Lecture 2/11 - uni-wuppertal.de

38
Lecture 2/11

Transcript of Lecture 2/11 - uni-wuppertal.de

Lecture 2/11

Permutation symmetry example: PH3

1

2

3

GCNP={E, (12), (13), (23), (123), (132) }

The CNP group has 6 elements – but what are the

cyclic permutations (123) and (132) ?

(12) 1 2 3 2 1 3 =

(123) 1 2 3 2 3 1 =

(132) 1 2 3 3 1 2 =

Transposition

Cyclic permutations

{E, (12), (13), (23), (123), (132)}

are all possible permutations

(123) 1 2 3 2 3 1 =

(132) 1 2 3 3 1 2 =

N-convention

S-convention

In this lecture, we use the

N-convention exclusively

These books only use the

N-convention

Per Jensen and P. R. Bunker: The Symmetry of Molecules, in:

"Encyclopedia of Chemical Physics and Physical Chemistry" (J. H. Moore

and N. D. Spencer, Eds.), IOP Publishing, Bristol, 2001.

(123)(12) 1 2 3 2 1 3 = (123)

= 3 2 1 (13) = 1 2 3

(123)(12) = (13)

Examples of „multiplication“

(12)(123) 1 2 3 2 3 1 = (12)

= 1 3 2 (23) = 1 2 3

(12)(123) = (23)

(12)(12) 1 2 3 2 1 3 = (12)

= 1 2 3 E = 1 2 3

(12)(12) = E; (12) = (12)-1

Examples of „multiplication“

(132)(123) 1 2 3 2 3 1 = (132)

= 1 2 3 E = 1 2 3

(132)(123) = E; (132) = (123)-1

(123) = (132)-1

Multiplication table for the S3 group

Products are Arow Acolumn

E

(123)

(132)

(12)

(23)

(13)

E

E

(123)

(132)

(12)

(23)

(13)

(123)

(123)

(132)

E

(13)

(12)

(23)

(132)

(132)

E

(123)

(23)

(13)

(12)

(12)

(12)

(23)

(13)

E

(123)

(132)

(23)

(23)

(13)

(12)

(132)

E

(123)

(13)

(13)

(12)

(23)

(123)

(132)

E

Group axioms

•All possible products RS = T belong to the group

•Group contains neutral element E (which does nothing)

•Each element has inverse element R1 (R1R =RR1 =E) in the group

•Associative law (AB)C = A(BC) holds, e.g.

(12)(123)(23) = (12) [(123)(23)] = [(12)(123)] (23)

= (12)(12) = (23) (23) = E

since (123)(23) = (12) and (12)(123) = (23)

Examples:

C2v = {E, C2, 1, 2 }

C2v(M) = {E, (12), E*, (12)*}

H2O

S3 = {E, (12), (13), (23), (123), (132) } PH3

Subgroups

A and B are both groups

A = {A1, A2, A3, ......................., An }

B = {A1, A2, A3, ....., Am }

m < n

B A

B is a subgroup of A

Math

em

ati

cal to

ols

Example: Subgroup of

S3 = {E, (12), (13), (23), (123), (132) }

Example of Abelian group: AB = BA always

S2 = {E, (12) }

Multiplication table:

E (12)

E E (12)

(12) (12) E

Math

em

ati

cal

too

ls / E

xam

ple

Example: Subgroup of

S3 = {E, (12), (13), (23), (123), (132) }

S3(C)

= {E, (123), (132) }

E (123) (132)

E E (123) (132)

(123) (123) (132) E

(132) (132) E (123)

Multiplication table:

Example of Abelian group: AB = BA always

Math

em

ati

cal

too

ls / E

xam

ple

Isomorphism

A = {A1, A2, A3, ....., An }

B = {B1, B2, B3, ....., Bn }

The two groups are isomorphic if there exists a one-to-one

correspondence of all elements

Ai Bi for all i

so that

Ai Aj = Ak Bi Bj = Bk

Example: C2v and C2v(M)

Math

em

ati

cal to

ols

We compare C2v and C2v(M)......

