Lec10-Ceramics and Bioglasses.pdf

download Lec10-Ceramics and Bioglasses.pdf

of 44

Transcript of Lec10-Ceramics and Bioglasses.pdf

  • 7/27/2019 Lec10-Ceramics and Bioglasses.pdf

    1/44

    2/21/2011 1

    Ceramics and Glasses

  • 7/27/2019 Lec10-Ceramics and Bioglasses.pdf

    2/44

    Definitions

    Ceramic: Inorganiccompoundsthatcontainmetallic

    andnonmetallicelements,forwhichinteratomicbondingisionicorcovalent,andwhichare

    generallyformedathightemperatures.

    Glass:(i)Aninorganicproductoffusionthathas

    cooledtoarigidconditionwithoutcrystallization;

    (ii)Anamorphoussolid.

    2/21/2011 2

    http://www.bioen.utah.edu/faculty/pat/Courses/biomaterials/coursenotes.html

  • 7/27/2019 Lec10-Ceramics and Bioglasses.pdf

    3/44

    Definitions

    Amorphous:(i)Lackingdetectablecrystallinity;(ii)

    possessingonlyshortrangeatomicorder;alsoglassyorvitreous

    Glassceramic:Polycrystallinesolidspreparedbythe

    controlledcrystallization(devitrification)ofglasses.

    Bioactivematerial:Amaterialthatelicitsaspecific

    biologicalresponseattheinterfaceofthematerial,resultingintheformationofabondbetweenthetissuesandthematerial.

    2/21/2011 3

    http://www.bioen.utah.edu/faculty/pat/Courses/biomaterials/coursenotes.html

  • 7/27/2019 Lec10-Ceramics and Bioglasses.pdf

    4/44

    CrystalversusGlassyCeramics

    Crystallineceramicshavelongrangeorder,with

    componentscomposedofmanyindividuallyorientedgrains.

    Glassymaterialspossessshortrangeorder,and

    generallydonotformindividualgrains. Thedistinctionismadebasedonxraydiffraction

    characteristics.

    Mostofthestructuralceramicsarecrystalline.

    2/21/2011 4

    http://www.bioen.utah.edu/faculty/pat/Courses/biomaterials/coursenotes.html

  • 7/27/2019 Lec10-Ceramics and Bioglasses.pdf

    5/44

    Materialsthatcanbeclassifiedasbioceramics include:

    Alumina Zirconia

    Calciumphosphates

    Silicabasedglassesorglassceramics, Pyrolytic carbons

    2/21/2011 5

  • 7/27/2019 Lec10-Ceramics and Bioglasses.pdf

    6/44

    Metal CeramicComparison

    2/21/2011 6

    Stiffness is comparable to the metal alloys

    The biggest problem is fracture toughness (sensitivityto flaws). Rigid plastics < Ceramics = Metals

  • 7/27/2019 Lec10-Ceramics and Bioglasses.pdf

    7/44

    7

    WhyUseBioceramics?

    GeneralOptions

    Toxic/Imunogenic/Diseasetransmission?

    MechanicalProperties?

    Bioactive? Degradable?

    Autograft

    Allograft

    Metals

    Ceramics

    Polymers

    Composites

    Excellent

    LowModerate

  • 7/27/2019 Lec10-Ceramics and Bioglasses.pdf

    8/44

    Advantages:

    inertinbody(orbioactiveinbody);Chemicallyinertin

    manyenvironments

    highwearresistance(orthopedic&dentalapplications)

    highmodulus(stiffness)&compressivestrength

    estheticfordentalapplications

    2/21/2011 8

  • 7/27/2019 Lec10-Ceramics and Bioglasses.pdf

    9/44

    2/21/2011 9

    Disadvantages

    brittle(lowfractureresistance,flawtolerance)

    lowtensilestrength(fibersareexception)

    poorfatigueresistance(relatestoflawtolerance)

  • 7/27/2019 Lec10-Ceramics and Bioglasses.pdf

    10/44

    PhysicalFormsBioceramics areavailableas:

