LEAG Activity Report · LEAG Report to the PSS: June 23, 2008 LEAG Meeting 2008 Day 2 - Morning...

47
LEAG Activity Report LEAG Activity Report Planetary Sciences Subcommittee June 23, 2008 Lunar Exploration Roadmap. LEAG Meeting. Lunar Science Conference CxAT-Lunar Interface Commercial Development Summit

Transcript of LEAG Activity Report · LEAG Report to the PSS: June 23, 2008 LEAG Meeting 2008 Day 2 - Morning...

Page 1: LEAG Activity Report · LEAG Report to the PSS: June 23, 2008 LEAG Meeting 2008 Day 2 - Morning LEAG: What is required to reduce dependency and cost of human exploration of the Moon

LEAG Activity ReportLEAG Activity Report

Planetary Sciences SubcommitteeJune 23, 2008 Lunar Exploration Roadmap.

LEAG Meeting.

Lunar Science Conference

CxAT-Lunar Interface

Commercial Development Summit

Page 2: LEAG Activity Report · LEAG Report to the PSS: June 23, 2008 LEAG Meeting 2008 Day 2 - Morning LEAG: What is required to reduce dependency and cost of human exploration of the Moon

LEAG Report to the PSS: June 23, 2008

Lunar Exploration RoadmapLunar Exploration Roadmap

The Science Committee recommends that the LunarExploration Analysis Group (LEAG) be tasked to preparea “Lunar Goals Roadmap” that maps science goals toobjectives, and to observations and measurements. Thisroadmap should include an assessment of neededtechnology developments, areas of potential coordinatedactivities for commercial and international participation,and potential feed-forward activities for the exploration ofMars and beyond.

The Charge from the NAC

Page 3: LEAG Activity Report · LEAG Report to the PSS: June 23, 2008 LEAG Meeting 2008 Day 2 - Morning LEAG: What is required to reduce dependency and cost of human exploration of the Moon

LEAG Report to the PSS: June 23, 2008

Exploring the Moon in the 21stExploring the Moon in the 21stCentury: Themes, Goals, Objectives,Century: Themes, Goals, Objectives,Investigations, and Priorities, 2008Investigations, and Priorities, 2008

A Community Effort Coordinated bythe Lunar Exploration Analysis Group

Theme 1: Pursue scientific activities to addressfundamental questions about the solar system, theuniverse, and our place in them.

Theme 2: Use the Moon to prepare for future missions toMars and other destinations.

Theme 3: Extend sustained human presence to the Moonto enable eventual settlement.

Themes: Why are we going to the Moon?

Page 4: LEAG Activity Report · LEAG Report to the PSS: June 23, 2008 LEAG Meeting 2008 Day 2 - Morning LEAG: What is required to reduce dependency and cost of human exploration of the Moon

LEAG Report to the PSS: June 23, 2008

Exploring the Moon in the 21stExploring the Moon in the 21stCentury: Themes, Goals, Objectives,Century: Themes, Goals, Objectives,Investigations, and Priorities, 2008Investigations, and Priorities, 2008

A Community Effort Coordinated bythe Lunar Exploration Analysis Group

5 SATs have been formed. SATs to report by June 30th.Web input from the community is being incorporated.Further input at the Lunar Science Conference in July.Review of draft will be requestedfrom SMD, ESMD, and SOMD.Presentation at the LEAG meeting.Presentation at HQ.

Page 5: LEAG Activity Report · LEAG Report to the PSS: June 23, 2008 LEAG Meeting 2008 Day 2 - Morning LEAG: What is required to reduce dependency and cost of human exploration of the Moon

LEAG Report to the PSS: June 23, 2008

Lunar Science ConferenceLunar Science ConferenceJuly 20-23, 2008July 20-23, 2008

NASA-AMESNASA-AMES

LEAG has an afternoon session onTuesday 22 July.

Presentations from key SATs.

Breakout sessions for community input.

Input wrapped into Roadmap development.

Page 6: LEAG Activity Report · LEAG Report to the PSS: June 23, 2008 LEAG Meeting 2008 Day 2 - Morning LEAG: What is required to reduce dependency and cost of human exploration of the Moon

LEAG Report to the PSS: June 23, 2008

LEAG Meeting 2008LEAG Meeting 2008October 28-31, 2008(won’t coincide with LRO launch!).

Joint with ILEWG and SRR.

Radisson Resort at the Port, in Cape Canaveral, Florida.

Plenary and concurrent sessions - focused on questionspertinent to achieving the “vision” - similar to the lastLEAG meeting.

1st announcement is out.

2nd announcement imminent.

Page 7: LEAG Activity Report · LEAG Report to the PSS: June 23, 2008 LEAG Meeting 2008 Day 2 - Morning LEAG: What is required to reduce dependency and cost of human exploration of the Moon

LEAG Report to the PSS: June 23, 2008

LEAG Meeting 2008LEAG Meeting 2008

ThemesThemesLEAG: Sustainable Moon.ILEWG: International Moon.SRR: Productive Moon.

HighlightsHighlightsLunar Google X-Prize Team presentations.Special Session: Kaguya, Chang’e-1, Chandrayaan-1, LRO.Sessions focused around key questions relevant to thecommunity and lunar exploration.

Page 8: LEAG Activity Report · LEAG Report to the PSS: June 23, 2008 LEAG Meeting 2008 Day 2 - Morning LEAG: What is required to reduce dependency and cost of human exploration of the Moon

LEAG Report to the PSS: June 23, 2008

LEAG Meeting 2008LEAG Meeting 2008

Day 1: PLENARYDay 1: PLENARYWhat pathways need to bedeveloped/obstacles overcome toenhance the implementation of the GES?

Space Agency Reports (status of upcomingmissions, priorities for proposed roboticexploration).

Page 9: LEAG Activity Report · LEAG Report to the PSS: June 23, 2008 LEAG Meeting 2008 Day 2 - Morning LEAG: What is required to reduce dependency and cost of human exploration of the Moon

LEAG Report to the PSS: June 23, 2008

LEAG Meeting 2008LEAG Meeting 2008Day 2 - MorningDay 2 - MorningLEAG: What is required to reduce dependency andcost of human exploration of the Moon forsustained presence?ILEWG: What is the status of Space Law as it relates to the Moon andwhat policy and regulation issues need to be addressed for productiveinternational exploration of the Moon?SRR: What are the steps to extensive use of lunar resources?

