Lecture 24

14
1 ECE 303 – Fall 2007 – Farhan Rana – Cornell University Lecture 24 Time Domain Analysis of Transmission Lines In this lecture you will learn: • Time domain analysis of transmission lines • Transients in transmission lines ECE 303 – Fall 2007 – Farhan Rana – Cornell University o Z 0 = z () t V s l = z Time Domain Analysis - Basics Question: How does one handle transmission lines for signals that are NOT time harmonic and when one is NOT dealing with the sinusoidal steady state? a) First thing to realize is that the notion of complex impedance has meaning only for the sinusoidal steady state b) For an arbitrary source voltage V s (t ), one needs to work in the time domain and start from the basic time-domain equations: s R L R ( ) ( ) t t z I L z t z V = , , ( ) ( ) t t z V C z t z I = , , ( ) ( ) 2 2 2 2 2 , 1 , t t z V v z t z V = ( ) ( ) 2 2 2 2 2 , 1 , t t z I v z t z I = LC v 1 =

description

Lecture 24

Transcript of Lecture 24

Page 1: Lecture 24

1

ECE 303 – Fall 2007 – Farhan Rana – Cornell University

Lecture 24

Time Domain Analysis of Transmission Lines

In this lecture you will learn:

• Time domain analysis of transmission lines

• Transients in transmission lines

ECE 303 – Fall 2007 – Farhan Rana – Cornell University

oZ

0=z

( )tVs

l−=z

Time Domain Analysis - Basics

Question: How does one handle transmission lines for signals that are NOT time harmonic and when one is NOT dealing with the sinusoidal steady state?

a) First thing to realize is that the notion of complex impedance has meaning only for the sinusoidal steady state

b) For an arbitrary source voltage Vs(t ), one needs to work in the time domain and start from the basic time-domain equations:

sRLR

( ) ( )t

tzILz

tzV∂

∂−=

∂∂ ,,

( ) ( )t

tzVCz

tzI∂

∂−=

∂∂ ,,

( ) ( )2

2

22

2 ,1,t

tzVvz

tzV∂

∂=

∂∂

( ) ( )2

2

22

2 ,1,t

tzIvz

tzI∂

∂=

∂∂

LCv 1=

Page 2: Lecture 24

2

ECE 303 – Fall 2007 – Farhan Rana – Cornell University

Time Domain Analysis - Basics

oZ

The equation: ( ) ( )2

2

22

2 ,1,t

tzVvz

tzV∂

∂=

∂∂

Has forward moving solutions of the form: ( ) ( )vtzVtzV −= +,

And backward moving solutions of the form: ( ) ( )vtzVtzV += −,

Examples:

( )vtzV −+

z

v

( )vtzV +−

z

v

LCv 1=

ECE 303 – Fall 2007 – Farhan Rana – Cornell University

Voltages and Currents

oZ

( )vtzV −+

z

vVoltage:

( )vtzI −+

z

vCorresponding Current:

( ) ( )t

tzILz

tzV∂

∂−=

∂∂ ,,The current is related to the voltage and satisfies:

And this: ( ) ( )t

tzVCz

tzI∂

∂−=

∂∂ ,,

( ) ( ) ( ) ( )oo Z

vtzVvtzIZ

vtzVvtzI +−=+

−=− −

−+

+ andThe solution is:

++ ++ ++

-- -- --

Current is proportional to voltage since higher voltage means more surface charges and more surface charges mean more current flow

v

Page 3: Lecture 24

3

ECE 303 – Fall 2007 – Farhan Rana – Cornell University

Visualizing Propagation

oZ

0=zl−=z

t

1

Forward moving solutions are of the form: ( )vtzV −+

And backward moving solutions are of the form: ( )vtzV +−

So suppose somebody tells you that at z = -ℓ : ( ) =−+ tV ,l

Then what is the forward moving voltage on the line at t = ℓ / 2v ? T

0=zl−=z

( )vtzV 2, l=+

vt

2l

=

vT

ECE 303 – Fall 2007 – Farhan Rana – Cornell University

Load End Boundary Condition

oZ

0=z

( )tVs

l−=z

sR

LR

Load end boundary condition:

( ) ( ) LRtzItzV ,0,0 ===

( ) ( ) ( )tzVtzVtzV ,0,0,0 =+=== −+

( ) ( ) ( )( ) ( )

oo ZtzV

ZtzV

tzItzItzI,0,0

,0,0,0=

−=

=

=+===

−+

−+

( ) ( ) LtzVtzV Γ===⇒ +− ,0,011

+−

=ΓoL

oLL ZR

ZR

+

-( )tzV ,0=

( )tzI ,0=

For all time t we must have:

