Lecture 5 奈米碳管之導電性與導電路徑

75
Lecture 5 奈奈奈奈奈奈奈奈奈奈奈奈奈

description

Lecture 5 奈米碳管之導電性與導電路徑. 2D-view ( 骨架式 ). 共軛結構 –C=C-C=. - 電子之 共振結構. -electron. Isotropic conduction. 捲成管狀後 isotropic conduction 仍然維持. 3D-view. -bond. -wave function. -bond (sp 2 ). - Wave function (electron cloud). 骨架式. 價電子雲位於二個碳原子間 , 導電之 電子雲位於上下二處. e -. 120 . e -. - PowerPoint PPT Presentation

Transcript of Lecture 5 奈米碳管之導電性與導電路徑

Page 1: Lecture 5 奈米碳管之導電性與導電路徑

Lecture 5奈米碳管之導電性與導電路徑

Page 2: Lecture 5 奈米碳管之導電性與導電路徑

共軛結構 – C=C-C=

2D-view ( 骨架式 )

Page 3: Lecture 5 奈米碳管之導電性與導電路徑

- 電子之共振結構

Page 4: Lecture 5 奈米碳管之導電性與導電路徑

Isotropic conduction

-electron

Page 5: Lecture 5 奈米碳管之導電性與導電路徑

捲成管狀後 isotropic conduction 仍然維持

Page 6: Lecture 5 奈米碳管之導電性與導電路徑

3D-view

-bond (sp2)

-Wave function (electron cloud)

-bond-wave function

價電子雲位於二個碳原子間 , 導電之電子雲位於上下二處

骨架式

Page 7: Lecture 5 奈米碳管之導電性與導電路徑

120

e-

e-

- 電子可於圓形 3D 空間內運行

Page 8: Lecture 5 奈米碳管之導電性與導電路徑

- 電子雲重疊 , 造成電子可於電子雲中自由穿梭 , 形成導電路徑

如果重疊區域少 , 電子需藉由 hopping( 或是 tunneling) 方能穿梭

電阻小

電阻大

Page 9: Lecture 5 奈米碳管之導電性與導電路徑

六連環俯視圖 側視圖

骨架 + 電子雲 ( 形成 3D view)

電子可視為電子波 , 故具備向量性質而空間中向量可分成三個分量 , x, y, z

x

y

z

也就是說電子可延三個方向前進

Page 10: Lecture 5 奈米碳管之導電性與導電路徑

z

由於波函數 (wave function) 沿 z 軸方向只延伸約 1Å 距離 , 故電子波向量沿 z 軸方向受限制 . 但沿 x, y 軸方向不受限制

x

y

Page 11: Lecture 5 奈米碳管之導電性與導電路徑

x

y

x

y

無外加電場沿管軸方向外加電場時

E spiral conduction

Page 12: Lecture 5 奈米碳管之導電性與導電路徑

2D: isotropic conduction ( 骨架式共軛結構 )

碳管之導電路徑

3D: along x (circumference) and y (tube axial) axes conduction without external electric field

3D: spiral conduction occurs when external electric field is applied

Page 13: Lecture 5 奈米碳管之導電性與導電路徑

電子雲于碳管表面

Page 14: Lecture 5 奈米碳管之導電性與導電路徑

Standing wave pattern

Wave function image

STM images

Page 15: Lecture 5 奈米碳管之導電性與導電路徑

碳管之能帶結構

Page 16: Lecture 5 奈米碳管之導電性與導電路徑

石墨晶格 1st Brillourin zone

Page 17: Lecture 5 奈米碳管之導電性與導電路徑

CB

VB

6 k-points

平面圖

3D-view

Page 18: Lecture 5 奈米碳管之導電性與導電路徑

能量最大

Page 19: Lecture 5 奈米碳管之導電性與導電路徑

CB joins with VB at k-points

k-point

VB

CB

EF

Above means that if any sub-bands cross at k-points would be metallic natureotherwise tube is a semiconducting property.

Page 20: Lecture 5 奈米碳管之導電性與導電路徑

One atom one energy level (sub-band) with unpaired electron

Two atoms two energy levels with one bondingand one anti-bonding

bonding

anti-bonding

Three atoms three energy levels with one bonding, one anti-bonding and one unpaired electron

Each sub-band has own velocity and wave vectorIf any of these vectors cross at k-pointsor intercept EF the nanotube would be a metallic nature.