Multiplication table (Rrow Rcolumn)

E C2 yz xy

E E C2 yz xy

C2 C2 E xy yz

yz yz xy E C2

xy xy yz C2 E

E (12) E* (12)*

E E (12) E* (12)*

(12) (12) E (12)* E*

E* E* (12)* E (12)

(12)* (12)* E* (12) E

C2v and C2v(M) are isomorphic!

C2v

C2v(M)

Math

em

ati

cal

too

ls / E

xam

ple

Homomorphism

A = {A1, A2, A3, ....., An }

B = {B1, B2, B3, .., Bm } m < n

The two groups are homomorphic if there exists a correspondence

of all elements

Ai Bi

so that

Ai Aj = Ak Bi Bj = Bk

Example: C2v(M) and S2 = { E, (12) }

Math

em

ati

cal to

ols

We compare C2v(M) and S2......

Multiplication table (Rrow Rcolumn)

E (12) E* (12)*

E E (12) E* (12)*

(12) (12) E (12)* E*

E* E* (12)* E (12)

(12)* (12)* E* (12) E

C2v(M)

Correspondence:

E and (12) E

E* and (12)* (12) S2

C2v(M) and S2 are homomorphic!

Math

em

ati

cal

too

ls / E

xam

ple

Classes

A = {A1, A2, A3, ....., An }

Ai , Ak A

The elements Ai and Ak belong to the same class,

if there exists an element R A such that

Ai = R-1 Ak R

Each element in A belongs to one class only. M

ath

em

ati

cal to

ols

Example: Class structure of

S3 = {E, (12), (13), (23), (123), (132) }

1. Select element X S3

2. Form R-1 X R for all elements R S3

3. The elements R-1 X R form a class.

1) X = E

R-1 E R = R-1

R = E for all R S3

E forms a class of its own for any group

Math

em

ati

cal

too

ls / E

xam

ple

Example: Class structure of

S3 = {E, (12), (13), (23), (123), (132) }

2) X = (123)

E-1 (123) E = E (123) E = (123)

(123)-1 (123) (123) = E (123) = (123)

(132)-1 (123) (132) = (123) E = (123)

(12)-1 (123) (12) = (12) (123) (12) = (132)

(23)-1 (123) (23) = (23) (123) (23) = (132)

(13)-1 (123) (13) = (13) (123) (13) = (132)

Form R-1 X R for all elements R S3

Math

em

ati

cal

too

ls / E

xam

ple

Example: Class structure of

S3 = {E, (12), (13), (23), (123), (132) }

Form R-1 X R for all elements R S3

3) X = (12)

E-1 (12) E = E (12) E = (12)

(123)-1 (12) (123) = (13)

(132)-1 (12) (132) = (23)

(12)-1 (12) (12) = (12)

(23)-1 (12) (23) = (13)

(13)-1 (12) (13) = (23)

Math

em

ati

cal

too

ls / E

xam

ple

Example: Class structure of

S3 = {E, (12), (13), (23), (123), (132) }

Classes:

{ E }

{ (123), (132) }

{ (12), (13), (23) }

S3 has three classes with 1, 2, and 3

elements, respectively.

Math

em

ati

cal

too

ls / E

xam

ple

Point groups Example: PH3 at equilibrium

Point group:

C3v = {E, C3, C32, 1, 2, 3 }

Symmetry elements:

C3, 1, 2, 3

C3 Rotation axis

k Reflection plane

Other point groups have rotation-reflection axes also

Point group operations work on points in space P

P‘ = 1 P

„Multiplication“ is possible, e.g.

