Lecture 02 Fundamental Properties of Solids. Crystal SystemShape of UCBravais Lattices PIFC...

25
Lecture 02 Fundamental Properties of Solids

description

3-Dimensional Unit Cells Common Unit Cells with Cubic Symmetry Simple Cubic Body Centered Cubic Face Centered Cubic (SC) (BCC) (FCC)

Transcript of Lecture 02 Fundamental Properties of Solids. Crystal SystemShape of UCBravais Lattices PIFC...

Page 1: Lecture 02 Fundamental Properties of Solids. Crystal SystemShape of UCBravais Lattices PIFC 1CubicCube  2TetragonalSquare Prism (general height)

Lecture 02

Fundamental Properties of Solids

Page 2: Lecture 02 Fundamental Properties of Solids. Crystal SystemShape of UCBravais Lattices PIFC 1CubicCube  2TetragonalSquare Prism (general height)

Crystal System Shape of UC Bravais Lattices

P I F C

1 Cubic Cube

2 Tetragonal Square Prism (general height)

3 Orthorhombic Rectangular Prism (general height)

4 Hexagonal 120 Rhombic Prism

5 Trigonal Parallopiped (Equilateral, Equiangular)

6 Monoclinic Parallogramic Prism

7 Triclinic Parallelepiped (general)

14 Bravais Lattices divided into 7 Crystal Systems

P Primitive

I Body Centred

F Face Centred

C A/B/C- Centred

A Symmetry based concept

We will take up these cases one by one(hence do not worry!)

‘Translation’ based conceptSome guidelines apply

Page 3: Lecture 02 Fundamental Properties of Solids. Crystal SystemShape of UCBravais Lattices PIFC 1CubicCube  2TetragonalSquare Prism (general height)

3-Dimensional Unit CellsCommon Unit Cells with Cubic

Symmetry

Simple Cubic Body Centered Cubic Face Centered Cubic (SC) (BCC) (FCC)

Page 4: Lecture 02 Fundamental Properties of Solids. Crystal SystemShape of UCBravais Lattices PIFC 1CubicCube  2TetragonalSquare Prism (general height)

1 atom/unit cell

(8 x 1/8 = 1)

2 atoms/unit cell

(8 x 1/8 + 1 = 2)

4 atoms/unit cell

(8 x 1/8 + 6 x 1/2 = 4)1 atom/unit cell

(8 x 1/8 = 1)

coordination number 12coordination number 8coordination number 6

Page 5: Lecture 02 Fundamental Properties of Solids. Crystal SystemShape of UCBravais Lattices PIFC 1CubicCube  2TetragonalSquare Prism (general height)

Base Centered Cubic

Atom/unit cell:

Coordination number:

Page 6: Lecture 02 Fundamental Properties of Solids. Crystal SystemShape of UCBravais Lattices PIFC 1CubicCube  2TetragonalSquare Prism (general height)

Primitive & Conventional Unit CellsUnıt Cell Types

Primitive

A single lattice point per cellThe smallest area in 2 dimensions, orThe smallest volume in 3 dimensions

Simple Simple CCubicubic (sc)(sc)ConventionalConventional Cell Cell == Primitive cell Primitive cell

More than one lattice point per cell Volume (area) = integer multiple of

that for primitive cell

Conventional (Non-primitive)

Body Centered Cubic (bcc)Body Centered Cubic (bcc)ConventionalConventional Cell Cell ≠≠ Primitive cell Primitive cell

Page 7: Lecture 02 Fundamental Properties of Solids. Crystal SystemShape of UCBravais Lattices PIFC 1CubicCube  2TetragonalSquare Prism (general height)

1 Cubic Cube P I F C

Lattice point

PI

F

a b c 90

Page 8: Lecture 02 Fundamental Properties of Solids. Crystal SystemShape of UCBravais Lattices PIFC 1CubicCube  2TetragonalSquare Prism (general height)

P I F C2 Tetragonal Square Prism (general height)

IP

a b c

90

Page 9: Lecture 02 Fundamental Properties of Solids. Crystal SystemShape of UCBravais Lattices PIFC 1CubicCube  2TetragonalSquare Prism (general height)

P I F C3 Orthorhombic Rectangular Prism (general height)

PI

F C

a b c

90

Note the position of ‘a’ and ‘b’

a b c One convention

Page 10: Lecture 02 Fundamental Properties of Solids. Crystal SystemShape of UCBravais Lattices PIFC 1CubicCube  2TetragonalSquare Prism (general height)

P I F C4 Hexagonal 120 Rhombic Prism

A single unit cell (marked in blue) along with a 3-unit cells forming a

hexagonal prism

Note: there is only one type of hexagonal lattice (the primitive one)

a b c

90 , 120

Page 11: Lecture 02 Fundamental Properties of Solids. Crystal SystemShape of UCBravais Lattices PIFC 1CubicCube  2TetragonalSquare Prism (general height)

P I F C5 Trigonal Parallelepiped (Equilateral, Equiangular)

90

a b c

Symmetry of Trigonal lattices

Rhombohedral

23m

Note the position of the origin and of ‘a’, ‘b’ & ‘c’

Page 12: Lecture 02 Fundamental Properties of Solids. Crystal SystemShape of UCBravais Lattices PIFC 1CubicCube  2TetragonalSquare Prism (general height)

P I F C6 Monoclinic Parallogramic Prism

90

a b c a b c

Note the position of ‘a’, ‘b’ & ‘c’

One convention

Page 13: Lecture 02 Fundamental Properties of Solids. Crystal SystemShape of UCBravais Lattices PIFC 1CubicCube  2TetragonalSquare Prism (general height)

P I F C7 Triclinic Parallelepiped (general)

a b c

Page 14: Lecture 02 Fundamental Properties of Solids. Crystal SystemShape of UCBravais Lattices PIFC 1CubicCube  2TetragonalSquare Prism (general height)

Closed-packed structuresClosed-packed structures There are an infinite number of There are an infinite number of

ways to organize spheres to ways to organize spheres to maximizemaximize the packing fraction. the packing fraction.