Day 2 - AfternoonDay 2 - AfternoonLEAG: What opportunities are afforded within the current architecturefor commercial on ramps and how can these be facilitated?ILEWG: What are the logical architectures, and open implementationto allow effective integration of international elements?SRR: What is the current state of ISRU development?

Page 10: LEAG Activity Report · LEAG Report to the PSS: June 23, 2008 LEAG Meeting 2008 Day 2 - Morning LEAG: What is required to reduce dependency and cost of human exploration of the Moon

LEAG Report to the PSS: June 23, 2008

LAT-2 Review - Potential TaskLAT-2 Review - Potential Task

Further lunar exploration architecture conceptdevelopments should be reviewed by the LEAG, whichrepresents a variety of lunar exploration stake holders andpartners, including the science community, to assess howwell continued developments align with the recommendationsof the NAC from the 2007 Tempe workshop.

Initial Charge

We have declined this request, butsuggested that instead LEAG be involvedwith the CxAT Lunar effort – awaiting NACresponse.

Page 11: LEAG Activity Report · LEAG Report to the PSS: June 23, 2008 LEAG Meeting 2008 Day 2 - Morning LEAG: What is required to reduce dependency and cost of human exploration of the Moon

LEAG Report to the PSS: June 23, 2008

Commercial Development SummitCommercial Development Summiton NASAon NASA’’s Lunar Activitiess Lunar Activities

Tuesday, May 13, 2008 - NASA-HQ

Who: Programmatic, technical, science, commercialand administrative support authorities regarding theplanning of NASA’s lunar activities.

What: A one-day meeting that provides a comprehensive overview ofNASA’s many lunar science and technology programs. An output fromthe meeting will be a narrative document and accompanying set ofpresentation charts that will provide the basis of any follow-on activities.

Why: The information collected will be used to identify opportunities forcooperation and coordination between the programs, and to assess theviability of a commercial development approach to meet the variouslunar science and technology needs.

Page 12: LEAG Activity Report · LEAG Report to the PSS: June 23, 2008 LEAG Meeting 2008 Day 2 - Morning LEAG: What is required to reduce dependency and cost of human exploration of the Moon

LEAG Report to the PSS: June 23, 2008

Lunar Capability ConceptsLunar Capability ConceptsReviewReview

LEAG/NAC invite to the LCCRJune 18-20, 2008.

Johnson Space Center

Page 13: LEAG Activity Report · LEAG Report to the PSS: June 23, 2008 LEAG Meeting 2008 Day 2 - Morning LEAG: What is required to reduce dependency and cost of human exploration of the Moon

LEAG Report to the PSS: June 23, 2008

Page 14: LEAG Activity Report · LEAG Report to the PSS: June 23, 2008 LEAG Meeting 2008 Day 2 - Morning LEAG: What is required to reduce dependency and cost of human exploration of the Moon

Lunar Capability Concept Review(LCCR)

June 18 – 20, 2008Report to the PSS

Transportation Systems Only

Page 15: LEAG Activity Report · LEAG Report to the PSS: June 23, 2008 LEAG Meeting 2008 Day 2 - Morning LEAG: What is required to reduce dependency and cost of human exploration of the Moon

Page 15June 18 - 20, 2008 Section 00: LCCR Agenda

LCCR AgendaDate Time Topic PresenterJune 18 8:00 – 8:15 am Welcome / Introduction Hanley / Muirhead

8:15 – 9:00 am 01: LCCR Overview Knotts9:00 – 9:15 am 02: Lunar Requirements Summary Knotts9:15 – 10:00 am 03: CxAT_Lunar Study Process Joosten10:00 – 11:00 am 04: LSS Concepts Culbert11:00 – 11:30 am Lunch11:30 am – 2:00 pm 05: Altair System Hansen / Connolly2:00 – 4:30 pm 06: Ares V System Creech4:30 – 5:30 pm 07: Ground Operations Quinn

June 19 8:00 – 8:30 pm 08: Ares V and Altair Margins Strategies and Basis Muirhead8:30 – 10:30 am 09: Integrated Performance and Mission Design Martinez10:30 am – 12:30 pm 10: Strategic Analysis Falker12:30 – 1:00 pm Lunch1:00 – 3:00 pm 11: HLR POD Architecture Drake3:00 – 5:00 pm 12: LCCR Product Summary and Forward Plan Parkinson5:00 – 5:30 pm 13: Architecture Summary and Next Steps Muirhead

June 20 8:00 – 9:00 am 14: MCR Wrap-up – Altair Hansen / Graham9:00 – 10:00 am 15: MCR Wrap-up – Ares V Creech10:00 – 10:30 am 16: LCCR Success Criteria Review Knotts10:30 – 11:00 am Summary / Conclusions Hanley11:00 – 11:30 am Board Discussion

Page 16: LEAG Activity Report · LEAG Report to the PSS: June 23, 2008 LEAG Meeting 2008 Day 2 - Morning LEAG: What is required to reduce dependency and cost of human exploration of the Moon

Page 16Section 05: Altair SystemJune 18 - 20, 2008

Heavy LiftLaunch Vehicle

Crew Launch Vehicle

Earth DepartureStage

Crew Exploration Vehicle

LunarLander

Components of Program Constellation

Page 17: LEAG Activity Report · LEAG Report to the PSS: June 23, 2008 LEAG Meeting 2008 Day 2 - Morning LEAG: What is required to reduce dependency and cost of human exploration of the Moon

Page 17Section 05: Altair SystemJune 18 - 20, 2008

Typical Lunar Reference Mission

Ascent StageExpended

ED

S, L

ande

r

CE

V

Earth DepartureStage Expended

Lander Performs LOI100 kmLow LunarOrbit

Vehicles are not to scale.