    Microspheres Thinlayersorcoatingsonametallicimplant

    Porousnetworks

    Compositeswithapolymercomponent Largewellpolishedsurfaces

    2/21/2011 10

  • 7/27/2019 Lec10-Ceramics and Bioglasses.pdf

    11/44

  • 7/27/2019 Lec10-Ceramics and Bioglasses.pdf

    12/44

    BasicApplications:Orthopedics:

    boneplatesandscrews total&partialhipcomponents(femoralhead)

    coatings(ofmetalprostheses)forcontrolled

    implant/tissueinterfacialresponse spacefillingofdiseasedbone

    vertebralprostheses,vertebraspacers,iliaccrest

    prostheses

    2/21/2011 12

  • 7/27/2019 Lec10-Ceramics and Bioglasses.pdf

    13/44

    2/21/2011 13Trends Biomater. Artif. Organs, Vol 18 (1), pp 9-17 (2004)

  • 7/27/2019 Lec10-Ceramics and Bioglasses.pdf

    14/44

    2/21/2011 14

  • 7/27/2019 Lec10-Ceramics and Bioglasses.pdf

    15/44

    15

    MechanicalProperties

  • 7/27/2019 Lec10-Ceramics and Bioglasses.pdf

    16/44

    Dentistry: dentalrestorations(crownandbridge)

    implantapplications(implants,implantcoatings,ridgemaintenance)

    orthodontics(brackets)

    glassionomercementsandadhesives

    2/21/2011 16

  • 7/27/2019 Lec10-Ceramics and Bioglasses.pdf

    17/44

    Veneers

    2/21/2011 17

    http://www.bioen.utah.edu/faculty/pat/Courses/biomaterials/coursenotes.html

  • 7/27/2019 Lec10-Ceramics and Bioglasses.pdf

    18/44

    Beforeandafter

    2/21/2011 18

    http://www.bioen.utah.edu/faculty/pat/Courses/biomaterials/coursenotes.html

  • 7/27/2019 Lec10-Ceramics and Bioglasses.pdf

    19/44

    Other: innerearimplants(cochlearimplants)

    drugdeliverydevices ocularimplants

    heartvalves

    2/21/2011 19

  • 7/27/2019 Lec10-Ceramics and Bioglasses.pdf

    20/44

  • 7/27/2019 Lec10-Ceramics and Bioglasses.pdf

    21/44

    Osteointegration

    2/21/2011 21

    Hip Implant

    Fast mineralization of the surface

    Surface colonization by the

    osteoblasts

    Stable binding between the formedmineral phase and the implantsurface

    Structural continuity to thesurrounding bone

    http://www.bioen.utah.edu/faculty/pat/Courses/biomaterials/coursenotes.html

  • 7/27/2019 Lec10-Ceramics and Bioglasses.pdf

    22/44

    TypesofBioceramicTissue

    Interactions:Dense,inert,nonporousceramicsattachtobone(ortissue)

    growthintosurfaceirregularitiesbypressfittingintoadefect

    asatypeofadhesivebond(termedmorphologicalfixation)Al2O3

    Porousinertceramicsattachbyboneresultingfromingrowth

    (intopores)resultinginmechanicalattachmentofbonetomaterial(termedbiologicalfixation)Al2O3

    Dense,nonporoussurfacereactiveceramicsattachdirectlyby

    chemicalbondingwithbone(termedbioactivefixation)bioactiveglasses&Hydroxyapatite.

    2/21/2011 22

    http://www.bioen.utah.edu/faculty/pat/Courses/biomaterials/coursenotes.html

  • 7/27/2019 Lec10-Ceramics and Bioglasses.pdf

    23/44

    ProcessingofCeramics1.Compounding Mixandhomogenizeingredientsintoawaterbasedsuspension=slurry

    or,intoasolidplasticmaterialcontainingwatercalledaclay

    2.Forming Theclayorslurryismadeintopartsbypressingintomold(sintering). Thefine

    particulatesareoftenfinegrainedcrystals.

    3.Drying Theformedobjectisdried,usuallyatroomtemperaturetothesocalled

    "green"orleatherystate.

    4.Firing

    Heatinfurnacetodriveoffremainingwater.Typicallyproducesshrinkage,soproducingpartsthatmusthavetightmechanicaltolerancerequirescare. Porouspartsareformedbyaddingasecondphasethatdecomposesathigh

    temperaturesformingtheporousstructure.