There are different ways you can pack spheres together. This

shows two ways, one by putting the spheres in an ABAB…

arrangement, the other with ACAC…. (or any combination of the

two works)

The centres of spheres at A, B, and C positions (from Kittel)

Page 15: Lecture 02 Fundamental Properties of Solids. Crystal SystemShape of UCBravais Lattices PIFC 1CubicCube  2TetragonalSquare Prism (general height)

Hexagonal Close PackedCell of an HCP lattice is visualized as

a top and bottom plane of 7 atoms, forming a regular hexagon around a central atom. In between these planes is a half-hexagon of 3 atoms.

Be, Sc, Te, Co, Zn, Y, Zr, Tc, Ru, Gd,Tb, Py, Ho, Er, Tm, Lu, Hf, Re, Os, Tl

Page 16: Lecture 02 Fundamental Properties of Solids. Crystal SystemShape of UCBravais Lattices PIFC 1CubicCube  2TetragonalSquare Prism (general height)

Hexagonal Close PackedThere are two lattice parameters in HCP, a

and c, representing the basal and height parameters respectively. In the ideal case, the c/a ratio is 1.633, however, deviations do occur.

Coordination number for HCP are exactly the same as those for FCC: 12

This is because they are both considered close packed structures.

Page 17: Lecture 02 Fundamental Properties of Solids. Crystal SystemShape of UCBravais Lattices PIFC 1CubicCube  2TetragonalSquare Prism (general height)

Hexagonal Close Packed (HCP) Structure:(A Simple Hexagonal Bravais Lattice with a 2 Atom Basis)

The HCP lattice is not a Bravais lattice, because the orientation of the environment of a point varies from layer to layer along the c-axis.

Page 18: Lecture 02 Fundamental Properties of Solids. Crystal SystemShape of UCBravais Lattices PIFC 1CubicCube  2TetragonalSquare Prism (general height)

Structure of NaCl

Page 19: Lecture 02 Fundamental Properties of Solids. Crystal SystemShape of UCBravais Lattices PIFC 1CubicCube  2TetragonalSquare Prism (general height)

Structure of Cesium Chloride(CsCl)

Page 20: Lecture 02 Fundamental Properties of Solids. Crystal SystemShape of UCBravais Lattices PIFC 1CubicCube  2TetragonalSquare Prism (general height)

Carbon structures

Page 21: Lecture 02 Fundamental Properties of Solids. Crystal SystemShape of UCBravais Lattices PIFC 1CubicCube  2TetragonalSquare Prism (general height)

Zinic Sulfide Structure

Page 22: Lecture 02 Fundamental Properties of Solids. Crystal SystemShape of UCBravais Lattices PIFC 1CubicCube  2TetragonalSquare Prism (general height)

Why are planes in a lattice important?

(A) Determining crystal structureDiffraction methods directly measure the distance between parallel planes of lattice points. This information is used to determine the lattice parameters in a crystal and measure the angles between lattice planes.

(B) Plastic deformationPlastic (permanent) deformation in metals occurs by the slip of atoms past each other in the crystal. This slip tends to occur preferentially along specific lattice planes in the crystal. Which planes slip depends on the crystal structure of the material.

     

Page 23: Lecture 02 Fundamental Properties of Solids. Crystal SystemShape of UCBravais Lattices PIFC 1CubicCube  2TetragonalSquare Prism (general height)

(C) Transport Properties In certain materials, the

atomic structure in certain planes causes the transport of electrons and/or heat to be particularly rapid in that plane, and relatively slow away from the plane.

Example: Graphite Conduction of heat is more rapid

in the sp2 covalently bonded lattice planes than in the direction perpendicular to those planes.

Example: YBa2Cu3O7 superconductors

Some lattice planes contain only Cu and O. These planes conduct pairs of electrons (called Cooper pairs) that are responsible for superconductivity. These superconductors are electrically insulating in directions perpendicular to the Cu-O lattice planes.

Page 24: Lecture 02 Fundamental Properties of Solids. Crystal SystemShape of UCBravais Lattices PIFC 1CubicCube  2TetragonalSquare Prism (general height)

(GPa)

Page 25: Lecture 02 Fundamental Properties of Solids. Crystal SystemShape of UCBravais Lattices PIFC 1CubicCube  2TetragonalSquare Prism (general height)

b

c

a

Unit cell: a volume in space that fills space entirely when translated by all lattice vectors.

The obvious choice:

a parallelepiped defined by a, b, c, three basis vectors with

the best a, b, c are as orthogonal as possible

the cell is as symmetric as possible (14 types)

A unit cell containing one lattice point is called primitive cell.

Unit cellAssuming an ideal infinite crystal we define a unit cell by