LCM Processing and Characterization of CNT … Processing and Characterization of CNT Modified Fibre...

41
LCM Processing and Characterization of CNT Modified Fibre Reinforced Composites. M.Ubaid Ullah Khalid

Transcript of LCM Processing and Characterization of CNT … Processing and Characterization of CNT Modified Fibre...

  • LCMProcessingandCharacterizationofCNTModifiedFibreReinforcedComposites.

    M.UbaidUllahKhalid

  • /2 /

    WHOAMI?

    Graduation: B.ScPolymerEngineeringfromUniversityofEngineeringandTechnologyLahoreSession:2006to2010

    Post Graduation: M.ScPolymerTechnologyfromHochschuleAalenandUniversittBayreuthSession2011to2013

    Professional FibreCraftIndustriesAffiliation: FromAugust2010toFebruary2011

    May2013topresent

    CoreAreaofInterest:Thermosettingresinsbased FibreReinforcedcomposites

  • /3 /

    WHATISFIBRECRAFTINDUSTRIES?Intro: Pioneerinthefieldofadvancedandhigh

    performancecompositesinPakistan.

    Founded: 1985

    Where: Lahore Pakistan

    Staff: >150skilled

    Annualsales: Rs.230million

    Customers: OilandGassectorChemicalprocessingindustryMarineindustryElectricalDistributionCompaniesDefenceorganizationsPowerPlantsSecurity Forces

  • OurBrandsOurBrands

  • /5 /

    ProcessesandProducts

    Processes ContactMolding Pultrusion(Pultron) Pulwinding SMC RollWraping FilamentWinding(McleanAnderson) VacuumInfusion RTM(PlastechUK) Extrusion(Leistritz) Thermoforming

    FRP/GRPPipes

    HumiditycontrolledHumiditycontrolledEnclosures/Containers

    CoolingTowers

    upto90,000voltsLadders,safe

    upto90,000volts

    DoubleHull

    boats

    DoubleHullUnsinkable

    boats

    FilamentFilamentwoundtanksupto100,000

    liters

    Fanblades

    windmills

    FanbladesforCoolingtowers/windmills

    PortaCabins

    CustomizedFRP/GRPfabricationsbasedoncustomersneedsand

    requirements.

  • /6 /

  • WhatwillIdiscuss?

    LCM Processing and Characterization of CNTModified Fibre Reinforced Composites.

    WhatareCNTs?

    InfluenceontheMechanicalPropertiesofNanocompositesandHybridComposites.

    MechanismsoffailureinCNTmodifiedcomposites.

    HowtoinsertCNTsintoHybridComposites.

    HowtodeterminewhetherCNTsareequallydistributedinthecomposite.

  • Introduction

    /8 /

    DemandofComposites

    Growthopportunitiesinglobalcompositeindustry,20122017;ChuckKazmierski,Lucintel(2012)

    Annualincreaseof8.2%inthedemandof

    composites.

    Aerospace

    Automobile

    Wind energy

    Construction

  • /9 /

    Anisotropyincompositeproperties

    KimandKhan(2011),IJASS(12),115133RajoriaandJalili(2005),CompositeScienceandTechnology(65),20792093Yadamaetal.(2006),CompositesPartA(37),issue3,385392

    Limitationsrelatedtocompositesproperties

    In plane properties > Out of plane properties

    Fatigue Damping Interlaminar properties Delamination characteristics

    Matrix / interface dominatedfailure Delamination caused

    under comrpression

    Introduction

  • ZBindingofinplanefibers

    Stateoftheart

    Improvingmatrixdominatedproperties

    APMouritz(2004),JournalofMaterialsdesignandApplication,PartLFanetal.Composite:PartA39(2011)

    /10 /

    CNT as interlaminar reinforcement

    Improving through thickness properties

    Rubber modification

    Thermoplastic toughening 3D fibers Z-binding Nanofillers

    Carbon nanotubes

  • /11 /

    CarbonNanotubes

    Iijima,Nature(1991)Vol.354(6348),5658Demcyzketal.(2002),MatSci&EngA334(12):173178TohoTenaxEurope

    Graphenesheetsrolledintoconcentriccylinders. SynthesizedbyIijimain1991.