LowEarthOrbit

ServiceModuleExpended

MOON

EARTH

Direct EntryLand Landing

Page 18: LEAG Activity Report · LEAG Report to the PSS: June 23, 2008 LEAG Meeting 2008 Day 2 - Morning LEAG: What is required to reduce dependency and cost of human exploration of the Moon

Page 18Section 03: CxAT_Lunar Study ProcessJune 18 - 20, 2008

Background

VSEVSE

ESASESAS

GlobalGlobalExplorationExploration

StrategyStrategy

LAT1LAT1

LAT2LAT2CxATCxATLunarLunar

Page 19: LEAG Activity Report · LEAG Report to the PSS: June 23, 2008 LEAG Meeting 2008 Day 2 - Morning LEAG: What is required to reduce dependency and cost of human exploration of the Moon

Page 19June 18 - 20, 2008 Section 01: LCCR Overview Page 19

LCCR Scope

♦LCCR will define a Point of Departure (POD)* transportationarchitecture for the CxP Lunar Capability includingcapabilities to:• Deliver and return crew to the surface of the moon for short durations,

i.e. Human Lunar Return (HLR)• Enable establishment of a lunar outpost

♦This review focuses on the conceptual designs and keydriving requirements for Ares V and Altair (crewed and cargo)

♦This review assumes the capabilities of Ares I and Orion forthe lunar missions

♦This review will show how the POD transportationarchitecture, including EVA and Ground Ops, supports arange of mission campaigns and possible surfacearchitecture solutions• Specific Lunar Surface Systems definition is not part of this review

*This is a POD transportation architecture and NOT the final baseline

Page 20: LEAG Activity Report · LEAG Report to the PSS: June 23, 2008 LEAG Meeting 2008 Day 2 - Morning LEAG: What is required to reduce dependency and cost of human exploration of the Moon

Page 20June 18 - 20, 2008 Section 02: LCCR Requirements Summary

CxP L2 Lunar Design Reference Missions

• DRM 1 : Lunar Sortie Crew DRM− This mission lands anywhere on the Moon, uses only on-board consumables, and leaves

within ~1 week. This mission enables exploration of high-interest science sites, scouting ofLunar Outpost locations, technology development objectives, and the capability to performEVAs.

• DRM 2 : Uncrewed Cargo Lander DRM− Used to support an Outpost, help build one, or merely preposition assets for a subsequent

Sortie Lander, this uncrewed mission lands anywhere on the Moon, and has enoughresources to sustain itself until a component of the Lunar Surface Systems takes over.

• DRM 3 : Visiting Lunar Outpost Expedition DRM− Analogous to an assembly flight to ISS, this mission lands at the site of a complete Outpost

or one under construction, and allows crewmembers to extend their stay by using assets ofthe Outpost rather than only what is carried onboard their Lander.

• DRM 4 : Resident Lunar Outpost Expedition DRM− Realizing one of the goals of US Space Policy, this mission allows a sustained human

presence on the surface of the Moon, since it follows a single crew of four to the surface,transitions them to a habitat at an Outpost, and gets them back to Earth after transitioningover to a replacement crew.

• DRM 5 : Outpost Remote DRM− This mission is separated in function from the other DRMs by focusing only on those Lunar

Surface Systems which need to operate without human intervention, either becausehumans are not present to operate them, or the task is more easily performed in anautonomous or automatic manner.

Page 21: LEAG Activity Report · LEAG Report to the PSS: June 23, 2008 LEAG Meeting 2008 Day 2 - Morning LEAG: What is required to reduce dependency and cost of human exploration of the Moon

Page 21Section 06: Ares V SystemJune 18 - 20, 2008

Building on a Foundation of Proven Technologies- Launch Vehicle Comparisons -

Earth DepartureStage (EDS) (1 J–2X)234.5 t (517.0k lbm)LOX/LH2

Core Stage(5 RS–68B Engines)1,435.5 t(3,164.8k lbm)LOX/LH2

Crew

LunarLander

Altair

5-SegmentReusableSolid RocketBooster(RSRB)

Space ShuttleSpace Shuttle Ares IAres I Ares VAres V Saturn VSaturn V

2 5-SegmentRSRBs

Orion

DAC 2 TR 5

S-IVB(1 J–2 engine)108.9 t(240.0k lbm)LOX/LH2

S-II(5 J–2 engines)453.6 t(1,000.0k lbm)LOX/LH2

S-IC(5 F–1)1,769.0 t(3,900.0k lbm)LOX/RP-1

Height: 111 m (364 ft)Gross Liftoff Mass:

2,948.4 t (6,500.0k lbm)Payload Capability:

44.9 t (99.0k lbm) to TLI118.8 t (262.0k lbm) to LEO

Height: 110 m (361 ft)Gross Liftoff Mass:

3,374.9 t (7,440.3k lbm)Payload Capability:

63.6 t (140.2k lbm) to TLI (with Ares I)55.6 t (122.6k lbm) to Direct TLI

143.4 t (316.1k lbm) to LEO

Upper Stage(1 J–2X)137.1 t(302.2k lbm)LOX/LH2

Height: 99 m (325 ft)Gross Liftoff Mass:927.1 t (2,043.9k lbm)Payload Capability:

25.6 t (56.5k lbm)to LEO

Height: 56 m (184 ft)Gross Liftoff Mass:

2,041.2 t (4,500.0k lbm)Payload Capability:

25.0 t (55.1k lbm)to Low Earth Orbit (LEO)

Ove

rall

Vehi

cle

Hei

ght,

m (f

t)

122 m(400 ft)

91 m(300 ft)

61 m(200 ft)

30 m(100 ft)

0

PPBE Submit (51.0.39)

Page 22: LEAG Activity Report · LEAG Report to the PSS: June 23, 2008 LEAG Meeting 2008 Day 2 - Morning LEAG: What is required to reduce dependency and cost of human exploration of the Moon

