LCLS Control Group LCLS-Week [email protected] Oct. 24-27, 2005 BPM Signal Processing...

39
LCLS Control Group LCLS-Week Lcls- [email protected] Oct. 24-27, 2005 BPM Signal Processing T. Straumann, M. Cecere, E. Medvedko, P. Krejcik SLAC B. Lill ANL
  • date post

    21-Dec-2015
  • Category

    Documents

  • view

    216
  • download

    0

Transcript of LCLS Control Group LCLS-Week [email protected] Oct. 24-27, 2005 BPM Signal Processing...

Page 1: LCLS Control Group LCLS-Week Lcls-controls@slac.stanford.edu Oct. 24-27, 2005 BPM Signal Processing T. Straumann, M. Cecere, E. Medvedko, P. Krejcik SLAC.

LCLS Control Group

[email protected]

Oct. 24-27, 2005

BPM Signal Processing

T. Straumann, M. Cecere, E. Medvedko, P. Krejcik

SLAC

B. Lill

ANL

Page 2: LCLS Control Group LCLS-Week Lcls-controls@slac.stanford.edu Oct. 24-27, 2005 BPM Signal Processing T. Straumann, M. Cecere, E. Medvedko, P. Krejcik SLAC.

LCLS Control Group

[email protected]

Oct. 24-27, 2005

Overview for Stripline BPMs

Requirements/Engineering Constraints

Status

Current Frontend Design

Timeline for next 12 months

Page 3: LCLS Control Group LCLS-Week Lcls-controls@slac.stanford.edu Oct. 24-27, 2005 BPM Signal Processing T. Straumann, M. Cecere, E. Medvedko, P. Krejcik SLAC.

LCLS Control Group

[email protected]

Oct. 24-27, 2005

Objective

High precision/resolution BPM Electronics

5um resolution (R ~ 12mm)

drift < 5um/h

low bunch charge: 0.2..1nC

Stripline sensitivity: V = (a-b)/(a+b) = 2 r / R

dynamic range > 60dB + 20dB

Page 4: LCLS Control Group LCLS-Week Lcls-controls@slac.stanford.edu Oct. 24-27, 2005 BPM Signal Processing T. Straumann, M. Cecere, E. Medvedko, P. Krejcik SLAC.

LCLS Control Group

[email protected]

Oct. 24-27, 2005

Engineering Constraints

SNR expressed as position noise (LINAC Stripline; 150MHz)

dB[ r/1um ] = NF – dB[ q/1nC ] - ½ dB[ BW/1MHz ] 8dB > NF + 14dB(.2nC) – 10dB (10MHz)

noise figure including cable losses

stripline signal level based on estimation

Page 5: LCLS Control Group LCLS-Week Lcls-controls@slac.stanford.edu Oct. 24-27, 2005 BPM Signal Processing T. Straumann, M. Cecere, E. Medvedko, P. Krejcik SLAC.

LCLS Control Group

[email protected]

Oct. 24-27, 2005

Baseband vs. Mixer

Baseband• Simpler• Cheaper• Use existing cables (?)

Only marginally meets resolution requirements

Mixer• More signal at higher freq.• Proven solution• ADC performs better at IF

LO generation + distribution

New cables in LINAC needed

Page 6: LCLS Control Group LCLS-Week Lcls-controls@slac.stanford.edu Oct. 24-27, 2005 BPM Signal Processing T. Straumann, M. Cecere, E. Medvedko, P. Krejcik SLAC.

LCLS Control Group

[email protected]

Oct. 24-27, 2005

System Overview

Calibration scheme does not require extra cables

Direct digitization

Page 7: LCLS Control Group LCLS-Week Lcls-controls@slac.stanford.edu Oct. 24-27, 2005 BPM Signal Processing T. Straumann, M. Cecere, E. Medvedko, P. Krejcik SLAC.

LCLS Control Group

[email protected]

Oct. 24-27, 2005

Status

VME Digitizers + basic driver software available

Echotek

Joerger

SIS

New card ordered (13ENOB, 130MSPS, 700MHz input BW)

First frontend design + prototype (E. Medvedko)

Engineer hired (M. Cecere)

Page 8: LCLS Control Group LCLS-Week Lcls-controls@slac.stanford.edu Oct. 24-27, 2005 BPM Signal Processing T. Straumann, M. Cecere, E. Medvedko, P. Krejcik SLAC.