    Features: Outstandingspecificsurfacearea(~1300m2/g). Excellentelectrical(105107 S/m)andthermal(>3000W/mK)conductivities.

    Properties of Carbon Nanotubes compared with other materials

    Material Young's Modulus

    [GPa]

    Tensile Strength [GPa]

    Elongation [%]

    SWCNT 1054E - 5000T ~126T ~16E

    MWCNT 800 950E ~150E -Carbon fiber ~430 ~5.3 1.5 - 2E-Glass Fiber ~73 ~2.2 ~3,5Epoxy ~3.5 0.08 1 - 10

    Single walled and Multi walled CNTs

    E- experimental result,T- theoretical results

    Introduction

  • Stateoftheart

    /12 /

    IntegratingCNTsintoFRPs

    Bekyarovaetal.((2007)LangmunirVol.23,39704Jinetal.(2012)I&EC,Vol.51(13),49274933Lietal.(2009),CompositesPartA;Vol.40(12),20042012

    DirectgrowthofCNTsonfibersurfaceandElectrophoresis

    Manufacturing of 3D fibers

    Direct growth of carbon nanotubes on fibers.

    Electrophoresis Transfer printing

    Powder dispersion or interleaf toughening

    Dispersion of carbon nanotubes in the interlayers.

    Matrix modification

    Direct mixing of carbon nanotubes in the matrix.

    Cloth plyTows of MWCNTCovered fibers

    Ni2+ C2H2

  • /13 /

    Bekyarovaetal.((2007)LangmunirVol.23,39704Jinetal.(2012)I&EC,Vol.51(13),49274933Lietal.(2009),CompositesPartA;Vol.40(12),20042012

    Manufacturing of 3D fibers

    Direct growth of carbon nanotubes on fibers.

    Electrophoresis Transfer printing

    Powder dispersion or interleaf toughening

    Dispersion of carbon nanotubes in the interlayers.

    Matrix modification

    Direct mixing of carbon nanotubes in the matrix.

    CNT dispersion as an interlayer

    StateoftheartIntegratingCNTsintoFRPs

  • /14 /

    Bekyarovaetal.((2007)LangmunirVol.23,39704Jinetal.(2012)I&EC,Vol.51(13),49274933Lietal.(2009),CompositesPartA;Vol.40(12),20042012

    Manufacturing of 3D fibers

    Direct growth of carbon nanotubes on fibers.

    Electrophoresis Transfer printing

    Powder dispersion or interleaf toughening

    Dispersion of carbon nanotubes in the interlayers.

    Matrix modification

    Direct mixing of carbon nanotubes in the matrix.

    Direct mixing of CNTs into the matrix or matrix modification

    StateoftheartIntegratingCNTsintoFRPs

  • Liquidcompositemolding

    /15 /

    IssuerelatedtoCNT/epoxyprocessing

    Greenetal.Composites:PartA40(2009)14701475Romhanyetal.MaterialScienceForumVol.589(2008)169274

    FiltrationofCNTsbythereinforcementfabric. ResultsinlocalvariationinCNTcontent.

    CNTfiltrationvisibleonaglassfiberlaminateproducedusingRTM.

    Intra tow filtration

    Inter tow filtration Aim:Determination / Evaluation of carbon nanotubes filtration.Aim:Determination / Evaluation of carbon nanotubes filtration.

    CNT/Polymer

    Agglomerates

    (Not to scale)

  • Whatstheplan?

    /16 /

    Processingandcharacterizationofhybridcomposites

    Manufacturing of hybrid composites. Processing method: Liquid composite molding

    Development of effective physical characterization methods. Evaluation of filtration.

    Determination ofmechanical properties. Role of carbon nanotubes on fracture mechanisms.