Page 22Section 03: CxAT_Lunar Study ProcessJune 18 - 20, 2008 22

Ares V Trade Space

1.5 Launch TLI Capability

Core Booster

Standard CoreW/ 5 RS-68

Opt. Core Length /6 Core Engines

5 SegmentPBAN

Steel CaseReusable

5 SegmentHTPB

Composite CaseExpendable

5.5 SegmentPBAN

Steel CaseReusable

Spacers: 1

LCCR Initial Reference

-2.3 t

67.4 t

51.0.41

51.0.40

69.7 t

+6.1 t

51.0.39

63.6 t

+3.7 t

+5.0 t

+5.0 t 51.0.46

68.6 t

51.0.47

74.7 t

+6.1 t

Spacers: 1

51.0.48

71.1 t

-3.6 t Spacers: 0

Common DesignFeaturesComposite Dry Structuresfor Core Stage, EDS &Shroud

Metallic Cryo Tanks for CoreStage & EDS

RS-68B Performance:Isp = 414.2 secThrust = 797k lbf @ vac

J-2X Performance:Isp = 448.0 secThrust = 294k lbf @ vac

Shroud Dimensions:Barrel Dia. = 10 mUsable Dia. = 8.8 mBarrel Length = 9.7 m

Page 23: LEAG Activity Report · LEAG Report to the PSS: June 23, 2008 LEAG Meeting 2008 Day 2 - Morning LEAG: What is required to reduce dependency and cost of human exploration of the Moon

Page 23Section 03: CxAT_Lunar Study ProcessJune 18 - 20, 2008 23

Recommendations

♦ Approach• Applied Margins/Reserves

Methodology to Altair &Ares V (net loss ofarchitecture “performance”)

• Developed higher fidelitymission analysistechniques (net gain ofarchitecture “performance")

♦ Result• Lunar Architecture still

requires ~12% additionalperformance

• Higher performance Ares Voptions required

• Altair prop loading andloiter requirementsdetermined

Alta

ir W

et M

ass

Delta-V

CrewOptimized

CargoOptimized

Alta

ir W

et M

ass

Post-LOI Loiter Time

Page 24: LEAG Activity Report · LEAG Report to the PSS: June 23, 2008 LEAG Meeting 2008 Day 2 - Morning LEAG: What is required to reduce dependency and cost of human exploration of the Moon

Page 24Section 06: Ares V SystemJune 18 - 20, 2008

Recommended New Point of Departure- Vehicle 51.0.48 -

♦Vehicle 51.0.48 recommended• 6 Engine Core, 5.5 Segment PBAN Steel Case

Booster• Provides Architecture Closure with Margin

♦Recommend Maintaining Vehicle 51.0.47 withComposite HTPB Booster as Ares V Option• Final Decision on Ares V Booster at Constellation

Lunar SRR (2010)• Additional Performance Capability if needed for

Margin or requirements• Allows for competitive acquisition environment for

booster

♦Near Term Plan to Maintain Booster Options• Fund key technology areas: composite cases, HTPB

propellant characterization• Competitive Phase 1 Industry Studies

21.7 m

10 m

58.7 m

71.3 m

23.2 m

10 m

NOTE: These are MEAN numbers

116.2 m

Page 25: LEAG Activity Report · LEAG Report to the PSS: June 23, 2008 LEAG Meeting 2008 Day 2 - Morning LEAG: What is required to reduce dependency and cost of human exploration of the Moon

Page 25Section 06: Ares V SystemJune 18 - 20, 2008

Summary

♦Ares V Initial 2008 Capability (51.0.39) exceeds Saturn Capability by~30%

♦Ares V LCCR analysis focused on meeting lunar requirements anddeveloping margin

♦Ares V is sensitive to Loiter, Attitude, Power, and Altituderequirements in addition to payload performance

♦Recommended new POD Ares V can meet current HLRrequirements with ~6 t of Margin• Additional budget required (~$1.7BRY) for the 5.5 Segment PBAN Booster

and 6 Engine Core

• Plan to maintain new composite HTPB booster as an option

♦Additional analysis required to determine Ares V PLOM and PLOCcontributions for CARD recommendations

Page 26: LEAG Activity Report · LEAG Report to the PSS: June 23, 2008 LEAG Meeting 2008 Day 2 - Morning LEAG: What is required to reduce dependency and cost of human exploration of the Moon

Page 26Section 05: Altair SystemJune 18 - 20, 2008

Altair Lunar Lander

♦ 4 crew to and from the surface• Seven days on the surface• Lunar outpost crew rotation

♦ Global access capability♦ Anytime return to Earth♦ Capability to land 14 to 17

metric tons of dedicated cargo♦ Airlock for surface activities♦ Descent stage:

• Liquid oxygen / liquid hydrogenpropulsion

♦ Ascent stage:• Hypergolic Propellants or Liquid

oxygen/methane

Page 27: LEAG Activity Report · LEAG Report to the PSS: June 23, 2008 LEAG Meeting 2008 Day 2 - Morning LEAG: What is required to reduce dependency and cost of human exploration of the Moon

Page 27Section 05: Altair SystemJune 18 - 20, 2008

Structures and Mechanisms

Propulsion

Thermal Control

Life Support

Other

Propellant

Non-Propellant Fluids

Manager's Reserve

Mass Available for PayloadAvionics Power

Configuration Variants

Outpost Variant45,000 kg

Descent ModuleAscent Module

Sortie Variant45,000 kg

Descent ModuleAscent Module

Airlock

Cargo Variant53,600 kg

Descent ModuleCargo on Upper Deck

Sortie Mission Lander

Page 28: LEAG Activity Report · LEAG Report to the PSS: June 23, 2008 LEAG Meeting 2008 Day 2 - Morning LEAG: What is required to reduce dependency and cost of human exploration of the Moon

Page 28Section 05: Altair SystemJune 18 - 20, 2008

Design Approach

♦ Project examined the multitude of concepts developed in the post-ESAS era, tooklessons learned and began to develop a real design.

♦ Altair took a true risk informed design approach, starting with a minimumfunctionality design and adding from there to reduce risk.

♦ Lunar Design Analysis Cycle (LDAC) 1 developed a “minimum functional”vehicle.

• “Minimum Functionality” is a design philosophy that begins with a vehicle that will perform themission, and no more than that

• Does not consider contingencies• Does not have added redundancy (“single string” approach)• Provides early, critical insight into the overall viability of the end-to-end architecture• Provides a starting point to make informed cost/risk trades and consciously buy down risk• A “Minimum Functionality” vehicle is NOT a design that would ever be contemplated as a

“flyable” design!

