l d IP f di b i fi d initial goal speed up IP forwarding by using fixed length label (instead of IP address) to do forwarding forwarding

borrowing ideas from Virtual Circuit (VC) approachbut IP datagram still keeps IP addressg p

PPP or EthernetPPP or Ethernet header

IP header remainder of link-layer frameMPLS header

label Exp S TTL

5 DataLink Layer 5-9920 3 1 5

MPLS capable routersMPLS capable routers

k l b l it h d taka label-switched routerforwards packets to outgoing interface based

l l b l l (d rsquot i t IP dd )only on label value (donrsquot inspect IP address)MPLS forwarding table distinct from IP forwarding tablestables

signaling protocol needed to set up forwardingRSVP TERSVP-TEforwarding possible along paths that IP alone would not allow (eg source-specific routing) not allow (eg source spec f c rout ng) use MPLS for traffic engineering

must co-exist with IP-only routers5 DataLink Layer 5-100

must co exist with IP only routers

MPLS forwarding tablesi t t

MPLS forwarding tables

in out outlabel label dest interface

in out outlabel label dest interface

10 A 012 D 0 label label dest interface

10 6 A 112 9 D 0

12 D 08 A 1

D1

00R6

R3R4R5

0

1

A

1

0

R1R2A

in out outlabel label dest interface

6 A 0in out out

label label dest interface

5 DataLink Layer 5-101

6 - A 0label label dest interface

8 6 A 0

Chapter 5 SummaryChapter 5 Summaryprinciples behind data link layer servicespr nc p s h n ata n ay r s r c s

error detection correctionsharing a broadcast channel multiple accesslink layer addressing

instantiation and implementation of various link l t h l ilayer technologies

Ethernetit h d LANSswitched LANS

PPPi li d k li k l TM MPLvirtualized networks as a link layer ATM MPLS

5 DataLink Layer 5-102

Chapter 5 letrsquos take a breathChapter 5 let s take a breathjourney down protocol stack completejourney down protocol stack complete(except PHY)solid understanding of networking principles solid understanding of networking principles practice

ld t h b t l t f i t ti hellip could stop here hellip but lots of interesting topics

lwirelessmultimediasecurity network management

5 DataLink Layer 5-103

Page 13: Link Layer Link Layer: Introduction

Ethernet Frame Structure (more)Ethernet Frame Structure (more)Addresses 6 bytesy

if adapter receives frame with matching destination address or with broadcast address (eg ARP packet) it passes data in frame to network layer protocolpasses data in frame to network layer protocolotherwise adapter discards frame

Type indicates higher layer protocol (mostly IP Type indicates higher layer protocol (mostly IP but others possible eg Novell IPX AppleTalk)CRC checked at receiver if error is detected frame is dropped

5 DataLink Layer 5-49

Ethernet Unreliable connectionlessEthernet Unreliable connectionless

i l N h d h ki b di d connectionless No handshaking between sending and receiving NICs

li bl i i NIC d s rsquot s d ks ks unreliable receiving NIC doesnrsquot send acks or nacks to sending NIC

stream of datagrams passed to network layer can have gaps stream of datagrams passed to network layer can have gaps (missing datagrams)gaps will be filled if app is using TCPotherwise app will see gaps

Ethernetrsquos MAC protocol unslotted CSMACD

5 DataLink Layer 5-50

Ethernet CSMACD algorithmg1 NIC receives datagram 4 If NIC detects another

from network layer creates frame

2 f N C h l dl

transmission while transmitting aborts and sends jam signal2 If NIC senses channel idle

starts frame transmission If NIC senses channel

sends jam signal5 After aborting NIC

enters exponential If NIC senses channel busy waits until channel idle then transmits

enters exponential backoff after mth collision NIC chooses K at

3 If NIC transmits entire frame without detecting

random from 012hellip2m-1 NIC waits K 512 bi i

ganother transmission NIC is done with frame

K512 bit times returns to Step 2

5 DataLink Layer 5-51

Ethernetrsquos CSMACD (more)Ethernet s CSMACD (more)Jam Signal make sure all Exponential Backoffg

other transmitters are aware of collision 48 bits

Bit time 1 microsec for 10

pGoal adapt retransmission attempts to estimated current loadBit time 1 microsec for 10

Mbps Ethernet for K=1023 wait time is about 50 msec

current loadheavy load random wait will be longer

about 50 msec first collision choose K from 01 delay is K 512 bit transmission timestransm ss on t m safter second collision choose K from 0123hellipft t lli i h K

Seeinteract with Javaapplet on AWL Web site

after ten collisions choose K from 01234hellip1023

pphighly recommended

5 DataLink Layer 5-52

CSMACD efficiencyCSMACD efficiency

T d l b 2 d i L NTprop = max prop delay between 2 nodes in LANttrans = time to transmit max-size frame

efficiency 1

=

efficiency goes to 1

transprop ttff y

51+

efficiency goes to 1 as tprop goes to 0as ttrans goes to infinitytrans g y

better performance than ALOHA and simple cheap decentralized

5 DataLink Layer 5-53

p

8023 Ethernet Standards Link amp Physical Layersy y

many different Ethernet standardsycommon MAC protocol and frame formatdifferent speeds 2 Mbps 10 Mbps 100 Mbps 1Gb 10G b1Gbps 10G bpsdifferent physical layer media fiber cable

MAC protocolapplicationtransportnetwork

li k

MAC protocoland frame format

100BASE-TX 100BASE-FX100BASE-T2link

physical100BASE-T4 100BASE-SX 100BASE-BX

5 DataLink Layer 5-54

fiber physical layercopper (twisterpair) physical layer

Manchester encodingManchester encoding

used in 10BaseTeach bit has a transitionallows clocks in sending and receiving nodes to g gsynchronize to each other

no need for a centralized global clock among nodes

5 DataLink Layer 5-55

Hey this is physical-layer stuff

Link LayerLink Layer

5 1 I d i d 5 6 Li k l i h51 Introduction and services5 2 E d t ti

56 Link-layer switches57 PPP

52 Error detection and correction 5 3 Multiple access

58 Link Virtualization ATM MPLS

53 Multiple access protocols5 4 Link-layer 54 Link layer Addressing55 Ethernet55 Ethernet

5 DataLink Layer 5-56

Hubshellip physical-layer (ldquodumbrdquo) repeaters

bits coming in one link go out all other links at bits coming in one link go out all other links at same rateall nodes connected to hub can collide with one anotherno frame bufferinggno CSMACD at hub host NICs detect collisions

twisted pair

hub

5 DataLink Layer 5-57

Switchlink-layer device smarter than hubs take yactive role

store forward Ethernet framesexamine incoming framersquos MAC address selectively forward frame to one-or-more

l k h f f d d outgoing links when frame is to be forwarded on segment uses CSMACD to access segment

transparenthosts are unaware of presence of switches

plug-and-play self-learningswitches do not need to be configured

5 DataLink Layer 5-58

g

Switch allows multiple simultaneous ptransmissions

A

hosts have dedicated direct connection to switch

BCrsquo

switches buffer packetsEthernet protocol used on each incoming link but no

1 2 345

6

each incoming link but no collisions full duplex

each link is its own collision C

45

domainswitching A-to-Arsquo and B-to-Brsquo simultaneously

ArsquoBrsquo

to-B simultaneously without collisions

not possible with dumb hub

switch with six interfaces(123456)

5 DataLink Layer 5-59

Switch TableSwitch Table

Q h d s s it h k th t A

Q how does switch know that Arsquo reachable via interface 4 Brsquo reachable via interface 5

BCrsquo

B reachable via interface 5A each switch has a switch table each entry

1 2 345

6ta ach ntry

(MAC address of host interface to reach host time stamp) C

45

looks like a routing tableQ how are entries created

i t i d i it h t bl

ArsquoBrsquo

maintained in switch table something like a routing protocol

switch with six interfaces(123456)

5 DataLink Layer 5-60

protocol

Switch self-learning Source ASwitch self-learning

s it h l s hi h h sts A A Arsquo

Dest Arsquo

switch learns which hosts can be reached through which interfaces

BCrsquo

which interfaceswhen frame received switch ldquolearnsrdquo location of

d i i LAN

1 2 345

6

sender incoming LAN segmentrecords senderlocation

C

45

pair in switch tableArsquoBrsquo

MAC addr interface TTLMAC addr interface TTLSwitch table

(initially empty)A 1 60

5 DataLink Layer 5-61

Switch frame filteringforwardingWhen frame received

1 record link associated with sending host2 ind x s itch t bl usin MAC d st dd ss2 index switch table using MAC dest address3 if entry found for destination

then then if dest on segment from which frame arrived

then drop the framethen drop the frameelse forward the frame on interface indicated

else flood forward on all but the interface

on which the frame arrived5 DataLink Layer 5-62

on which the frame arrived

Self-learning Source ASelf learning forwarding

lA A Arsquo

Dest Arsquo

exampleBCrsquo

frame destinati n 1 2 345

6A ArsquoA ArsquoA ArsquoA ArsquoA Arsquoframe destination unknown floodd ti ti A

C

45

Arsquo A

destination A location knownselective send

ArsquoBrsquo

MAC addr interface TTL

selective send

MAC addr interface TTLSwitch table

(initially empty)A 1 60Arsquo 4 60

5 DataLink Layer 5-63

Interconnecting switchesg

switches can be connected togetherg

S

S4

A

B

S1

C DF

S2S3

IB C D

E HI

G

Q sending from A to G - how does S1 know to forward frame destined to F via S and S forward frame destined to F via S4 and S3A self learning (works exactly the same as in single-switch case)

5 DataLink Layer 5-64

single switch case)

Self-learning multi-switch exampleSuppose C sends frame to I I responds to C

S

S412

A

B

S1

C DF

S2S3

I

2

B C D

E HI

G

Q show switch tables and packet forwarding in S1 S2 S3 S4

5 DataLink Layer 5-65

Institutional networkInstitutional network

to externalnetwork

mail server

networkrouter web server

IP subnet

5 DataLink Layer 5-66

Switches vs RoutersSwitches vs Routersboth store-and-forward devices

routers network layer devices (examine network layer headers)switches are link layer devicesswitches are link layer devices

routers maintain routing tables implement routing algorithmsgswitches maintain switch tables implement filtering learning algorithmsf g g g

5 DataLink Layer 5-67

Link LayerLink Layer

5 1 I d i d 5 6 H b d i h51 Introduction and services5 2 E d t ti

56 Hubs and switches57 PPP

52 Error detection and correction 5 3Multiple access

58 Link Virtualization ATM

53Multiple access protocols5 4 Link-Layer 54 Link Layer Addressing55 Ethernet55 Ethernet

5 DataLink Layer 5-68

Point to Point Data Link ControlPoint to Point Data Link Controlone sender one receiver one link easier than one sender one receiver one link easier than broadcast link

no Media Access Controlno Media Access Controlno need for explicit MAC addressinge g dialup link ISDN lineeg dialup link ISDN line

popular point-to-point DLC protocolsPPP (point-to-point protocol)PPP (point to point protocol)HDLC High level data link control (Data link used to be considered ldquohigh layerrdquo in protocol used to be considered high layer in protocol stack

5 DataLink Layer 5-69

PPP Design Requirements [RFC 1557]

packet framing encapsulation of network-layer p f m g p u f w ydatagram in data link frame

carry network layer data of any network layer y y y yprotocol (not just IP) at same timeability to demultiplex upwards

bit transparency must carry any bit pattern in the data fielderror detection (no correction)connection liveness detect signal link failure to

k lnetwork layernetwork layer address negotiation endpoint can l fi h th rsquos t k dd ss

5 DataLink Layer 5-70

learnconfigure each otherrsquos network address

PPP non-requirementsPPP non requirements

ti no error correctionrecoveryno flow control

f d d l K out of order delivery OK no need to support multipoint links (eg polling)

E l l Error recovery flow control data re-ordering all relegated to higher layers

5 DataLink Layer 5-71

PPP Data FramePPP Data Frame

Fl d li i (f i )Flag delimiter (framing)Address does nothing (only one option)Control does nothing in the future possible multiple control fieldsP t l l t l t hi h f Protocol upper layer protocol to which frame delivered (eg PPP-LCP IP IPCP etc)

5 DataLink Layer 5-72

PPP Data FramePPP Data Frame

i f l d b i i dinfo upper layer data being carriedcheck cyclic redundancy check for error d t tidetection

5 DataLink Layer 5-73

Byte StuffingByte Stuffingldquodata transparencyrdquo requirement data field must

be allowed to include flag pattern lt01111110gtQ is received lt01111110gt data or flag

Sender adds (ldquostuffsrdquo) extra lt 01111110gt byte after each lt 01111110gt data byteReceiver

two 01111110 bytes in a row discard first byte d continue data reception

single 01111110 flag byte

5 DataLink Layer 5-74

Byte StuffingByte Stuffing

flag bytepatterni din datato send

flag byte pattern plusstuffed byte in transmitted data

5 DataLink Layer 5-75

transmitted data

PPP Data Control ProtocolPPP Data Control ProtocolBefore exchanging network-g g

layer data data link peers mustconfigure PPP link (max frame length authentication)authentication)learnconfigure networklayer informationlayer information

for IP carry IP Control Protocol (IPCP) msgs Protocol (IPCP) msgs (protocol field 8021) to configurelearn IP

5 DataLink Layer 5-76

gaddress

Link LayerLink Layer

5 1 I d i d 5 6 H b d i h51 Introduction and services5 2 E d t ti

56 Hubs and switches57 PPP

52 Error detection and correction 5 3Multiple access

58 Link Virtualization ATM and MPLS

53Multiple access protocols5 4 Link-Layer 54 Link Layer Addressing55 Ethernet55 Ethernet

5 DataLink Layer 5-77

Virtualization of networksVirtualization of networks

Vi li i f f l b i i Virtualization of resources powerful abstraction in systems engineering

ti l s i t l i t l computing examples virtual memory virtual devices

Virtual machines e g javaVirtual machines eg javaIBM VM os from 1960rsquos70rsquos

layering of abstractions donrsquot sweat the details of layering of abstractions don t sweat the details of the lower layer only deal with lower layers abstractlyabstractly

5 DataLink Layer 5-78

The Internet virtualizing networksThe Internet virtualizing networks

1974 multiple unconnected differing in1974 multiple unconnected nets

ARPAnet

hellip differing inaddressing conventionspacket formats

data-over-cable networkspacket satellite network (Aloha)

k d k

perror recoveryrouting

packet radio network

ARPAnet satellite net

5 DataLink Layer 5-79

ARPAnet satell te netA Protocol for Packet Network Intercommunication V Cerf R Kahn IEEE Transactions on CommunicationsMay 1974 pp 637-648

The Internet virtualizing networksThe Internet virtualizing networksInternetwork layer (IP)

addressing internetwork Gateway

ldquoembed internetwork packets in l l k f

addressing internetwork appears as single uniform entity despite underlying local network heterogeneitynetwork of networks

plocal packet format or extract themrdquoroute (at internetwork level) to next gatewaynetwork of networks next gateway

gateway

ARPAnet satellite net

5 DataLink Layer 5-80

ARPAnet satell te net

Cerf amp Kahnrsquos Internetwork ArchitectureCerf amp Kahn s Internetwork ArchitectureWhat is virtualized

two layers of addressing internetwork and local networknew layer (IP) makes everything homogeneous at internetwork layerunderlying local network technology

cablesatellite56K telephone modemtoday ATM MPLS

hellip ldquoinvisiblerdquo at internetwork layer Looks like a link

5 DataLink Layer 5-81

ylayer technology to IP

ATM and MPLSATM and MPLS

P k h ATM MPLS separate networks in their own right

different service models addressing routing from Internet

viewed by Internet as logical link connecting IP routers

just like dialup link is really part of separate network (telephone network)

ATM MPLS of technical interest in their own right

5 DataLink Layer 5-82

Asynchronous Transfer Mode ATMAsynchronous Transfer Mode ATM1990rsquos00 standard for high-speed (155Mbps to g p ( p622 Mbps and higher) Broadband Integrated Service Digital Network architectureGoal integrated end-end transport of carry voice video data

i i i Q i f i id meeting timingQoS requirements of voice video (versus Internet best-effort model)ldquo t ti rdquo t l h t h i l ts i ldquonext generationrdquo telephony technical roots in telephone worldpacket switching (fixed length packets called packet-switching (fixed length packets called ldquocellsrdquo) using virtual circuits

5 DataLink Layer 5-83

ATM architecture ATM architecture AAL AAL

ATM ATMATM ATM

physical physicalphysical physical

d d ti h it h

adaptation layer only at edge of ATM network

end system end systemswitch switch

data segmentationreassemblyroughly analagous to Internet transport layer

ATM layer ldquonetworkrdquo layercell switching routing

5 DataLink Layer 5-84

physical layer

ATM network or link layerATM network or link layerVision end-to-end

t t ldquoATM f transport ldquoATM from desktop to desktoprdquo

ATM is a network ATM

IPnetwork

ATM is a network technology

Reality used to connect

ATMnetwork

Reality used to connect IP backbone routers

ldquoIP over ATMrdquoIP over ATMATM as switched link layer y connecting IP routers

5 DataLink Layer 5-85

ATM Adaptation Layer (AAL)ATM Adaptation Layer (AAL)

TM d i L ( L) ldquo d rdquo ATM Adaptation Layer (AAL) ldquoadaptsrdquo upper layers (IP or native ATM applications) to ATM layer belowlayer belowAAL present only in end systems not in switchesAAL layer segment (headertrailer fields data) AAL layer segment (headertrailer fields data) fragmented across multiple ATM cells

analogy TCP segment in many IP packetsanalogy TCP segment in many IP packets

AAL AAL

physical

ATM

physical

ATM

physical

ATM

physical

ATM

5 DataLink Layer 5-86

physical physicalp y p y

end system end systemswitch switch

ATM Adaptation Layer (AAL) [more]

Different versions of AAL layers depending on ATM y p gservice classAAL1 for CBR (Constant Bit Rate) services eg circuit emulationAAL2 for VBR (Variable Bit Rate) services eg MPEG videoAAL5 for data (eg IP datagrams)

User data

AAL PDU

ATM cell

5 DataLink Layer 5-87

ATM LayeryService transport cells across ATM network

analogous to IP network layeranalogous to IP network layervery different services than IP network layer

Guarantees NetworkArchitecture

ServiceModel Bandwidth Loss Order Timing

Congestionfeedback

Guarantees

Internet

ATM

best effort

CBR

none

constant

no

yes

no

yes

no

yes

no (inferredvia loss)noATM

ATM

CBR

VBR

constantrateguaranteedrate

yes

yes

yes

yes

yes

yes

nocongestionnocongestion

ATM

ATM

ABR

UBR

rateguaranteed minimum

no yes nocongestionyes

5 DataLink Layer 5-88

ATM UBR none no yes no no

ATM Layer Virtual CircuitsATM Layer Virtual CircuitsVC transport cells carried on VC from source to destp

call setup teardown for each call before data can floweach packet carries VC identifier (not destination ID)

it h d t th i t i ldquo t t rdquo f h every switch on source-dest path maintain ldquostaterdquo for each passing connectionlinkswitch resources (bandwidth buffers) may be allocated to ( ff ) m yVC to get circuit-like perf

Permanent VCs (PVCs)long lasting connectionstypically ldquopermanentrdquo route between to IP routers

Switched VCs (SVC)dynamically set up on per-call basis

5 DataLink Layer 5-89

ATM VCsATM VCsAdvantages of ATM VC approachAdvantages of ATM VC approach

QoS performance guarantee for connection mapped to VC (bandwidth delay delay jitter)mapped to VC (bandwidth delay delay jitter)

Drawbacks of ATM VC approachInefficient support of datagram trafficInefficient support of datagram trafficone PVC between each sourcedest pair) does not scale (N2 connections needed) not scale (N 2 connections needed) SVC introduces call setup latency processing overhead for short lived connectionsoverhead for short lived connections

5 DataLink Layer 5-90

ATM Layer ATM cellATM Layer ATM cell5-byte ATM cell headery48-byte payload

Why small payload -gt short cell-creation delay W y m p y yfor digitized voicehalfway between 32 and 64 (compromise)y p

Cell headerCell header

Cell format

5 DataLink Layer 5-91

ATM cell headerATM cell headerVCI virtual channel IDVCI virtual channel ID

will change from link to link thru netPT P l d t p ( RM ll s s d t ll) PT Payload type (eg RM cell versus data cell) CLP Cell Loss Priority bit

CLP 1 i li l i it ll b CLP = 1 implies low priority cell can be discarded if congestion

HEC Header Error ChecksumHEC Header Error Checksumcyclic redundancy check

5 DataLink Layer 5-92

ATM Physical Layer (more)ATM Physical Layer (more)

T i ( bl ) f h i l lTwo pieces (sublayers) of physical layerTransmission Convergence Sublayer (TCS) adapts ATM l b t PMD s bl b lATM layer above to PMD sublayer belowPhysical Medium Dependent depends on physical medium being usedmedium being used

TCS FunctionsTCS FunctionsHeader checksum generation 8 bits CRC C ll d lin ti nCell delineationWith ldquounstructuredrdquo PMD sublayer transmission of idle cells when no data cells to send

5 DataLink Layer 5-93

of idle cells when no data cells to send

ATM Physical LayerATM Physical Layer

Ph l d D d (P D) blPhysical Medium Dependent (PMD) sublayerSONETSDH transmission frame structure (like a

b ) container carrying bits) bit synchronization bandwidth partitions (TDM) several speeds OC3 = 15552 Mbps OC12 = 62208 Mb OC48 2 45 Gb OC192 9 6 GbMbps OC48 = 245 Gbps OC192 = 96 Gbps

TIT3 transmission frame structure (old telephone hierarchy) 1 5 Mbps 45 Mbpstelephone hierarchy) 15 Mbps 45 Mbpsunstructured just cells (busyidle)