  • Approach

    /17 /

    Projectbreakdown

    Intrinsic properties of CNTs Electrical & Thermal conductivity Mechanical properties Distinct vibrational modes

    Nano- / Hybrid compositesProcessing :Dispersion HomogeneityCharacterization : Physical

    Based on intrinsic properties of CNTs

    Mechanical Nanocomposites Hybrid composites

    Carbon Nanotubes

    Nanocomposites

    200nmGlass fiber

    Matrix

    Hybrid composites

    Processing&

    Characterization

  • Materialselection

    Materials

    DOW,LiquidEpoxyresins(Brochure)

    DGEBA n=0.15,functionality =2

    /18 /

    Epoxy DER 331 (Resin) EC5430 (amine hardener)Matrix

    BAYTUBES (Multi walled CNTs) with different surface functionalitiesCarbon nanotubes

    E-Glass fiber fabric 701 g/m2 (Non woven unidirectional)

    Layup [0]2s, [0]3sReinforcement

  • Results(CNT/epoxynanocomposites)

    /19 /

    Flexuralproperties

    DINENISO178Crossheadspeed2mm/min

    Neatepoxy(top),CNT/epoxy(bottom)

    0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,80

    20

    40

    60

    80

    100

    120

    140

    160

    180

    Bending Strength

    Bend

    ingM

    odul

    us /

    MPa

    Bend

    ing

    Stre

    ngth

    / M

    Pa

    Concentration / wt.%

    0

    400

    800

    1200

    1600

    2000

    2400

    2800

    3200

    3600

    Bending Modulus

    10 m

    Significant improvement by just 0.1 wt.% CNT. Slight reduction after 0.5 wt.% due to tube-tube contacts. Clearly altered fracture surface.

  • 0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,00,0

    0,2

    0,4

    0,6

    0,8

    1,0

    1,2

    Critical stress intensity factor Stiffness from Saxena and Hudak method

    Concentration / wt.%

    K Ic

    / MPa

    m

    0

    600

    1200

    1800

    2400

    3000

    3600

    ESH

    / N

    /mm

    Results(CNT/epoxynanocomposites)

    /20 /

    Fracturetoughness

    ISO13586,CTspecimenTestspeed:10mm/min,1NPreload

    Remarks: Slightimprovementin

    fracturetoughness. Materialinhomogeneities

    affectingthetoughness. Stiffnessremained

    unaffected.

    Neatepoxy(left),CNT/epoxy(middle&right)

    10 m 100 m 5 m

    Agglomerates

  • Micromechanicsmodellingapproach

    /21 /

    Thostenson&ChouJ.Phys.D:Appl.Phys.36(2003)573582

    Thostenson and Chou Modification for random orientation of CNTs

    NomenclatureENC Stiffness of nanocompositeENT Stiffness of nanotubeEm Stiffness of matrixt Thickness of graphite layerNT Nanotube contentAR Aspect ratiol Length of nanotubed Diameter of nanotube

    Halpin Tsai for parallel orientation of

    glass fiber

    Thostenson and Chou for parallel

    orientation of CNTs

    Thostenson and Chou for random

    orientation of CNTs

    Halpin Tsai for random orientation of

    glass fiber

    Modification by Thostenson & Chouregarding the eff.geometry of CNTs

    ),,,,,,( NTNTmNC tdlAREEfE

  • Results(CNT/epoxynanocomposites)

    /22 /

    Micromechanicsmodelling PotentialofCNTs

    Thostenson&Chou(2003),JournalofPhysics,Vol.36,Iss.5

    0 400 800 1200 1600 2000 2400 2800 32000

    10

    20

    30

    40

    50

    60

    70

    80

    CNT Length / nm

    SWCNT

    DWCNT

    MWCNT

    CNT diameter

    0.7 nm

    1 nm

    2 nm

    4 nm

    10 - 21 nm

    Drawback:The models do not consider: Agglomeration Tube-tube contacts CNT straightness

    Diameter plays a more important role than the aspect ratio and smaller

    diameter tubes have higher reinforcement capability.

    For CNT content of 0.5 wt.%.

    0 100 200 300 400 500 6000

    5

    10

    15

    20

    25

    30

    35

    40

    Aspect Ratio

    CNT diameter1 nm

    2 nm

    4 nm

    10 - 21 nm

  • Results(CNT/epoxynanocomposites)

    /23 /

    Dynamicmechanicalanalysis

    TorsionRectangular,Temp=150oCto170oC,T=3K/min,Strainamplitude=0.1%ResultsaveragedforthreesamplesRajoriaetal.(2005)CompSciTechVol.65(14):20792093

    -120 -90 -60 -30 0 30 60 90 120 150

    G' /

    Pa

    Neat epoxy

    106

    107

    108

    109

    1010

    fCNT/epoxy (0.5 wt.%)

    Temperature / C

    fCNT/epoxy (1.0 wt.%)

    G" /

    Pa

    Stick-slip Mechanism

    Enhanced loss modulus due to stick slip mechanism.Energy lost due to interfacial friction.