♦ LDAC-2 determined the most significant contributors to loss of crew (LOC) andthe optimum cost/risk trades to reduce those risks.

♦ LDAC-3 (current LDAC) is assessing biggest contributors to loss of mission(LOM) and optimum cost/risk trades to reduce those risks.

♦ Goal of the design process is to do enough real design work to understand anddevelop the requirements for SRR.

Page 29: LEAG Activity Report · LEAG Report to the PSS: June 23, 2008 LEAG Meeting 2008 Day 2 - Morning LEAG: What is required to reduce dependency and cost of human exploration of the Moon

Page 29Section 05: Altair SystemJune 18 - 20, 2008

LDAC-2 Overview

♦ The initial Lander Design and Analysis Cycles (May-November 2007) created a“minimal functionality” lander design that serves as a baseline upon which to addsafety, reliability and functionality back into the design with known changes toperformance, cost and risk.

♦ LDAC-2 completed in May 2008. Goal was to “buy down” Loss of Crew (LOC) risks.

♦ “Spent” approximately 1.3 t to buy down loss of crew (LOC) risks.

♦ “Spent” an additional 680kg on design maturity.

Events\Hazards Life SupportThermalPropulsionStructures and MechanismsPowerAvionics

Sum of System Contributions to LOC/Mass Available for Payload

0.0E+00

2.0E-02

4.0E-02

6.0E-02

8.0E-02

1.0E-01

1.2E-01

1.4E-01

1.6E-01

1.8E-01

LDAC-1 LDAC-2

P(LO

C)

0

500

1000

1500

2000

2500

3000

3500

4000

mas

s (k

g)1 in 206

1671 kg

500 kg minimum payload

3652 kg1 in 6

Mass Available for Payload

Individual Subsystem Contribution to LOC:

Page 30: LEAG Activity Report · LEAG Report to the PSS: June 23, 2008 LEAG Meeting 2008 Day 2 - Morning LEAG: What is required to reduce dependency and cost of human exploration of the Moon

Page 30Section 05: Altair SystemJune 18 - 20, 2008

Launch Shroud

♦ Packaging the landerwithin the Ares V launchshroud is akin to building a“ship in a bottle”

♦ Ares V descent stagestructure and landing geardesigned to package withina 10 meter launch shroud(8.8 meter diameterdynamic envelope)

7-Apr-2008 NASA Internal Only Your Initials Here / 2

Migration of StructuralConfiguration to 10m Shroud

♦ Key features– Assumed 8.8m Dynamic Envelope (but not a hard number)– Scaled LDAC1 -Delta w/No Major Configuration Changes– Incorporated Updates for 10m Shroud & For Increased ΔV– Single CAD Update, Two Analysis Cases (10m & 10m + ΔV)– AL and AM Global Geometry Unchanged– Items that Did Change (or that were matured) Include

• resized propellant tanks, engine mounts• modified tank support scheme• added realistic clearances for plumbing, radiators, insulation, struts• Refined AM/DM separation and AM/AL separation/tunnel Details• Some hatch details• Descent stage is now “Clocked ” 45o with respect to AM• Deck Height = 5.9m (upgrade to 10m shroud) , 6.2m (shroud + ΔV)

♦ Mass impact– 10m Shroud Migration Adds +46 kg (DS Truss -44.3 kg, EDSA +90.6 kg)– Increased ΔV Adds +217 kg (+164.4 kg DS Truss, EDSA +52.67 kg) – +47 kg Due to Combination of both 10m Shroud & Increased ΔV– TOTAL MASS INCREASE: 310 kg

7-Apr-2008 NASA Internal Only Your Initials Here / 3

LDAC1-Delta & LDAC2 Configurations

LDAC1-Δ LDAC2

AirlockAM Tankswith RCSPlaceholderStructure

ModifiedCone Supports

9.5m9.5m

ModifiedHatch

Page 31: LEAG Activity Report · LEAG Report to the PSS: June 23, 2008 LEAG Meeting 2008 Day 2 - Morning LEAG: What is required to reduce dependency and cost of human exploration of the Moon

Page 31Section 06: Ares V SystemJune 18 - 20, 2008

Payload Shroud Current Design Concept

Quad Sector Design

Thrust Rail Vertical Separation SystemPayload umbilical separation

Frangible JointHorizontal Separation

• Composite sandwich construction (Carbon-Epoxy face sheets, Al honeycomb core)

• Painted cork TPS bonded to outer facesheet with RTV

• Payload access ports for maintenance,payload consumables and environmentalcontrol (while on ground)

Mass: 9.1 t (20.0k lbm)POD Geometry: BiconicDesign: Quad sectorBarrel Diameter: 10 m (33 ft)Barrel Length: 9.7 m (32 ft)Total Length: 22 m (72ft)

Point of Departure(Biconic)

Leading Candidate(Ogive)

Page 32: LEAG Activity Report · LEAG Report to the PSS: June 23, 2008 LEAG Meeting 2008 Day 2 - Morning LEAG: What is required to reduce dependency and cost of human exploration of the Moon

Page 32Section 07: Ground OperationsJune 18 - 20, 2008

Ares V Shroud Encapsulation Issues

♦Shroud quad sectorconfiguration will likelypreclude partialencapsulation in SSPF

♦Shroud Encapsulationrisks are the same forall 51 Series Ares Vvariants

♦GO and Ares V teamswill continue to studyshroud groundprocessingalternatives.

Page 33: LEAG Activity Report · LEAG Report to the PSS: June 23, 2008 LEAG Meeting 2008 Day 2 - Morning LEAG: What is required to reduce dependency and cost of human exploration of the Moon

Page 33June 18 - 20, 2008 Section 09: Integrated Performance and Mission Design

Temporal Availability Contour Plots

♦ Temporal availability contour plots show the availability of lunar landing sites over the lunarnodal cycle.

♦ The following plots reflect both global sortie mission availability for the Altair alone as well asfor the integrated Orion/Altair mission.

