Learning in renewable energy technologies ... 1.1. Renewable energy sources Renewable energy sources

download Learning in renewable energy technologies ... 1.1. Renewable energy sources Renewable energy sources

of 215

  • date post

    05-Oct-2020
  • Category

    Documents

  • view

    11
  • download

    4

Embed Size (px)

Transcript of Learning in renewable energy technologies ... 1.1. Renewable energy sources Renewable energy sources

  • Learning in Renewable Energy Technology Development

    Leren in de ontwikkeling van hernieuwbare energietechnologieën

    (met een samenvatting in het Nederlands)

    PROEFSCHRIFT

    TER VERKRIJGING VAN DE GRAAD VAN DOCTOR AAN DE UNIVERSITEIT UTRECHT

    OP GEZAG VAN DE RECTOR MAGNIFICUS, PROF. DR. W.H. GISPEN, INGEVOLGE HET BESLUIT VAN HET COLLEGE VOOR PROMOTIES,

    IN HET OPENBAAR TE VERDEDIGEN OP VRIJDAG 13 MEI 2005 DES OCHTENDS OM 10:30 UUR

    Door

    Hans Martin Junginger

    geboren op 7 februari 1976 te Braunschweig, Duitsland

  • Promotor: Prof. Dr. W.C. Turkenburg Verbonden aan de Faculteit Scheikunde van de Universiteit Utrecht Co-Promotor: Dr. A.P.C. Faaij Verbonden aan de Faculteit Scheikunde van de Universiteit Utrecht This thesis was realized within the framework of the ‘Stimuleringsprogramma Energieonderzoek’ sponsored by NWO (Netherlands Organisation for Scientific Research) and Novem (The Netherlands Agency for Energy and the Environment). The research was carried out at the Department of Science, Technology and Society and the Copernicus Institute for Sustainable Development and Innovation of Utrecht University, as part of the AIRE-project, coordinated by the Utrecht Centre for Energy research. CIP GEGEVENS KONINKLIJKE BILBIOTHEEK, DEN HAAG Junginger, Hans Martin Learning in renewable energy technology development/ Hans Martin Junginger - Utrecht: Universiteit Utrecht, Faculteit Scheikunde Proefschrift Universiteit Utrecht. Met lit. opg. – Met samenvatting in het Nederlands. ISBN: 90-393-0486-6 Cover: De watermolen ”De Eendracht” (bouwjaar 1872) en een Vestas V52 850 kW windturbine (bouwjaar 2003) in Kimswerd, Friesland. Op de achterkant is een technische tekening van een wervelbedverbrandingsketel te zien. Cover-design: Tim Meyer-König

  • Meinen Eltern gewidmet

  • Contents

    19 2.2. Renewable energy policy support measures 20

    Chapter 1: Introduction

    2.3. Recent developments 23

    1

    3. The definition of renewable electricity 24

    1. Renewable energy in changing energy systems 1 1.1. Renewable energy sources

    3.1. Definition of the share of renewable electricity to total electricity supply 24

    1 1.2. Renewables in the Netherlands

    3.2. The difference between renewable and sustainable 24

    2

    3.3. Domestic and imported electricity 25

    1.3. Barriers to the penetration of renewable electricity 3 2. Theory of technological learning and experience curves 4

    3.3.1. Domestic renewable electricity 25 3.3.2. Forms of imported renewable electricity

    2.1. Concepts on technological learning and associated cost reductions 4

    25 4. Prospects of renewable electricity in the Netherlands - expectations of some existing studies

    2.2. The experience curve approach 6

    27 4.1. Description of scenario studies on renewable energy in the Netherlands 27