  • Results(CNT/epoxynanocomposites)

    /24 /

    Dynamicmechanicalanalysis

    TorsionRectangular,Temp=150oCto170oC,T=3K/min,Strainamplitude=0.1%Differencecalculatedat25CResultsaveragedforthreesamples

    -120 -90 -60 -30 0 30 60 90 120 150

    G' /

    Pa

    Neat epoxy

    5,0x108

    1,0x109

    1,5x109

    2,0x109

    2,5x109

    3,0x109

    CNT/epoxy (0.5 wt.%)

    Temperature / C

    CNT/epoxy (1.0 wt.%)

    -20 0 20 40 60 80 100 120

    2,0x107

    4,0x107

    6,0x107

    8,0x107

    1,0x108

    1,2x108

    1,4x108

    G" /

    Pa

    Temperature / C

    Neat epoxy CNT/epoxy (0.5 wt.%) CNT/epoxy (1.0 wt.%)

    CNT content G improvement G Improvement0.5 wt.% 6 % 6 %1.0 wt.% 16 % 30 %

    Values on a linear scale to highlight the differences.

  • Liquidcompositemolding

    /25 /

    IssuerelatedtoCNT/epoxyprocessing

    Greenetal.Composites:PartA40(2009)14701475Romhanyetal.MaterialScienceForumVol.589(2008)169274

    FiltrationofCNTsbythereinforcementfabric. ResultsinlocalvariationinCNTcontent.

    CNTfiltrationvisibleonaglassfiberlaminateproducedusingRTM.

    Intra tow filtration

    Inter tow filtration Aim:Determination / Evaluation of carbon nanotubes filtration.Aim:Determination / Evaluation of carbon nanotubes filtration.

    CNT/Polymer

    Agglomerates

    (Not to scale)

  • Processinghybridcomposites

    /26 /

    Lengthdistributionanalysis(Strategy)

    Conc.ofCNTs0.1g/literSolvent:Tetrahydrofuran(THF)

    Resin Injection Point

    Resin Injection Point

    VacuumVacuum

    THF + Uncured CNT/Epoxy

    THF + Uncured CNT/Epoxy

    Length of carbon nanotubes was measured using the TEM micrographs.

    CNT/epoxy dissolved into THF.

    Two samples; before injection and after injection.

  • Results(CNT/epoxynanocomposites)

    /27 /

    LengthdistributionanalysisTotalnanotubescount>400

    0 200 400 600 800 1000 1200 1400 16000,000,020,040,060,080,100,120,140,16

    Before Injection

    Norm

    aliz

    ed F

    requ

    ency

    0,00,20,40,60,81,01,21,41,6

    Com

    mul

    ativ

    e no

    rmal

    ized

    freq

    uenc

    y

    0 200 400 600 800 1000 1200 1400 16000,000,020,040,060,080,100,120,140,16

    Nanotube Length Class / nm

    After Injection

    0,00,20,40,60,81,01,21,41,6

    No evidence of filtration was observed.

    Only the filtration based on CNT length

    was evaluated.

    TEM micrograph

  • Overview

    /28 /

    Ramanspectroscopy

    Dresselhausetal.Philosophicaltransaction(2004)Vol.36220652098

    D-Band is associated to non-graphitic rings.

    D is an overtone of D-band.

    D-bandG-band

    D-band

    Radial breathing modesare more promienent inSWCNTs.

  • Results(Ramanspectroscopy)

    /29 /

    RamanspectroscopyofCNT/epoxynanocomposite

    Dresselhausetal.Philosophicaltransaction(2004)Vol.36220652098

    400 800 1200 1600 2000 2400 2800 3200 3600 4000

    0

    25

    50

    75

    100

    125 Spectrum of MWCNT/epoxy

    Ram

    an in

    tens

    ity

    Wavenumber / cm-1

    ~1330 cm-1 (D-band)~1590 cm-1 (G-band)

    ~2660 cm-1 (D'-band)(overtone D-band)

    ~3065 cm-1Aromatic stretch

    ~1610 cm-1

    aromatic ring stretch

  • Results(Ramanspectroscopy)

    /30 /

    Calibrationcurve

    Ramanspectroscopycandetectconcentrationdifferencesmorepreciselythanothertechniquese.g.TGA,FTIR,thermalandelectricalconductivity.