5 DataLink Layer 5-94

IP-Over-ATMIP over ATM

Classic IP only3 ldquonetworksrdquo (e g

IP over ATMreplace ldquonetworkrdquo (e g LAN segment) 3 networks (eg

LAN segments)MAC (802 3) and IP

(eg LAN segment) with ATM networkATM addresses IP MAC (8023) and IP

addressesATM addresses IP addresses

ATMATMnetwork

Ethernet Ethernet

5 DataLink Layer 5-95

EthernetLANs

EthernetLANs

IP-Over-ATMapp

transportapp

AALEthIP

transportIP

AALATM

apptransport

IPEth ATM

phyphyEth

ATM

ATMphy

ATMphy

Ethphy

ATMphy

p y

5 DataLink Layer 5-96

Datagram Journey in IP-over-ATM NetworkDatagram Journey in IP-over-ATM Network

at Source HostIP layer maps between IP ATM dest address (using ARP)passes datagram to AAL5AAL5 encapsulates data segments cells passes to ATM layer

ATM network moves cell along VC to destinationat Destination Host

AAL5 reassembles cells into original datagramif CRC OK datagram is passed to IP

5 DataLink Layer 5-97

IP-Over-ATMIP-Over-ATM

IssuesIP datagrams into

ATMnetwork

ATM AAL5 PDUsfrom IP addresses

TM ddto ATM addressesjust like IP dd ss s t addresses to

8023 MAC addresses

EthernetLANs

addresses

5 DataLink Layer 5-98

Multiprotocol label switching (MPLS)Multiprotocol label switching (MPLS)

i i i l l d IP f di b i fi d initial goal speed up IP forwarding by using fixed length label (instead of IP address) to do forwarding forwarding

borrowing ideas from Virtual Circuit (VC) approachbut IP datagram still keeps IP addressg p

PPP or EthernetPPP or Ethernet header

IP header remainder of link-layer frameMPLS header

label Exp S TTL

5 DataLink Layer 5-9920 3 1 5

MPLS capable routersMPLS capable routers

k l b l it h d taka label-switched routerforwards packets to outgoing interface based

l l b l l (d rsquot i t IP dd )only on label value (donrsquot inspect IP address)MPLS forwarding table distinct from IP forwarding tablestables

signaling protocol needed to set up forwardingRSVP TERSVP-TEforwarding possible along paths that IP alone would not allow (eg source-specific routing) not allow (eg source spec f c rout ng) use MPLS for traffic engineering

must co-exist with IP-only routers5 DataLink Layer 5-100

must co exist with IP only routers

MPLS forwarding tablesi t t

MPLS forwarding tables

in out outlabel label dest interface

in out outlabel label dest interface

10 A 012 D 0 label label dest interface

10 6 A 112 9 D 0

12 D 08 A 1

D1

00R6

R3R4R5

0

1

A

1

0

R1R2A

in out outlabel label dest interface

6 A 0in out out

label label dest interface

5 DataLink Layer 5-101

6 - A 0label label dest interface

8 6 A 0

Chapter 5 SummaryChapter 5 Summaryprinciples behind data link layer servicespr nc p s h n ata n ay r s r c s

error detection correctionsharing a broadcast channel multiple accesslink layer addressing

instantiation and implementation of various link l t h l ilayer technologies

Ethernetit h d LANSswitched LANS

PPPi li d k li k l TM MPLvirtualized networks as a link layer ATM MPLS

5 DataLink Layer 5-102

Chapter 5 letrsquos take a breathChapter 5 let s take a breathjourney down protocol stack completejourney down protocol stack complete(except PHY)solid understanding of networking principles solid understanding of networking principles practice

ld t h b t l t f i t ti hellip could stop here hellip but lots of interesting topics

lwirelessmultimediasecurity network management

5 DataLink Layer 5-103

Page 14: Link Layer Link Layer: Introduction

CSMACD efficiencyCSMACD efficiency

T d l b 2 d i L NTprop = max prop delay between 2 nodes in LANttrans = time to transmit max-size frame

efficiency 1

=

efficiency goes to 1

transprop ttff y

51+

efficiency goes to 1 as tprop goes to 0as ttrans goes to infinitytrans g y

better performance than ALOHA and simple cheap decentralized

5 DataLink Layer 5-53

p

8023 Ethernet Standards Link amp Physical Layersy y

many different Ethernet standardsycommon MAC protocol and frame formatdifferent speeds 2 Mbps 10 Mbps 100 Mbps 1Gb 10G b1Gbps 10G bpsdifferent physical layer media fiber cable

MAC protocolapplicationtransportnetwork

li k

MAC protocoland frame format

100BASE-TX 100BASE-FX100BASE-T2link

physical100BASE-T4 100BASE-SX 100BASE-BX

5 DataLink Layer 5-54

fiber physical layercopper (twisterpair) physical layer

Manchester encodingManchester encoding

used in 10BaseTeach bit has a transitionallows clocks in sending and receiving nodes to g gsynchronize to each other

no need for a centralized global clock among nodes

5 DataLink Layer 5-55

Hey this is physical-layer stuff

Link LayerLink Layer

5 1 I d i d 5 6 Li k l i h51 Introduction and services5 2 E d t ti

56 Link-layer switches57 PPP

52 Error detection and correction 5 3 Multiple access

58 Link Virtualization ATM MPLS

53 Multiple access protocols5 4 Link-layer 54 Link layer Addressing55 Ethernet55 Ethernet

5 DataLink Layer 5-56

Hubshellip physical-layer (ldquodumbrdquo) repeaters

bits coming in one link go out all other links at bits coming in one link go out all other links at same rateall nodes connected to hub can collide with one anotherno frame bufferinggno CSMACD at hub host NICs detect collisions

twisted pair

hub

5 DataLink Layer 5-57

Switchlink-layer device smarter than hubs take yactive role

store forward Ethernet framesexamine incoming framersquos MAC address selectively forward frame to one-or-more

l k h f f d d outgoing links when frame is to be forwarded on segment uses CSMACD to access segment

transparenthosts are unaware of presence of switches

plug-and-play self-learningswitches do not need to be configured

5 DataLink Layer 5-58

g

Switch allows multiple simultaneous ptransmissions

A

hosts have dedicated direct connection to switch

BCrsquo

switches buffer packetsEthernet protocol used on each incoming link but no

1 2 345

6

each incoming link but no collisions full duplex

each link is its own collision C

45

domainswitching A-to-Arsquo and B-to-Brsquo simultaneously

ArsquoBrsquo

to-B simultaneously without collisions

not possible with dumb hub

switch with six interfaces(123456)

5 DataLink Layer 5-59

Switch TableSwitch Table

Q h d s s it h k th t A

Q how does switch know that Arsquo reachable via interface 4 Brsquo reachable via interface 5

BCrsquo

B reachable via interface 5A each switch has a switch table each entry

1 2 345

6ta ach ntry

(MAC address of host interface to reach host time stamp) C

45

looks like a routing tableQ how are entries created

i t i d i it h t bl

ArsquoBrsquo

maintained in switch table something like a routing protocol

switch with six interfaces(123456)

5 DataLink Layer 5-60

protocol

Switch self-learning Source ASwitch self-learning

s it h l s hi h h sts A A Arsquo

Dest Arsquo

switch learns which hosts can be reached through which interfaces

BCrsquo

which interfaceswhen frame received switch ldquolearnsrdquo location of

d i i LAN

1 2 345

6

sender incoming LAN segmentrecords senderlocation

C

45

pair in switch tableArsquoBrsquo

MAC addr interface TTLMAC addr interface TTLSwitch table

(initially empty)A 1 60

5 DataLink Layer 5-61

Switch frame filteringforwardingWhen frame received

1 record link associated with sending host2 ind x s itch t bl usin MAC d st dd ss2 index switch table using MAC dest address3 if entry found for destination

then then if dest on segment from which frame arrived

then drop the framethen drop the frameelse forward the frame on interface indicated

else flood forward on all but the interface

on which the frame arrived5 DataLink Layer 5-62

on which the frame arrived

Self-learning Source ASelf learning forwarding

lA A Arsquo

Dest Arsquo

exampleBCrsquo

frame destinati n 1 2 345

6A ArsquoA ArsquoA ArsquoA ArsquoA Arsquoframe destination unknown floodd ti ti A

C

45

Arsquo A

destination A location knownselective send

ArsquoBrsquo

MAC addr interface TTL

selective send

MAC addr interface TTLSwitch table

(initially empty)A 1 60Arsquo 4 60

5 DataLink Layer 5-63

Interconnecting switchesg

switches can be connected togetherg

S

S4

A

B

S1

C DF

S2S3

IB C D

E HI

G

Q sending from A to G - how does S1 know to forward frame destined to F via S and S forward frame destined to F via S4 and S3A self learning (works exactly the same as in single-switch case)

5 DataLink Layer 5-64

single switch case)

Self-learning multi-switch exampleSuppose C sends frame to I I responds to C

S

S412

A

B

S1

C DF

S2S3

I

2

B C D

E HI

G

Q show switch tables and packet forwarding in S1 S2 S3 S4

5 DataLink Layer 5-65

Institutional networkInstitutional network

to externalnetwork

mail server

networkrouter web server

IP subnet

5 DataLink Layer 5-66

Switches vs RoutersSwitches vs Routersboth store-and-forward devices

routers network layer devices (examine network layer headers)switches are link layer devicesswitches are link layer devices

routers maintain routing tables implement routing algorithmsgswitches maintain switch tables implement filtering learning algorithmsf g g g

5 DataLink Layer 5-67

Link LayerLink Layer

5 1 I d i d 5 6 H b d i h51 Introduction and services5 2 E d t ti

56 Hubs and switches57 PPP

52 Error detection and correction 5 3Multiple access

58 Link Virtualization ATM

53Multiple access protocols5 4 Link-Layer 54 Link Layer Addressing55 Ethernet55 Ethernet

5 DataLink Layer 5-68

Point to Point Data Link ControlPoint to Point Data Link Controlone sender one receiver one link easier than one sender one receiver one link easier than broadcast link

no Media Access Controlno Media Access Controlno need for explicit MAC addressinge g dialup link ISDN lineeg dialup link ISDN line

popular point-to-point DLC protocolsPPP (point-to-point protocol)PPP (point to point protocol)HDLC High level data link control (Data link used to be considered ldquohigh layerrdquo in protocol used to be considered high layer in protocol stack

5 DataLink Layer 5-69

PPP Design Requirements [RFC 1557]

packet framing encapsulation of network-layer p f m g p u f w ydatagram in data link frame

carry network layer data of any network layer y y y yprotocol (not just IP) at same timeability to demultiplex upwards

bit transparency must carry any bit pattern in the data fielderror detection (no correction)connection liveness detect signal link failure to

k lnetwork layernetwork layer address negotiation endpoint can l fi h th rsquos t k dd ss

5 DataLink Layer 5-70

learnconfigure each otherrsquos network address

PPP non-requirementsPPP non requirements

ti no error correctionrecoveryno flow control

f d d l K out of order delivery OK no need to support multipoint links (eg polling)

E l l Error recovery flow control data re-ordering all relegated to higher layers

5 DataLink Layer 5-71

PPP Data FramePPP Data Frame

Fl d li i (f i )Flag delimiter (framing)Address does nothing (only one option)Control does nothing in the future possible multiple control fieldsP t l l t l t hi h f Protocol upper layer protocol to which frame delivered (eg PPP-LCP IP IPCP etc)

5 DataLink Layer 5-72

PPP Data FramePPP Data Frame

i f l d b i i dinfo upper layer data being carriedcheck cyclic redundancy check for error d t tidetection

5 DataLink Layer 5-73

Byte StuffingByte Stuffingldquodata transparencyrdquo requirement data field must

be allowed to include flag pattern lt01111110gtQ is received lt01111110gt data or flag

Sender adds (ldquostuffsrdquo) extra lt 01111110gt byte after each lt 01111110gt data byteReceiver

two 01111110 bytes in a row discard first byte d continue data reception

single 01111110 flag byte

5 DataLink Layer 5-74

Byte StuffingByte Stuffing

flag bytepatterni din datato send

flag byte pattern plusstuffed byte in transmitted data

5 DataLink Layer 5-75

transmitted data

PPP Data Control ProtocolPPP Data Control ProtocolBefore exchanging network-g g

layer data data link peers mustconfigure PPP link (max frame length authentication)authentication)learnconfigure networklayer informationlayer information

for IP carry IP Control Protocol (IPCP) msgs Protocol (IPCP) msgs (protocol field 8021) to configurelearn IP

5 DataLink Layer 5-76

gaddress

Link LayerLink Layer

5 1 I d i d 5 6 H b d i h51 Introduction and services5 2 E d t ti

56 Hubs and switches57 PPP

52 Error detection and correction 5 3Multiple access

58 Link Virtualization ATM and MPLS

53Multiple access protocols5 4 Link-Layer 54 Link Layer Addressing55 Ethernet55 Ethernet

5 DataLink Layer 5-77

Virtualization of networksVirtualization of networks

Vi li i f f l b i i Virtualization of resources powerful abstraction in systems engineering

ti l s i t l i t l computing examples virtual memory virtual devices

Virtual machines e g javaVirtual machines eg javaIBM VM os from 1960rsquos70rsquos

layering of abstractions donrsquot sweat the details of layering of abstractions don t sweat the details of the lower layer only deal with lower layers abstractlyabstractly

5 DataLink Layer 5-78

The Internet virtualizing networksThe Internet virtualizing networks

1974 multiple unconnected differing in1974 multiple unconnected nets

ARPAnet

hellip differing inaddressing conventionspacket formats

data-over-cable networkspacket satellite network (Aloha)

k d k

perror recoveryrouting

packet radio network

ARPAnet satellite net

5 DataLink Layer 5-79

ARPAnet satell te netA Protocol for Packet Network Intercommunication V Cerf R Kahn IEEE Transactions on CommunicationsMay 1974 pp 637-648

The Internet virtualizing networksThe Internet virtualizing networksInternetwork layer (IP)

addressing internetwork Gateway

ldquoembed internetwork packets in l l k f

addressing internetwork appears as single uniform entity despite underlying local network heterogeneitynetwork of networks

plocal packet format or extract themrdquoroute (at internetwork level) to next gatewaynetwork of networks next gateway

gateway

ARPAnet satellite net

5 DataLink Layer 5-80

ARPAnet satell te net

Cerf amp Kahnrsquos Internetwork ArchitectureCerf amp Kahn s Internetwork ArchitectureWhat is virtualized

two layers of addressing internetwork and local networknew layer (IP) makes everything homogeneous at internetwork layerunderlying local network technology

cablesatellite56K telephone modemtoday ATM MPLS

hellip ldquoinvisiblerdquo at internetwork layer Looks like a link

5 DataLink Layer 5-81

ylayer technology to IP

ATM and MPLSATM and MPLS

P k h ATM MPLS separate networks in their own right

different service models addressing routing from Internet

viewed by Internet as logical link connecting IP routers

just like dialup link is really part of separate network (telephone network)

ATM MPLS of technical interest in their own right

5 DataLink Layer 5-82

Asynchronous Transfer Mode ATMAsynchronous Transfer Mode ATM1990rsquos00 standard for high-speed (155Mbps to g p ( p622 Mbps and higher) Broadband Integrated Service Digital Network architectureGoal integrated end-end transport of carry voice video data

i i i Q i f i id meeting timingQoS requirements of voice video (versus Internet best-effort model)ldquo t ti rdquo t l h t h i l ts i ldquonext generationrdquo telephony technical roots in telephone worldpacket switching (fixed length packets called packet-switching (fixed length packets called ldquocellsrdquo) using virtual circuits

5 DataLink Layer 5-83

ATM architecture ATM architecture AAL AAL

ATM ATMATM ATM

physical physicalphysical physical

d d ti h it h

adaptation layer only at edge of ATM network

end system end systemswitch switch

data segmentationreassemblyroughly analagous to Internet transport layer

ATM layer ldquonetworkrdquo layercell switching routing

5 DataLink Layer 5-84

physical layer

ATM network or link layerATM network or link layerVision end-to-end

t t ldquoATM f transport ldquoATM from desktop to desktoprdquo

ATM is a network ATM

IPnetwork

ATM is a network technology

Reality used to connect

ATMnetwork

Reality used to connect IP backbone routers

ldquoIP over ATMrdquoIP over ATMATM as switched link layer y connecting IP routers

5 DataLink Layer 5-85

ATM Adaptation Layer (AAL)ATM Adaptation Layer (AAL)

TM d i L ( L) ldquo d rdquo ATM Adaptation Layer (AAL) ldquoadaptsrdquo upper layers (IP or native ATM applications) to ATM layer belowlayer belowAAL present only in end systems not in switchesAAL layer segment (headertrailer fields data) AAL layer segment (headertrailer fields data) fragmented across multiple ATM cells

analogy TCP segment in many IP packetsanalogy TCP segment in many IP packets

AAL AAL

physical

ATM

physical

ATM

physical

ATM

physical

ATM

5 DataLink Layer 5-86

physical physicalp y p y

end system end systemswitch switch

ATM Adaptation Layer (AAL) [more]

Different versions of AAL layers depending on ATM y p gservice classAAL1 for CBR (Constant Bit Rate) services eg circuit emulationAAL2 for VBR (Variable Bit Rate) services eg MPEG videoAAL5 for data (eg IP datagrams)

User data

AAL PDU

ATM cell

5 DataLink Layer 5-87

ATM LayeryService transport cells across ATM network

analogous to IP network layeranalogous to IP network layervery different services than IP network layer

Guarantees NetworkArchitecture

ServiceModel Bandwidth Loss Order Timing

Congestionfeedback

Guarantees

Internet

ATM

best effort

CBR

none

constant

no

yes

no

yes

no

yes

no (inferredvia loss)noATM

ATM

CBR

VBR

constantrateguaranteedrate

yes

yes

yes

yes

yes

yes

nocongestionnocongestion

ATM

ATM

ABR

UBR

rateguaranteed minimum

no yes nocongestionyes

5 DataLink Layer 5-88

ATM UBR none no yes no no

ATM Layer Virtual CircuitsATM Layer Virtual CircuitsVC transport cells carried on VC from source to destp

call setup teardown for each call before data can floweach packet carries VC identifier (not destination ID)

it h d t th i t i ldquo t t rdquo f h every switch on source-dest path maintain ldquostaterdquo for each passing connectionlinkswitch resources (bandwidth buffers) may be allocated to ( ff ) m yVC to get circuit-like perf

Permanent VCs (PVCs)long lasting connectionstypically ldquopermanentrdquo route between to IP routers

Switched VCs (SVC)dynamically set up on per-call basis

5 DataLink Layer 5-89

ATM VCsATM VCsAdvantages of ATM VC approachAdvantages of ATM VC approach

QoS performance guarantee for connection mapped to VC (bandwidth delay delay jitter)mapped to VC (bandwidth delay delay jitter)

Drawbacks of ATM VC approachInefficient support of datagram trafficInefficient support of datagram trafficone PVC between each sourcedest pair) does not scale (N2 connections needed) not scale (N 2 connections needed) SVC introduces call setup latency processing overhead for short lived connectionsoverhead for short lived connections

5 DataLink Layer 5-90

ATM Layer ATM cellATM Layer ATM cell5-byte ATM cell headery48-byte payload

Why small payload -gt short cell-creation delay W y m p y yfor digitized voicehalfway between 32 and 64 (compromise)y p

Cell headerCell header

Cell format

5 DataLink Layer 5-91

ATM cell headerATM cell headerVCI virtual channel IDVCI virtual channel ID

will change from link to link thru netPT P l d t p ( RM ll s s d t ll) PT Payload type (eg RM cell versus data cell) CLP Cell Loss Priority bit

CLP 1 i li l i it ll b CLP = 1 implies low priority cell can be discarded if congestion

HEC Header Error ChecksumHEC Header Error Checksumcyclic redundancy check

5 DataLink Layer 5-92

ATM Physical Layer (more)ATM Physical Layer (more)

T i ( bl ) f h i l lTwo pieces (sublayers) of physical layerTransmission Convergence Sublayer (TCS) adapts ATM l b t PMD s bl b lATM layer above to PMD sublayer belowPhysical Medium Dependent depends on physical medium being usedmedium being used

TCS FunctionsTCS FunctionsHeader checksum generation 8 bits CRC C ll d lin ti nCell delineationWith ldquounstructuredrdquo PMD sublayer transmission of idle cells when no data cells to send

5 DataLink Layer 5-93

of idle cells when no data cells to send

ATM Physical LayerATM Physical Layer

Ph l d D d (P D) blPhysical Medium Dependent (PMD) sublayerSONETSDH transmission frame structure (like a

b ) container carrying bits) bit synchronization bandwidth partitions (TDM) several speeds OC3 = 15552 Mbps OC12 = 62208 Mb OC48 2 45 Gb OC192 9 6 GbMbps OC48 = 245 Gbps OC192 = 96 Gbps

TIT3 transmission frame structure (old telephone hierarchy) 1 5 Mbps 45 Mbpstelephone hierarchy) 15 Mbps 45 Mbpsunstructured just cells (busyidle)

5 DataLink Layer 5-94

IP-Over-ATMIP over ATM

Classic IP only3 ldquonetworksrdquo (e g

IP over ATMreplace ldquonetworkrdquo (e g LAN segment) 3 networks (eg

LAN segments)MAC (802 3) and IP

(eg LAN segment) with ATM networkATM addresses IP MAC (8023) and IP

addressesATM addresses IP addresses

ATMATMnetwork

Ethernet Ethernet

5 DataLink Layer 5-95

EthernetLANs

EthernetLANs

IP-Over-ATMapp

transportapp

AALEthIP

transportIP

AALATM

apptransport

IPEth ATM

phyphyEth

ATM

ATMphy

ATMphy

Ethphy

ATMphy

p y

5 DataLink Layer 5-96

Datagram Journey in IP-over-ATM NetworkDatagram Journey in IP-over-ATM Network

at Source HostIP layer maps between IP ATM dest address (using ARP)passes datagram to AAL5AAL5 encapsulates data segments cells passes to ATM layer