    2.3. Experience curves for (renewable) energy technologies 8

    4.2. Study comparison 28

    2.4. Methodological issues regarding experience curve (for energy application) 9

    4.3. Analysis and comparison 31

    3. This thesis 13

    5. Setting up new images 33

    3.1. The AIRE project 13

    5.1. Methodology 33

    3.2. Objective and scope 13 3.3. Structure of this thesis

    5.2. Image backgrounds 34

    15

    5.3. Input data 36 5.4. Results and discussion

    Chapter 2: Renewable electricity in the Netherlands

    40 6. Conclusions and recommendations

    17

    1. Introduction

    43 7. Acknowledgements

    18 2. Dutch policy goals and instruments

    44

    19 2.1. Governmental policy of the last decade

  • Chapter 3: Global experience curves for wind farms

    65 7.1. Results

    5.2. Determination of levelized electricity costs 89

    45

    1. Introduction

    7.2. General discussion

    46 2. A brief introduction to experience curve theory and technological learning

    67 7.3. Comparison with other recent findings

    90 Appendix 1 Determining marginal turbine installation speed

    47 2.1. General experience curve theory

    68 8. Conclusions and Recommendations

    91

    47 2.2. General methodological issue 48

    68 8.1. Methodology 68

    3. Reasons behind price reductions of wind turbines and wind farms 50

    8.2. Cost reduction options for wind turbines 69

    3.1. Historic factors behind price reductions of wind turbines 50

    8.3. Policy recommendations 69

    3.2. Current developments 51

    9. Acknowledgements 69

    3.3. Future developments 54

    4. Analysis of possible methodological pitfalls 55 4.1. System boundaries and types of wind experience curves

    Chapter 4: Cost reductions prospects for offshore wind farms

    71

    55 4.2. Geographical differences

    1. Introduction and rationale 72

    58 4.3. The possible influence of policy measures: the case of the German market

    2. Development and economics of offshore wind farms 73

    59 4.4. Impact of exchange rates and inflation correction on experience curves 61

    3. Approach and methodology 75 4. Cost reduction potentials

    5. Setting up global experience curves: methodological setup 61

    77 4.1. Offshore wind turbines

    5.1. Global learning system 61

    78 4.2. Grid connection

    5.2. Data selection requirements 62

    78 4.3. Foundations 81

    6. Setting up global experience curves: data selection 63

    4.4. Installation 82

    6.1. UK data 63

    5. Synthesis of total cost reduction possibilities 86

    6.2. Spanish data 64 7. Setting up global experience curves: results and discussion

    5.1. Sensitivity analysis and comparison with other studies 88

    65

    6. Discussion and conclusions 89 7. Acknowledgements

  • Chapter 5: Technological learning and cost reductions in woodfuel supply chains in Sweden

    93

    115

    1. Introduction and goal definition

    1. Introduction and rationale 94

    116

    2. Methodology – the experience curve concept 96

    2. General experience curve methodology and use with biomass energy systems 117 2.1. Mechanisms of technological learning and experience curves

    3. The Swedish background 98

    117 2.2. The experience curve approach, technological learning and bio-energy systems 119

    3.1. Swedish policy concerning biomass 1975-2003 98 3.2. The Swedish PFF supply chains

    3. Electricity from biomass fuelled CHP plants in Sweden 122

    99 4. Data collection and availability

    3.1. Case setting 122

    100 4.1. PFF production costs and prices

    3.2. The learning system for investment costs 123

    100 4.2. PFF production volumes 101

    3.3. The learning system for biomass fuel costs and O&M costs 125

    5. Results 101

    3.4. The learning system for electricity from Swedish CHP plants 127

    5.1. Production quantities 101

    4. Global development of fluidized bed boilers 129

    5.2. Supply chains and production costs 102

    4.1. Case setting 129 4.2. The learning system for investment costs

    5.3. Prices, market situation and relation to production costs 105

    129 5. Centralized biogas plants in Denmark

    5.4. Experience curves for Swedish PFF production 106

    132 5.1. Case setting

    6. Sensitivity analysis 106 7. Application for future cost reduction analysis in Sweden

    132 5.2. Investment cost reductions 133

    108 8. Geographical system boundaries and applicability for other countries – methodological

    5.3. Biogas cost reductions 134

    considerations 109

    6. Discussion and Conclusions 138

    9. Conclusions 112

    6.1. Methodological discussion and conclusions 138

    10. Acknowledgements 113

    139

    Chapter 6: Technological learning in bioenergy systems

    6.2. Learning mechanisms compared in the different case studies

  • Chapter 7: The implications of technological learning on the prospects of specific renewable energy technologies in Europe

    141

    169

    1. Introduction and thesis objectives

    1. Introduction 142

    169 2. Summary 170

    2. Methodology 144

    3. Methodological lessons 174

    2.1. The ADMIRE REBUS model 144

    4. Implications for the market diffusion of renewable energy technologies 175

    2.1.1. Model database 144 2.1.2. The general simulation approach

    146 2.1.3. Cost calculations

    Samenvatting en Conclusies

    177

    147 2.2. Technological learning and experience curves

    1. Inleiding 177

    148 3. Policy and technology assumptions and input data 149

    2. Doelstellingen en onderzoeksvragen van dit proefschrift 177

    3.1. Policy scenario’s to 2020 149

    3. Samenvatting van de resultaten 178

    3.2. Assumptions on technology development 152

    4. Methodologische lessen 183

    4. Results and discussion 155

    5. Implicaties voor de ontwikkeling en marktdiffusie van hernieuwbare energietechnolgieën 184

    4.1. Technology-specific developments 155

    References

    4.2. Competition among renewable technologies 158

    187

    4.3. Options for individual countries 158

    Curriculum Vitae

    4.4. The costs of achiev