    400 800 1200 1600 2000 2400 2800 3200 3600 40000

    20

    40

    60

    80

    100

    120

    140

    160

    180

    Ram

    an in

    tens

    ity

    Wavenumber / cm-1

    0.5 wt.% CNT 0.05 wt.% CNT

    D-Band from CNTs

    Aromatic band

    0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,90,0

    0,4

    0,8

    1,2

    1,6

    CNT Content / wt.%

    Band

    ratio

    : int

    .~26

    60cm

    -1 /

    int.~

    3050

    cm-1

    Equation y = 2.18 * x

    ConfocalRamanmicroscope(objective10x)Linearpolarizedlazer(HeNe=632.8nm)10measurementsaveragedforonespectrum

  • Results(Hybridcomposites)

    /31 /

    CNTcontentinhybridcomposites

    ConfocalRamanmicroscope(objective10x)Linearpolarizedlazer(HeNe=632.8nm)10measurementsaveragedforonespectrum

    Slight tendency of filtration along the resin flow path.

    0 4 8 12 16 200,0

    0,2

    0,4

    0,6

    0,8

    1,0

    1,2

    1,4

    1,6

    Band

    ratio

    : int

    .~26

    60cm

    -1 /

    int.~

    3050

    cm-1

    Matrix flow length / cm

    0,0

    0,2

    0,4

    0,6

    CNT

    con

    tent

    / w

    t.%

    Equation y = 1.01 - 0.01*x

    Flow

    pat

    h0

    cm --

    ------

    -18

    cm

  • Results(Hybridcomposites)

    /32 /

    Dynamicmechanicalanalysis

    TorsionRectangular,Temp=150oCto170oC,T=3K/min,Strainamplitude=0.1%ResultsaveragedforthreesamplesKhanetal.(2011)CompSci&Tech,Vol.71,14861494

    CNTcontentofonly0.5wt.%showingremarkableimprovementinhybridcomposites.

    Improvementindampingwhichisimportantforfatiguelifeofcomposites.

    108

    109

    1010

    Hybrid composite

    -100 -50 0 50 100 150

    Fiber reinforced composite

    G' /

    Pa

    Temperature / oC

    13 % increase

    15 % increase

    -150 -100 -50 0 50 100 150 200106

    107

    108

    109

    G" /

    Pa

    Temperature / oC

    Hybrid composite

    21 % increase

    Fiber reinforced composite

  • 0 5 10 15 20 25 30 35 40 45 50 550

    200

    400

    600

    800

    1000

    1200

    1400

    1600

    1800

    GIc /

    J/m

    2

    Crack Propagation Length / mm

    CNT Modified Composite

    Unmodified Composite

    F

    Results(Hybridcomposites)

    /33 /

    Interlaminarfracturetoughness(modeI)

    ISO15024,CalculatedusingmodifiedcompliancecalibrationorMCC

    Obervations: SlightimprovementinGIc. Enhancedfiberbridginginhybrid

    composites.

    40m

    Hybrid composites

    Fiber reinforced composites

    40m

  • 0 5 10 15 20 25 30 35 40 45 50 550

    200

    400

    600

    800

    1000

    1200

    1400

    1600

    1800

    GIc /

    J/m

    2

    Crack Propagation Length / mm

    CNT Modified Composite

    Unmodified Composite

    F

    Results(Hybridcomposites)

    /34 /

    Interlaminarfracturetoughness(modeI)

    ISO15024,CalculatedusingmodifiedcompliancecalibrationorMCC

    Obervations: SlightimprovementinGIc. Enhancedfiberbridginginhybrid

    composites.

    Hybrid composites

    200nm

    Slightly enhanced matrix toughness and unaffected fiber/matrix interface

    Glass fiber

    Matrix with CNTs

  • Results(Hybridcomposites)

    /35 /

    ModeII,ILSSandTensile90o

    DIN65563(modeII),DINENISO5275(Tensile90o),DINENISO14130(ILSS)

    Fiber reinforced composites Hybrid composites0

    10

    20

    30

    40

    50

    60

    70

    80

    ILSS

    and

    Ten

    sile

    Stre

    ngth

    90o

    / M

    Pa ILSS Tensile 90o

    GIIc

    0

    600

    1200

    1800

    2400

    3000

    3600

    4200

    4800

    GIIc

    / J/

    m2

    Fiber reinforced composites

    Hybrid composites

    20m

    20m

    Observations: Noimprovementinfiber/matrixinterface. Absenceofhacklesonfracturesurfaceinhybrid

    composites.