ATM network moves cell along VC to destinationat Destination Host

AAL5 reassembles cells into original datagramif CRC OK datagram is passed to IP

5 DataLink Layer 5-97

IP-Over-ATMIP-Over-ATM

IssuesIP datagrams into

ATMnetwork

ATM AAL5 PDUsfrom IP addresses

TM ddto ATM addressesjust like IP dd ss s t addresses to

8023 MAC addresses

EthernetLANs

addresses

5 DataLink Layer 5-98

Multiprotocol label switching (MPLS)Multiprotocol label switching (MPLS)

i i i l l d IP f di b i fi d initial goal speed up IP forwarding by using fixed length label (instead of IP address) to do forwarding forwarding

borrowing ideas from Virtual Circuit (VC) approachbut IP datagram still keeps IP addressg p

PPP or EthernetPPP or Ethernet header

IP header remainder of link-layer frameMPLS header

label Exp S TTL

5 DataLink Layer 5-9920 3 1 5

MPLS capable routersMPLS capable routers

k l b l it h d taka label-switched routerforwards packets to outgoing interface based

l l b l l (d rsquot i t IP dd )only on label value (donrsquot inspect IP address)MPLS forwarding table distinct from IP forwarding tablestables

signaling protocol needed to set up forwardingRSVP TERSVP-TEforwarding possible along paths that IP alone would not allow (eg source-specific routing) not allow (eg source spec f c rout ng) use MPLS for traffic engineering

must co-exist with IP-only routers5 DataLink Layer 5-100

must co exist with IP only routers

MPLS forwarding tablesi t t

MPLS forwarding tables

in out outlabel label dest interface

in out outlabel label dest interface

10 A 012 D 0 label label dest interface

10 6 A 112 9 D 0

12 D 08 A 1

D1

00R6

R3R4R5

0

1

A

1

0

R1R2A

in out outlabel label dest interface

6 A 0in out out

label label dest interface

5 DataLink Layer 5-101

6 - A 0label label dest interface

8 6 A 0

Chapter 5 SummaryChapter 5 Summaryprinciples behind data link layer servicespr nc p s h n ata n ay r s r c s

error detection correctionsharing a broadcast channel multiple accesslink layer addressing

instantiation and implementation of various link l t h l ilayer technologies

Ethernetit h d LANSswitched LANS

PPPi li d k li k l TM MPLvirtualized networks as a link layer ATM MPLS

5 DataLink Layer 5-102

Chapter 5 letrsquos take a breathChapter 5 let s take a breathjourney down protocol stack completejourney down protocol stack complete(except PHY)solid understanding of networking principles solid understanding of networking principles practice

ld t h b t l t f i t ti hellip could stop here hellip but lots of interesting topics

lwirelessmultimediasecurity network management

5 DataLink Layer 5-103

Page 15: Link Layer Link Layer: Introduction

Hubshellip physical-layer (ldquodumbrdquo) repeaters

bits coming in one link go out all other links at bits coming in one link go out all other links at same rateall nodes connected to hub can collide with one anotherno frame bufferinggno CSMACD at hub host NICs detect collisions

twisted pair

hub

5 DataLink Layer 5-57

Switchlink-layer device smarter than hubs take yactive role

store forward Ethernet framesexamine incoming framersquos MAC address selectively forward frame to one-or-more

l k h f f d d outgoing links when frame is to be forwarded on segment uses CSMACD to access segment

transparenthosts are unaware of presence of switches

plug-and-play self-learningswitches do not need to be configured

5 DataLink Layer 5-58

g

Switch allows multiple simultaneous ptransmissions

A

hosts have dedicated direct connection to switch

BCrsquo

switches buffer packetsEthernet protocol used on each incoming link but no

1 2 345

6

each incoming link but no collisions full duplex

each link is its own collision C

45

domainswitching A-to-Arsquo and B-to-Brsquo simultaneously

ArsquoBrsquo

to-B simultaneously without collisions

not possible with dumb hub

switch with six interfaces(123456)

5 DataLink Layer 5-59

Switch TableSwitch Table

Q h d s s it h k th t A

Q how does switch know that Arsquo reachable via interface 4 Brsquo reachable via interface 5

BCrsquo

B reachable via interface 5A each switch has a switch table each entry

1 2 345

6ta ach ntry

(MAC address of host interface to reach host time stamp) C

45

looks like a routing tableQ how are entries created

i t i d i it h t bl

ArsquoBrsquo

maintained in switch table something like a routing protocol

switch with six interfaces(123456)

5 DataLink Layer 5-60

protocol

Switch self-learning Source ASwitch self-learning

s it h l s hi h h sts A A Arsquo

Dest Arsquo

switch learns which hosts can be reached through which interfaces

BCrsquo

which interfaceswhen frame received switch ldquolearnsrdquo location of

d i i LAN

1 2 345

6

sender incoming LAN segmentrecords senderlocation

C

45

pair in switch tableArsquoBrsquo

MAC addr interface TTLMAC addr interface TTLSwitch table

(initially empty)A 1 60

5 DataLink Layer 5-61

Switch frame filteringforwardingWhen frame received

1 record link associated with sending host2 ind x s itch t bl usin MAC d st dd ss2 index switch table using MAC dest address3 if entry found for destination

then then if dest on segment from which frame arrived

then drop the framethen drop the frameelse forward the frame on interface indicated

else flood forward on all but the interface

on which the frame arrived5 DataLink Layer 5-62

on which the frame arrived

Self-learning Source ASelf learning forwarding

lA A Arsquo

Dest Arsquo

exampleBCrsquo

frame destinati n 1 2 345

6A ArsquoA ArsquoA ArsquoA ArsquoA Arsquoframe destination unknown floodd ti ti A

C

45

Arsquo A

destination A location knownselective send

ArsquoBrsquo

MAC addr interface TTL

selective send

MAC addr interface TTLSwitch table

(initially empty)A 1 60Arsquo 4 60

5 DataLink Layer 5-63

Interconnecting switchesg

switches can be connected togetherg

S

S4

A

B

S1

C DF

S2S3

IB C D

E HI

G

Q sending from A to G - how does S1 know to forward frame destined to F via S and S forward frame destined to F via S4 and S3A self learning (works exactly the same as in single-switch case)

5 DataLink Layer 5-64

single switch case)

Self-learning multi-switch exampleSuppose C sends frame to I I responds to C

S

S412

A

B

S1

C DF

S2S3

I

2

B C D

E HI

G

Q show switch tables and packet forwarding in S1 S2 S3 S4

5 DataLink Layer 5-65

Institutional networkInstitutional network

to externalnetwork

mail server

networkrouter web server

IP subnet

5 DataLink Layer 5-66

Switches vs RoutersSwitches vs Routersboth store-and-forward devices

routers network layer devices (examine network layer headers)switches are link layer devicesswitches are link layer devices

routers maintain routing tables implement routing algorithmsgswitches maintain switch tables implement filtering learning algorithmsf g g g

5 DataLink Layer 5-67

Link LayerLink Layer

5 1 I d i d 5 6 H b d i h51 Introduction and services5 2 E d t ti

56 Hubs and switches57 PPP

52 Error detection and correction 5 3Multiple access

58 Link Virtualization ATM

53Multiple access protocols5 4 Link-Layer 54 Link Layer Addressing55 Ethernet55 Ethernet

5 DataLink Layer 5-68

Point to Point Data Link ControlPoint to Point Data Link Controlone sender one receiver one link easier than one sender one receiver one link easier than broadcast link

no Media Access Controlno Media Access Controlno need for explicit MAC addressinge g dialup link ISDN lineeg dialup link ISDN line

popular point-to-point DLC protocolsPPP (point-to-point protocol)PPP (point to point protocol)HDLC High level data link control (Data link used to be considered ldquohigh layerrdquo in protocol used to be considered high layer in protocol stack

5 DataLink Layer 5-69

PPP Design Requirements [RFC 1557]

packet framing encapsulation of network-layer p f m g p u f w ydatagram in data link frame

carry network layer data of any network layer y y y yprotocol (not just IP) at same timeability to demultiplex upwards

bit transparency must carry any bit pattern in the data fielderror detection (no correction)connection liveness detect signal link failure to

k lnetwork layernetwork layer address negotiation endpoint can l fi h th rsquos t k dd ss

5 DataLink Layer 5-70

learnconfigure each otherrsquos network address

PPP non-requirementsPPP non requirements

ti no error correctionrecoveryno flow control

f d d l K out of order delivery OK no need to support multipoint links (eg polling)

E l l Error recovery flow control data re-ordering all relegated to higher layers

5 DataLink Layer 5-71

PPP Data FramePPP Data Frame

Fl d li i (f i )Flag delimiter (framing)Address does nothing (only one option)Control does nothing in the future possible multiple control fieldsP t l l t l t hi h f Protocol upper layer protocol to which frame delivered (eg PPP-LCP IP IPCP etc)

5 DataLink Layer 5-72

PPP Data FramePPP Data Frame

i f l d b i i dinfo upper layer data being carriedcheck cyclic redundancy check for error d t tidetection

5 DataLink Layer 5-73

Byte StuffingByte Stuffingldquodata transparencyrdquo requirement data field must

be allowed to include flag pattern lt01111110gtQ is received lt01111110gt data or flag

Sender adds (ldquostuffsrdquo) extra lt 01111110gt byte after each lt 01111110gt data byteReceiver

two 01111110 bytes in a row discard first byte d continue data reception

single 01111110 flag byte

5 DataLink Layer 5-74

Byte StuffingByte Stuffing

flag bytepatterni din datato send

flag byte pattern plusstuffed byte in transmitted data

5 DataLink Layer 5-75

transmitted data

PPP Data Control ProtocolPPP Data Control ProtocolBefore exchanging network-g g

layer data data link peers mustconfigure PPP link (max frame length authentication)authentication)learnconfigure networklayer informationlayer information

for IP carry IP Control Protocol (IPCP) msgs Protocol (IPCP) msgs (protocol field 8021) to configurelearn IP

5 DataLink Layer 5-76

gaddress

Link LayerLink Layer

5 1 I d i d 5 6 H b d i h51 Introduction and services5 2 E d t ti

56 Hubs and switches57 PPP

52 Error detection and correction 5 3Multiple access

58 Link Virtualization ATM and MPLS

53Multiple access protocols5 4 Link-Layer 54 Link Layer Addressing55 Ethernet55 Ethernet

5 DataLink Layer 5-77

Virtualization of networksVirtualization of networks

Vi li i f f l b i i Virtualization of resources powerful abstraction in systems engineering

ti l s i t l i t l computing examples virtual memory virtual devices

Virtual machines e g javaVirtual machines eg javaIBM VM os from 1960rsquos70rsquos

layering of abstractions donrsquot sweat the details of layering of abstractions don t sweat the details of the lower layer only deal with lower layers abstractlyabstractly

5 DataLink Layer 5-78

The Internet virtualizing networksThe Internet virtualizing networks

1974 multiple unconnected differing in1974 multiple unconnected nets

ARPAnet

hellip differing inaddressing conventionspacket formats

data-over-cable networkspacket satellite network (Aloha)

k d k

perror recoveryrouting

packet radio network

ARPAnet satellite net

5 DataLink Layer 5-79

ARPAnet satell te netA Protocol for Packet Network Intercommunication V Cerf R Kahn IEEE Transactions on CommunicationsMay 1974 pp 637-648

The Internet virtualizing networksThe Internet virtualizing networksInternetwork layer (IP)

addressing internetwork Gateway

ldquoembed internetwork packets in l l k f

addressing internetwork appears as single uniform entity despite underlying local network heterogeneitynetwork of networks

plocal packet format or extract themrdquoroute (at internetwork level) to next gatewaynetwork of networks next gateway

gateway

ARPAnet satellite net

5 DataLink Layer 5-80

ARPAnet satell te net

Cerf amp Kahnrsquos Internetwork ArchitectureCerf amp Kahn s Internetwork ArchitectureWhat is virtualized

two layers of addressing internetwork and local networknew layer (IP) makes everything homogeneous at internetwork layerunderlying local network technology

cablesatellite56K telephone modemtoday ATM MPLS

hellip ldquoinvisiblerdquo at internetwork layer Looks like a link

5 DataLink Layer 5-81

ylayer technology to IP

ATM and MPLSATM and MPLS

P k h ATM MPLS separate networks in their own right

different service models addressing routing from Internet

viewed by Internet as logical link connecting IP routers

just like dialup link is really part of separate network (telephone network)

ATM MPLS of technical interest in their own right

5 DataLink Layer 5-82

Asynchronous Transfer Mode ATMAsynchronous Transfer Mode ATM1990rsquos00 standard for high-speed (155Mbps to g p ( p622 Mbps and higher) Broadband Integrated Service Digital Network architectureGoal integrated end-end transport of carry voice video data

i i i Q i f i id meeting timingQoS requirements of voice video (versus Internet best-effort model)ldquo t ti rdquo t l h t h i l ts i ldquonext generationrdquo telephony technical roots in telephone worldpacket switching (fixed length packets called packet-switching (fixed length packets called ldquocellsrdquo) using virtual circuits

5 DataLink Layer 5-83

ATM architecture ATM architecture AAL AAL

ATM ATMATM ATM

physical physicalphysical physical

d d ti h it h

adaptation layer only at edge of ATM network

end system end systemswitch switch

data segmentationreassemblyroughly analagous to Internet transport layer

ATM layer ldquonetworkrdquo layercell switching routing

5 DataLink Layer 5-84

physical layer

ATM network or link layerATM network or link layerVision end-to-end

t t ldquoATM f transport ldquoATM from desktop to desktoprdquo

ATM is a network ATM

IPnetwork

ATM is a network technology

Reality used to connect

ATMnetwork

Reality used to connect IP backbone routers

ldquoIP over ATMrdquoIP over ATMATM as switched link layer y connecting IP routers

5 DataLink Layer 5-85

ATM Adaptation Layer (AAL)ATM Adaptation Layer (AAL)

TM d i L ( L) ldquo d rdquo ATM Adaptation Layer (AAL) ldquoadaptsrdquo upper layers (IP or native ATM applications) to ATM layer belowlayer belowAAL present only in end systems not in switchesAAL layer segment (headertrailer fields data) AAL layer segment (headertrailer fields data) fragmented across multiple ATM cells

analogy TCP segment in many IP packetsanalogy TCP segment in many IP packets

AAL AAL

physical

ATM

physical

ATM

physical

ATM

physical

ATM

5 DataLink Layer 5-86

physical physicalp y p y

end system end systemswitch switch

ATM Adaptation Layer (AAL) [more]

Different versions of AAL layers depending on ATM y p gservice classAAL1 for CBR (Constant Bit Rate) services eg circuit emulationAAL2 for VBR (Variable Bit Rate) services eg MPEG videoAAL5 for data (eg IP datagrams)

User data

AAL PDU

ATM cell

5 DataLink Layer 5-87

ATM LayeryService transport cells across ATM network

analogous to IP network layeranalogous to IP network layervery different services than IP network layer

Guarantees NetworkArchitecture

ServiceModel Bandwidth Loss Order Timing

Congestionfeedback

Guarantees

Internet

ATM

best effort

CBR

none

constant

no

yes

no

yes

no

yes

no (inferredvia loss)noATM

ATM

CBR

VBR

constantrateguaranteedrate

yes

yes

yes

yes

yes

yes

nocongestionnocongestion

ATM

ATM

ABR

UBR

rateguaranteed minimum

no yes nocongestionyes

5 DataLink Layer 5-88

ATM UBR none no yes no no

ATM Layer Virtual CircuitsATM Layer Virtual CircuitsVC transport cells carried on VC from source to destp

call setup teardown for each call before data can floweach packet carries VC identifier (not destination ID)

it h d t th i t i ldquo t t rdquo f h every switch on source-dest path maintain ldquostaterdquo for each passing connectionlinkswitch resources (bandwidth buffers) may be allocated to ( ff ) m yVC to get circuit-like perf

Permanent VCs (PVCs)long lasting connectionstypically ldquopermanentrdquo route between to IP routers

Switched VCs (SVC)dynamically set up on per-call basis

5 DataLink Layer 5-89

ATM VCsATM VCsAdvantages of ATM VC approachAdvantages of ATM VC approach

QoS performance guarantee for connection mapped to VC (bandwidth delay delay jitter)mapped to VC (bandwidth delay delay jitter)

Drawbacks of ATM VC approachInefficient support of datagram trafficInefficient support of datagram trafficone PVC between each sourcedest pair) does not scale (N2 connections needed) not scale (N 2 connections needed) SVC introduces call setup latency processing overhead for short lived connectionsoverhead for short lived connections

5 DataLink Layer 5-90

ATM Layer ATM cellATM Layer ATM cell5-byte ATM cell headery48-byte payload

Why small payload -gt short cell-creation delay W y m p y yfor digitized voicehalfway between 32 and 64 (compromise)y p

Cell headerCell header

Cell format

5 DataLink Layer 5-91

ATM cell headerATM cell headerVCI virtual channel IDVCI virtual channel ID

will change from link to link thru netPT P l d t p ( RM ll s s d t ll) PT Payload type (eg RM cell versus data cell) CLP Cell Loss Priority bit

CLP 1 i li l i it ll b CLP = 1 implies low priority cell can be discarded if congestion

HEC Header Error ChecksumHEC Header Error Checksumcyclic redundancy check

5 DataLink Layer 5-92

ATM Physical Layer (more)ATM Physical Layer (more)

T i ( bl ) f h i l lTwo pieces (sublayers) of physical layerTransmission Convergence Sublayer (TCS) adapts ATM l b t PMD s bl b lATM layer above to PMD sublayer belowPhysical Medium Dependent depends on physical medium being usedmedium being used

TCS FunctionsTCS FunctionsHeader checksum generation 8 bits CRC C ll d lin ti nCell delineationWith ldquounstructuredrdquo PMD sublayer transmission of idle cells when no data cells to send

5 DataLink Layer 5-93

of idle cells when no data cells to send

ATM Physical LayerATM Physical Layer

Ph l d D d (P D) blPhysical Medium Dependent (PMD) sublayerSONETSDH transmission frame structure (like a

b ) container carrying bits) bit synchronization bandwidth partitions (TDM) several speeds OC3 = 15552 Mbps OC12 = 62208 Mb OC48 2 45 Gb OC192 9 6 GbMbps OC48 = 245 Gbps OC192 = 96 Gbps

TIT3 transmission frame structure (old telephone hierarchy) 1 5 Mbps 45 Mbpstelephone hierarchy) 15 Mbps 45 Mbpsunstructured just cells (busyidle)

5 DataLink Layer 5-94

IP-Over-ATMIP over ATM

Classic IP only3 ldquonetworksrdquo (e g

IP over ATMreplace ldquonetworkrdquo (e g LAN segment) 3 networks (eg

LAN segments)MAC (802 3) and IP

(eg LAN segment) with ATM networkATM addresses IP MAC (8023) and IP

addressesATM addresses IP addresses

ATMATMnetwork

Ethernet Ethernet

5 DataLink Layer 5-95

EthernetLANs

EthernetLANs

IP-Over-ATMapp

transportapp

AALEthIP

transportIP

AALATM

apptransport

IPEth ATM

phyphyEth

ATM

ATMphy

ATMphy

Ethphy

ATMphy

p y

5 DataLink Layer 5-96

Datagram Journey in IP-over-ATM NetworkDatagram Journey in IP-over-ATM Network

at Source HostIP layer maps between IP ATM dest address (using ARP)passes datagram to AAL5AAL5 encapsulates data segments cells passes to ATM layer

ATM network moves cell along VC to destinationat Destination Host

AAL5 reassembles cells into original datagramif CRC OK datagram is passed to IP

5 DataLink Layer 5-97

IP-Over-ATMIP-Over-ATM

IssuesIP datagrams into

ATMnetwork

ATM AAL5 PDUsfrom IP addresses

TM ddto ATM addressesjust like IP dd ss s t addresses to

8023 MAC addresses

EthernetLANs

addresses

5 DataLink Layer 5-98

Multiprotocol label switching (MPLS)Multiprotocol label switching (MPLS)

i i i l l d IP f di b i fi d initial goal speed up IP forwarding by using fixed length label (instead of IP address) to do forwarding forwarding

borrowing ideas from Virtual Circuit (VC) approachbut IP datagram still keeps IP addressg p

PPP or EthernetPPP or Ethernet header

IP header remainder of link-layer frameMPLS header

label Exp S TTL

5 DataLink Layer 5-9920 3 1 5

MPLS capable routersMPLS capable routers

k l b l it h d taka label-switched routerforwards packets to outgoing interface based

l l b l l (d rsquot i t IP dd )only on label value (donrsquot inspect IP address)MPLS forwarding table distinct from IP forwarding tablestables

signaling protocol needed to set up forwardingRSVP TERSVP-TEforwarding possible along paths that IP alone would not allow (eg source-specific routing) not allow (eg source spec f c rout ng) use MPLS for traffic engineering

must co-exist with IP-only routers5 DataLink Layer 5-100

must co exist with IP only routers

MPLS forwarding tablesi t t

MPLS forwarding tables

in out outlabel label dest interface

in out outlabel label dest interface

10 A 012 D 0 label label dest interface

10 6 A 112 9 D 0

12 D 08 A 1

D1

00R6

R3R4R5

0

1

A

1

0

R1R2A

in out outlabel label dest interface

6 A 0in out out

label label dest interface

5 DataLink Layer 5-101

6 - A 0label label dest interface

8 6 A 0

Chapter 5 SummaryChapter 5 Summaryprinciples behind data link layer servicespr nc p s h n ata n ay r s r c s

error detection correctionsharing a broadcast channel multiple accesslink layer addressing

instantiation and implementation of various link l t h l ilayer technologies

Ethernetit h d LANSswitched LANS

PPPi li d k li k l TM MPLvirtualized networks as a link layer ATM MPLS

5 DataLink Layer 5-102

Chapter 5 letrsquos take a breathChapter 5 let s take a breathjourney down protocol stack completejourney down protocol stack complete(except PHY)solid understanding of networking principles solid understanding of networking principles practice

ld t h b t l t f i t ti hellip could stop here hellip but lots of interesting topics

lwirelessmultimediasecurity network management

5 DataLink Layer 5-103

Page 16: Link Layer Link Layer: Introduction

Switch self-learning Source ASwitch self-learning

s it h l s hi h h sts A A Arsquo

Dest Arsquo

switch learns which hosts can be reached through which interfaces

BCrsquo

which interfaceswhen frame received switch ldquolearnsrdquo location of

d i i LAN

1 2 345

6

sender incoming LAN segmentrecords senderlocation

C

45

pair in switch tableArsquoBrsquo

MAC addr interface TTLMAC addr interface TTLSwitch table

(initially empty)A 1 60

5 DataLink Layer 5-61

Switch frame filteringforwardingWhen frame received

1 record link associated with sending host2 ind x s itch t bl usin MAC d st dd ss2 index switch table using MAC dest address3 if entry found for destination

then then if dest on segment from which frame arrived

then drop the framethen drop the frameelse forward the frame on interface indicated

else flood forward on all but the interface

on which the frame arrived5 DataLink Layer 5-62

on which the frame arrived

Self-learning Source ASelf learning forwarding

lA A Arsquo

Dest Arsquo

exampleBCrsquo

frame destinati n 1 2 345

6A ArsquoA ArsquoA ArsquoA ArsquoA Arsquoframe destination unknown floodd ti ti A