LCLS Control Group

[email protected]

Oct. 24-27, 2005

Frontend

f0 =150MHz (enough signal, ADC still well performing)

Low noise, 10MHz BW

Low distortion

Alias suppression

Build Prototype

Test (noise, stability, out-of band performance, linearity)

Final Design

Interface (form factor, control signals, status monitors)

Calibration

Page 9: LCLS Control Group LCLS-Week Lcls-controls@slac.stanford.edu Oct. 24-27, 2005 BPM Signal Processing T. Straumann, M. Cecere, E. Medvedko, P. Krejcik SLAC.

LCLS Control Group

[email protected]

Oct. 24-27, 2005

BPM Analog Front EndBaseband Design

BPF#1Signal from

BPM or Hybrid

BPF#2

LNA ADC

Final Amplifier

UndersamplingADC

Frequency Selection

Filter

Low Noise Amplifier

Band PassFilter

Page 10: LCLS Control Group LCLS-Week Lcls-controls@slac.stanford.edu Oct. 24-27, 2005 BPM Signal Processing T. Straumann, M. Cecere, E. Medvedko, P. Krejcik SLAC.

LCLS Control Group

[email protected]

Oct. 24-27, 2005

Baseband DesignComponent Selection Criteria

BPF#1 BPF#2LNA ADC

Freq./BW determine SNR

Low Insertion Loss

Good OOB rejection

Low NF

Low Distortion

Moderate Gain

Sharp Rolloff (Anti-

alias)

Flat Passband

High Gain*BW

Low Distortion

@ High Output Level

>= 119MSPS

High Dynamic Range

BW>= 200MHz

Page 11: LCLS Control Group LCLS-Week Lcls-controls@slac.stanford.edu Oct. 24-27, 2005 BPM Signal Processing T. Straumann, M. Cecere, E. Medvedko, P. Krejcik SLAC.

LCLS Control Group

[email protected]

Oct. 24-27, 2005

Timeline (Injector only)

Page 12: LCLS Control Group LCLS-Week Lcls-controls@slac.stanford.edu Oct. 24-27, 2005 BPM Signal Processing T. Straumann, M. Cecere, E. Medvedko, P. Krejcik SLAC.

LCLS Control Group

[email protected]

Oct. 24-27, 2005

Calibration Bench Test

Measurement setup (not worse than required stability!!)

Test stability of calibration (splitters, BPM striplines)

Cross-talk issues?

Repeatability

Multiplexing (t/f)

Final design, integration

Page 13: LCLS Control Group LCLS-Week Lcls-controls@slac.stanford.edu Oct. 24-27, 2005 BPM Signal Processing T. Straumann, M. Cecere, E. Medvedko, P. Krejcik SLAC.

LCLS Control Group

[email protected]

Oct. 24-27, 2005

LCLS Cavity BPM Overview

RF BPM system current status

Planning for prototype testing

Planning for 8 LTU BPMs electrically identical to those in the undulator.

Planning for 33 undulator BPMs

Page 14: LCLS Control Group LCLS-Week Lcls-controls@slac.stanford.edu Oct. 24-27, 2005 BPM Signal Processing T. Straumann, M. Cecere, E. Medvedko, P. Krejcik SLAC.

LCLS Control Group

[email protected]

Oct. 24-27, 2005

Miteq X-Band Low Noise Receiver

Existing product line

WR 75 Waveguide Interface

Low Noise Figure (2.7 dB)

Prototype delivery date 12/10/05

Budgetary price for prototype $6500.00 (for 3 channels)

Page 15: LCLS Control Group LCLS-Week Lcls-controls@slac.stanford.edu Oct. 24-27, 2005 BPM Signal Processing T. Straumann, M. Cecere, E. Medvedko, P. Krejcik SLAC.

LCLS Control Group

[email protected]

Oct. 24-27, 2005

Prototype Receiver SpecificationParameter Specification Limit Condition

RF Frequency 11.364 GHz 20.0 Celsius

Dx, Dy, Intensity

Input Peak Power 50 watts peak No damage (limiter protection)

LO Frequency 11.424 GHz

(2856 MHz*4)

20.0 +/- 0.2 Celsius

1nC, 1mm offset, 200fs BL

LO Power Range +10 dBm Max. Provide LO for 3 down converters

IF Frequency 60 MHz Min. 20.0 +/- 0.2 Celsius

Noise Figure Dx and DY 2.7 dB Max. 20.0 +/- 0.2 Celsius

Noise Figure Intensity (reference) 4.0 dB Max. 20.0 +/- 0.2 Celsius

LO to RF Isolation 40 dB Min. 20.0 Celsius

LO to IF Isolation 45 dB Min. 20.0 Celsius

Output Power +14 dBm 1 dB compression

Conversion Gain 25 dB typical 20.0 Celsius

Page 16: LCLS Control Group LCLS-Week Lcls-controls@slac.stanford.edu Oct. 24-27, 2005 BPM Signal Processing T. Straumann, M. Cecere, E. Medvedko, P. Krejcik SLAC.