♦ The following proposed ESAS landing sites are indicated in the contours:

Landing Site Latitude Longitude Notes-------------------------------------------------------------------------------------------------------------------------------------------A. South Pole 89.9 S 180 W (LAC 144) rim of ShackletonB. Far side SPA floor 54 S 162 W (LAC 133) near BoseC. Orientale basin floor 19 S 88 W (LAC 91) near KopffD. Oceanus Procellarum 3 S 43 W (LAC 75) inside Flamsteed PE. Mare Smythii 2.5 N 86.5 E (LAC 63) near PeekF. W/NW Tranquilitatis 8 N 21 E (LAC 60) north of AragoG. Rima Bode 13 N 3.9 W (LAC 59) near Bode vent systemH. Aristarchus plateau 26 N 49 W (LAC 39) north of Cobra HeadI. Central far side highlands 26 N 178 E (LAC 50) near DanteJ. North Pole 89.5 N 91 E (LAC 1) rim of Peary B

Page 34: LEAG Activity Report · LEAG Report to the PSS: June 23, 2008 LEAG Meeting 2008 Day 2 - Morning LEAG: What is required to reduce dependency and cost of human exploration of the Moon

Page 34Section 05: Altair SystemJune 18 - 20, 2008

Global Access/LOI Δ-V/LLO loiter

♦ Access to all lunar landing sites (“global access”) requires acombination of additional LOI Δ-V, pre-descent LLO loiter, andpost-ascent LLO loiter• Minimum energy LLO maneuvers are sufficient for polar outpost missions

♦ Altair to size tanks for 1000 m/sec LOI maneuver, loadconsumables for 4 additional days of LLO loiter

Page 35: LEAG Activity Report · LEAG Report to the PSS: June 23, 2008 LEAG Meeting 2008 Day 2 - Morning LEAG: What is required to reduce dependency and cost of human exploration of the Moon

Page 35June 18 - 20, 2008 Section 09: Integrated Performance and Mission Design

Global Sortie Mission Sequence

GIVEN:EpochLanding Site LAT/LONGTLI Window DurationTrans-Lunar Time of FlightPost-LOI Extended LoiterPre-TEI Extended LoiterTrans-Earth Time of FlightEntry Interface Conditions

DETERMINE:Required Propellant Mass for EDS, Altair, andOrion Vehicles.

ACTIVE VEHICLES: 1. ORION ACTIVE 2. ALTAIR ACTIVE 3. EDS ACTIVE

TLI

3-7 DaySurface Stay

ASCENTTO DOCK

Earth-MoonTransfer

3-BurnLOI

3-BurnTEI

RENDEZVOUSIN LEO

Moon-EarthTransfer

EILOI-1

LOI-3

TEI-1 TEI-3TCM’s TCM’s

ASCENTPLANE

CHANGE

1-dayLoiter

1-dayLoiter

Post- LOIExtended

Loiter

Pre-TEIExtended

Loiter

LLO ORBIT MAINTENANCE

Landing Site Specified

DE-ORBITPDI

IC: Post-Ascent LEO

Epoch Specified

Page 36: LEAG Activity Report · LEAG Report to the PSS: June 23, 2008 LEAG Meeting 2008 Day 2 - Morning LEAG: What is required to reduce dependency and cost of human exploration of the Moon

Page 36June 18 - 20, 2008 Section 09: Integrated Performance and Mission Design

Greater Than Zero Temporal Coverage

♦ In order to ensure global lunarsurface access, the followingminimum mission architectureconditions were determined to besufficient for providing access toall lunar landing sites at someepoch during the lunar nodalcycle*:• 48 HR LOI and TEI flight times• 5 days of extended LOI loiter• 3 days of extended TEI loiter

♦ For these conditions the Altair canprovide access to the worst caselanding sites ~8% of the time.

♦ For the integrated capability, thisprovides for access to the worstcase integrated landing sites ~5%of the time.

1000 m/s LOI ΔV Capability

AltairOnly

IntegratedAltairand

Orion

* To the resolution of the MAPP data and given the assumptions in the MAPPanalysis (e.g., no Earth perturbations assumed in LOI and TEI 3-burn maneuvers).

Page 37: LEAG Activity Report · LEAG Report to the PSS: June 23, 2008 LEAG Meeting 2008 Day 2 - Morning LEAG: What is required to reduce dependency and cost of human exploration of the Moon

Page 37Section 05: Altair SystemJune 18 - 20, 2008

LDAC-2 Configuration

Page 38: LEAG Activity Report · LEAG Report to the PSS: June 23, 2008 LEAG Meeting 2008 Day 2 - Morning LEAG: What is required to reduce dependency and cost of human exploration of the Moon

Page 38Section 05: Altair SystemJune 18 - 20, 2008

Vehicle Architecture

DescentModule

AscentModule

Airlock♦ Three Primary Elements

• Descent Module− Provides propulsion for TCMs, LOI,

and powered descent− Provides power during lunar transit,

descent, and surface operations− Serves as platform for lunar landing

and liftoff of ascent module• Ascent Module

− Provides propulsion for ascent fromlunar surface after surface mission

− Provides habitable volume for fourduring descent, surface, and ascentoperations

− Contains cockpit and majority ofavionics

• Airlock− Accommodates two crew per

ingress / egress cycle− Connected to ascent module via

short tunnel− Remains with descent module on

lunar surface after ascent moduleliftoff

Page 39: LEAG Activity Report · LEAG Report to the PSS: June 23, 2008 LEAG Meeting 2008 Day 2 - Morning LEAG: What is required to reduce dependency and cost of human exploration of the Moon

Page 39Section 05: Altair SystemJune 18 - 20, 2008

Altair LDAC-2 Sortie Vehicle Configuration

DM LH2 FuelTank (x4)

AM ConnectingStructure(Remains on DM)

Radiator(x2)

DM Main Engine

Landing Leg(x4) DM RCS Thruster

Pod (x4)

PressurantTank (x2)

LIDS

AM Oxidizer Tank (x2)

AM RCS ThrusterPod (x4)

Pressurant Tank (x2)

AM Fuel Tank (x2)Docking Window(x2)

AirlockEgressHatch

Star Tracker and Comm.Antenna (x2)

Forward FacingWindow (x2)

AM Main Engine

AM-AirlockConnectingStructure

Airlock

AvionicsPlatforms (x2)

Thermal Insulation

LOX Tank SupportCone (x4)

Life SupportOxygen Tank

RCS Tanks

Avionicsboxes (x2)

Problem: central location ofcapsule = bad visibility.