Substitute these in this to get:

Page 4: Lecture 24

4

ECE 303 – Fall 2007 – Farhan Rana – Cornell University

Source End Boundary Condition

oZ

0=z

( )tVs

l−=z

sR

LR+

-

Source end boundary condition:

( ) ( ) ( )tzVRtzItV ss ,, ll −=+−==

( ) ( ) ( )tzVtzVtzV ,,, lll −=+−==−= −+

( ) ( ) ( )( ) ( )

oo ZtzV

ZtzV

tzItzItzI,,

,,,ll

lll

−=−

−==

−=+−==−=

−+

−+

( ) ( ) ( )os

oss ZR

ZtVtzVtzV+

+Γ−==−=⇒ −+ ,, ll11

+−

=Γos

oss ZR

ZR

( )tzV ,l−=( )tzI ,l−=

For all time t we must have:

Substitute these in this to get:

ECE 303 – Fall 2007 – Farhan Rana – Cornell University

Step Voltage Source: Turn-On Transient - I

Ω= 50oZ

0=z

( )tVs

l−=z

Ω= 50sR Ω= 150LR

Suppose the source voltage is a step function:( ) ( )tutVs 4=

t

4

21

=ΓL0=Γs

( ) ( )

( )

( ) 20,

,,

=>−=⇒

++

Γ−==−=

+

−+

tzV

ZRZtV

tzVtzV

os

os

s

l

ll

0=zl−=z

( )tzV ,+

( )tzV ,−

( )tzV ,

0=t

Page 5: Lecture 24

5

ECE 303 – Fall 2007 – Farhan Rana – Cornell University

Step Voltage Source: Turn-On Transient - II

Ω= 50oZ

0=z

( )tVs

l−=z

Ω= 50sR Ω= 150LR

Suppose the source voltage is a step function:( ) ( )tutVs 4=

t

4

0=zl−=z

( )tzV ,+

( )tzV ,−

( )tzV ,

2

2

0=zl−=z

( )tzV ,+

( )tzV ,−

( )tzV ,

2

2

vt

2l

=v

t23l

=

21

=ΓL

1

3

0=Γs

ECE 303 – Fall 2007 – Farhan Rana – Cornell University

Ω= 50oZ

0=z

( )tVs

l−=z

Ω= 50sR Ω= 150LR

0=zl−=z

( )tzV ,+

( )tzV ,−

( )tzV ,

2

3

vt l2≥

21

=ΓL

1

• The wave reflected back from the load end does not suffer a reflection at the source end since the source impedance is matched to the line impedance

• After a time greater than 2ℓ/v the line voltage is at constant 3 Volts

Step Voltage Source: Turn-On Transient - III

0=Γs

( ) ( )

( )os

os

s

ZRZtV

tzVtzV

++

Γ−==−= −+

,, ll

Page 6: Lecture 24

6

ECE 303 – Fall 2007 – Farhan Rana – Cornell University

Step Voltage Source: Turn-Off Transient - I

Ω= 50oZ

0=z

( )tVs

l−=z

Ω= 50sR Ω= 150LR

Suppose the source voltage has been at 4 Volts for a long long time – but is shut off at time t = 0