    2/21/2011 23

  • 7/27/2019 Lec10-Ceramics and Bioglasses.pdf

    24/44

    2/21/2011 24

    Alumina (Al2O3) andZirconia (ZrO2)

    The two most commonly usedstructural bioceramics.

    Primarily used as modularheads on femoral stem hip

    components. Wear less than metal

    components, and the wear

    particles are generally bettertolerated.

  • 7/27/2019 Lec10-Ceramics and Bioglasses.pdf

    25/44

    FemoralComponent

    2/21/2011 25

  • 7/27/2019 Lec10-Ceramics and Bioglasses.pdf

    26/44

    Alumina(Al2O3):

    singlecrystalaluminareferredtoas

    Sapphire Rubyisaluminawithabout1%of

    Al3+replacedbyCr3+;yieldsred

    color Bluesapphireisaluminawith

    impuritiesofFeandTi;various

    shadesofblue

    2/21/2011 26

  • 7/27/2019 Lec10-Ceramics and Bioglasses.pdf

    27/44

    StructureandProperties: mostwidelyusedformispolycrystalline

    unique,complexcrystalstructure strengthincreaseswithdecreasinggrainsize

    elasticmodulus(E)=360380GPa

    2/21/2011 27

  • 7/27/2019 Lec10-Ceramics and Bioglasses.pdf

    28/44

    FabricationofBiomedicaldevicesfrom

    Al2O3&(ZrO2):

    Devicesareproducedbypressingandsinteringfine

    powdersattemperaturesbetween1600to1700C. AdditivessuchasMgOadded(

  • 7/27/2019 Lec10-Ceramics and Bioglasses.pdf

    29/44

    DentalPorcelain: Ternarycomposition=mixtureofK2OAl2O3SiO2 made

    bymixingclays,

    feldspars,

    and

    quartzCLAY=Hydratedaluminosilicate

    FELDSPAR=Anhydrousaluminosilicate

    QUARTZ=AnydrousSilicate

    2/21/2011 29

  • 7/27/2019 Lec10-Ceramics and Bioglasses.pdf

    30/44

    CalciumPhosphates

    Calciumphosphatecompoundsareabundantinnatureandinliving

    systems. Biologicapatitesconstitutetheprincipalinorganicphaseinnormal

    calcifiedtissues(e.g.,enamel,dentin,bone)arecarbonatehydroxyapatite,CHA.

    Alsofoundinsomepathologicalcalcifications(e.g.,urinarystones,dentaltartarorcalculus,calcifiedsofttissues heart,lung,jointcartilage)

    2/21/2011 30

  • 7/27/2019 Lec10-Ceramics and Bioglasses.pdf

    31/44

    2/21/2011 31Table from: R. LeGeros Chem. Rev., 2008, 108 (11), pp 47424753

  • 7/27/2019 Lec10-Ceramics and Bioglasses.pdf

    32/44

    CalciumPhosphates Severalcalciumphosphateceramicsareconsideredbiocompatible.Of

    these,mostareresorbableandwilldissolvewhenexposedto

    physiologicalenvironments.Someofthesematerialsinclude,inorderofsolubility:

    TetracalciumPhosphate(Ca4P2O9) > AmorphouscalciumPhosphate >alphaTricalciumPhosphate(Ca3(PO4)2) > betaTricalciumPhosphate

    (Ca3(PO4)2) >> Hydroxyapatite(Ca10(PO4)6(OH)2)

    2/21/2011 32

  • 7/27/2019 Lec10-Ceramics and Bioglasses.pdf

    33/44

    Calciumhydroxyapatite

    (Ca10(PO4)6(OH)2):HA

    Hydroxyapatiteistheprimarystructuralcomponentofbone.

    Asitsformulasuggests,itconsistsofCa2+ionssurroundedbyPO42 andOH ions.

    Unliketheothercalciumphosphates,hydroxyapatitedoesnotbreakdownunderphysiologicalconditions.