LCLS Control Group

[email protected]

Oct. 24-27, 2005

Long Lead Item Status

Receiver Prototype del. 12/10/05

Local oscillator del. 11/24/05

Waveguide del. 12/1/05

Waveguide calibration kit del. 12/9/05

CPI Vacuum windows 11/30/05

Page 17: LCLS Control Group LCLS-Week Lcls-controls@slac.stanford.edu Oct. 24-27, 2005 BPM Signal Processing T. Straumann, M. Cecere, E. Medvedko, P. Krejcik SLAC.

LCLS Control Group

[email protected]

Oct. 24-27, 2005

BPM System Test Approach

Phase I

Injector Test Stand ITSInstall single X-Band Cavity and modified off-the-shelf down converter receiver

Mount BPM on Piezo two-axis translation stage

Phase II

Bypass line test with PC gun

Install three X-Band Cavities BPMs

Bypass line test with PC gun to start June 06

Page 18: LCLS Control Group LCLS-Week Lcls-controls@slac.stanford.edu Oct. 24-27, 2005 BPM Signal Processing T. Straumann, M. Cecere, E. Medvedko, P. Krejcik SLAC.

LCLS Control Group

[email protected]

Oct. 24-27, 2005

Charge- 1 nC single-bunch

Bunch length- ~ 3 - 4 ps FWHM for ps laser

Spot size on final screen at 5.5 MeV ~ 0.75 mm rms, ps laser

Injector Test Stand ITS Beam Parameters

Page 19: LCLS Control Group LCLS-Week Lcls-controls@slac.stanford.edu Oct. 24-27, 2005 BPM Signal Processing T. Straumann, M. Cecere, E. Medvedko, P. Krejcik SLAC.

LCLS Control Group

[email protected]

Oct. 24-27, 2005

Phase I Data Acquisition Design Approach

Instrument three channel down converters with Struck SIS-3301-105 ADCs 14-bit

Single VME board will provide the data acquisition for 8 channels

Epics driver complete

Digitize horizontal, vertical position and Intensity 0 to 1 volt range

Fit Data to decaying exponential at 60 MHz

Page 20: LCLS Control Group LCLS-Week Lcls-controls@slac.stanford.edu Oct. 24-27, 2005 BPM Signal Processing T. Straumann, M. Cecere, E. Medvedko, P. Krejcik SLAC.

LCLS Control Group

[email protected]

Oct. 24-27, 2005

Phase I Testing Objectives

Test prototype Cavity BPM, down converter, and data acquisition

Generate preliminary compliance table to specification

Gain operational experience to determine if translation stage is useful, what are optimum operating parameters

Page 21: LCLS Control Group LCLS-Week Lcls-controls@slac.stanford.edu Oct. 24-27, 2005 BPM Signal Processing T. Straumann, M. Cecere, E. Medvedko, P. Krejcik SLAC.

LCLS Control Group

[email protected]

Oct. 24-27, 2005

Phase I Schedule MilestonesDesign and develop prototype Cavity BPM

Prototype non vacuum

Nov 05

Build single Cavity BPM

Dec 05

Cold Test

Dec 05

Install cavity BPM into ITS and Test

Jan 06

Page 22: LCLS Control Group LCLS-Week Lcls-controls@slac.stanford.edu Oct. 24-27, 2005 BPM Signal Processing T. Straumann, M. Cecere, E. Medvedko, P. Krejcik SLAC.

LCLS Control Group

[email protected]

Oct. 24-27, 2005

Phase II Schedule MilestonesRefine design and develop First Article Cavity BPM and support hardware

Jan 06

Build 3 Cavity BPMsMar 06

Cold TestMay 06

Install cavity BPM into APS PAR/Booster bypass line and TestJune 06

Page 23: LCLS Control Group LCLS-Week Lcls-controls@slac.stanford.edu Oct. 24-27, 2005 BPM Signal Processing T. Straumann, M. Cecere, E. Medvedko, P. Krejcik SLAC.

LCLS Control Group

[email protected]

Oct. 24-27, 2005

Phase II Testing Objectives

First Article Prototypes evaluated

Test three BPM separated by fixed TBD distance to determine single-shot

Complete test matrix

Page 24: LCLS Control Group LCLS-Week Lcls-controls@slac.stanford.edu Oct. 24-27, 2005 BPM Signal Processing T. Straumann, M. Cecere, E. Medvedko, P. Krejcik SLAC.