C

45

Arsquo A

destination A location knownselective send

ArsquoBrsquo

MAC addr interface TTL

selective send

MAC addr interface TTLSwitch table

(initially empty)A 1 60Arsquo 4 60

5 DataLink Layer 5-63

Interconnecting switchesg

switches can be connected togetherg

S

S4

A

B

S1

C DF

S2S3

IB C D

E HI

G

Q sending from A to G - how does S1 know to forward frame destined to F via S and S forward frame destined to F via S4 and S3A self learning (works exactly the same as in single-switch case)

5 DataLink Layer 5-64

single switch case)

Self-learning multi-switch exampleSuppose C sends frame to I I responds to C

S

S412

A

B

S1

C DF

S2S3

I

2

B C D

E HI

G

Q show switch tables and packet forwarding in S1 S2 S3 S4

5 DataLink Layer 5-65

Institutional networkInstitutional network

to externalnetwork

mail server

networkrouter web server

IP subnet

5 DataLink Layer 5-66

Switches vs RoutersSwitches vs Routersboth store-and-forward devices

routers network layer devices (examine network layer headers)switches are link layer devicesswitches are link layer devices

routers maintain routing tables implement routing algorithmsgswitches maintain switch tables implement filtering learning algorithmsf g g g

5 DataLink Layer 5-67

Link LayerLink Layer

5 1 I d i d 5 6 H b d i h51 Introduction and services5 2 E d t ti

56 Hubs and switches57 PPP

52 Error detection and correction 5 3Multiple access

58 Link Virtualization ATM

53Multiple access protocols5 4 Link-Layer 54 Link Layer Addressing55 Ethernet55 Ethernet

5 DataLink Layer 5-68

Point to Point Data Link ControlPoint to Point Data Link Controlone sender one receiver one link easier than one sender one receiver one link easier than broadcast link

no Media Access Controlno Media Access Controlno need for explicit MAC addressinge g dialup link ISDN lineeg dialup link ISDN line

popular point-to-point DLC protocolsPPP (point-to-point protocol)PPP (point to point protocol)HDLC High level data link control (Data link used to be considered ldquohigh layerrdquo in protocol used to be considered high layer in protocol stack

5 DataLink Layer 5-69

PPP Design Requirements [RFC 1557]

packet framing encapsulation of network-layer p f m g p u f w ydatagram in data link frame

carry network layer data of any network layer y y y yprotocol (not just IP) at same timeability to demultiplex upwards

bit transparency must carry any bit pattern in the data fielderror detection (no correction)connection liveness detect signal link failure to

k lnetwork layernetwork layer address negotiation endpoint can l fi h th rsquos t k dd ss

5 DataLink Layer 5-70

learnconfigure each otherrsquos network address

PPP non-requirementsPPP non requirements

ti no error correctionrecoveryno flow control

f d d l K out of order delivery OK no need to support multipoint links (eg polling)

E l l Error recovery flow control data re-ordering all relegated to higher layers

5 DataLink Layer 5-71

PPP Data FramePPP Data Frame

Fl d li i (f i )Flag delimiter (framing)Address does nothing (only one option)Control does nothing in the future possible multiple control fieldsP t l l t l t hi h f Protocol upper layer protocol to which frame delivered (eg PPP-LCP IP IPCP etc)

5 DataLink Layer 5-72

PPP Data FramePPP Data Frame

i f l d b i i dinfo upper layer data being carriedcheck cyclic redundancy check for error d t tidetection

5 DataLink Layer 5-73

Byte StuffingByte Stuffingldquodata transparencyrdquo requirement data field must

be allowed to include flag pattern lt01111110gtQ is received lt01111110gt data or flag

Sender adds (ldquostuffsrdquo) extra lt 01111110gt byte after each lt 01111110gt data byteReceiver

two 01111110 bytes in a row discard first byte d continue data reception

single 01111110 flag byte

5 DataLink Layer 5-74

Byte StuffingByte Stuffing

flag bytepatterni din datato send

flag byte pattern plusstuffed byte in transmitted data

5 DataLink Layer 5-75

transmitted data

PPP Data Control ProtocolPPP Data Control ProtocolBefore exchanging network-g g

layer data data link peers mustconfigure PPP link (max frame length authentication)authentication)learnconfigure networklayer informationlayer information

for IP carry IP Control Protocol (IPCP) msgs Protocol (IPCP) msgs (protocol field 8021) to configurelearn IP

5 DataLink Layer 5-76

gaddress

Link LayerLink Layer

5 1 I d i d 5 6 H b d i h51 Introduction and services5 2 E d t ti

56 Hubs and switches57 PPP

52 Error detection and correction 5 3Multiple access

58 Link Virtualization ATM and MPLS

53Multiple access protocols5 4 Link-Layer 54 Link Layer Addressing55 Ethernet55 Ethernet

5 DataLink Layer 5-77

Virtualization of networksVirtualization of networks

Vi li i f f l b i i Virtualization of resources powerful abstraction in systems engineering

ti l s i t l i t l computing examples virtual memory virtual devices

Virtual machines e g javaVirtual machines eg javaIBM VM os from 1960rsquos70rsquos

layering of abstractions donrsquot sweat the details of layering of abstractions don t sweat the details of the lower layer only deal with lower layers abstractlyabstractly

5 DataLink Layer 5-78

The Internet virtualizing networksThe Internet virtualizing networks

1974 multiple unconnected differing in1974 multiple unconnected nets

ARPAnet

hellip differing inaddressing conventionspacket formats

data-over-cable networkspacket satellite network (Aloha)

k d k

perror recoveryrouting

packet radio network

ARPAnet satellite net

5 DataLink Layer 5-79

ARPAnet satell te netA Protocol for Packet Network Intercommunication V Cerf R Kahn IEEE Transactions on CommunicationsMay 1974 pp 637-648

The Internet virtualizing networksThe Internet virtualizing networksInternetwork layer (IP)

addressing internetwork Gateway

ldquoembed internetwork packets in l l k f

addressing internetwork appears as single uniform entity despite underlying local network heterogeneitynetwork of networks

plocal packet format or extract themrdquoroute (at internetwork level) to next gatewaynetwork of networks next gateway

gateway

ARPAnet satellite net

5 DataLink Layer 5-80

ARPAnet satell te net

Cerf amp Kahnrsquos Internetwork ArchitectureCerf amp Kahn s Internetwork ArchitectureWhat is virtualized

two layers of addressing internetwork and local networknew layer (IP) makes everything homogeneous at internetwork layerunderlying local network technology

cablesatellite56K telephone modemtoday ATM MPLS

hellip ldquoinvisiblerdquo at internetwork layer Looks like a link

5 DataLink Layer 5-81

ylayer technology to IP

ATM and MPLSATM and MPLS

P k h ATM MPLS separate networks in their own right

different service models addressing routing from Internet

viewed by Internet as logical link connecting IP routers

just like dialup link is really part of separate network (telephone network)

ATM MPLS of technical interest in their own right

5 DataLink Layer 5-82

Asynchronous Transfer Mode ATMAsynchronous Transfer Mode ATM1990rsquos00 standard for high-speed (155Mbps to g p ( p622 Mbps and higher) Broadband Integrated Service Digital Network architectureGoal integrated end-end transport of carry voice video data

i i i Q i f i id meeting timingQoS requirements of voice video (versus Internet best-effort model)ldquo t ti rdquo t l h t h i l ts i ldquonext generationrdquo telephony technical roots in telephone worldpacket switching (fixed length packets called packet-switching (fixed length packets called ldquocellsrdquo) using virtual circuits

5 DataLink Layer 5-83

ATM architecture ATM architecture AAL AAL

ATM ATMATM ATM

physical physicalphysical physical

d d ti h it h

adaptation layer only at edge of ATM network

end system end systemswitch switch

data segmentationreassemblyroughly analagous to Internet transport layer

ATM layer ldquonetworkrdquo layercell switching routing

5 DataLink Layer 5-84

physical layer

ATM network or link layerATM network or link layerVision end-to-end

t t ldquoATM f transport ldquoATM from desktop to desktoprdquo

ATM is a network ATM

IPnetwork

ATM is a network technology

Reality used to connect

ATMnetwork

Reality used to connect IP backbone routers

ldquoIP over ATMrdquoIP over ATMATM as switched link layer y connecting IP routers

5 DataLink Layer 5-85

ATM Adaptation Layer (AAL)ATM Adaptation Layer (AAL)

TM d i L ( L) ldquo d rdquo ATM Adaptation Layer (AAL) ldquoadaptsrdquo upper layers (IP or native ATM applications) to ATM layer belowlayer belowAAL present only in end systems not in switchesAAL layer segment (headertrailer fields data) AAL layer segment (headertrailer fields data) fragmented across multiple ATM cells

analogy TCP segment in many IP packetsanalogy TCP segment in many IP packets

AAL AAL

physical

ATM

physical

ATM

physical

ATM

physical

ATM

5 DataLink Layer 5-86

physical physicalp y p y

end system end systemswitch switch

ATM Adaptation Layer (AAL) [more]

Different versions of AAL layers depending on ATM y p gservice classAAL1 for CBR (Constant Bit Rate) services eg circuit emulationAAL2 for VBR (Variable Bit Rate) services eg MPEG videoAAL5 for data (eg IP datagrams)

User data

AAL PDU

ATM cell

5 DataLink Layer 5-87

ATM LayeryService transport cells across ATM network

analogous to IP network layeranalogous to IP network layervery different services than IP network layer

Guarantees NetworkArchitecture

ServiceModel Bandwidth Loss Order Timing

Congestionfeedback

Guarantees

Internet

ATM

best effort

CBR

none

constant

no

yes

no

yes

no

yes

no (inferredvia loss)noATM

ATM

CBR

VBR

constantrateguaranteedrate

yes

yes

yes

yes

yes

yes

nocongestionnocongestion

ATM

ATM

ABR

UBR

rateguaranteed minimum

no yes nocongestionyes

5 DataLink Layer 5-88

ATM UBR none no yes no no

ATM Layer Virtual CircuitsATM Layer Virtual CircuitsVC transport cells carried on VC from source to destp

call setup teardown for each call before data can floweach packet carries VC identifier (not destination ID)

it h d t th i t i ldquo t t rdquo f h every switch on source-dest path maintain ldquostaterdquo for each passing connectionlinkswitch resources (bandwidth buffers) may be allocated to ( ff ) m yVC to get circuit-like perf

Permanent VCs (PVCs)long lasting connectionstypically ldquopermanentrdquo route between to IP routers

Switched VCs (SVC)dynamically set up on per-call basis

5 DataLink Layer 5-89

ATM VCsATM VCsAdvantages of ATM VC approachAdvantages of ATM VC approach

QoS performance guarantee for connection mapped to VC (bandwidth delay delay jitter)mapped to VC (bandwidth delay delay jitter)

Drawbacks of ATM VC approachInefficient support of datagram trafficInefficient support of datagram trafficone PVC between each sourcedest pair) does not scale (N2 connections needed) not scale (N 2 connections needed) SVC introduces call setup latency processing overhead for short lived connectionsoverhead for short lived connections

5 DataLink Layer 5-90

ATM Layer ATM cellATM Layer ATM cell5-byte ATM cell headery48-byte payload

Why small payload -gt short cell-creation delay W y m p y yfor digitized voicehalfway between 32 and 64 (compromise)y p

Cell headerCell header

Cell format

5 DataLink Layer 5-91

ATM cell headerATM cell headerVCI virtual channel IDVCI virtual channel ID

will change from link to link thru netPT P l d t p ( RM ll s s d t ll) PT Payload type (eg RM cell versus data cell) CLP Cell Loss Priority bit

CLP 1 i li l i it ll b CLP = 1 implies low priority cell can be discarded if congestion

HEC Header Error ChecksumHEC Header Error Checksumcyclic redundancy check

5 DataLink Layer 5-92

ATM Physical Layer (more)ATM Physical Layer (more)

T i ( bl ) f h i l lTwo pieces (sublayers) of physical layerTransmission Convergence Sublayer (TCS) adapts ATM l b t PMD s bl b lATM layer above to PMD sublayer belowPhysical Medium Dependent depends on physical medium being usedmedium being used

TCS FunctionsTCS FunctionsHeader checksum generation 8 bits CRC C ll d lin ti nCell delineationWith ldquounstructuredrdquo PMD sublayer transmission of idle cells when no data cells to send

5 DataLink Layer 5-93

of idle cells when no data cells to send

ATM Physical LayerATM Physical Layer

Ph l d D d (P D) blPhysical Medium Dependent (PMD) sublayerSONETSDH transmission frame structure (like a

b ) container carrying bits) bit synchronization bandwidth partitions (TDM) several speeds OC3 = 15552 Mbps OC12 = 62208 Mb OC48 2 45 Gb OC192 9 6 GbMbps OC48 = 245 Gbps OC192 = 96 Gbps

TIT3 transmission frame structure (old telephone hierarchy) 1 5 Mbps 45 Mbpstelephone hierarchy) 15 Mbps 45 Mbpsunstructured just cells (busyidle)

5 DataLink Layer 5-94

IP-Over-ATMIP over ATM

Classic IP only3 ldquonetworksrdquo (e g

IP over ATMreplace ldquonetworkrdquo (e g LAN segment) 3 networks (eg

LAN segments)MAC (802 3) and IP

(eg LAN segment) with ATM networkATM addresses IP MAC (8023) and IP

addressesATM addresses IP addresses

ATMATMnetwork

Ethernet Ethernet

5 DataLink Layer 5-95

EthernetLANs

EthernetLANs

IP-Over-ATMapp

transportapp

AALEthIP

transportIP

AALATM

apptransport

IPEth ATM

phyphyEth

ATM

ATMphy

ATMphy

Ethphy

ATMphy

p y

5 DataLink Layer 5-96

Datagram Journey in IP-over-ATM NetworkDatagram Journey in IP-over-ATM Network

at Source HostIP layer maps between IP ATM dest address (using ARP)passes datagram to AAL5AAL5 encapsulates data segments cells passes to ATM layer

ATM network moves cell along VC to destinationat Destination Host

AAL5 reassembles cells into original datagramif CRC OK datagram is passed to IP

5 DataLink Layer 5-97

IP-Over-ATMIP-Over-ATM

IssuesIP datagrams into

ATMnetwork

ATM AAL5 PDUsfrom IP addresses

TM ddto ATM addressesjust like IP dd ss s t addresses to

8023 MAC addresses

EthernetLANs

addresses

5 DataLink Layer 5-98

Multiprotocol label switching (MPLS)Multiprotocol label switching (MPLS)

i i i l l d IP f di b i fi d initial goal speed up IP forwarding by using fixed length label (instead of IP address) to do forwarding forwarding

borrowing ideas from Virtual Circuit (VC) approachbut IP datagram still keeps IP addressg p

PPP or EthernetPPP or Ethernet header

IP header remainder of link-layer frameMPLS header

label Exp S TTL

5 DataLink Layer 5-9920 3 1 5

MPLS capable routersMPLS capable routers

k l b l it h d taka label-switched routerforwards packets to outgoing interface based

l l b l l (d rsquot i t IP dd )only on label value (donrsquot inspect IP address)MPLS forwarding table distinct from IP forwarding tablestables

signaling protocol needed to set up forwardingRSVP TERSVP-TEforwarding possible along paths that IP alone would not allow (eg source-specific routing) not allow (eg source spec f c rout ng) use MPLS for traffic engineering

must co-exist with IP-only routers5 DataLink Layer 5-100

must co exist with IP only routers

MPLS forwarding tablesi t t

MPLS forwarding tables

in out outlabel label dest interface

in out outlabel label dest interface

10 A 012 D 0 label label dest interface

10 6 A 112 9 D 0

12 D 08 A 1

D1

00R6

R3R4R5

0

1

A

1

0

R1R2A

in out outlabel label dest interface

6 A 0in out out

label label dest interface

5 DataLink Layer 5-101

6 - A 0label label dest interface

8 6 A 0

Chapter 5 SummaryChapter 5 Summaryprinciples behind data link layer servicespr nc p s h n ata n ay r s r c s

error detection correctionsharing a broadcast channel multiple accesslink layer addressing

instantiation and implementation of various link l t h l ilayer technologies

Ethernetit h d LANSswitched LANS

PPPi li d k li k l TM MPLvirtualized networks as a link layer ATM MPLS

5 DataLink Layer 5-102

Chapter 5 letrsquos take a breathChapter 5 let s take a breathjourney down protocol stack completejourney down protocol stack complete(except PHY)solid understanding of networking principles solid understanding of networking principles practice

ld t h b t l t f i t ti hellip could stop here hellip but lots of interesting topics

lwirelessmultimediasecurity network management

5 DataLink Layer 5-103

Page 17: Link Layer Link Layer: Introduction

Self-learning multi-switch exampleSuppose C sends frame to I I responds to C

S

S412

A

B

S1

C DF

S2S3

I

2

B C D

E HI

G

Q show switch tables and packet forwarding in S1 S2 S3 S4

5 DataLink Layer 5-65

Institutional networkInstitutional network

to externalnetwork

mail server

networkrouter web server

IP subnet

5 DataLink Layer 5-66

Switches vs RoutersSwitches vs Routersboth store-and-forward devices

routers network layer devices (examine network layer headers)switches are link layer devicesswitches are link layer devices

routers maintain routing tables implement routing algorithmsgswitches maintain switch tables implement filtering learning algorithmsf g g g

5 DataLink Layer 5-67

Link LayerLink Layer

5 1 I d i d 5 6 H b d i h51 Introduction and services5 2 E d t ti

56 Hubs and switches57 PPP

52 Error detection and correction 5 3Multiple access

58 Link Virtualization ATM

53Multiple access protocols5 4 Link-Layer 54 Link Layer Addressing55 Ethernet55 Ethernet

5 DataLink Layer 5-68

Point to Point Data Link ControlPoint to Point Data Link Controlone sender one receiver one link easier than one sender one receiver one link easier than broadcast link

no Media Access Controlno Media Access Controlno need for explicit MAC addressinge g dialup link ISDN lineeg dialup link ISDN line

popular point-to-point DLC protocolsPPP (point-to-point protocol)PPP (point to point protocol)HDLC High level data link control (Data link used to be considered ldquohigh layerrdquo in protocol used to be considered high layer in protocol stack

5 DataLink Layer 5-69

PPP Design Requirements [RFC 1557]

packet framing encapsulation of network-layer p f m g p u f w ydatagram in data link frame

carry network layer data of any network layer y y y yprotocol (not just IP) at same timeability to demultiplex upwards

bit transparency must carry any bit pattern in the data fielderror detection (no correction)connection liveness detect signal link failure to

k lnetwork layernetwork layer address negotiation endpoint can l fi h th rsquos t k dd ss

5 DataLink Layer 5-70

learnconfigure each otherrsquos network address

PPP non-requirementsPPP non requirements

ti no error correctionrecoveryno flow control

f d d l K out of order delivery OK no need to support multipoint links (eg polling)

E l l Error recovery flow control data re-ordering all relegated to higher layers

5 DataLink Layer 5-71

PPP Data FramePPP Data Frame

Fl d li i (f i )Flag delimiter (framing)Address does nothing (only one option)Control does nothing in the future possible multiple control fieldsP t l l t l t hi h f Protocol upper layer protocol to which frame delivered (eg PPP-LCP IP IPCP etc)

5 DataLink Layer 5-72

PPP Data FramePPP Data Frame

i f l d b i i dinfo upper layer data being carriedcheck cyclic redundancy check for error d t tidetection

5 DataLink Layer 5-73

Byte StuffingByte Stuffingldquodata transparencyrdquo requirement data field must

be allowed to include flag pattern lt01111110gtQ is received lt01111110gt data or flag

Sender adds (ldquostuffsrdquo) extra lt 01111110gt byte after each lt 01111110gt data byteReceiver

two 01111110 bytes in a row discard first byte d continue data reception

single 01111110 flag byte

5 DataLink Layer 5-74

Byte StuffingByte Stuffing

flag bytepatterni din datato send

flag byte pattern plusstuffed byte in transmitted data

5 DataLink Layer 5-75

transmitted data

PPP Data Control ProtocolPPP Data Control ProtocolBefore exchanging network-g g

layer data data link peers mustconfigure PPP link (max frame length authentication)authentication)learnconfigure networklayer informationlayer information

for IP carry IP Control Protocol (IPCP) msgs Protocol (IPCP) msgs (protocol field 8021) to configurelearn IP

5 DataLink Layer 5-76

gaddress

Link LayerLink Layer

5 1 I d i d 5 6 H b d i h51 Introduction and services5 2 E d t ti

56 Hubs and switches57 PPP

52 Error detection and correction 5 3Multiple access

58 Link Virtualization ATM and MPLS

53Multiple access protocols5 4 Link-Layer 54 Link Layer Addressing55 Ethernet55 Ethernet