Page 21: Lecture 5 奈米碳管之導電性與導電路徑

Metallic nature

Wave vector

Page 22: Lecture 5 奈米碳管之導電性與導電路徑

Band-gap

Page 23: Lecture 5 奈米碳管之導電性與導電路徑
Page 24: Lecture 5 奈米碳管之導電性與導電路徑

where a1 and a2 are unit vectors, and n and m are integers. A nanotube constructed in this way is called an (n,m) nanotube

Chiral vector = Ch = na1 + ma2

Page 25: Lecture 5 奈米碳管之導電性與導電路徑
Page 26: Lecture 5 奈米碳管之導電性與導電路徑

d = (3)1/2aC-C(m2 +mn +n2)1/2/)

Where aC-C = 1.42 Å: the nearest neighbor carbon-carbon distance

= tan-1[(3)1/2n/(2m+n)]

Example: for zigzag tube when = 0 with (n,0) = (9,0), d= 7.05 Å for armchair tube, (n,n) = (5,5), d= 6.83 Å

Page 27: Lecture 5 奈米碳管之導電性與導電路徑

zigzag edge

armchair

30

: Semiconducting

: metallic

(0,0) (1,0) (2,0) (3,0) (4,0)

(1,1)

(2,2)

(3,3)

(2,1) (3,1) (4,1)

m

n

(n,m) notation

(3,2)

(n,0): zigzag tubes(n,n): armchair tubes(n,m): chiral tubes

2n + m = 3q; (q: integer)

Page 28: Lecture 5 奈米碳管之導電性與導電路徑

為何文獻總是說碳管之電性取決於管徑 (tube diameter) 與螺旋性 (chirality)

波向量隨直徑變化而位移

Page 29: Lecture 5 奈米碳管之導電性與導電路徑

= 15 = 25

Determination by tube Chirality

波向量隨管之螺旋性而變化

Page 30: Lecture 5 奈米碳管之導電性與導電路徑

文獻說不論直徑為何只要 nanotubes 是 armchair edge均是 metallic nature (no band gap)

因為波向量永遠座落於 k-points 上且此六邊形對稱不隨管直徑而變化

Page 31: Lecture 5 奈米碳管之導電性與導電路徑

文獻說 zigzag nanotube 有三分之一會是 metallic tube, 三分之二是 semiconductor

Page 32: Lecture 5 奈米碳管之導電性與導電路徑

Bent Nanotube- Nano-Schottky barrier

armchairzigzag

M1/3M, 2/3S

假設為 S-M( 機率大 ), 此結構具整流效應 , 也就是說電流只能由 M 流向 S無法回流

Page 33: Lecture 5 奈米碳管之導電性與導電路徑
Page 34: Lecture 5 奈米碳管之導電性與導電路徑
Page 35: Lecture 5 奈米碳管之導電性與導電路徑
Page 36: Lecture 5 奈米碳管之導電性與導電路徑

zigzag

armchair

Page 37: Lecture 5 奈米碳管之導電性與導電路徑
Page 38: Lecture 5 奈米碳管之導電性與導電路徑

STM tip

Page 39: Lecture 5 奈米碳管之導電性與導電路徑

STM TIP

Localized state (local Schottky device)

波向量在六連環結構上可來回

波向量不可逆

Page 40: Lecture 5 奈米碳管之導電性與導電路徑

Science by C.M. Leiber et al

Page 41: Lecture 5 奈米碳管之導電性與導電路徑

多層碳管之導電路徑為那一層 --- 每層均可導電 , 但一般是最外層 ,因為只有最外層與金屬電極接觸 ( 注意 : 電子不可能跳躍層與層之間距離而由內層跳至外層

Outermost layer

Innermost layer

電極

e-e-

e-

Page 42: Lecture 5 奈米碳管之導電性與導電路徑

前述碳管電性取決於直徑與螺旋性 , 因此多壁碳管有可能是每層電性不同 .

M

S

Science,292, 706, 2001

Removal of carbon layers byElectrical breakdown

Page 43: Lecture 5 奈米碳管之導電性與導電路徑

MS

Page 44: Lecture 5 奈米碳管之導電性與導電路徑

Contribution to total conductance from individual layers

Page 45: Lecture 5 奈米碳管之導電性與導電路徑

Carbon nanotubes can carry electrical current up to 109 A/cm2

So how to remove carbon layers in a vacuum via electrical breakdown?

Current induced defect formation Self-heating

Defect extension

Removal of carbon layer on the order of ms

Page 46: Lecture 5 奈米碳管之導電性與導電路徑

1. Alternative electronic property of MWNTs, M-S-M-S

2. Removal of each layer reduces current of 19 A.

3. A MWNT conducts electrical current only at outer-layer where they contact with electrodes. Nevertheless, when MWNTs are modulated at higher bias voltage the inner-layers also contribute to nanotube conductance via inter-layer barriers (thermally activated conduction).

Summaries

4. Inner layers only contribute limitedly to nanotube conductance, because they have to overcome interlayer barriers of 0.34 nm spacing.