    2/21/2011 33

  • 7/27/2019 Lec10-Ceramics and Bioglasses.pdf

    34/44

    BoneMimicryPropertiesofCalcium

    Phosphates1) InterconnectingPorosity

    Interconnectingmacroporosity isintroducedinsynthetic

    calciumphosphatesby: Addingporogens (H2O2,polymericporogens)

    Foamingmethods

    Microporosity dependsonsinteringtemperature

    CaP sinteredat1200Cshowssignificantlylessporositythanthatsinteredat1000C

    2/21/2011 34

    (A) Bovine bone-derived HA. (B and C) Biphasic calcium phosphate, BCP. The original interconnecting macroporosity

    in bone was preserved in A. Macroporsity in B and C was introduced using porogens before sintering. C shows the

    presence of concavities.

  • 7/27/2019 Lec10-Ceramics and Bioglasses.pdf

    35/44

    BoneMimicryPropertiesofCalcium

    Phosphates1) InterconnectingPorosity

    Interconnectingmacroporosity isintroducedinsynthetic

    calciumphosphatesby: Addingporogens (H2O2,polymericporogens)

    Foamingmethods

    Microporosity dependsonsinteringtemperature

    CaP sinteredat1200Cshowssignificantlylessporositythanthatsinteredat1000C

    2/21/201135

    SEM of BOP sintered at (A) 105000 and (B) 1200C. Note the presence of microporosities in A and not in B.

    f l

  • 7/27/2019 Lec10-Ceramics and Bioglasses.pdf

    36/44

    BoneMimicryPropertiesofCalcium

    Phosphates2) Biodegradability

    InvitrobiodegradationisdeterminedbysuspendingthematerialinacidicbufferandmonitoringthereleaseofCa2+ionswithtime

    Theacidicbuffer,tosomeextent,mimicstheacidicenvironmentduringosteoclastic activity(boneresorption).

    InvitroorinvivodegradationofCaPs dependsontheircomposition,particlesize,crystallinity (reflectingcrystalsize),porosity,andpreparationconditions.

    Degradationorrateofdissolutionproceedsinthefollowingdecreasingorder: TCPbovineboneAp (unsintered)bovineboneAp (sintered)>corallineHA>HA.

    ComparingdifferentsyntheticCaPs (unsintered),thesolubilitydecreasesintheorderACP>DCPD>OCP>CDA.

    Incorporationofdifferentionsapatitecanincrease(e.g.,CO32,Mg2+,orSr2+)or

    decrease(e.g.,F)thesolubilityoftheapatite.

    2/21/201136

    B Mi i P i f C l i

  • 7/27/2019 Lec10-Ceramics and Bioglasses.pdf

    37/44

    BoneMimicryPropertiesofCalcium

    Phosphates3) Bioactivity

    Bioactivity(propertythatallowsthematerialtodirectlybondwiththe

    newformingbone)wasfirstobservedanddescribedbyHenchet

    al.inspecialsilicabasedbioactive

    glasses(J.Biomed.Mater.Res.1978

    2117)

    Incontrast,anunmineralized fibroustissueformsattheinterfaceofthe

    newboneandbionert materials

    Example:directboneattachmentisobservedonaplasmasprayedHA

    coatedTialloysurface,whilefibrous

    tissueencapsulatestheuncoated

    2/21/201137

    Bone growth and attachment on Ti alloy cylinder grit blasted with apatitic abrasive on one side (A) and alumina

    abrasive on the other side (B). The side grit blasted with apatitic abrasive showed direct bone attachment (A), while the

    side grit blasted with alumina showed indirect bone attachment through a nonmineralized fibrous layer. (Proceedings

    of the 25th Annual International Society of Biomaterials; Woodhead Publishing: Cambridge, U.K.

    , 1998.)

  • 7/27/2019 Lec10-Ceramics and Bioglasses.pdf

    38/44

    BoneMimicryPropertiesofCalciumPhosphates

    4) Osteoconductivity Whenreferringtobiomaterials,osteoconductivity istheabilityofthematerialto

    serveasascaffoldortemplatetoguideformationofthenewlyformingbonealong

    theirsurfaces.

    InvivotheCHAlayerthatformsonCaP biomaterialsurfacesadsorbscirculatingproteins(fromthebiologicenvironment)onwhichbonecellsattach,migrate,

    proliferate,anddifferentiate,leadingtomatrixproductionandbiomineralization.