( ) ( )[ ]tutVs −= 14t

4

0=zl−=z

( )tzV ,+

( )tzV ,−

( )tzV ,

2

vt

2l

=

21

=ΓL

1

3

0=zl−=z

( )tzV ,+

( )tzV ,−

( )tzV ,

2

3

0=t

1

0=Γs

1

ECE 303 – Fall 2007 – Farhan Rana – Cornell University

Step Voltage Source: Turn-Off Transient - II

Ω= 50oZ

0=z

( )tVs

l−=z

Ω= 50sR Ω= 150LR

t

0=zl−=z

( )tzV ,+

( )tzV ,−

( )tzV ,

vt l2≥

21

=ΓL

0=zl−=z

( )tzV ,+

( )tzV ,−

( )tzV ,

vt

23l

=

1

0=Γs

1

• After a time greater than 2ℓ/v the line voltage is at constant 0 Volts

Page 7: Lecture 24

7

ECE 303 – Fall 2007 – Farhan Rana – Cornell University

Step Voltage Source: Turn-On Transient – General Case

oZ

0=z

( )tVs

l−=z

sR LR

LΓsΓ

Suppose the source voltage is a step function:( ) ( )tuVtV os =

t

oV

0=zl−=z

( )tzV ,+

( )tzV ,−

( )tzV ,

0=zl−=z

( )tzV ,+

( )tzV ,−

( )tzV ,

vt

2l

=v

t23l

=

os

oo ZR

ZV+

os

oo ZR

ZV+

Los

oo ZR

ZV Γ+

os

oo ZR

ZV+

( )Los

oo ZR

ZV Γ++

1os

oo ZR

ZV+

ECE 303 – Fall 2007 – Farhan Rana – Cornell University

Step Voltage Source: Turn-On Transient – General Case

oZ( )tVssR LR

LΓsΓ

0=zl−=z

( )tzV ,+

( )tzV ,−

( )tzV ,

vt

25l

=

os

oo ZR

ZV+

Los

oo ZR

ZV Γ+

( )Lsos

oo ZR

ZV ΓΓ++

1

( )⎥⎦

⎤⎢⎣

⎡Γ+

ΓΓ++ L

Ls

os

oo ZR

ZV1

( )Los

oo ZR

ZV Γ++

1

• The waves will keep bouncing forever

• But the net voltage on the line will slowly converge to the value one would expect in DC operation

( ) ( ) ( )[ ]

( ) ⎥⎦

⎤⎢⎣

⎡ΓΓ−+

=∞

+ΓΓ+ΓΓ+ΓΓ++

=∞

+

+

Lsos

oo

LsLsLsos

oo

ZRZVzV

ZRZVzV

11,

........1, 32

( ) ( ) ( )[ ]

( ) ⎥⎦

⎤⎢⎣

⎡ΓΓ−

Γ+

=∞

+ΓΓ+ΓΓ+ΓΓ+Γ+

=∞

Ls

L

os

oo

LsLsLsLos

oo

ZRZVzV

ZRZVzV

1,

........1, 32

( ) ( ) ( )

Ls

Lo

Ls

L

os

oo

RRRV

ZRZV

zVzVzV

+=

ΓΓ−Γ+

+=

∞+∞=∞ −+

11

,,,

Page 8: Lecture 24

8

ECE 303 – Fall 2007 – Farhan Rana – Cornell University

Step Voltage Source: Turn-On Transient

Ω= 50oZ

0=z

( )tVs

l−=z

Ω= 150sR Ω= 150LR

21

=ΓL21

=Γs

Source voltage is a step function: ( ) ( )tutVs 1=

t

1

( )tzV ,

0=zl−=z

ECE 303 – Fall 2007 – Farhan Rana – Cornell University

Step Voltage Source: Turn-On Transient – Capacitive Load - I

Ω= 50oZ

0=z

( )tVs

l−=z

Ω= 50sR0=Γs

LC

Source voltage is a step function: ( ) ( )tutVs 1=

t

1

( )tzV ,

0=zl−=z

Page 9: Lecture 24

9

ECE 303 – Fall 2007 – Farhan Rana – Cornell University

Step Voltage Source: Turn-On Transient in a RC Circuit

( )tVsR C

+

-( )tVC

Source voltage is a step function:

( ) ( )tutVs 1=

t

1

( )tVCSolution for is:

t

1( )tVC

time constant CR== τ

( )tVs

( ) ( )tuetVt

C ⎟⎟

⎜⎜

⎛−=

−τ1

At short times the capacitor acts like a shortAt long times the capacitor acts like an open

ECE 303 – Fall 2007 – Farhan Rana – Cornell University

Step Voltage Source: Turn-On Transient – Capacitive Load - II

Ω= 50oZ

0=z

( )tVs

l−=z

Ω= 50sR0=Γs

LC

Source voltage is a step function: ( ) ( )tutVs 1=

t

1

How does one solve this problem?

Transmission line is a linear system

So make a Thevenin equivalent circuit looking in from the load end

( )tVththR

LC

oth ZR =This holds even if the source impedance were not matched to the line impedance (no such thing as impedance transformations in time domain)This is because in transients situations it does not really matter what is on the other side of the line

+

-( )tzV ,0=

Page 10: Lecture 24

10

ECE 303 – Fall 2007 – Farhan Rana – Cornell University

Step Voltage Source: Turn-On Transient – Capacitive Load - II

Ω= 50oZ

0=z

( )tVs

l−=z

Ω= 50sR0=Γs LC

t

1

A forward voltage wave of 0.5 Volts from the source will reach the load at time

vt l=

vt

vll 3

≤≤

To find Vth(t ) remove the load capacitor and look at the open circuit voltage:

+

-( )tVth

vt l3=

?????