Page 40: LEAG Activity Report · LEAG Report to the PSS: June 23, 2008 LEAG Meeting 2008 Day 2 - Morning LEAG: What is required to reduce dependency and cost of human exploration of the Moon

Page 40Section 05: Altair SystemJune 18 - 20, 2008

Altair Key Messages

♦ Current design demonstrates a lander design that closes withinthe Constellation transportation architecture

♦ Altair has investigated a wide breadth of lander concepts, usinglessons learned to influence the current design concept

♦ Altair has undertaken a process that begins with minimumfunctionality and buys back safety, reliability and additionalcapabilities with known performance, cost and risk impacts

♦ The Altair team is using this design process to help developgood requirements

♦ Design process (particularly risk based design approach) isresulting in a smart government design team

♦ Altair has used its bottoms-up design work to inform sizing oflanders for transportation architecture trades

♦ Altair has developed a detailed bottoms-up cost estimate

Page 41: LEAG Activity Report · LEAG Report to the PSS: June 23, 2008 LEAG Meeting 2008 Day 2 - Morning LEAG: What is required to reduce dependency and cost of human exploration of the Moon

Page 41Section 05: Altair SystemJune 18 - 20, 2008

Sample Return Mass Considerations Nominal return mass: 100 kg. Note that Apollo 17 returned110.5 kg of sample.“The PSS views the sample mass allocation in the currentexploration architecture for geological sample return as too lowto support the top science objectives. We are asking thatCAPTEM undertake a study of this issue with specificrecommendations for sample return specifications.” Tempe Workshop, 2007.

CAPTEM: Minimum of 230 kg total return mass, but noted that CAPTEM: Minimum of 230 kg total return mass, but noted thaton the basis of simple extrapolation of the Apollo 17 mission,on the basis of simple extrapolation of the Apollo 17 mission,sample return mass could be as much as 800 kg.sample return mass could be as much as 800 kg. The recent Lunar Surface Scenarios workshop estimated The recent Lunar Surface Scenarios workshop estimatedthat a 7-day sortie mission with 4 crew and 8 that a 7-day sortie mission with 4 crew and 8 EVAsEVAs could couldcollect 306 kg of samples.collect 306 kg of samples.

100 kg IS NOT ENOUGH100 kg IS NOT ENOUGH

Page 42: LEAG Activity Report · LEAG Report to the PSS: June 23, 2008 LEAG Meeting 2008 Day 2 - Morning LEAG: What is required to reduce dependency and cost of human exploration of the Moon

Page 42Section 05: Altair SystemJune 18 - 20, 2008

Sample Return Mass Considerations

LCCR Action Items:LCCR Action Items: Stochastic modeling of sample return mass Stochastic modeling of sample return masson the Altair ascent stage;on the Altair ascent stage; Study of Orion volume capacity for increasing Study of Orion volume capacity for increasingreturn sample mass.return sample mass.

At the moment there is 1.6 metric tons of At the moment there is 1.6 metric tons ofreserve mass on Altair, not including PMR.reserve mass on Altair, not including PMR.

Page 43: LEAG Activity Report · LEAG Report to the PSS: June 23, 2008 LEAG Meeting 2008 Day 2 - Morning LEAG: What is required to reduce dependency and cost of human exploration of the Moon

Page 43June 18 - 20, 2008 Section 04: LSS Concepts

LCCR & The Surface Architecture(not part of this LCCR)

Can the Constellation transportation system(Ares, Orion & Altair) support the deploymentand operations of a lunar outpost?

Can

Is the POD cargocapacity to thelunar surface

enough?

Do the surfacesystems fit in the

Ares-5 shroud andon the Altair deck?

Have solutions forunloading cargo to

the surface beenidentified?

Logistics 2.331 1.640

Nitrogen 0.000 0.000

0.080

3.971Water 0.000 0.000 0.000

0.000

3.471

Oxygen 0.000 0.000 0.000

TotalPackagingCarriedCategory0.500Pressurized 0.420

Unpressurized 1.911 1.560

14.5514.600.05

CapabilityDifference

Total3.97

Science

OPS - ISRU system - H2 Reduction (0.5t) - TS3

0.69

Capabilitiy 14.60

6.130.850.160.24

14.60Baseline Capability

Lander Mass (t)

LogisticsExcavation - H2 Reduction (0.5t) - TS3 0.05

Logistics

Element Mass (t)

2 - Crew Mobility Chassis 2.13LCT (Lunar Communications Terminal) 0.32

Mobile Power UnitOTSE - Davit

2 - Pressurized Crew Cab

Yes Yes Yes

Page 44: LEAG Activity Report · LEAG Report to the PSS: June 23, 2008 LEAG Meeting 2008 Day 2 - Morning LEAG: What is required to reduce dependency and cost of human exploration of the Moon

Page 44June 18 - 20, 2008 Section 04: LSS Concepts

ISRU

Functional Description:Perform lunar regolith excavation andhandling, oxygen extraction fromregolith, and oxygen storage anddelivery, and support landerpropellant scavenging and waterproduction. For flexibility, two 1/2-scale plants will be delivered and 2sets of excavation tools.