LCLS Control Group

[email protected]

Oct. 24-27, 2005

LTU and Undulator Planning

Receiver and LO housed in shielded enclosure below girder 20 watt power dissipation maximum

Presently BPM output on wall side

BPM output flexible waveguide section allows movement for alignment

Page 25: LCLS Control Group LCLS-Week Lcls-controls@slac.stanford.edu Oct. 24-27, 2005 BPM Signal Processing T. Straumann, M. Cecere, E. Medvedko, P. Krejcik SLAC.

LCLS Control Group

[email protected]

Oct. 24-27, 2005

BPM Mounting

BPM connects directly to the girder.

Mechanical translation stage used for alignment

BPM and Quad can be pre-aligned independently with respect to each other

Page 26: LCLS Control Group LCLS-Week Lcls-controls@slac.stanford.edu Oct. 24-27, 2005 BPM Signal Processing T. Straumann, M. Cecere, E. Medvedko, P. Krejcik SLAC.

LCLS Control Group

[email protected]

Oct. 24-27, 2005

Undulator Planning

Page 27: LCLS Control Group LCLS-Week Lcls-controls@slac.stanford.edu Oct. 24-27, 2005 BPM Signal Processing T. Straumann, M. Cecere, E. Medvedko, P. Krejcik SLAC.

LCLS Control Group

[email protected]

Oct. 24-27, 2005

Backup slides

Page 28: LCLS Control Group LCLS-Week Lcls-controls@slac.stanford.edu Oct. 24-27, 2005 BPM Signal Processing T. Straumann, M. Cecere, E. Medvedko, P. Krejcik SLAC.

LCLS Control Group

[email protected]

Oct. 24-27, 2005

fo= 150MHzBW = 10MHz

Lark EngineeringMS140-20-3CCInsert. Loss = 5.8dB--------------------------TTE filtersKB3T-150M-10M-50-3AInsert. loss = 4.1dB--------------------------Microwave Filter Co.3MB10-150/10-SF/SF-1Insertion loss = 3dB

SirenzaSGA-6589G = 26dBNF = 3.0dBOIP3 = 33dBm-------------------SirenzaSGA-4363G = 18dBNF = 3.1dBOIP3 = 29dBm

Sawtek854916fo= 150MHzBW = 10MHzInsert. loss = 11dB

TI OPA847GBW = 3.9GHzDistortion -105dBc

LTC2208130MSPSmax16-bit700MHz BWfsamp=119MHzReq. jitter < 350fs---------------------AD6645105MSPSmax14-bit200MHz BWfsamp=102?Req. jitter < 600fs

Alias image@ 30MHz

Baseband DesignComponents

BPF#1 BPF#2LNA ADC

NF = 2-4dB NF = 3dB

CableNF = 2-4dB

Page 29: LCLS Control Group LCLS-Week Lcls-controls@slac.stanford.edu Oct. 24-27, 2005 BPM Signal Processing T. Straumann, M. Cecere, E. Medvedko, P. Krejcik SLAC.

LCLS Control Group

[email protected]

Oct. 24-27, 2005

Input signal

-250.00

-200.00

-150.00

-100.00

-50.00

0.00

50.00

0 50 100 150 200 250 300

System Input

Coax 1

BPF 1 (150MHz)

Coax 2

LNA 1

BPF 2 (150MHz)

OpAmp 1

OpAmp 2

OpAmp 3

BPF 3 (150MHz)

Cable losses

BPF1

LNA

BPF

2

Final output

Frequency MHz

dBmBPM signal

Baseband DesignFrequency Response

Page 30: LCLS Control Group LCLS-Week Lcls-controls@slac.stanford.edu Oct. 24-27, 2005 BPM Signal Processing T. Straumann, M. Cecere, E. Medvedko, P. Krejcik SLAC.

LCLS Control Group

[email protected]

Oct. 24-27, 2005

BPMor

HybridLNA ADCRF

LO

IF

400-800MHz 43MHz

xN119MHz

MinicircuitsZFM-21 – 1000 MHzConv Loss = 5.8dB

Mixer Based BPMBlock Diagram

Page 31: LCLS Control Group LCLS-Week Lcls-controls@slac.stanford.edu Oct. 24-27, 2005 BPM Signal Processing T. Straumann, M. Cecere, E. Medvedko, P. Krejcik SLAC.