5 DataLink Layer 5-77

Virtualization of networksVirtualization of networks

Vi li i f f l b i i Virtualization of resources powerful abstraction in systems engineering

ti l s i t l i t l computing examples virtual memory virtual devices

Virtual machines e g javaVirtual machines eg javaIBM VM os from 1960rsquos70rsquos

layering of abstractions donrsquot sweat the details of layering of abstractions don t sweat the details of the lower layer only deal with lower layers abstractlyabstractly

5 DataLink Layer 5-78

The Internet virtualizing networksThe Internet virtualizing networks

1974 multiple unconnected differing in1974 multiple unconnected nets

ARPAnet

hellip differing inaddressing conventionspacket formats

data-over-cable networkspacket satellite network (Aloha)

k d k

perror recoveryrouting

packet radio network

ARPAnet satellite net

5 DataLink Layer 5-79

ARPAnet satell te netA Protocol for Packet Network Intercommunication V Cerf R Kahn IEEE Transactions on CommunicationsMay 1974 pp 637-648

The Internet virtualizing networksThe Internet virtualizing networksInternetwork layer (IP)

addressing internetwork Gateway

ldquoembed internetwork packets in l l k f

addressing internetwork appears as single uniform entity despite underlying local network heterogeneitynetwork of networks

plocal packet format or extract themrdquoroute (at internetwork level) to next gatewaynetwork of networks next gateway

gateway

ARPAnet satellite net

5 DataLink Layer 5-80

ARPAnet satell te net

Cerf amp Kahnrsquos Internetwork ArchitectureCerf amp Kahn s Internetwork ArchitectureWhat is virtualized

two layers of addressing internetwork and local networknew layer (IP) makes everything homogeneous at internetwork layerunderlying local network technology

cablesatellite56K telephone modemtoday ATM MPLS

hellip ldquoinvisiblerdquo at internetwork layer Looks like a link

5 DataLink Layer 5-81

ylayer technology to IP

ATM and MPLSATM and MPLS

P k h ATM MPLS separate networks in their own right

different service models addressing routing from Internet

viewed by Internet as logical link connecting IP routers

just like dialup link is really part of separate network (telephone network)

ATM MPLS of technical interest in their own right

5 DataLink Layer 5-82

Asynchronous Transfer Mode ATMAsynchronous Transfer Mode ATM1990rsquos00 standard for high-speed (155Mbps to g p ( p622 Mbps and higher) Broadband Integrated Service Digital Network architectureGoal integrated end-end transport of carry voice video data

i i i Q i f i id meeting timingQoS requirements of voice video (versus Internet best-effort model)ldquo t ti rdquo t l h t h i l ts i ldquonext generationrdquo telephony technical roots in telephone worldpacket switching (fixed length packets called packet-switching (fixed length packets called ldquocellsrdquo) using virtual circuits

5 DataLink Layer 5-83

ATM architecture ATM architecture AAL AAL

ATM ATMATM ATM

physical physicalphysical physical

d d ti h it h

adaptation layer only at edge of ATM network

end system end systemswitch switch

data segmentationreassemblyroughly analagous to Internet transport layer

ATM layer ldquonetworkrdquo layercell switching routing

5 DataLink Layer 5-84

physical layer

ATM network or link layerATM network or link layerVision end-to-end

t t ldquoATM f transport ldquoATM from desktop to desktoprdquo

ATM is a network ATM

IPnetwork

ATM is a network technology

Reality used to connect

ATMnetwork

Reality used to connect IP backbone routers

ldquoIP over ATMrdquoIP over ATMATM as switched link layer y connecting IP routers

5 DataLink Layer 5-85

ATM Adaptation Layer (AAL)ATM Adaptation Layer (AAL)

TM d i L ( L) ldquo d rdquo ATM Adaptation Layer (AAL) ldquoadaptsrdquo upper layers (IP or native ATM applications) to ATM layer belowlayer belowAAL present only in end systems not in switchesAAL layer segment (headertrailer fields data) AAL layer segment (headertrailer fields data) fragmented across multiple ATM cells

analogy TCP segment in many IP packetsanalogy TCP segment in many IP packets

AAL AAL

physical

ATM

physical

ATM

physical

ATM

physical

ATM

5 DataLink Layer 5-86

physical physicalp y p y

end system end systemswitch switch

ATM Adaptation Layer (AAL) [more]

Different versions of AAL layers depending on ATM y p gservice classAAL1 for CBR (Constant Bit Rate) services eg circuit emulationAAL2 for VBR (Variable Bit Rate) services eg MPEG videoAAL5 for data (eg IP datagrams)

User data

AAL PDU

ATM cell

5 DataLink Layer 5-87

ATM LayeryService transport cells across ATM network

analogous to IP network layeranalogous to IP network layervery different services than IP network layer

Guarantees NetworkArchitecture

ServiceModel Bandwidth Loss Order Timing

Congestionfeedback

Guarantees

Internet

ATM

best effort

CBR

none

constant

no

yes

no

yes

no

yes

no (inferredvia loss)noATM

ATM

CBR

VBR

constantrateguaranteedrate

yes

yes

yes

yes

yes

yes

nocongestionnocongestion

ATM

ATM

ABR

UBR

rateguaranteed minimum

no yes nocongestionyes

5 DataLink Layer 5-88

ATM UBR none no yes no no

ATM Layer Virtual CircuitsATM Layer Virtual CircuitsVC transport cells carried on VC from source to destp

call setup teardown for each call before data can floweach packet carries VC identifier (not destination ID)

it h d t th i t i ldquo t t rdquo f h every switch on source-dest path maintain ldquostaterdquo for each passing connectionlinkswitch resources (bandwidth buffers) may be allocated to ( ff ) m yVC to get circuit-like perf

Permanent VCs (PVCs)long lasting connectionstypically ldquopermanentrdquo route between to IP routers

Switched VCs (SVC)dynamically set up on per-call basis

5 DataLink Layer 5-89

ATM VCsATM VCsAdvantages of ATM VC approachAdvantages of ATM VC approach

QoS performance guarantee for connection mapped to VC (bandwidth delay delay jitter)mapped to VC (bandwidth delay delay jitter)

Drawbacks of ATM VC approachInefficient support of datagram trafficInefficient support of datagram trafficone PVC between each sourcedest pair) does not scale (N2 connections needed) not scale (N 2 connections needed) SVC introduces call setup latency processing overhead for short lived connectionsoverhead for short lived connections

5 DataLink Layer 5-90

ATM Layer ATM cellATM Layer ATM cell5-byte ATM cell headery48-byte payload

Why small payload -gt short cell-creation delay W y m p y yfor digitized voicehalfway between 32 and 64 (compromise)y p

Cell headerCell header

Cell format

5 DataLink Layer 5-91

ATM cell headerATM cell headerVCI virtual channel IDVCI virtual channel ID

will change from link to link thru netPT P l d t p ( RM ll s s d t ll) PT Payload type (eg RM cell versus data cell) CLP Cell Loss Priority bit

CLP 1 i li l i it ll b CLP = 1 implies low priority cell can be discarded if congestion

HEC Header Error ChecksumHEC Header Error Checksumcyclic redundancy check

5 DataLink Layer 5-92

ATM Physical Layer (more)ATM Physical Layer (more)

T i ( bl ) f h i l lTwo pieces (sublayers) of physical layerTransmission Convergence Sublayer (TCS) adapts ATM l b t PMD s bl b lATM layer above to PMD sublayer belowPhysical Medium Dependent depends on physical medium being usedmedium being used

TCS FunctionsTCS FunctionsHeader checksum generation 8 bits CRC C ll d lin ti nCell delineationWith ldquounstructuredrdquo PMD sublayer transmission of idle cells when no data cells to send

5 DataLink Layer 5-93

of idle cells when no data cells to send

ATM Physical LayerATM Physical Layer

Ph l d D d (P D) blPhysical Medium Dependent (PMD) sublayerSONETSDH transmission frame structure (like a

b ) container carrying bits) bit synchronization bandwidth partitions (TDM) several speeds OC3 = 15552 Mbps OC12 = 62208 Mb OC48 2 45 Gb OC192 9 6 GbMbps OC48 = 245 Gbps OC192 = 96 Gbps

TIT3 transmission frame structure (old telephone hierarchy) 1 5 Mbps 45 Mbpstelephone hierarchy) 15 Mbps 45 Mbpsunstructured just cells (busyidle)

5 DataLink Layer 5-94

IP-Over-ATMIP over ATM

Classic IP only3 ldquonetworksrdquo (e g

IP over ATMreplace ldquonetworkrdquo (e g LAN segment) 3 networks (eg

LAN segments)MAC (802 3) and IP

(eg LAN segment) with ATM networkATM addresses IP MAC (8023) and IP

addressesATM addresses IP addresses

ATMATMnetwork

Ethernet Ethernet

5 DataLink Layer 5-95

EthernetLANs

EthernetLANs

IP-Over-ATMapp

transportapp

AALEthIP

transportIP

AALATM

apptransport

IPEth ATM

phyphyEth

ATM

ATMphy

ATMphy

Ethphy

ATMphy

p y

5 DataLink Layer 5-96

Datagram Journey in IP-over-ATM NetworkDatagram Journey in IP-over-ATM Network

at Source HostIP layer maps between IP ATM dest address (using ARP)passes datagram to AAL5AAL5 encapsulates data segments cells passes to ATM layer

ATM network moves cell along VC to destinationat Destination Host

AAL5 reassembles cells into original datagramif CRC OK datagram is passed to IP

5 DataLink Layer 5-97

IP-Over-ATMIP-Over-ATM

IssuesIP datagrams into

ATMnetwork

ATM AAL5 PDUsfrom IP addresses

TM ddto ATM addressesjust like IP dd ss s t addresses to

8023 MAC addresses

EthernetLANs

addresses

5 DataLink Layer 5-98

Multiprotocol label switching (MPLS)Multiprotocol label switching (MPLS)

i i i l l d IP f di b i fi d initial goal speed up IP forwarding by using fixed length label (instead of IP address) to do forwarding forwarding

borrowing ideas from Virtual Circuit (VC) approachbut IP datagram still keeps IP addressg p

PPP or EthernetPPP or Ethernet header

IP header remainder of link-layer frameMPLS header

label Exp S TTL

5 DataLink Layer 5-9920 3 1 5

MPLS capable routersMPLS capable routers

k l b l it h d taka label-switched routerforwards packets to outgoing interface based

l l b l l (d rsquot i t IP dd )only on label value (donrsquot inspect IP address)MPLS forwarding table distinct from IP forwarding tablestables

signaling protocol needed to set up forwardingRSVP TERSVP-TEforwarding possible along paths that IP alone would not allow (eg source-specific routing) not allow (eg source spec f c rout ng) use MPLS for traffic engineering

must co-exist with IP-only routers5 DataLink Layer 5-100

must co exist with IP only routers

MPLS forwarding tablesi t t

MPLS forwarding tables

in out outlabel label dest interface

in out outlabel label dest interface

10 A 012 D 0 label label dest interface

10 6 A 112 9 D 0

12 D 08 A 1

D1

00R6

R3R4R5

0

1

A

1

0

R1R2A

in out outlabel label dest interface

6 A 0in out out

label label dest interface

5 DataLink Layer 5-101

6 - A 0label label dest interface

8 6 A 0

Chapter 5 SummaryChapter 5 Summaryprinciples behind data link layer servicespr nc p s h n ata n ay r s r c s

error detection correctionsharing a broadcast channel multiple accesslink layer addressing

instantiation and implementation of various link l t h l ilayer technologies

Ethernetit h d LANSswitched LANS

PPPi li d k li k l TM MPLvirtualized networks as a link layer ATM MPLS

5 DataLink Layer 5-102

Chapter 5 letrsquos take a breathChapter 5 let s take a breathjourney down protocol stack completejourney down protocol stack complete(except PHY)solid understanding of networking principles solid understanding of networking principles practice

ld t h b t l t f i t ti hellip could stop here hellip but lots of interesting topics

lwirelessmultimediasecurity network management

5 DataLink Layer 5-103

Page 18: Link Layer Link Layer: Introduction

Point to Point Data Link ControlPoint to Point Data Link Controlone sender one receiver one link easier than one sender one receiver one link easier than broadcast link

no Media Access Controlno Media Access Controlno need for explicit MAC addressinge g dialup link ISDN lineeg dialup link ISDN line

popular point-to-point DLC protocolsPPP (point-to-point protocol)PPP (point to point protocol)HDLC High level data link control (Data link used to be considered ldquohigh layerrdquo in protocol used to be considered high layer in protocol stack

5 DataLink Layer 5-69

PPP Design Requirements [RFC 1557]

packet framing encapsulation of network-layer p f m g p u f w ydatagram in data link frame

carry network layer data of any network layer y y y yprotocol (not just IP) at same timeability to demultiplex upwards

bit transparency must carry any bit pattern in the data fielderror detection (no correction)connection liveness detect signal link failure to

k lnetwork layernetwork layer address negotiation endpoint can l fi h th rsquos t k dd ss

5 DataLink Layer 5-70

learnconfigure each otherrsquos network address

PPP non-requirementsPPP non requirements

ti no error correctionrecoveryno flow control

f d d l K out of order delivery OK no need to support multipoint links (eg polling)

E l l Error recovery flow control data re-ordering all relegated to higher layers

5 DataLink Layer 5-71

PPP Data FramePPP Data Frame

Fl d li i (f i )Flag delimiter (framing)Address does nothing (only one option)Control does nothing in the future possible multiple control fieldsP t l l t l t hi h f Protocol upper layer protocol to which frame delivered (eg PPP-LCP IP IPCP etc)

5 DataLink Layer 5-72

PPP Data FramePPP Data Frame

i f l d b i i dinfo upper layer data being carriedcheck cyclic redundancy check for error d t tidetection

5 DataLink Layer 5-73

Byte StuffingByte Stuffingldquodata transparencyrdquo requirement data field must

be allowed to include flag pattern lt01111110gtQ is received lt01111110gt data or flag

Sender adds (ldquostuffsrdquo) extra lt 01111110gt byte after each lt 01111110gt data byteReceiver

two 01111110 bytes in a row discard first byte d continue data reception

single 01111110 flag byte

5 DataLink Layer 5-74

Byte StuffingByte Stuffing

flag bytepatterni din datato send

flag byte pattern plusstuffed byte in transmitted data

5 DataLink Layer 5-75

transmitted data

PPP Data Control ProtocolPPP Data Control ProtocolBefore exchanging network-g g

layer data data link peers mustconfigure PPP link (max frame length authentication)authentication)learnconfigure networklayer informationlayer information

for IP carry IP Control Protocol (IPCP) msgs Protocol (IPCP) msgs (protocol field 8021) to configurelearn IP

5 DataLink Layer 5-76

gaddress

Link LayerLink Layer

5 1 I d i d 5 6 H b d i h51 Introduction and services5 2 E d t ti

56 Hubs and switches57 PPP

52 Error detection and correction 5 3Multiple access

58 Link Virtualization ATM and MPLS

53Multiple access protocols5 4 Link-Layer 54 Link Layer Addressing55 Ethernet55 Ethernet

5 DataLink Layer 5-77

Virtualization of networksVirtualization of networks

Vi li i f f l b i i Virtualization of resources powerful abstraction in systems engineering

ti l s i t l i t l computing examples virtual memory virtual devices

Virtual machines e g javaVirtual machines eg javaIBM VM os from 1960rsquos70rsquos

layering of abstractions donrsquot sweat the details of layering of abstractions don t sweat the details of the lower layer only deal with lower layers abstractlyabstractly

5 DataLink Layer 5-78

The Internet virtualizing networksThe Internet virtualizing networks

1974 multiple unconnected differing in1974 multiple unconnected nets

ARPAnet

hellip differing inaddressing conventionspacket formats

data-over-cable networkspacket satellite network (Aloha)

k d k

perror recoveryrouting

packet radio network

ARPAnet satellite net

5 DataLink Layer 5-79

ARPAnet satell te netA Protocol for Packet Network Intercommunication V Cerf R Kahn IEEE Transactions on CommunicationsMay 1974 pp 637-648

The Internet virtualizing networksThe Internet virtualizing networksInternetwork layer (IP)

addressing internetwork Gateway

ldquoembed internetwork packets in l l k f

addressing internetwork appears as single uniform entity despite underlying local network heterogeneitynetwork of networks

plocal packet format or extract themrdquoroute (at internetwork level) to next gatewaynetwork of networks next gateway

gateway

ARPAnet satellite net

5 DataLink Layer 5-80

ARPAnet satell te net

Cerf amp Kahnrsquos Internetwork ArchitectureCerf amp Kahn s Internetwork ArchitectureWhat is virtualized

two layers of addressing internetwork and local networknew layer (IP) makes everything homogeneous at internetwork layerunderlying local network technology

cablesatellite56K telephone modemtoday ATM MPLS

hellip ldquoinvisiblerdquo at internetwork layer Looks like a link

5 DataLink Layer 5-81

ylayer technology to IP

ATM and MPLSATM and MPLS

P k h ATM MPLS separate networks in their own right

different service models addressing routing from Internet

viewed by Internet as logical link connecting IP routers

just like dialup link is really part of separate network (telephone network)

ATM MPLS of technical interest in their own right

5 DataLink Layer 5-82

Asynchronous Transfer Mode ATMAsynchronous Transfer Mode ATM1990rsquos00 standard for high-speed (155Mbps to g p ( p622 Mbps and higher) Broadband Integrated Service Digital Network architectureGoal integrated end-end transport of carry voice video data

i i i Q i f i id meeting timingQoS requirements of voice video (versus Internet best-effort model)ldquo t ti rdquo t l h t h i l ts i ldquonext generationrdquo telephony technical roots in telephone worldpacket switching (fixed length packets called packet-switching (fixed length packets called ldquocellsrdquo) using virtual circuits

5 DataLink Layer 5-83

ATM architecture ATM architecture AAL AAL

ATM ATMATM ATM

physical physicalphysical physical

d d ti h it h

adaptation layer only at edge of ATM network

end system end systemswitch switch

data segmentationreassemblyroughly analagous to Internet transport layer

ATM layer ldquonetworkrdquo layercell switching routing

5 DataLink Layer 5-84

physical layer

ATM network or link layerATM network or link layerVision end-to-end

t t ldquoATM f transport ldquoATM from desktop to desktoprdquo

ATM is a network ATM

IPnetwork

ATM is a network technology

Reality used to connect

ATMnetwork

Reality used to connect IP backbone routers

ldquoIP over ATMrdquoIP over ATMATM as switched link layer y connecting IP routers

5 DataLink Layer 5-85

ATM Adaptation Layer (AAL)ATM Adaptation Layer (AAL)

TM d i L ( L) ldquo d rdquo ATM Adaptation Layer (AAL) ldquoadaptsrdquo upper layers (IP or native ATM applications) to ATM layer belowlayer belowAAL present only in end systems not in switchesAAL layer segment (headertrailer fields data) AAL layer segment (headertrailer fields data) fragmented across multiple ATM cells

analogy TCP segment in many IP packetsanalogy TCP segment in many IP packets

AAL AAL

physical

ATM

physical

ATM

physical

ATM

physical

ATM

5 DataLink Layer 5-86

physical physicalp y p y

end system end systemswitch switch

ATM Adaptation Layer (AAL) [more]

Different versions of AAL layers depending on ATM y p gservice classAAL1 for CBR (Constant Bit Rate) services eg circuit emulationAAL2 for VBR (Variable Bit Rate) services eg MPEG videoAAL5 for data (eg IP datagrams)

User data

AAL PDU

ATM cell

5 DataLink Layer 5-87

ATM LayeryService transport cells across ATM network

analogous to IP network layeranalogous to IP network layervery different services than IP network layer

Guarantees NetworkArchitecture

ServiceModel Bandwidth Loss Order Timing

Congestionfeedback

Guarantees

Internet

ATM

best effort

CBR

none

constant

no

yes

no

yes

no

yes

no (inferredvia loss)noATM

ATM

CBR

VBR

constantrateguaranteedrate

yes

yes

yes

yes

yes

yes

nocongestionnocongestion

ATM

ATM

ABR

UBR

rateguaranteed minimum

no yes nocongestionyes

5 DataLink Layer 5-88

ATM UBR none no yes no no

ATM Layer Virtual CircuitsATM Layer Virtual CircuitsVC transport cells carried on VC from source to destp

call setup teardown for each call before data can floweach packet carries VC identifier (not destination ID)

it h d t th i t i ldquo t t rdquo f h every switch on source-dest path maintain ldquostaterdquo for each passing connectionlinkswitch resources (bandwidth buffers) may be allocated to ( ff ) m yVC to get circuit-like perf

Permanent VCs (PVCs)long lasting connectionstypically ldquopermanentrdquo route between to IP routers

Switched VCs (SVC)dynamically set up on per-call basis

5 DataLink Layer 5-89

ATM VCsATM VCsAdvantages of ATM VC approachAdvantages of ATM VC approach

QoS performance guarantee for connection mapped to VC (bandwidth delay delay jitter)mapped to VC (bandwidth delay delay jitter)

Drawbacks of ATM VC approachInefficient support of datagram trafficInefficient support of datagram trafficone PVC between each sourcedest pair) does not scale (N2 connections needed) not scale (N 2 connections needed) SVC introduces call setup latency processing overhead for short lived connectionsoverhead for short lived connections

5 DataLink Layer 5-90

ATM Layer ATM cellATM Layer ATM cell5-byte ATM cell headery48-byte payload

Why small payload -gt short cell-creation delay W y m p y yfor digitized voicehalfway between 32 and 64 (compromise)y p

Cell headerCell header

Cell format

5 DataLink Layer 5-91

ATM cell headerATM cell headerVCI virtual channel IDVCI virtual channel ID

will change from link to link thru netPT P l d t p ( RM ll s s d t ll) PT Payload type (eg RM cell versus data cell) CLP Cell Loss Priority bit

CLP 1 i li l i it ll b CLP = 1 implies low priority cell can be discarded if congestion

HEC Header Error ChecksumHEC Header Error Checksumcyclic redundancy check

5 DataLink Layer 5-92

ATM Physical Layer (more)ATM Physical Layer (more)