  • Summary

    /36 /

    MechanicalcharacterizationMaterial Approach/Aim Testing methods

    Nanocomposites

    Understanding of the mechanisms.

    Modelled using the micromechanics modelling for CNT reinforced nanocomposites.

    Fracture toughness Flexural testing Tensile testing DMA

    Hybrid composites Evaluation of mechanical properties. Understanding of the mechanisms.

    Tensile (0 and 90) mode I and II interlaminar

    fracture toughness ILSS Compression testing DMA

    ILSS and mode II

    mode I

    Tensile testing

    Good understanding of mechanical and fracture mechanical mechanisms in nano- and hybrid composites was developed.

  • Conclusions

    /37 /

    EffectivecharacterizationmethodsbasedonRamanspectroscopyandlengthdistributionanalysisweredeveloped.

    Mechanicalandfracturemechanicalmechanismsinnano andhybridcompositeswereaprehended.

    MicromechanicsmodelingwasdonetosignifytheroleofdifferentCNTstowardsreinforcementandthepotentialofCNTs.

  • /38 /

  • /39 /

    LiteratureoverviewofCNT/epoxynanocomposites

    Gojnyetal.CompSciTech(2005)Vol.6523002313Martoneetal.CompSciTech(2011)Vol.7111171123

    Criticalissues: Surfacefunctionality Dispersion Aspectratio Agglomeration

    Gojny et al. 20050,0

    0,2

    0,4

    0,6

    0,8

    1,0

    1,2

    1,4

    0.5

    wt.%

    MW

    CN

    T- N

    H2

    0.5

    wt.%

    MW

    CN

    T- N

    H2

    0.5

    wt.%

    MW

    CN

    T

    0.5

    wt.%

    MW

    CN

    T- N

    H2

    0.5

    wt.%

    MW

    CN

    T

    Norm

    aliz

    ed V

    alue

    Tensile Modulus Tensile Strength Fracture Toughness

    Whatothersdid!

  • /40 /

    LiteratureoverviewofCNT/epoxynanocomposites

    Gojnyetal.CompSciTech(2005)Vol.6523002313Martoneetal.CompSciTech(2011)Vol.7111171123

    Rule of mixture :

    Effective modulus of reinforcement :

    fmfc EEE 1..

    f

    mcm

    EEEE

    TheoreticalmodulusofCNTs

    E G

    Pa

    CNT content / vol.%

    No systematicity in the literature.

    Whatothersdid!

  • Inam et al.

    2010

    Wichmann e

    t al. 2006

    Godara et a

    l. 2009

    Seyhan et a

    l. 2008

    Romhany et

    al. 2009

    Warrier et a

    l. 2010

    Karapappas

    et al. 2009

    Tsantzalis e

    t al. 2007

    Sadeghian e

    t al. 2006

    Yokozeki et

    al. 2007

    Davis et al.

    2011

    Veedu et al.

    2006

    Khan and K

    im, 2011

    Garcia et al.

    2008a0,0

    0,5

    1,0

    1,5

    2,0

    2,5

    3,0

    1.0

    0.5

    0.50.3

    MW

    CN

    T tr

    ansf

    er p

    rintin

    g

    Buc

    ky P

    aper

    2 w

    t.% M

    WC

    NT

    grow

    n on

    SiC

    fabr

    ic

    Nor

    mal

    ized

    GIc a

    nd G

    IIc

    GIc GIIc

    0.1 0.3

    0.5

    0.1

    1.0 5.0

    0.5

    XD-C

    NT

    /41 /

    LiteratureoverviewofCNTmodifiedFRPs

    XDCNT:amixtureofSWCNTs,DWCNTsandMWCNTsCNTcontentinwt.%

    DWCNT MWCNT CNF

    No direct correlation between the CNT content and property modification exists.

    Whathappenedearlier!