Laminer Boundary Layer

39
Chapter 3: Laminar Boundary Layer: Differential Analysis Jiun-Jih Miau Department of Aeronautics and Astronautics National Cheng Kung University (NCKU) Real Fluid Dynamics for IPSA students at NCKU, 2015

description

The lecture of Prof. Juin Jih Miao from Nation Cheng Kung University

Transcript of Laminer Boundary Layer

Page 1: Laminer Boundary Layer

Chapter 3: Laminar Boundary Layer: Differential Analysis

Jiun-Jih Miau Department of Aeronautics and

Astronautics National Cheng Kung University (NCKU)

Real Fluid Dynamics for IPSA students at NCKU, 2015

Page 2: Laminer Boundary Layer

Introduction

Page 3: Laminer Boundary Layer

3

Reading assignments: 1. Lighthill, M. L., Introduction, boundary layer theory, in Laminar

Boundary Layers, edited by L. Rosenhead, Chapter II, Oxford University Press, 1963.

2. Prandtl, L., Motion of fluids with very little viscosity. NACA TM452, 1928, translated from a paper of Prantl of 1927 (1904).

3. Tani. I., History of boundary layer theory. Ann. Rev. Fluid Mech., Vol. 9, pp. 87-111, 1977.

4. White, F. M., Viscous fluid flow, Chapters 1 and 2. McGraw-Hill, 1974.

Page 4: Laminer Boundary Layer
Page 5: Laminer Boundary Layer
Page 6: Laminer Boundary Layer
Page 7: Laminer Boundary Layer
Page 8: Laminer Boundary Layer
Page 9: Laminer Boundary Layer
Page 10: Laminer Boundary Layer
Page 11: Laminer Boundary Layer
Page 12: Laminer Boundary Layer
Page 13: Laminer Boundary Layer
Page 14: Laminer Boundary Layer
Page 15: Laminer Boundary Layer

15

• The boundary-layer assumption is applicable when the Reynolds number is large. Cases of boundary layer phenomena:

1. wall-bounded shear layer 2. free shear layer: jet, wake and mixing layer

Page 16: Laminer Boundary Layer
Page 17: Laminer Boundary Layer
Page 18: Laminer Boundary Layer
Page 19: Laminer Boundary Layer
Page 20: Laminer Boundary Layer
Page 21: Laminer Boundary Layer
Page 22: Laminer Boundary Layer

Similarity solutions

Page 23: Laminer Boundary Layer

23

Reading assignments: 1. White, F. M., Viscous fluid flow. McGraw-Hill, 1974, Chapter 4.

2. Schlichting, H., Boundary-layer theory. McGraw-Hill, 1968, Chapter 7.

By introducing the similarity parameter, one can reduce the PDE momentum equations to an ODE equation. Thus, the solution can be obtained in a much easier manner. Physically speaking, the existence of a similarity solution implies that the corresponding flow behaves in a similar manner along the streamwise direction. Namely, the flow properties after non-dimensionalization hold the same regardless of the streamwise locations.

Page 24: Laminer Boundary Layer
Page 25: Laminer Boundary Layer
Page 26: Laminer Boundary Layer
Page 27: Laminer Boundary Layer
Page 28: Laminer Boundary Layer
Page 29: Laminer Boundary Layer
Page 30: Laminer Boundary Layer
Page 31: Laminer Boundary Layer
Page 32: Laminer Boundary Layer
Page 33: Laminer Boundary Layer
Page 34: Laminer Boundary Layer
Page 35: Laminer Boundary Layer
Page 36: Laminer Boundary Layer
Page 37: Laminer Boundary Layer
Page 38: Laminer Boundary Layer
Page 39: Laminer Boundary Layer