Page 47: Lecture 5 奈米碳管之導電性與導電路徑

早期量測單根多壁碳管

1. J. Vac.Sci.Tech. B, 13, 327, 1995, by Rivera et al (STM)

2. Syn.Metals. 70, 1393, 1995, by Langer et al (STM + lithographic tech)

3. Nature, 382, 54, 1996, by Ebbesen et al (four terminal + lithographic tech)

4. Science, 272, 523, 1996, by Dai et al (four terminal + lithographic tech)

Page 48: Lecture 5 奈米碳管之導電性與導電路徑

Two terminal method

Four terminal method

Page 49: Lecture 5 奈米碳管之導電性與導電路徑

1. Averaged resistivity of nanotube tube is 10-4 ~ 10-5 m.(arc made)

2. Resistivity of metallic nanotubes is 10-6 m. (arc made)

3. Resistivity of defective carbon nanotubes is 10-2 ~ 10-3 m. (pyrolysis made)

4. Band gap of semiconducting nanotubes is 0.1 – 2 eV, and is thermally activated type (negative temp coefficient of resistivity), also is gate voltage dependent conductance.

5. Metallic nanotubes are gate voltage independent and positive temp coefficient of resistivity.

Summaries of nanotube resistivity measurements

Page 50: Lecture 5 奈米碳管之導電性與導電路徑

Temp (k)

R

Positive temp coefficient of resistivity

Negative temp coefficient of resistivity

Page 51: Lecture 5 奈米碳管之導電性與導電路徑

VG

dI/dV(G) VG independent

VG dependentVG dependent

Page 52: Lecture 5 奈米碳管之導電性與導電路徑

ll

By Baumgartner et al, PRB, 55, 6704, 1997

Resistivity of CNT films

Page 53: Lecture 5 奈米碳管之導電性與導電路徑

e-hopping

Page 54: Lecture 5 奈米碳管之導電性與導電路徑
Page 55: Lecture 5 奈米碳管之導電性與導電路徑

Resistivity of CNT-polymer composites

CNTs polymer

Page 56: Lecture 5 奈米碳管之導電性與導電路徑

electrodes1. Low content of CNT in polymer a. Primary capacitive phase b. High resistance c. No conduction paths between electrodes

2. CNT load increases a. capacitance decreases b. Resistance decrease c. conduction paths begins to establish

3. High CNT load a. Low capacitance b. Low resistance c. Conduction path formation

Page 57: Lecture 5 奈米碳管之導電性與導電路徑

CNT load

R

Electrical threshold

Adv.Mater, 10, 1091, 1998

Page 58: Lecture 5 奈米碳管之導電性與導電路徑

Adv.Mater, 11, 937, 1999

Page 59: Lecture 5 奈米碳管之導電性與導電路徑

Technical challenges for CNTs in polymer

2. Interfacial binding between CNTs and polymers

1. Dispersion of CNTs in polymers

Uneven distribution of CNTs

CNT enriched regions

CNT deficit regions

Page 60: Lecture 5 奈米碳管之導電性與導電路徑

Dispersion of CNTs in polymers

1. Lengthy mechanical blending, (ultra-sonicate, magnetic stirring)

2. Surfactant assistant (lowering interfacial strength, so CNTs move easily in polymer solution)

surfactant

Page 61: Lecture 5 奈米碳管之導電性與導電路徑

CNT enriched region

CNT deficit regions

Chem.Mater, 12, 1049, 2000

Page 62: Lecture 5 奈米碳管之導電性與導電路徑

Interfacial binding between CNTs and polymers

Carbon, 40, 1605, 2002

Page 63: Lecture 5 奈米碳管之導電性與導電路徑
Page 64: Lecture 5 奈米碳管之導電性與導電路徑

Negative reinforcement

Page 65: Lecture 5 奈米碳管之導電性與導電路徑

1. Untreated CNTs + polymer A. Weak bonding between nanotube defects and polymer functional groups

CH3-CH2-CH2-OH

B. Van der waals interaction (polymer chain wrapping around CNT)

CPL, 342, 265, 2001

Page 66: Lecture 5 奈米碳管之導電性與導電路徑

APL,74, 3317, 1999 APL, 73, 3842, 1998

Page 67: Lecture 5 奈米碳管之導電性與導電路徑

Polymer coating

凸出

Page 68: Lecture 5 奈米碳管之導電性與導電路徑

Adv.Mater, 10, 1091, 1998

Page 69: Lecture 5 奈米碳管之導電性與導電路徑

APL, 76, 2868, 2000

Page 70: Lecture 5 奈米碳管之導電性與導電路徑

APL, 79, 4225, 2001

Page 71: Lecture 5 奈米碳管之導電性與導電路徑
Page 72: Lecture 5 奈米碳管之導電性與導電路徑
Page 73: Lecture 5 奈米碳管之導電性與導電路徑
Page 74: Lecture 5 奈米碳管之導電性與導電路徑

2. Treated CNTs + polymers

a. Functionalized CNTs (on tube surfaces)

-OH

=CO

=O

PVA, PVC

Polymers containing amino-acid CH3

親水性疏水性

Page 75: Lecture 5 奈米碳管之導電性與導電路徑

b. Surfactants

CNT親水性疏水性

polymer