T i ( bl ) f h i l lTwo pieces (sublayers) of physical layerTransmission Convergence Sublayer (TCS) adapts ATM l b t PMD s bl b lATM layer above to PMD sublayer belowPhysical Medium Dependent depends on physical medium being usedmedium being used

TCS FunctionsTCS FunctionsHeader checksum generation 8 bits CRC C ll d lin ti nCell delineationWith ldquounstructuredrdquo PMD sublayer transmission of idle cells when no data cells to send

5 DataLink Layer 5-93

of idle cells when no data cells to send

ATM Physical LayerATM Physical Layer

Ph l d D d (P D) blPhysical Medium Dependent (PMD) sublayerSONETSDH transmission frame structure (like a

b ) container carrying bits) bit synchronization bandwidth partitions (TDM) several speeds OC3 = 15552 Mbps OC12 = 62208 Mb OC48 2 45 Gb OC192 9 6 GbMbps OC48 = 245 Gbps OC192 = 96 Gbps

TIT3 transmission frame structure (old telephone hierarchy) 1 5 Mbps 45 Mbpstelephone hierarchy) 15 Mbps 45 Mbpsunstructured just cells (busyidle)

5 DataLink Layer 5-94

IP-Over-ATMIP over ATM

Classic IP only3 ldquonetworksrdquo (e g

IP over ATMreplace ldquonetworkrdquo (e g LAN segment) 3 networks (eg

LAN segments)MAC (802 3) and IP

(eg LAN segment) with ATM networkATM addresses IP MAC (8023) and IP

addressesATM addresses IP addresses

ATMATMnetwork

Ethernet Ethernet

5 DataLink Layer 5-95

EthernetLANs

EthernetLANs

IP-Over-ATMapp

transportapp

AALEthIP

transportIP

AALATM

apptransport

IPEth ATM

phyphyEth

ATM

ATMphy

ATMphy

Ethphy

ATMphy

p y

5 DataLink Layer 5-96

Datagram Journey in IP-over-ATM NetworkDatagram Journey in IP-over-ATM Network

at Source HostIP layer maps between IP ATM dest address (using ARP)passes datagram to AAL5AAL5 encapsulates data segments cells passes to ATM layer

ATM network moves cell along VC to destinationat Destination Host

AAL5 reassembles cells into original datagramif CRC OK datagram is passed to IP

5 DataLink Layer 5-97

IP-Over-ATMIP-Over-ATM

IssuesIP datagrams into

ATMnetwork

ATM AAL5 PDUsfrom IP addresses

TM ddto ATM addressesjust like IP dd ss s t addresses to

8023 MAC addresses

EthernetLANs

addresses

5 DataLink Layer 5-98

Multiprotocol label switching (MPLS)Multiprotocol label switching (MPLS)

i i i l l d IP f di b i fi d initial goal speed up IP forwarding by using fixed length label (instead of IP address) to do forwarding forwarding

borrowing ideas from Virtual Circuit (VC) approachbut IP datagram still keeps IP addressg p

PPP or EthernetPPP or Ethernet header

IP header remainder of link-layer frameMPLS header

label Exp S TTL

5 DataLink Layer 5-9920 3 1 5

MPLS capable routersMPLS capable routers

k l b l it h d taka label-switched routerforwards packets to outgoing interface based

l l b l l (d rsquot i t IP dd )only on label value (donrsquot inspect IP address)MPLS forwarding table distinct from IP forwarding tablestables

signaling protocol needed to set up forwardingRSVP TERSVP-TEforwarding possible along paths that IP alone would not allow (eg source-specific routing) not allow (eg source spec f c rout ng) use MPLS for traffic engineering

must co-exist with IP-only routers5 DataLink Layer 5-100

must co exist with IP only routers

MPLS forwarding tablesi t t

MPLS forwarding tables

in out outlabel label dest interface

in out outlabel label dest interface

10 A 012 D 0 label label dest interface

10 6 A 112 9 D 0

12 D 08 A 1

D1

00R6

R3R4R5

0

1

A

1

0

R1R2A

in out outlabel label dest interface

6 A 0in out out

label label dest interface

5 DataLink Layer 5-101

6 - A 0label label dest interface

8 6 A 0

Chapter 5 SummaryChapter 5 Summaryprinciples behind data link layer servicespr nc p s h n ata n ay r s r c s

error detection correctionsharing a broadcast channel multiple accesslink layer addressing

instantiation and implementation of various link l t h l ilayer technologies

Ethernetit h d LANSswitched LANS

PPPi li d k li k l TM MPLvirtualized networks as a link layer ATM MPLS

5 DataLink Layer 5-102

Chapter 5 letrsquos take a breathChapter 5 let s take a breathjourney down protocol stack completejourney down protocol stack complete(except PHY)solid understanding of networking principles solid understanding of networking principles practice

ld t h b t l t f i t ti hellip could stop here hellip but lots of interesting topics

lwirelessmultimediasecurity network management

5 DataLink Layer 5-103

Page 19: Link Layer Link Layer: Introduction

PPP Data FramePPP Data Frame

i f l d b i i dinfo upper layer data being carriedcheck cyclic redundancy check for error d t tidetection

5 DataLink Layer 5-73

Byte StuffingByte Stuffingldquodata transparencyrdquo requirement data field must

be allowed to include flag pattern lt01111110gtQ is received lt01111110gt data or flag

Sender adds (ldquostuffsrdquo) extra lt 01111110gt byte after each lt 01111110gt data byteReceiver

two 01111110 bytes in a row discard first byte d continue data reception

single 01111110 flag byte

5 DataLink Layer 5-74

Byte StuffingByte Stuffing

flag bytepatterni din datato send

flag byte pattern plusstuffed byte in transmitted data

5 DataLink Layer 5-75

transmitted data

PPP Data Control ProtocolPPP Data Control ProtocolBefore exchanging network-g g

layer data data link peers mustconfigure PPP link (max frame length authentication)authentication)learnconfigure networklayer informationlayer information

for IP carry IP Control Protocol (IPCP) msgs Protocol (IPCP) msgs (protocol field 8021) to configurelearn IP

5 DataLink Layer 5-76

gaddress

Link LayerLink Layer

5 1 I d i d 5 6 H b d i h51 Introduction and services5 2 E d t ti

56 Hubs and switches57 PPP

52 Error detection and correction 5 3Multiple access

58 Link Virtualization ATM and MPLS

53Multiple access protocols5 4 Link-Layer 54 Link Layer Addressing55 Ethernet55 Ethernet

5 DataLink Layer 5-77

Virtualization of networksVirtualization of networks

Vi li i f f l b i i Virtualization of resources powerful abstraction in systems engineering

ti l s i t l i t l computing examples virtual memory virtual devices

Virtual machines e g javaVirtual machines eg javaIBM VM os from 1960rsquos70rsquos

layering of abstractions donrsquot sweat the details of layering of abstractions don t sweat the details of the lower layer only deal with lower layers abstractlyabstractly

5 DataLink Layer 5-78

The Internet virtualizing networksThe Internet virtualizing networks

1974 multiple unconnected differing in1974 multiple unconnected nets

ARPAnet

hellip differing inaddressing conventionspacket formats

data-over-cable networkspacket satellite network (Aloha)

k d k

perror recoveryrouting

packet radio network

ARPAnet satellite net

5 DataLink Layer 5-79

ARPAnet satell te netA Protocol for Packet Network Intercommunication V Cerf R Kahn IEEE Transactions on CommunicationsMay 1974 pp 637-648

The Internet virtualizing networksThe Internet virtualizing networksInternetwork layer (IP)

addressing internetwork Gateway

ldquoembed internetwork packets in l l k f

addressing internetwork appears as single uniform entity despite underlying local network heterogeneitynetwork of networks

plocal packet format or extract themrdquoroute (at internetwork level) to next gatewaynetwork of networks next gateway

gateway

ARPAnet satellite net

5 DataLink Layer 5-80

ARPAnet satell te net

Cerf amp Kahnrsquos Internetwork ArchitectureCerf amp Kahn s Internetwork ArchitectureWhat is virtualized

two layers of addressing internetwork and local networknew layer (IP) makes everything homogeneous at internetwork layerunderlying local network technology

cablesatellite56K telephone modemtoday ATM MPLS

hellip ldquoinvisiblerdquo at internetwork layer Looks like a link

5 DataLink Layer 5-81

ylayer technology to IP

ATM and MPLSATM and MPLS

P k h ATM MPLS separate networks in their own right

different service models addressing routing from Internet

viewed by Internet as logical link connecting IP routers

just like dialup link is really part of separate network (telephone network)

ATM MPLS of technical interest in their own right

5 DataLink Layer 5-82

Asynchronous Transfer Mode ATMAsynchronous Transfer Mode ATM1990rsquos00 standard for high-speed (155Mbps to g p ( p622 Mbps and higher) Broadband Integrated Service Digital Network architectureGoal integrated end-end transport of carry voice video data

i i i Q i f i id meeting timingQoS requirements of voice video (versus Internet best-effort model)ldquo t ti rdquo t l h t h i l ts i ldquonext generationrdquo telephony technical roots in telephone worldpacket switching (fixed length packets called packet-switching (fixed length packets called ldquocellsrdquo) using virtual circuits

5 DataLink Layer 5-83

ATM architecture ATM architecture AAL AAL

ATM ATMATM ATM

physical physicalphysical physical

d d ti h it h

adaptation layer only at edge of ATM network

end system end systemswitch switch

data segmentationreassemblyroughly analagous to Internet transport layer

ATM layer ldquonetworkrdquo layercell switching routing

5 DataLink Layer 5-84

physical layer

ATM network or link layerATM network or link layerVision end-to-end

t t ldquoATM f transport ldquoATM from desktop to desktoprdquo

ATM is a network ATM

IPnetwork

ATM is a network technology

Reality used to connect

ATMnetwork

Reality used to connect IP backbone routers

ldquoIP over ATMrdquoIP over ATMATM as switched link layer y connecting IP routers

5 DataLink Layer 5-85

ATM Adaptation Layer (AAL)ATM Adaptation Layer (AAL)

TM d i L ( L) ldquo d rdquo ATM Adaptation Layer (AAL) ldquoadaptsrdquo upper layers (IP or native ATM applications) to ATM layer belowlayer belowAAL present only in end systems not in switchesAAL layer segment (headertrailer fields data) AAL layer segment (headertrailer fields data) fragmented across multiple ATM cells

analogy TCP segment in many IP packetsanalogy TCP segment in many IP packets

AAL AAL

physical

ATM

physical

ATM

physical

ATM

physical

ATM

5 DataLink Layer 5-86

physical physicalp y p y

end system end systemswitch switch

ATM Adaptation Layer (AAL) [more]

Different versions of AAL layers depending on ATM y p gservice classAAL1 for CBR (Constant Bit Rate) services eg circuit emulationAAL2 for VBR (Variable Bit Rate) services eg MPEG videoAAL5 for data (eg IP datagrams)

User data

AAL PDU

ATM cell

5 DataLink Layer 5-87

ATM LayeryService transport cells across ATM network

analogous to IP network layeranalogous to IP network layervery different services than IP network layer

Guarantees NetworkArchitecture

ServiceModel Bandwidth Loss Order Timing

Congestionfeedback

Guarantees

Internet

ATM

best effort

CBR

none

constant

no

yes

no

yes

no

yes

no (inferredvia loss)noATM

ATM

CBR

VBR

constantrateguaranteedrate

yes

yes

yes

yes

yes

yes

nocongestionnocongestion

ATM

ATM

ABR

UBR

rateguaranteed minimum

no yes nocongestionyes

5 DataLink Layer 5-88

ATM UBR none no yes no no

ATM Layer Virtual CircuitsATM Layer Virtual CircuitsVC transport cells carried on VC from source to destp

call setup teardown for each call before data can floweach packet carries VC identifier (not destination ID)

it h d t th i t i ldquo t t rdquo f h every switch on source-dest path maintain ldquostaterdquo for each passing connectionlinkswitch resources (bandwidth buffers) may be allocated to ( ff ) m yVC to get circuit-like perf

Permanent VCs (PVCs)long lasting connectionstypically ldquopermanentrdquo route between to IP routers

Switched VCs (SVC)dynamically set up on per-call basis

5 DataLink Layer 5-89

ATM VCsATM VCsAdvantages of ATM VC approachAdvantages of ATM VC approach

QoS performance guarantee for connection mapped to VC (bandwidth delay delay jitter)mapped to VC (bandwidth delay delay jitter)

Drawbacks of ATM VC approachInefficient support of datagram trafficInefficient support of datagram trafficone PVC between each sourcedest pair) does not scale (N2 connections needed) not scale (N 2 connections needed) SVC introduces call setup latency processing overhead for short lived connectionsoverhead for short lived connections

5 DataLink Layer 5-90

ATM Layer ATM cellATM Layer ATM cell5-byte ATM cell headery48-byte payload

Why small payload -gt short cell-creation delay W y m p y yfor digitized voicehalfway between 32 and 64 (compromise)y p

Cell headerCell header

Cell format

5 DataLink Layer 5-91

ATM cell headerATM cell headerVCI virtual channel IDVCI virtual channel ID

will change from link to link thru netPT P l d t p ( RM ll s s d t ll) PT Payload type (eg RM cell versus data cell) CLP Cell Loss Priority bit

CLP 1 i li l i it ll b CLP = 1 implies low priority cell can be discarded if congestion

HEC Header Error ChecksumHEC Header Error Checksumcyclic redundancy check

5 DataLink Layer 5-92

ATM Physical Layer (more)ATM Physical Layer (more)

T i ( bl ) f h i l lTwo pieces (sublayers) of physical layerTransmission Convergence Sublayer (TCS) adapts ATM l b t PMD s bl b lATM layer above to PMD sublayer belowPhysical Medium Dependent depends on physical medium being usedmedium being used

TCS FunctionsTCS FunctionsHeader checksum generation 8 bits CRC C ll d lin ti nCell delineationWith ldquounstructuredrdquo PMD sublayer transmission of idle cells when no data cells to send

5 DataLink Layer 5-93

of idle cells when no data cells to send

ATM Physical LayerATM Physical Layer

Ph l d D d (P D) blPhysical Medium Dependent (PMD) sublayerSONETSDH transmission frame structure (like a

b ) container carrying bits) bit synchronization bandwidth partitions (TDM) several speeds OC3 = 15552 Mbps OC12 = 62208 Mb OC48 2 45 Gb OC192 9 6 GbMbps OC48 = 245 Gbps OC192 = 96 Gbps

TIT3 transmission frame structure (old telephone hierarchy) 1 5 Mbps 45 Mbpstelephone hierarchy) 15 Mbps 45 Mbpsunstructured just cells (busyidle)

5 DataLink Layer 5-94

IP-Over-ATMIP over ATM

Classic IP only3 ldquonetworksrdquo (e g

IP over ATMreplace ldquonetworkrdquo (e g LAN segment) 3 networks (eg

LAN segments)MAC (802 3) and IP

(eg LAN segment) with ATM networkATM addresses IP MAC (8023) and IP

addressesATM addresses IP addresses

ATMATMnetwork

Ethernet Ethernet

5 DataLink Layer 5-95

EthernetLANs

EthernetLANs

IP-Over-ATMapp

transportapp

AALEthIP

transportIP

AALATM

apptransport

IPEth ATM

phyphyEth

ATM

ATMphy

ATMphy

Ethphy

ATMphy

p y

5 DataLink Layer 5-96

Datagram Journey in IP-over-ATM NetworkDatagram Journey in IP-over-ATM Network

at Source HostIP layer maps between IP ATM dest address (using ARP)passes datagram to AAL5AAL5 encapsulates data segments cells passes to ATM layer

ATM network moves cell along VC to destinationat Destination Host

AAL5 reassembles cells into original datagramif CRC OK datagram is passed to IP

5 DataLink Layer 5-97

IP-Over-ATMIP-Over-ATM

IssuesIP datagrams into

ATMnetwork

ATM AAL5 PDUsfrom IP addresses

TM ddto ATM addressesjust like IP dd ss s t addresses to

8023 MAC addresses

EthernetLANs

addresses

5 DataLink Layer 5-98

Multiprotocol label switching (MPLS)Multiprotocol label switching (MPLS)

i i i l l d IP f di b i fi d initial goal speed up IP forwarding by using fixed length label (instead of IP address) to do forwarding forwarding

borrowing ideas from Virtual Circuit (VC) approachbut IP datagram still keeps IP addressg p

PPP or EthernetPPP or Ethernet header

IP header remainder of link-layer frameMPLS header

label Exp S TTL

5 DataLink Layer 5-9920 3 1 5

MPLS capable routersMPLS capable routers

k l b l it h d taka label-switched routerforwards packets to outgoing interface based

l l b l l (d rsquot i t IP dd )only on label value (donrsquot inspect IP address)MPLS forwarding table distinct from IP forwarding tablestables

signaling protocol needed to set up forwardingRSVP TERSVP-TEforwarding possible along paths that IP alone would not allow (eg source-specific routing) not allow (eg source spec f c rout ng) use MPLS for traffic engineering

must co-exist with IP-only routers5 DataLink Layer 5-100

must co exist with IP only routers

MPLS forwarding tablesi t t

MPLS forwarding tables

in out outlabel label dest interface

in out outlabel label dest interface

10 A 012 D 0 label label dest interface

10 6 A 112 9 D 0

12 D 08 A 1

D1

00R6

R3R4R5

0

1

A

1

0

R1R2A

in out outlabel label dest interface

6 A 0in out out

label label dest interface

5 DataLink Layer 5-101

6 - A 0label label dest interface

8 6 A 0

Chapter 5 SummaryChapter 5 Summaryprinciples behind data link layer servicespr nc p s h n ata n ay r s r c s

error detection correctionsharing a broadcast channel multiple accesslink layer addressing

instantiation and implementation of various link l t h l ilayer technologies

Ethernetit h d LANSswitched LANS

PPPi li d k li k l TM MPLvirtualized networks as a link layer ATM MPLS

5 DataLink Layer 5-102

Chapter 5 letrsquos take a breathChapter 5 let s take a breathjourney down protocol stack completejourney down protocol stack complete(except PHY)solid understanding of networking principles solid understanding of networking principles practice

ld t h b t l t f i t ti hellip could stop here hellip but lots of interesting topics

lwirelessmultimediasecurity network management

5 DataLink Layer 5-103

Page 20: Link Layer Link Layer: Introduction

Link LayerLink Layer

5 1 I d i d 5 6 H b d i h51 Introduction and services5 2 E d t ti

56 Hubs and switches57 PPP

52 Error detection and correction 5 3Multiple access

58 Link Virtualization ATM and MPLS

53Multiple access protocols5 4 Link-Layer 54 Link Layer Addressing55 Ethernet55 Ethernet

5 DataLink Layer 5-77

Virtualization of networksVirtualization of networks

Vi li i f f l b i i Virtualization of resources powerful abstraction in systems engineering

ti l s i t l i t l computing examples virtual memory virtual devices

Virtual machines e g javaVirtual machines eg javaIBM VM os from 1960rsquos70rsquos

layering of abstractions donrsquot sweat the details of layering of abstractions don t sweat the details of the lower layer only deal with lower layers abstractlyabstractly

5 DataLink Layer 5-78

The Internet virtualizing networksThe Internet virtualizing networks

1974 multiple unconnected differing in1974 multiple unconnected nets

ARPAnet

hellip differing inaddressing conventionspacket formats

data-over-cable networkspacket satellite network (Aloha)

k d k

perror recoveryrouting

packet radio network

ARPAnet satellite net

5 DataLink Layer 5-79

ARPAnet satell te netA Protocol for Packet Network Intercommunication V Cerf R Kahn IEEE Transactions on CommunicationsMay 1974 pp 637-648

The Internet virtualizing networksThe Internet virtualizing networksInternetwork layer (IP)

addressing internetwork Gateway

ldquoembed internetwork packets in l l k f

addressing internetwork appears as single uniform entity despite underlying local network heterogeneitynetwork of networks

plocal packet format or extract themrdquoroute (at internetwork level) to next gatewaynetwork of networks next gateway

gateway

ARPAnet satellite net

5 DataLink Layer 5-80

ARPAnet satell te net

Cerf amp Kahnrsquos Internetwork ArchitectureCerf amp Kahn s Internetwork ArchitectureWhat is virtualized

two layers of addressing internetwork and local networknew layer (IP) makes everything homogeneous at internetwork layerunderlying local network technology

cablesatellite56K telephone modemtoday ATM MPLS

hellip ldquoinvisiblerdquo at internetwork layer Looks like a link

5 DataLink Layer 5-81

ylayer technology to IP

ATM and MPLSATM and MPLS

P k h ATM MPLS separate networks in their own right

different service models addressing routing from Internet

viewed by Internet as logical link connecting IP routers

just like dialup link is really part of separate network (telephone network)

ATM MPLS of technical interest in their own right

5 DataLink Layer 5-82

Asynchronous Transfer Mode ATMAsynchronous Transfer Mode ATM1990rsquos00 standard for high-speed (155Mbps to g p ( p622 Mbps and higher) Broadband Integrated Service Digital Network architectureGoal integrated end-end transport of carry voice video data

i i i Q i f i id meeting timingQoS requirements of voice video (versus Internet best-effort model)ldquo t ti rdquo t l h t h i l ts i ldquonext generationrdquo telephony technical roots in telephone worldpacket switching (fixed length packets called packet-switching (fixed length packets called ldquocellsrdquo) using virtual circuits

5 DataLink Layer 5-83

ATM architecture ATM architecture AAL AAL

ATM ATMATM ATM

physical physicalphysical physical

d d ti h it h

adaptation layer only at edge of ATM network

end system end systemswitch switch

data segmentationreassemblyroughly analagous to Internet transport layer

ATM layer ldquonetworkrdquo layercell switching routing

5 DataLink Layer 5-84

physical layer

ATM network or link layerATM network or link layerVision end-to-end

t t ldquoATM f transport ldquoATM from desktop to desktoprdquo

ATM is a network ATM

IPnetwork

ATM is a network technology

Reality used to connect

ATMnetwork

Reality used to connect IP backbone routers

ldquoIP over ATMrdquoIP over ATMATM as switched link layer y connecting IP routers