• Total O2 Produced = 1000 kg/yr• Mass per O2 plant = 219 kg• Power per plant = 3.93 kW• Total Regolith = 415 kg/day• Excavation Tools = 42.7 kg(each)• Excavation Time = <1 hr/day

RESOLVESubscale O2Extraction andVolatile releasereactor

Oxygen Extraction from Regolith

Regolith Excavation and Movement

Excavation and O2 Plantmounted on mobile

chassis

TS 2/3 O2 Production Systemwith Storage and Thermal

Control

1 t of oxygen per year requires a regolith excavation rateof <1/2 cup per minute! (1% efficiency - 70% light)

Largehoppershold 1day’s

regolith

Radiator panelsfold down for

launch

Hoppersraised to

allowdumpingof spentregolith

into CMC

Scoop lifts11 kg regolith/scoop

(38 scoops to fillhoppers for day)

1st Gen O2 Production System(660 kg/yr ) for Field Demo, Nov. 08

Cratos Excavator

Area Clear Blade on CMC

Bucketwheel Excavator

O2 Storage

H2OProcessing

Regolith H2Processing

Page 45: LEAG Activity Report · LEAG Report to the PSS: June 23, 2008 LEAG Meeting 2008 Day 2 - Morning LEAG: What is required to reduce dependency and cost of human exploration of the Moon

Page 45June 18 - 20, 2008 Section 04: LSS Concepts

Surface Architectures AssessedThree surface architectures were developed in support of LCCR:• Rapid Outpost Buildup (TS-1)

− Deliver as much outpost capability as soon as transportation system permits− Full-up outpost based on the recommendations from LAT-2.− Substantial robustness through element duplication

• Initial Mobility Emphasis (TS-2)− Temper outpost build-up based on affordability with initial emphasis on mobility

capabilities− Full-up outpost has less volume and limited eclipse operating capability than TS1− Robustness achieved through functional reallocation− Assumed water scavenging

• Initial Habitation Emphasis (TS-3)− Temper outpost build-up based on affordability with initial emphasis on core habitation

& exploration capabilities− Full-up outpost has less volume and limited eclipse operating capability than TS1− Robustness achieved through functional reallocation− Assumed water scavenging

Surface Systems Review in 2010

Page 46: LEAG Activity Report · LEAG Report to the PSS: June 23, 2008 LEAG Meeting 2008 Day 2 - Morning LEAG: What is required to reduce dependency and cost of human exploration of the Moon

Page 46June 18 - 20, 2008 Section 13: Architecture Summary and Next Steps

Lunar Transportation Architecture Recommendations

♦ Ares-V• Maximize commonality between Lunar and Initial Capabilities: Ares-V

51.0.48− 6 engine core, 5.5 segment PBAN steel case booster− Provides architecture closure with additional margin− High commonality with Ares I

• Continue to study the benefits/risk of improved performance: Ares-V51.0.47− Final decision on Ares V booster at Program SRR (6/2010)− Additional performance capability if needed for margin or requirements− Allows for competitive acquisition environment for booster− Requires further study and technology investment funding

♦ Altair• Provide a robust capability to support Lunar Outpost Missions:

− Optimize for crew missions (500 kg + airlock with crew)− Lander cargo delivery: ~ 14,500 kg in cargo only mode

• Size the system for global access while allowing future mission andsystem flexibility− Size Altair tanks for 1,000 m/s LOI delta-v− Size for an additional 4 days of Low-Lunar Orbit loiter (site specific)

• Retain adequate margins:− ~1,000 kg Program reserve at TLI− Minimum of 40% total Altair margin/reserve

♦ Orion• Continue to mature Orion vehicle concept• Maintain strong emphasis on mass control

− Continue to hold Orion control mass to 20,185 kg at TLI• Increase emphasis on evolution of Orion Block 2 to support lunar

Outpost missions

Page 47: LEAG Activity Report · LEAG Report to the PSS: June 23, 2008 LEAG Meeting 2008 Day 2 - Morning LEAG: What is required to reduce dependency and cost of human exploration of the Moon

Page 47June 18 - 20, 2008 Section 13: Architecture Summary and Next Steps

DRMs/Mission Key Driving Requirements MappingLunar Sortie Design Reference Mission

Altair ΔV for LOI1,000 m/s (3,281 ft/s)

<5.8d~4d

MOON

EARTH

LLO 100 km (54nm)

Direct or Skip Entry

ERO 241km(130nm)

905 t (2M lbm) 3,698 t (8.2 Mlbm)

1 - 5 d

EDS Performs TLI 3,175 m/s (10,417 ft/s)

1-5d

Water Landing

7 d

Ascent1,881 m/s (6,171 ft/s)

Altair• Crew of 2-4 + 500 kg (1,102 lbm) cargo• Global Access• Landing accuracy ≤100 m (328 ft) with 95%

accuracy (♦)• 373 (♦) hrs crew support• Airlock functionality• LOC ≤ 1 in 250 (♦)• LOM ≤ 1 in 75 (♦)

3-burn LOI1-4 days Altair LLO loiter

100 kg (220 lbm) pressurized return payloadTBD hrs post lunar ascent

Ares-I Delivered Mass 23.6 t (52,070 lbm)4 days LEO loiter

EDS TLI Injection Capability 66.1 t (145,726 lbm) + 5 t reserve

-20x185 km (-11x100 nm), 29º

Altair TLI Injected Control Mass 45 t (99,200 lbm)EVA Mass Allocation 171.5 kg (378.0 lbm)FCE Mass Allocation 133.8 kg (295.0 lbm)

≥ 90 min.

Altair Performs LOI1,000 m/s (3,281 ft/s)

(Propellant load for 950 m/s)

TEI 1,492 m/s (4,895 ft/s)(Tanks sized for 1, 560 m/s (5,118 m/s)

Orion• Orion TLI Control Mass 20,185 kg (44,500 lbm)• FCE & EVA Mass Allocation 675 kg (1,488 lbs)• Orion 382 kg (842) unpressurized cargo• 21.1 days crew support• LOC ≤ 1 in 200• LOM ≤ 1 in 50

1d

7 d

Multi-Mission Phase Requirements• Anytime Abort• LOC ≤ 1 in 100• LOM ≤ 1 in 20 Descent ΔV 2,030 m/s (6,660 ft/s)

LH2/LO2 descent engine restartable/throttleable

Ares V• 4 launches per year (6 launches per year)• Weather exclusive launch availability TBD• 2 5.5 sebment SRBs; 6 RS-68B• LOC ≤ 1 in 37,000• LOM (vehicle) ≤ 1 in 125

♦ A TBD or TBR is associated withthis requirement