( )tVth

vt l=

A reflected voltage wave of 0.5 Volts will be generated at the same time v

t l=

( ) 1=⇒ tVth for

( )tVththR

LC

ECE 303 – Fall 2007 – Farhan Rana – Cornell University

Step Voltage Source: Turn-On Transient – Capacitive Load - III

( )tVththR

LC

So the Thevenin circuit for times is:v

tv

ll 3≤≤

t

1

vt l=

vt l3=

( )tVth

oth ZR = +

-

( )tzV ,0=Solution for is:

t

1

vt l=

vt l3=

( )tzV ,0=

( )tzV ,0= time constant Lth CR== τ

Page 11: Lecture 24

11

ECE 303 – Fall 2007 – Farhan Rana – Cornell University

Step Voltage Source: Turn-On Transient – Capacitive Load - IV

t

1

vt l=

vt l3=

( )tzV ,0=

Since ( ) ( ) ( )tzVtzVtzV ,0,0,0 =+=== −+And is:( )tzV ,0=+

t

5.0

vt l=

vt l3=

( )tzV ,0=+

Therefore must be:( )tzV ,0=−

t

5.0

vt l=

vt l3=

( )tzV ,0=−

5.0−

Ω= 50oZ

0=z

( )tVs

l−=z

Ω= 50sR0=Γs

LCΩ= 50oZ

0=z

( )tVs

l−=z

Ω= 50sR0=Γs

LC

ECE 303 – Fall 2007 – Farhan Rana – Cornell University

Ω= 50oZ

0=z

( )tVs

l−=z

Ω= 50sR0=Γs

LC

Step Voltage Source: Turn-On Transient – Capacitive Load - V

0=zl−=z

( )tzV ,+

( )tzV ,−

( )tzV ,

0.5

0.5

0=zl−=z

( )tzV ,+

( )tzV ,−

( )tzV ,

0.5

vt

2l

=v

t23l

=

0.5

- 0.5

0.5 1

Page 12: Lecture 24

12

ECE 303 – Fall 2007 – Farhan Rana – Cornell University

Ω= 50oZ

0=z

( )tVs

l−=z

Ω= 50sR0=Γs

LC

Step Voltage Source: Turn-On Transient – Capacitive Load - VI

0=zl−=z

( )tzV ,+

( )tzV ,−

( )tzV ,

0.5

τ52+>

vt l

0.5

1

At sufficiently long times the capacitor is charged to 1 Volt

ECE 303 – Fall 2007 – Farhan Rana – Cornell University

Ω= 50oZ

0=z

( )tVs

l−=z

Ω= 50sR0=Γs

LC

Step Voltage Source: Turn-On Transient – Another Perspective

0=zl−=z

( )tzV ,+

( )tzV ,−

( )tzV ,

0.5

0.5

0=zl−=z

( )tzV ,+

( )tzV ,−

( )tzV ,

0.5

vt

2l

=v

t23l

=

0.5

- 0.5

0.5 1

At short times the capacitor acts like a short (ΓL = -1)At long times the capacitor acts like an open (ΓL = +1)CAREFUL: these kind of approximate arguments do not tell you what are the involved time constants

Page 13: Lecture 24

13

ECE 303 – Fall 2007 – Farhan Rana – Cornell University

Step Voltage Source: Turn-On Transient in a LR Circuit

( )tVsR L

+

-( )tVL

Source voltage is a step function:

( ) ( )tutVs 1=

t

1

( )tVLSolution for is:

t

1( ) ( )tuetV

t

L τ−

=

time constantRL

== τ

( )tVs

1

( )tVL

At short times the inductor acts like an openAt long times the inductor acts like a short

ECE 303 – Fall 2007 – Farhan Rana – Cornell University

Ω= 50oZ

0=z

( )tVs

l−=z

Ω= 50sR0=Γs

Step Voltage Source: Turn-On Transient –Inductive Load - I

0=zl−=z

( )tzV ,+

( )tzV ,−

( )tzV ,

0.5

0.5

0=zl−=z

( )tzV ,+

( )tzV ,−

( )tzV ,

0.5

vt

2l

=v

t23l

=

- 0.5

0.5

0.5 0.0

Source voltage is a step function

L

At short times the inductor acts like an open (ΓL = +1)At long times the inductor acts like a short (ΓL = -1)

Page 14: Lecture 24

14

ECE 303 – Fall 2007 – Farhan Rana – Cornell University

Ω= 50oZ

0=z

( )tVs

l−=z

Ω= 50sR0=Γs

L

Step Voltage Source: Turn-On Transient – Inductive Load - II

Source voltage is a step function: ( ) ( )tutVs 1=

t

1

( )tzV ,