5 DataLink Layer 5-85

ATM Adaptation Layer (AAL)ATM Adaptation Layer (AAL)

TM d i L ( L) ldquo d rdquo ATM Adaptation Layer (AAL) ldquoadaptsrdquo upper layers (IP or native ATM applications) to ATM layer belowlayer belowAAL present only in end systems not in switchesAAL layer segment (headertrailer fields data) AAL layer segment (headertrailer fields data) fragmented across multiple ATM cells

analogy TCP segment in many IP packetsanalogy TCP segment in many IP packets

AAL AAL

physical

ATM

physical

ATM

physical

ATM

physical

ATM

5 DataLink Layer 5-86

physical physicalp y p y

end system end systemswitch switch

ATM Adaptation Layer (AAL) [more]

Different versions of AAL layers depending on ATM y p gservice classAAL1 for CBR (Constant Bit Rate) services eg circuit emulationAAL2 for VBR (Variable Bit Rate) services eg MPEG videoAAL5 for data (eg IP datagrams)

User data

AAL PDU

ATM cell

5 DataLink Layer 5-87

ATM LayeryService transport cells across ATM network

analogous to IP network layeranalogous to IP network layervery different services than IP network layer

Guarantees NetworkArchitecture

ServiceModel Bandwidth Loss Order Timing

Congestionfeedback

Guarantees

Internet

ATM

best effort

CBR

none

constant

no

yes

no

yes

no

yes

no (inferredvia loss)noATM

ATM

CBR

VBR

constantrateguaranteedrate

yes

yes

yes

yes

yes

yes

nocongestionnocongestion

ATM

ATM

ABR

UBR

rateguaranteed minimum

no yes nocongestionyes

5 DataLink Layer 5-88

ATM UBR none no yes no no

ATM Layer Virtual CircuitsATM Layer Virtual CircuitsVC transport cells carried on VC from source to destp

call setup teardown for each call before data can floweach packet carries VC identifier (not destination ID)

it h d t th i t i ldquo t t rdquo f h every switch on source-dest path maintain ldquostaterdquo for each passing connectionlinkswitch resources (bandwidth buffers) may be allocated to ( ff ) m yVC to get circuit-like perf

Permanent VCs (PVCs)long lasting connectionstypically ldquopermanentrdquo route between to IP routers

Switched VCs (SVC)dynamically set up on per-call basis

5 DataLink Layer 5-89

ATM VCsATM VCsAdvantages of ATM VC approachAdvantages of ATM VC approach

QoS performance guarantee for connection mapped to VC (bandwidth delay delay jitter)mapped to VC (bandwidth delay delay jitter)

Drawbacks of ATM VC approachInefficient support of datagram trafficInefficient support of datagram trafficone PVC between each sourcedest pair) does not scale (N2 connections needed) not scale (N 2 connections needed) SVC introduces call setup latency processing overhead for short lived connectionsoverhead for short lived connections

5 DataLink Layer 5-90

ATM Layer ATM cellATM Layer ATM cell5-byte ATM cell headery48-byte payload

Why small payload -gt short cell-creation delay W y m p y yfor digitized voicehalfway between 32 and 64 (compromise)y p

Cell headerCell header

Cell format

5 DataLink Layer 5-91

ATM cell headerATM cell headerVCI virtual channel IDVCI virtual channel ID

will change from link to link thru netPT P l d t p ( RM ll s s d t ll) PT Payload type (eg RM cell versus data cell) CLP Cell Loss Priority bit

CLP 1 i li l i it ll b CLP = 1 implies low priority cell can be discarded if congestion

HEC Header Error ChecksumHEC Header Error Checksumcyclic redundancy check

5 DataLink Layer 5-92

ATM Physical Layer (more)ATM Physical Layer (more)

T i ( bl ) f h i l lTwo pieces (sublayers) of physical layerTransmission Convergence Sublayer (TCS) adapts ATM l b t PMD s bl b lATM layer above to PMD sublayer belowPhysical Medium Dependent depends on physical medium being usedmedium being used

TCS FunctionsTCS FunctionsHeader checksum generation 8 bits CRC C ll d lin ti nCell delineationWith ldquounstructuredrdquo PMD sublayer transmission of idle cells when no data cells to send

5 DataLink Layer 5-93

of idle cells when no data cells to send

ATM Physical LayerATM Physical Layer

Ph l d D d (P D) blPhysical Medium Dependent (PMD) sublayerSONETSDH transmission frame structure (like a

b ) container carrying bits) bit synchronization bandwidth partitions (TDM) several speeds OC3 = 15552 Mbps OC12 = 62208 Mb OC48 2 45 Gb OC192 9 6 GbMbps OC48 = 245 Gbps OC192 = 96 Gbps

TIT3 transmission frame structure (old telephone hierarchy) 1 5 Mbps 45 Mbpstelephone hierarchy) 15 Mbps 45 Mbpsunstructured just cells (busyidle)

5 DataLink Layer 5-94

IP-Over-ATMIP over ATM

Classic IP only3 ldquonetworksrdquo (e g

IP over ATMreplace ldquonetworkrdquo (e g LAN segment) 3 networks (eg

LAN segments)MAC (802 3) and IP

(eg LAN segment) with ATM networkATM addresses IP MAC (8023) and IP

addressesATM addresses IP addresses

ATMATMnetwork

Ethernet Ethernet

5 DataLink Layer 5-95

EthernetLANs

EthernetLANs

IP-Over-ATMapp

transportapp

AALEthIP

transportIP

AALATM

apptransport

IPEth ATM

phyphyEth

ATM

ATMphy

ATMphy

Ethphy

ATMphy

p y

5 DataLink Layer 5-96

Datagram Journey in IP-over-ATM NetworkDatagram Journey in IP-over-ATM Network

at Source HostIP layer maps between IP ATM dest address (using ARP)passes datagram to AAL5AAL5 encapsulates data segments cells passes to ATM layer

ATM network moves cell along VC to destinationat Destination Host

AAL5 reassembles cells into original datagramif CRC OK datagram is passed to IP

5 DataLink Layer 5-97

IP-Over-ATMIP-Over-ATM

IssuesIP datagrams into

ATMnetwork

ATM AAL5 PDUsfrom IP addresses

TM ddto ATM addressesjust like IP dd ss s t addresses to

8023 MAC addresses

EthernetLANs

addresses

5 DataLink Layer 5-98

Multiprotocol label switching (MPLS)Multiprotocol label switching (MPLS)

i i i l l d IP f di b i fi d initial goal speed up IP forwarding by using fixed length label (instead of IP address) to do forwarding forwarding

borrowing ideas from Virtual Circuit (VC) approachbut IP datagram still keeps IP addressg p

PPP or EthernetPPP or Ethernet header

IP header remainder of link-layer frameMPLS header

label Exp S TTL

5 DataLink Layer 5-9920 3 1 5

MPLS capable routersMPLS capable routers

k l b l it h d taka label-switched routerforwards packets to outgoing interface based

l l b l l (d rsquot i t IP dd )only on label value (donrsquot inspect IP address)MPLS forwarding table distinct from IP forwarding tablestables

signaling protocol needed to set up forwardingRSVP TERSVP-TEforwarding possible along paths that IP alone would not allow (eg source-specific routing) not allow (eg source spec f c rout ng) use MPLS for traffic engineering

must co-exist with IP-only routers5 DataLink Layer 5-100

must co exist with IP only routers

MPLS forwarding tablesi t t

MPLS forwarding tables

in out outlabel label dest interface

in out outlabel label dest interface

10 A 012 D 0 label label dest interface

10 6 A 112 9 D 0

12 D 08 A 1

D1

00R6

R3R4R5

0

1

A

1

0

R1R2A

in out outlabel label dest interface

6 A 0in out out

label label dest interface

5 DataLink Layer 5-101

6 - A 0label label dest interface

8 6 A 0

Chapter 5 SummaryChapter 5 Summaryprinciples behind data link layer servicespr nc p s h n ata n ay r s r c s

error detection correctionsharing a broadcast channel multiple accesslink layer addressing

instantiation and implementation of various link l t h l ilayer technologies

Ethernetit h d LANSswitched LANS

PPPi li d k li k l TM MPLvirtualized networks as a link layer ATM MPLS

5 DataLink Layer 5-102

Chapter 5 letrsquos take a breathChapter 5 let s take a breathjourney down protocol stack completejourney down protocol stack complete(except PHY)solid understanding of networking principles solid understanding of networking principles practice

ld t h b t l t f i t ti hellip could stop here hellip but lots of interesting topics

lwirelessmultimediasecurity network management

5 DataLink Layer 5-103

Page 21: Link Layer Link Layer: Introduction

Cerf amp Kahnrsquos Internetwork ArchitectureCerf amp Kahn s Internetwork ArchitectureWhat is virtualized

two layers of addressing internetwork and local networknew layer (IP) makes everything homogeneous at internetwork layerunderlying local network technology

cablesatellite56K telephone modemtoday ATM MPLS

hellip ldquoinvisiblerdquo at internetwork layer Looks like a link

5 DataLink Layer 5-81

ylayer technology to IP

ATM and MPLSATM and MPLS

P k h ATM MPLS separate networks in their own right

different service models addressing routing from Internet

viewed by Internet as logical link connecting IP routers

just like dialup link is really part of separate network (telephone network)

ATM MPLS of technical interest in their own right

5 DataLink Layer 5-82

Asynchronous Transfer Mode ATMAsynchronous Transfer Mode ATM1990rsquos00 standard for high-speed (155Mbps to g p ( p622 Mbps and higher) Broadband Integrated Service Digital Network architectureGoal integrated end-end transport of carry voice video data

i i i Q i f i id meeting timingQoS requirements of voice video (versus Internet best-effort model)ldquo t ti rdquo t l h t h i l ts i ldquonext generationrdquo telephony technical roots in telephone worldpacket switching (fixed length packets called packet-switching (fixed length packets called ldquocellsrdquo) using virtual circuits

5 DataLink Layer 5-83

ATM architecture ATM architecture AAL AAL

ATM ATMATM ATM

physical physicalphysical physical

d d ti h it h

adaptation layer only at edge of ATM network

end system end systemswitch switch

data segmentationreassemblyroughly analagous to Internet transport layer

ATM layer ldquonetworkrdquo layercell switching routing

5 DataLink Layer 5-84

physical layer

ATM network or link layerATM network or link layerVision end-to-end

t t ldquoATM f transport ldquoATM from desktop to desktoprdquo

ATM is a network ATM

IPnetwork

ATM is a network technology

Reality used to connect

ATMnetwork

Reality used to connect IP backbone routers

ldquoIP over ATMrdquoIP over ATMATM as switched link layer y connecting IP routers

5 DataLink Layer 5-85

ATM Adaptation Layer (AAL)ATM Adaptation Layer (AAL)

TM d i L ( L) ldquo d rdquo ATM Adaptation Layer (AAL) ldquoadaptsrdquo upper layers (IP or native ATM applications) to ATM layer belowlayer belowAAL present only in end systems not in switchesAAL layer segment (headertrailer fields data) AAL layer segment (headertrailer fields data) fragmented across multiple ATM cells

analogy TCP segment in many IP packetsanalogy TCP segment in many IP packets

AAL AAL

physical

ATM

physical

ATM

physical

ATM

physical

ATM

5 DataLink Layer 5-86

physical physicalp y p y

end system end systemswitch switch

ATM Adaptation Layer (AAL) [more]

Different versions of AAL layers depending on ATM y p gservice classAAL1 for CBR (Constant Bit Rate) services eg circuit emulationAAL2 for VBR (Variable Bit Rate) services eg MPEG videoAAL5 for data (eg IP datagrams)

User data

AAL PDU

ATM cell

5 DataLink Layer 5-87

ATM LayeryService transport cells across ATM network

analogous to IP network layeranalogous to IP network layervery different services than IP network layer

Guarantees NetworkArchitecture

ServiceModel Bandwidth Loss Order Timing

Congestionfeedback

Guarantees

Internet

ATM

best effort

CBR

none

constant

no

yes

no

yes

no

yes

no (inferredvia loss)noATM

ATM

CBR

VBR

constantrateguaranteedrate

yes

yes

yes

yes

yes

yes

nocongestionnocongestion

ATM

ATM

ABR

UBR

rateguaranteed minimum

no yes nocongestionyes

5 DataLink Layer 5-88

ATM UBR none no yes no no

ATM Layer Virtual CircuitsATM Layer Virtual CircuitsVC transport cells carried on VC from source to destp

call setup teardown for each call before data can floweach packet carries VC identifier (not destination ID)

it h d t th i t i ldquo t t rdquo f h every switch on source-dest path maintain ldquostaterdquo for each passing connectionlinkswitch resources (bandwidth buffers) may be allocated to ( ff ) m yVC to get circuit-like perf

Permanent VCs (PVCs)long lasting connectionstypically ldquopermanentrdquo route between to IP routers

Switched VCs (SVC)dynamically set up on per-call basis

5 DataLink Layer 5-89

ATM VCsATM VCsAdvantages of ATM VC approachAdvantages of ATM VC approach

QoS performance guarantee for connection mapped to VC (bandwidth delay delay jitter)mapped to VC (bandwidth delay delay jitter)

Drawbacks of ATM VC approachInefficient support of datagram trafficInefficient support of datagram trafficone PVC between each sourcedest pair) does not scale (N2 connections needed) not scale (N 2 connections needed) SVC introduces call setup latency processing overhead for short lived connectionsoverhead for short lived connections

5 DataLink Layer 5-90

ATM Layer ATM cellATM Layer ATM cell5-byte ATM cell headery48-byte payload

Why small payload -gt short cell-creation delay W y m p y yfor digitized voicehalfway between 32 and 64 (compromise)y p

Cell headerCell header

Cell format

5 DataLink Layer 5-91

ATM cell headerATM cell headerVCI virtual channel IDVCI virtual channel ID

will change from link to link thru netPT P l d t p ( RM ll s s d t ll) PT Payload type (eg RM cell versus data cell) CLP Cell Loss Priority bit

CLP 1 i li l i it ll b CLP = 1 implies low priority cell can be discarded if congestion

HEC Header Error ChecksumHEC Header Error Checksumcyclic redundancy check

5 DataLink Layer 5-92

ATM Physical Layer (more)ATM Physical Layer (more)

T i ( bl ) f h i l lTwo pieces (sublayers) of physical layerTransmission Convergence Sublayer (TCS) adapts ATM l b t PMD s bl b lATM layer above to PMD sublayer belowPhysical Medium Dependent depends on physical medium being usedmedium being used

TCS FunctionsTCS FunctionsHeader checksum generation 8 bits CRC C ll d lin ti nCell delineationWith ldquounstructuredrdquo PMD sublayer transmission of idle cells when no data cells to send

5 DataLink Layer 5-93

of idle cells when no data cells to send

ATM Physical LayerATM Physical Layer

Ph l d D d (P D) blPhysical Medium Dependent (PMD) sublayerSONETSDH transmission frame structure (like a

b ) container carrying bits) bit synchronization bandwidth partitions (TDM) several speeds OC3 = 15552 Mbps OC12 = 62208 Mb OC48 2 45 Gb OC192 9 6 GbMbps OC48 = 245 Gbps OC192 = 96 Gbps

TIT3 transmission frame structure (old telephone hierarchy) 1 5 Mbps 45 Mbpstelephone hierarchy) 15 Mbps 45 Mbpsunstructured just cells (busyidle)

5 DataLink Layer 5-94

IP-Over-ATMIP over ATM

Classic IP only3 ldquonetworksrdquo (e g

IP over ATMreplace ldquonetworkrdquo (e g LAN segment) 3 networks (eg

LAN segments)MAC (802 3) and IP

(eg LAN segment) with ATM networkATM addresses IP MAC (8023) and IP

addressesATM addresses IP addresses

ATMATMnetwork

Ethernet Ethernet

5 DataLink Layer 5-95

EthernetLANs

EthernetLANs

IP-Over-ATMapp

transportapp

AALEthIP

transportIP

AALATM

apptransport

IPEth ATM

phyphyEth

ATM

ATMphy

ATMphy

Ethphy

ATMphy

p y

5 DataLink Layer 5-96

Datagram Journey in IP-over-ATM NetworkDatagram Journey in IP-over-ATM Network

at Source HostIP layer maps between IP ATM dest address (using ARP)passes datagram to AAL5AAL5 encapsulates data segments cells passes to ATM layer

ATM network moves cell along VC to destinationat Destination Host

AAL5 reassembles cells into original datagramif CRC OK datagram is passed to IP

5 DataLink Layer 5-97

IP-Over-ATMIP-Over-ATM

IssuesIP datagrams into

ATMnetwork

ATM AAL5 PDUsfrom IP addresses

TM ddto ATM addressesjust like IP dd ss s t addresses to

8023 MAC addresses

EthernetLANs

addresses

5 DataLink Layer 5-98

Multiprotocol label switching (MPLS)Multiprotocol label switching (MPLS)

i i i l l d IP f di b i fi d initial goal speed up IP forwarding by using fixed length label (instead of IP address) to do forwarding forwarding

borrowing ideas from Virtual Circuit (VC) approachbut IP datagram still keeps IP addressg p

PPP or EthernetPPP or Ethernet header

IP header remainder of link-layer frameMPLS header

label Exp S TTL

5 DataLink Layer 5-9920 3 1 5

MPLS capable routersMPLS capable routers

k l b l it h d taka label-switched routerforwards packets to outgoing interface based

l l b l l (d rsquot i t IP dd )only on label value (donrsquot inspect IP address)MPLS forwarding table distinct from IP forwarding tablestables

signaling protocol needed to set up forwardingRSVP TERSVP-TEforwarding possible along paths that IP alone would not allow (eg source-specific routing) not allow (eg source spec f c rout ng) use MPLS for traffic engineering

must co-exist with IP-only routers5 DataLink Layer 5-100

must co exist with IP only routers

MPLS forwarding tablesi t t

MPLS forwarding tables

in out outlabel label dest interface

in out outlabel label dest interface

10 A 012 D 0 label label dest interface

10 6 A 112 9 D 0

12 D 08 A 1

D1

00R6

R3R4R5

0

1

A

1

0

R1R2A

in out outlabel label dest interface

6 A 0in out out

label label dest interface

5 DataLink Layer 5-101

6 - A 0label label dest interface

8 6 A 0

Chapter 5 SummaryChapter 5 Summaryprinciples behind data link layer servicespr nc p s h n ata n ay r s r c s

error detection correctionsharing a broadcast channel multiple accesslink layer addressing

instantiation and implementation of various link l t h l ilayer technologies

Ethernetit h d LANSswitched LANS

PPPi li d k li k l TM MPLvirtualized networks as a link layer ATM MPLS

5 DataLink Layer 5-102

Chapter 5 letrsquos take a breathChapter 5 let s take a breathjourney down protocol stack completejourney down protocol stack complete(except PHY)solid understanding of networking principles solid understanding of networking principles practice

ld t h b t l t f i t ti hellip could stop here hellip but lots of interesting topics

lwirelessmultimediasecurity network management

5 DataLink Layer 5-103

Page 22: Link Layer Link Layer: Introduction

ATM network or link layerATM network or link layerVision end-to-end

t t ldquoATM f transport ldquoATM from desktop to desktoprdquo

ATM is a network ATM

IPnetwork

ATM is a network technology

Reality used to connect

ATMnetwork

Reality used to connect IP backbone routers

ldquoIP over ATMrdquoIP over ATMATM as switched link layer y connecting IP routers

5 DataLink Layer 5-85

ATM Adaptation Layer (AAL)ATM Adaptation Layer (AAL)

TM d i L ( L) ldquo d rdquo ATM Adaptation Layer (AAL) ldquoadaptsrdquo upper layers (IP or native ATM applications) to ATM layer belowlayer belowAAL present only in end systems not in switchesAAL layer segment (headertrailer fields data) AAL layer segment (headertrailer fields data) fragmented across multiple ATM cells

analogy TCP segment in many IP packetsanalogy TCP segment in many IP packets

AAL AAL

physical

ATM

physical

ATM

physical

ATM

physical

ATM

5 DataLink Layer 5-86

physical physicalp y p y

end system end systemswitch switch

ATM Adaptation Layer (AAL) [more]

Different versions of AAL layers depending on ATM y p gservice classAAL1 for CBR (Constant Bit Rate) services eg circuit emulationAAL2 for VBR (Variable Bit Rate) services eg MPEG videoAAL5 for data (eg IP datagrams)

User data

AAL PDU

ATM cell

5 DataLink Layer 5-87

ATM LayeryService transport cells across ATM network

analogous to IP network layeranalogous to IP network layervery different services than IP network layer

Guarantees NetworkArchitecture

ServiceModel Bandwidth Loss Order Timing

Congestionfeedback

Guarantees

Internet

ATM

best effort

CBR

none

constant

no

yes

no

yes

no

yes

no (inferredvia loss)noATM

ATM

CBR

VBR

constantrateguaranteedrate

yes

yes

yes

yes

yes

yes

nocongestionnocongestion

ATM

ATM

ABR

UBR

rateguaranteed minimum

no yes nocongestionyes

5 DataLink Layer 5-88

ATM UBR none no yes no no

ATM Layer Virtual CircuitsATM Layer Virtual CircuitsVC transport cells carried on VC from source to destp

call setup teardown for each call before data can floweach packet carries VC identifier (not destination ID)

it h d t th i t i ldquo t t rdquo f h every switch on source-dest path maintain ldquostaterdquo for each passing connectionlinkswitch resources (bandwidth buffers) may be allocated to ( ff ) m yVC to get circuit-like perf

Permanent VCs (PVCs)long lasting connectionstypically ldquopermanentrdquo route between to IP routers

Switched VCs (SVC)dynamically set up on per-call basis

5 DataLink Layer 5-89

ATM VCsATM VCsAdvantages of ATM VC approachAdvantages of ATM VC approach

QoS performance guarantee for connection mapped to VC (bandwidth delay delay jitter)mapped to VC (bandwidth delay delay jitter)