C32 = 2 1

C32 = 2 1

(Geometrical) symmetry operations in C3v

Reflection

Reflection

Rotation

Multiplication table

Multiplication table for C3v

Point groups systematically

Platonic solids

Ih Ih

Td Oh Oh

tetrahedron cube octahedron

dodecahedron icosahedron buckminsterfullerene

Ih

Point groups systematically

C1 Bromochlorofluoromethane CHBrClF

C2h trans-1,2-dichloroethylene

D6h benzene C6H6

Cs thionyl chloride SOCl2

C3h

boric acid

D2d allene C3H4

Cv hydrogen fluoride HF

C2v

water H2O

Td

methane CH4

Dh carbon dioxide CO2

C3v phosphine PH3

Oh cubane C4H8

C2 hydrogen peroxide H2O2

D3 tris(ethylenediamine)cobalt(III) cation

Ih buckminster- fullerene C60

C3

triphenylphosphine

D2h ethylene C2H2

Source: Wikipedia

Multiplication table for C3v

Multiplication table for the S3 group

Products are Arow Acolumn

E

(123)

(132)

(12)

(23)

(13)

E

E

(123)

(132)

(12)

(23)

(13)

(123)

(123)

(132)

E

(13)

(12)

(23)

(132)

(132)

E

(123)

(23)

(13)

(12)

(12)

(12)

(23)

(13)

E

(123)

(132)

(23)

(23)

(13)

(12)

(132)

E

(123)

(13)

(13)

(12)

(23)

(123)

(132)

E

C3v and S3 are isomorphic!

A matrix group

1 0

0 1

2

1

2

3

2

3

2

1

2

1

2

3

2

3

2

1

1 0

0 1

2

1

2

3

2

3

2

1

2

1

2

3

2

3

2

1

´M1 = E E M4 = (12) 1

´ M5 = (23) 2

´ M6 = (13) 3

´M2 = (123) C3

´M3 = (132) C32

C3v C3v S3 S3

M1

M2

M3

M4

M5

M6

M1

M1

M2

M3

M4

M5

M6

M2

M2

M3

M1

M6

M4

M5

M3

M3

M1

M2

M5

M6

M4

M4

M4

M5

M6

M1

M2

M3

M5

M5

M6

M4

M3

M1

M2

M6

M6

M4

M5

M2

M3

M1

Multiplication table for the matrix group

Products are Mrow Mcolumn

Table is an image of those for C3v and S3

Representations

A = {A1, A2, A3, ....., An }

M = {M1, M2, M3, ....., Mm}

A is a general group

M is a matrix group of quadratic (qq) matrices

A and M are isomorphic (n = m):

M is a faithful, q-dimensional representation of A

A and M are homomorphic (n > m):

M is an unfaithful, q-dimensional representation of A

Math

em

ati

cal to

ols

Representations

A = {A1, A2, A3, ....., An }

M = {M1, M2, M3, ....., Mm}

Ai () Mi

so that

Ai Aj = Ak () Mi Mj = Mk

The product Mi Mj is a standard matrix product.

If Ai () Mi,, then Ai-1

() Mi-1, the matrix

inverse to Mi,.

Math

em

ati

cal to

ols

Faithful, two-dimensional representation of

1 0

0 1

2

1

2

3

2

3

2

1

2

1

2

3

2

3

2

1

1 0

0 1

2

1

2

3

2

3

2

1

2

1

2

3

2

3

2

1

´M1 = E E M4 = (12) 1

´ M5 = (23) 2

´ M6 = (13) 3

´M2 = (123) C3

´M3 = (132) C32

C3v C3v S3 S3

M1

M2

M3

M4

M5

M6

M1

M1

M2

M3

M4

M5

M6

M2

M2

M3

M1

M6

M4

M5

M3

M3

M1

M2

M5

M6

M4

M4

M4

M5

M6

M1

M2

M3

M5

M5

M6

M4

M3

M1

M2

M6

M6

M4

M5

M2

M3

M1

Multiplication table for the matrix group

Products are Mrow Mcolumn

Table is an image of those for C3v and S3

C3v, S3, and the matrix group are isomorphic!