LCLS Control Group

[email protected]

Oct. 24-27, 2005

-250.00

-200.00

-150.00

-100.00

-50.00

0.00

50.00

0 100 200 300 400 500 600

System Input

Coax 1

BPF 1 (400MHz)

Coax 2

LNA 1

BPF 2 (400MHz)

Mix 1

Opamp 1

LPF 1 (40MHz)

Opamp 2

Opamp 3

Opamp 4

Comp12

Comp13

Comp14

Comp15

Comp16

Comp17

Comp18

Comp19

Comp20

Comp21

Comp22

Comp23

Comp24

Frequency MHz

dBm BPM signal

After coax

BPF1

LNA

BPF

2

mixer

Mixer Based DesignFrequency Response

Page 32: LCLS Control Group LCLS-Week Lcls-controls@slac.stanford.edu Oct. 24-27, 2005 BPM Signal Processing T. Straumann, M. Cecere, E. Medvedko, P. Krejcik SLAC.

LCLS Control Group

[email protected]

Oct. 24-27, 2005

Software Tasks

Evaluation / test software

BPM Processor

Processing algorithm

Real-time tasks: data acquisition and processing

timing

history buffers

Calibration

Integration (SLC-aware IOC, timing, feedback)

Slow controls (gain, calib, status monitors, alarms)

Page 33: LCLS Control Group LCLS-Week Lcls-controls@slac.stanford.edu Oct. 24-27, 2005 BPM Signal Processing T. Straumann, M. Cecere, E. Medvedko, P. Krejcik SLAC.

LCLS Control Group

[email protected]

Oct. 24-27, 2005

Integration; Hardware

Clock generation and distribution

Timing; triggers/gates

Calibration signal generation and distribution

Controls: gain, calib. mux

Power

Status monitors

Page 34: LCLS Control Group LCLS-Week Lcls-controls@slac.stanford.edu Oct. 24-27, 2005 BPM Signal Processing T. Straumann, M. Cecere, E. Medvedko, P. Krejcik SLAC.

LCLS Control Group

[email protected]

Oct. 24-27, 2005

Integration; Software

Timing

SLC-aware layer

Shot-to-shot feedback

High-level applications (EPICS database)

Naming

Real-time

Sysadmin; infrastructure; network

Page 35: LCLS Control Group LCLS-Week Lcls-controls@slac.stanford.edu Oct. 24-27, 2005 BPM Signal Processing T. Straumann, M. Cecere, E. Medvedko, P. Krejcik SLAC.

LCLS Control Group

[email protected]

Oct. 24-27, 2005

PDRO local oscillator

11.424 GHz

(119 MHz x 96)

Phase lock to 119 MHz ref 0 dBm +/- 3 dB

+13 dBm output power

In-Band Spurs <70 dBc

Phase noise depends on 119 MHz reference

Page 36: LCLS Control Group LCLS-Week Lcls-controls@slac.stanford.edu Oct. 24-27, 2005 BPM Signal Processing T. Straumann, M. Cecere, E. Medvedko, P. Krejcik SLAC.

LCLS Control Group

[email protected]

Oct. 24-27, 2005

Noise Estimates

Sensitivity:

-58 dBm/0.2nC/1m

Minimum bit size: 16 bits/micron@ 0.2nC

Assumes 2 gain ranges for 75 dB

Noise floor <200 nm rms

Parameter Value

Thermal noise -174 dBm/Hz

IF Bandwidth 20 MHz

Noise in-band -101 dBm

Receiver 1 dB compression

+14 dBm

Receiver gain 25 dB

Receiver noise figure 2.7 dB

Page 37: LCLS Control Group LCLS-Week Lcls-controls@slac.stanford.edu Oct. 24-27, 2005 BPM Signal Processing T. Straumann, M. Cecere, E. Medvedko, P. Krejcik SLAC.

LCLS Control Group

[email protected]

Oct. 24-27, 2005

APS Test Objectives

Develop a cavity BPM that meets system requirements and can be manufactured economically

Develop simulation model that correlates to prototype data

Transition from prototyping to production

Page 38: LCLS Control Group LCLS-Week Lcls-controls@slac.stanford.edu Oct. 24-27, 2005 BPM Signal Processing T. Straumann, M. Cecere, E. Medvedko, P. Krejcik SLAC.

LCLS Control Group

[email protected]

Oct. 24-27, 2005

ITS Installation

Page 39: LCLS Control Group LCLS-Week Lcls-controls@slac.stanford.edu Oct. 24-27, 2005 BPM Signal Processing T. Straumann, M. Cecere, E. Medvedko, P. Krejcik SLAC.

LCLS Control Group

[email protected]

Oct. 24-27, 2005

Cost Savings

Reduce the dipole cavity outputs from 4 ports to 2 portsTerminate the unused ports in vacuumEliminate 2 transitions, 2 windows, waveguide, 2 magic teesProve resolution and offset performance