Drawbacks of ATM VC approachInefficient support of datagram trafficInefficient support of datagram trafficone PVC between each sourcedest pair) does not scale (N2 connections needed) not scale (N 2 connections needed) SVC introduces call setup latency processing overhead for short lived connectionsoverhead for short lived connections

5 DataLink Layer 5-90

ATM Layer ATM cellATM Layer ATM cell5-byte ATM cell headery48-byte payload

Why small payload -gt short cell-creation delay W y m p y yfor digitized voicehalfway between 32 and 64 (compromise)y p

Cell headerCell header

Cell format

5 DataLink Layer 5-91

ATM cell headerATM cell headerVCI virtual channel IDVCI virtual channel ID

will change from link to link thru netPT P l d t p ( RM ll s s d t ll) PT Payload type (eg RM cell versus data cell) CLP Cell Loss Priority bit

CLP 1 i li l i it ll b CLP = 1 implies low priority cell can be discarded if congestion

HEC Header Error ChecksumHEC Header Error Checksumcyclic redundancy check

5 DataLink Layer 5-92

ATM Physical Layer (more)ATM Physical Layer (more)

T i ( bl ) f h i l lTwo pieces (sublayers) of physical layerTransmission Convergence Sublayer (TCS) adapts ATM l b t PMD s bl b lATM layer above to PMD sublayer belowPhysical Medium Dependent depends on physical medium being usedmedium being used

TCS FunctionsTCS FunctionsHeader checksum generation 8 bits CRC C ll d lin ti nCell delineationWith ldquounstructuredrdquo PMD sublayer transmission of idle cells when no data cells to send

5 DataLink Layer 5-93

of idle cells when no data cells to send

ATM Physical LayerATM Physical Layer

Ph l d D d (P D) blPhysical Medium Dependent (PMD) sublayerSONETSDH transmission frame structure (like a

b ) container carrying bits) bit synchronization bandwidth partitions (TDM) several speeds OC3 = 15552 Mbps OC12 = 62208 Mb OC48 2 45 Gb OC192 9 6 GbMbps OC48 = 245 Gbps OC192 = 96 Gbps

TIT3 transmission frame structure (old telephone hierarchy) 1 5 Mbps 45 Mbpstelephone hierarchy) 15 Mbps 45 Mbpsunstructured just cells (busyidle)

5 DataLink Layer 5-94

IP-Over-ATMIP over ATM

Classic IP only3 ldquonetworksrdquo (e g

IP over ATMreplace ldquonetworkrdquo (e g LAN segment) 3 networks (eg

LAN segments)MAC (802 3) and IP

(eg LAN segment) with ATM networkATM addresses IP MAC (8023) and IP

addressesATM addresses IP addresses

ATMATMnetwork

Ethernet Ethernet

5 DataLink Layer 5-95

EthernetLANs

EthernetLANs

IP-Over-ATMapp

transportapp

AALEthIP

transportIP

AALATM

apptransport

IPEth ATM

phyphyEth

ATM

ATMphy

ATMphy

Ethphy

ATMphy

p y

5 DataLink Layer 5-96

Datagram Journey in IP-over-ATM NetworkDatagram Journey in IP-over-ATM Network

at Source HostIP layer maps between IP ATM dest address (using ARP)passes datagram to AAL5AAL5 encapsulates data segments cells passes to ATM layer

ATM network moves cell along VC to destinationat Destination Host

AAL5 reassembles cells into original datagramif CRC OK datagram is passed to IP

5 DataLink Layer 5-97

IP-Over-ATMIP-Over-ATM

IssuesIP datagrams into

ATMnetwork

ATM AAL5 PDUsfrom IP addresses

TM ddto ATM addressesjust like IP dd ss s t addresses to

8023 MAC addresses

EthernetLANs

addresses

5 DataLink Layer 5-98

Multiprotocol label switching (MPLS)Multiprotocol label switching (MPLS)

i i i l l d IP f di b i fi d initial goal speed up IP forwarding by using fixed length label (instead of IP address) to do forwarding forwarding

borrowing ideas from Virtual Circuit (VC) approachbut IP datagram still keeps IP addressg p

PPP or EthernetPPP or Ethernet header

IP header remainder of link-layer frameMPLS header

label Exp S TTL

5 DataLink Layer 5-9920 3 1 5

MPLS capable routersMPLS capable routers

k l b l it h d taka label-switched routerforwards packets to outgoing interface based

l l b l l (d rsquot i t IP dd )only on label value (donrsquot inspect IP address)MPLS forwarding table distinct from IP forwarding tablestables

signaling protocol needed to set up forwardingRSVP TERSVP-TEforwarding possible along paths that IP alone would not allow (eg source-specific routing) not allow (eg source spec f c rout ng) use MPLS for traffic engineering

must co-exist with IP-only routers5 DataLink Layer 5-100

must co exist with IP only routers

MPLS forwarding tablesi t t

MPLS forwarding tables

in out outlabel label dest interface

in out outlabel label dest interface

10 A 012 D 0 label label dest interface

10 6 A 112 9 D 0

12 D 08 A 1

D1

00R6

R3R4R5

0

1

A

1

0

R1R2A

in out outlabel label dest interface

6 A 0in out out

label label dest interface

5 DataLink Layer 5-101

6 - A 0label label dest interface

8 6 A 0

Chapter 5 SummaryChapter 5 Summaryprinciples behind data link layer servicespr nc p s h n ata n ay r s r c s

error detection correctionsharing a broadcast channel multiple accesslink layer addressing

instantiation and implementation of various link l t h l ilayer technologies

Ethernetit h d LANSswitched LANS

PPPi li d k li k l TM MPLvirtualized networks as a link layer ATM MPLS

5 DataLink Layer 5-102

Chapter 5 letrsquos take a breathChapter 5 let s take a breathjourney down protocol stack completejourney down protocol stack complete(except PHY)solid understanding of networking principles solid understanding of networking principles practice

ld t h b t l t f i t ti hellip could stop here hellip but lots of interesting topics

lwirelessmultimediasecurity network management

5 DataLink Layer 5-103

Page 23: Link Layer Link Layer: Introduction

ATM Layer Virtual CircuitsATM Layer Virtual CircuitsVC transport cells carried on VC from source to destp

call setup teardown for each call before data can floweach packet carries VC identifier (not destination ID)

it h d t th i t i ldquo t t rdquo f h every switch on source-dest path maintain ldquostaterdquo for each passing connectionlinkswitch resources (bandwidth buffers) may be allocated to ( ff ) m yVC to get circuit-like perf

Permanent VCs (PVCs)long lasting connectionstypically ldquopermanentrdquo route between to IP routers

Switched VCs (SVC)dynamically set up on per-call basis

5 DataLink Layer 5-89

ATM VCsATM VCsAdvantages of ATM VC approachAdvantages of ATM VC approach

QoS performance guarantee for connection mapped to VC (bandwidth delay delay jitter)mapped to VC (bandwidth delay delay jitter)

Drawbacks of ATM VC approachInefficient support of datagram trafficInefficient support of datagram trafficone PVC between each sourcedest pair) does not scale (N2 connections needed) not scale (N 2 connections needed) SVC introduces call setup latency processing overhead for short lived connectionsoverhead for short lived connections

5 DataLink Layer 5-90

ATM Layer ATM cellATM Layer ATM cell5-byte ATM cell headery48-byte payload

Why small payload -gt short cell-creation delay W y m p y yfor digitized voicehalfway between 32 and 64 (compromise)y p

Cell headerCell header

Cell format

5 DataLink Layer 5-91

ATM cell headerATM cell headerVCI virtual channel IDVCI virtual channel ID

will change from link to link thru netPT P l d t p ( RM ll s s d t ll) PT Payload type (eg RM cell versus data cell) CLP Cell Loss Priority bit

CLP 1 i li l i it ll b CLP = 1 implies low priority cell can be discarded if congestion

HEC Header Error ChecksumHEC Header Error Checksumcyclic redundancy check

5 DataLink Layer 5-92

ATM Physical Layer (more)ATM Physical Layer (more)

T i ( bl ) f h i l lTwo pieces (sublayers) of physical layerTransmission Convergence Sublayer (TCS) adapts ATM l b t PMD s bl b lATM layer above to PMD sublayer belowPhysical Medium Dependent depends on physical medium being usedmedium being used

TCS FunctionsTCS FunctionsHeader checksum generation 8 bits CRC C ll d lin ti nCell delineationWith ldquounstructuredrdquo PMD sublayer transmission of idle cells when no data cells to send

5 DataLink Layer 5-93

of idle cells when no data cells to send

ATM Physical LayerATM Physical Layer

Ph l d D d (P D) blPhysical Medium Dependent (PMD) sublayerSONETSDH transmission frame structure (like a

b ) container carrying bits) bit synchronization bandwidth partitions (TDM) several speeds OC3 = 15552 Mbps OC12 = 62208 Mb OC48 2 45 Gb OC192 9 6 GbMbps OC48 = 245 Gbps OC192 = 96 Gbps

TIT3 transmission frame structure (old telephone hierarchy) 1 5 Mbps 45 Mbpstelephone hierarchy) 15 Mbps 45 Mbpsunstructured just cells (busyidle)

5 DataLink Layer 5-94

IP-Over-ATMIP over ATM

Classic IP only3 ldquonetworksrdquo (e g

IP over ATMreplace ldquonetworkrdquo (e g LAN segment) 3 networks (eg

LAN segments)MAC (802 3) and IP

(eg LAN segment) with ATM networkATM addresses IP MAC (8023) and IP

addressesATM addresses IP addresses

ATMATMnetwork

Ethernet Ethernet

5 DataLink Layer 5-95

EthernetLANs

EthernetLANs

IP-Over-ATMapp

transportapp

AALEthIP

transportIP

AALATM

apptransport

IPEth ATM

phyphyEth

ATM

ATMphy

ATMphy

Ethphy

ATMphy

p y

5 DataLink Layer 5-96

Datagram Journey in IP-over-ATM NetworkDatagram Journey in IP-over-ATM Network

at Source HostIP layer maps between IP ATM dest address (using ARP)passes datagram to AAL5AAL5 encapsulates data segments cells passes to ATM layer

ATM network moves cell along VC to destinationat Destination Host

AAL5 reassembles cells into original datagramif CRC OK datagram is passed to IP

5 DataLink Layer 5-97

IP-Over-ATMIP-Over-ATM

IssuesIP datagrams into

ATMnetwork

ATM AAL5 PDUsfrom IP addresses

TM ddto ATM addressesjust like IP dd ss s t addresses to

8023 MAC addresses

EthernetLANs

addresses

5 DataLink Layer 5-98

Multiprotocol label switching (MPLS)Multiprotocol label switching (MPLS)

i i i l l d IP f di b i fi d initial goal speed up IP forwarding by using fixed length label (instead of IP address) to do forwarding forwarding

borrowing ideas from Virtual Circuit (VC) approachbut IP datagram still keeps IP addressg p

PPP or EthernetPPP or Ethernet header

IP header remainder of link-layer frameMPLS header

label Exp S TTL

5 DataLink Layer 5-9920 3 1 5

MPLS capable routersMPLS capable routers

k l b l it h d taka label-switched routerforwards packets to outgoing interface based

l l b l l (d rsquot i t IP dd )only on label value (donrsquot inspect IP address)MPLS forwarding table distinct from IP forwarding tablestables

signaling protocol needed to set up forwardingRSVP TERSVP-TEforwarding possible along paths that IP alone would not allow (eg source-specific routing) not allow (eg source spec f c rout ng) use MPLS for traffic engineering

must co-exist with IP-only routers5 DataLink Layer 5-100

must co exist with IP only routers

MPLS forwarding tablesi t t

MPLS forwarding tables

in out outlabel label dest interface

in out outlabel label dest interface

10 A 012 D 0 label label dest interface

10 6 A 112 9 D 0

12 D 08 A 1

D1

00R6

R3R4R5

0

1

A

1

0

R1R2A

in out outlabel label dest interface

6 A 0in out out

label label dest interface

5 DataLink Layer 5-101

6 - A 0label label dest interface

8 6 A 0

Chapter 5 SummaryChapter 5 Summaryprinciples behind data link layer servicespr nc p s h n ata n ay r s r c s

error detection correctionsharing a broadcast channel multiple accesslink layer addressing

instantiation and implementation of various link l t h l ilayer technologies

Ethernetit h d LANSswitched LANS

PPPi li d k li k l TM MPLvirtualized networks as a link layer ATM MPLS

5 DataLink Layer 5-102

Chapter 5 letrsquos take a breathChapter 5 let s take a breathjourney down protocol stack completejourney down protocol stack complete(except PHY)solid understanding of networking principles solid understanding of networking principles practice

ld t h b t l t f i t ti hellip could stop here hellip but lots of interesting topics

lwirelessmultimediasecurity network management

5 DataLink Layer 5-103

Page 24: Link Layer Link Layer: Introduction

ATM Physical Layer (more)ATM Physical Layer (more)

T i ( bl ) f h i l lTwo pieces (sublayers) of physical layerTransmission Convergence Sublayer (TCS) adapts ATM l b t PMD s bl b lATM layer above to PMD sublayer belowPhysical Medium Dependent depends on physical medium being usedmedium being used

TCS FunctionsTCS FunctionsHeader checksum generation 8 bits CRC C ll d lin ti nCell delineationWith ldquounstructuredrdquo PMD sublayer transmission of idle cells when no data cells to send

5 DataLink Layer 5-93

of idle cells when no data cells to send

ATM Physical LayerATM Physical Layer

Ph l d D d (P D) blPhysical Medium Dependent (PMD) sublayerSONETSDH transmission frame structure (like a

b ) container carrying bits) bit synchronization bandwidth partitions (TDM) several speeds OC3 = 15552 Mbps OC12 = 62208 Mb OC48 2 45 Gb OC192 9 6 GbMbps OC48 = 245 Gbps OC192 = 96 Gbps

TIT3 transmission frame structure (old telephone hierarchy) 1 5 Mbps 45 Mbpstelephone hierarchy) 15 Mbps 45 Mbpsunstructured just cells (busyidle)

5 DataLink Layer 5-94

IP-Over-ATMIP over ATM

Classic IP only3 ldquonetworksrdquo (e g

IP over ATMreplace ldquonetworkrdquo (e g LAN segment) 3 networks (eg

LAN segments)MAC (802 3) and IP

(eg LAN segment) with ATM networkATM addresses IP MAC (8023) and IP

addressesATM addresses IP addresses

ATMATMnetwork

Ethernet Ethernet

5 DataLink Layer 5-95

EthernetLANs

EthernetLANs

IP-Over-ATMapp

transportapp

AALEthIP

transportIP

AALATM

apptransport

IPEth ATM

phyphyEth

ATM

ATMphy

ATMphy

Ethphy

ATMphy

p y

5 DataLink Layer 5-96

Datagram Journey in IP-over-ATM NetworkDatagram Journey in IP-over-ATM Network

at Source HostIP layer maps between IP ATM dest address (using ARP)passes datagram to AAL5AAL5 encapsulates data segments cells passes to ATM layer

ATM network moves cell along VC to destinationat Destination Host

AAL5 reassembles cells into original datagramif CRC OK datagram is passed to IP

5 DataLink Layer 5-97

IP-Over-ATMIP-Over-ATM

IssuesIP datagrams into

ATMnetwork

ATM AAL5 PDUsfrom IP addresses

TM ddto ATM addressesjust like IP dd ss s t addresses to

8023 MAC addresses

EthernetLANs

addresses

5 DataLink Layer 5-98

Multiprotocol label switching (MPLS)Multiprotocol label switching (MPLS)

i i i l l d IP f di b i fi d initial goal speed up IP forwarding by using fixed length label (instead of IP address) to do forwarding forwarding

borrowing ideas from Virtual Circuit (VC) approachbut IP datagram still keeps IP addressg p

PPP or EthernetPPP or Ethernet header

IP header remainder of link-layer frameMPLS header

label Exp S TTL

5 DataLink Layer 5-9920 3 1 5

MPLS capable routersMPLS capable routers

k l b l it h d taka label-switched routerforwards packets to outgoing interface based

l l b l l (d rsquot i t IP dd )only on label value (donrsquot inspect IP address)MPLS forwarding table distinct from IP forwarding tablestables

signaling protocol needed to set up forwardingRSVP TERSVP-TEforwarding possible along paths that IP alone would not allow (eg source-specific routing) not allow (eg source spec f c rout ng) use MPLS for traffic engineering

must co-exist with IP-only routers5 DataLink Layer 5-100

must co exist with IP only routers

MPLS forwarding tablesi t t

MPLS forwarding tables

in out outlabel label dest interface

in out outlabel label dest interface

10 A 012 D 0 label label dest interface

10 6 A 112 9 D 0

12 D 08 A 1

D1

00R6

R3R4R5

0

1

A

1

0

R1R2A

in out outlabel label dest interface

6 A 0in out out

label label dest interface

5 DataLink Layer 5-101

6 - A 0label label dest interface

8 6 A 0

Chapter 5 SummaryChapter 5 Summaryprinciples behind data link layer servicespr nc p s h n ata n ay r s r c s

error detection correctionsharing a broadcast channel multiple accesslink layer addressing

instantiation and implementation of various link l t h l ilayer technologies

Ethernetit h d LANSswitched LANS

PPPi li d k li k l TM MPLvirtualized networks as a link layer ATM MPLS

5 DataLink Layer 5-102

Chapter 5 letrsquos take a breathChapter 5 let s take a breathjourney down protocol stack completejourney down protocol stack complete(except PHY)solid understanding of networking principles solid understanding of networking principles practice

ld t h b t l t f i t ti hellip could stop here hellip but lots of interesting topics

lwirelessmultimediasecurity network management

5 DataLink Layer 5-103

Page 25: Link Layer Link Layer: Introduction

Datagram Journey in IP-over-ATM NetworkDatagram Journey in IP-over-ATM Network

at Source HostIP layer maps between IP ATM dest address (using ARP)passes datagram to AAL5AAL5 encapsulates data segments cells passes to ATM layer

ATM network moves cell along VC to destinationat Destination Host

AAL5 reassembles cells into original datagramif CRC OK datagram is passed to IP

5 DataLink Layer 5-97

IP-Over-ATMIP-Over-ATM

IssuesIP datagrams into

ATMnetwork

ATM AAL5 PDUsfrom IP addresses

TM ddto ATM addressesjust like IP dd ss s t addresses to

8023 MAC addresses

EthernetLANs

addresses

5 DataLink Layer 5-98

Multiprotocol label switching (MPLS)Multiprotocol label switching (MPLS)

i i i l l d IP f di b i fi d initial goal speed up IP forwarding by using fixed length label (instead of IP address) to do forwarding forwarding

borrowing ideas from Virtual Circuit (VC) approachbut IP datagram still keeps IP addressg p

PPP or EthernetPPP or Ethernet header

IP header remainder of link-layer frameMPLS header

label Exp S TTL

5 DataLink Layer 5-9920 3 1 5

MPLS capable routersMPLS capable routers

k l b l it h d taka label-switched routerforwards packets to outgoing interface based

l l b l l (d rsquot i t IP dd )only on label value (donrsquot inspect IP address)MPLS forwarding table distinct from IP forwarding tablestables

signaling protocol needed to set up forwardingRSVP TERSVP-TEforwarding possible along paths that IP alone would not allow (eg source-specific routing) not allow (eg source spec f c rout ng) use MPLS for traffic engineering

must co-exist with IP-only routers5 DataLink Layer 5-100

must co exist with IP only routers

MPLS forwarding tablesi t t

MPLS forwarding tables

in out outlabel label dest interface

in out outlabel label dest interface

10 A 012 D 0 label label dest interface

10 6 A 112 9 D 0

12 D 08 A 1

D1

00R6

R3R4R5

0

1

A

1

0

R1R2A

in out outlabel label dest interface

6 A 0in out out

label label dest interface

5 DataLink Layer 5-101

6 - A 0label label dest interface

8 6 A 0

Chapter 5 SummaryChapter 5 Summaryprinciples behind data link layer servicespr nc p s h n ata n ay r s r c s

error detection correctionsharing a broadcast channel multiple accesslink layer addressing

instantiation and implementation of various link l t h l ilayer technologies

Ethernetit h d LANSswitched LANS

PPPi li d k li k l TM MPLvirtualized networks as a link layer ATM MPLS

5 DataLink Layer 5-102

Chapter 5 letrsquos take a breathChapter 5 let s take a breathjourney down protocol stack completejourney down protocol stack complete(except PHY)solid understanding of networking principles solid understanding of networking principles practice

ld t h b t l t f i t ti hellip could stop here hellip but lots of interesting topics

lwirelessmultimediasecurity network management

5 DataLink Layer 5-103

Page 26: Link Layer Link Layer: Introduction

MPLS forwarding tablesi t t

MPLS forwarding tables

in out outlabel label dest interface

in out outlabel label dest interface

10 A 012 D 0 label label dest interface

10 6 A 112 9 D 0

12 D 08 A 1

D1

00R6

R3R4R5

0

1

A

1

0

R1R2A

in out outlabel label dest interface

6 A 0in out out

label label dest interface

5 DataLink Layer 5-101

6 - A 0label label dest interface

8 6 A 0

Chapter 5 SummaryChapter 5 Summaryprinciples behind data link layer servicespr nc p s h n ata n ay r s r c s

error detection correctionsharing a broadcast channel multiple accesslink layer addressing

instantiation and implementation of various link l t h l ilayer technologies

Ethernetit h d LANSswitched LANS

PPPi li d k li k l TM MPLvirtualized networks as a link layer ATM MPLS

5 DataLink Layer 5-102

Chapter 5 letrsquos take a breathChapter 5 let s take a breathjourney down protocol stack completejourney down protocol stack complete(except PHY)solid understanding of networking principles solid understanding of networking principles practice

ld t h b t l t f i t ti hellip could stop here hellip but lots of interesting topics

lwirelessmultimediasecurity network management

5 DataLink Layer 5-103