    2/21/201138

    Schematic representation of the dissolution/precipitation process involved in formation of CHA on CaP surfaces in

    vivo. Acid environment caused by cellular (macrophages, osteoclasts) activity causes partial dissolution of CaP,

    causing increased supersaturation of the biologic or physiological fluid, causing precipitation of CHA incorporating003 and other ions and organic molecules (protein).

  • 7/27/2019 Lec10-Ceramics and Bioglasses.pdf

    39/44

    BoneMimicryPropertiesofCalciumPhosphates

    4) Osteoinductivity Osteoinductivity istheabilityofthematerialtoinducedenovoboneformation

    withoutthepresenceofosteogenic factors(Adesirablepropertyinbonesubstitute

    materials)

    CaP biomaterialsaregenerallyknowntobeosteoconductive butnotosteoinductive.

    Osteoinductive propertiescanbeintroducedtoCaP materialsbytwomethods:

    (1)designingtheCaPs withappropriategeometry,topography,combinedappropriatemacroporosity/microporosity andconcavitiesthatwillallowthe

    entrapmentandconcentrationofcirculatinggrowthfactorsorosteoprogenitor cells

    responsibleforboneformationor (2)combiningCaP withgrowthfactors(BMPs,mesenchymal cells)orbioactive

    proteins(collagen,OPs,orpeptides)

    2/21/201139

  • 7/27/2019 Lec10-Ceramics and Bioglasses.pdf

    40/44

    Calciumhydroxyapatite

    (Ca10(PO4)6(OH)2):HA

    2/21/2011 40

  • 7/27/2019 Lec10-Ceramics and Bioglasses.pdf

    41/44

    Calciumhydroxyapatite

    (Ca10(PO4)6(OH)2):HA gainedacceptanceasbonesubstitute

    repairofbonydefects,repairofperiodontaldefects,maintenanceoraugmentationofalveolarridge,ear

    implant,eyeimplant,spinefusion,adjuvanttouncoated

    implants.

    2/21/2011 41

  • 7/27/2019 Lec10-Ceramics and Bioglasses.pdf

    42/44

    HAis:

    Ca10(PO4)6(OH)2 SincecollageniscloselyassociatedwithHAinnormal

    bone,itisalogicalcandidateforinductionofahost

    response.Insomecasesbonegrowthinornear

    implantedHAismorerapidthanwhatisfoundwith

    controlimplants.IntheliteratureHAissometimes

    referredtoasan"osteoinductivematerial.However,HAdoesnotseemtoinducebonegrowthinthesameway

    as,say,BMP.

    2/21/2011 42

  • 7/27/2019 Lec10-Ceramics and Bioglasses.pdf

    43/44

    BioceramicCoatings Coatingsofhydroxyapatiteareoftenappliedtometallic

    implants(mostcommonlytitanium/titaniumalloysand

    stainlesssteels)toalterthesurfaceproperties. Inthismannerthebodyseeshydroxyapatitetype

    materialwhichitappearsmorewillingtoaccept.

    Withoutthecoatingthebodywouldseeaforeignbodyandworkinsuchawayastoisolateitfromsurroundingtissues.

    Todate,theonlycommerciallyacceptedmethodofapplyinghydroxyapatitecoatingstometallicimplantsis

    plasmaspraying.

    2/21/2011 43

  • 7/27/2019 Lec10-Ceramics and Bioglasses.pdf

    44/44

    BoneFillers Hydroxyapatitemaybeemployedinformssuchas

    powders,porousblocksorbeadstofillbonedefectsorvoids.

    Thesemayarisewhenlargesectionsofbonehavehadtoberemoved(e.g.bonecancers)orwhenboneaugmentationsarerequired(e.gmaxillofacialreconstructionsordentalapplications).

    Thebonefillerwillprovideascaffoldandencouragetherapidfillingofthevoidbynaturallyformingboneandprovidesanalternativetobonegrafts.

    Itwillalsobecomepartofthebonestructureandwillreducehealingtimescomparedtothesituation,ifno

    2/21/2011 44