Laboratory Report Electronic Motors

11
ES2B1 Energy Conservation & Power Systems Laboratory Report Electronic Motors Student Number 1321854 Table of Contents Abstract Summary ....................................................................................................................................... 2 Introduction ................................................................................................................................................... 2 Theory .............................................................................................................................................................. 2 Calculations .................................................................................................................................................... 4 Method ............................................................................................................................................................. 4 Results .............................................................................................................................................................. 5 AC Induction Motor ................................................................................................................................................. 5 DC Motor ..................................................................................................................................................................... 6 Diagrams and Equipment .......................................................................................................................... 7 AC Power .................................................................................................................................................................... 7 DC Power .................................................................................................................................................................... 8 Observations of the Starting Characteristics of the Motors ........................................................... 8 Discussion ....................................................................................................................................................... 9 Conclusions ................................................................................................................................................. 10 Bibliography ............................................................................................................................................... 10 Appendices and References ................................................................................................................... 11

description

This study investigates how induction and DC motors vary, their efficiency and their operation. Results show DC motors are more efficient at a higher output power than induction motors. The motor speed has more of an effect on the torque in an induction motor than a DC motor, DC motors show an inverse linear relationship, with motor speed and torque where as an Induction motor exhibits less of these qualities. Both motors use the same current to start the motor then return back to their starting current.

Transcript of Laboratory Report Electronic Motors

ES2B1  

Energy  Conservation  &  Power  Systems  

 

 

Laboratory  Report  -­  Electronic  Motors  

Student  Number  -­  1321854  

 

Table  of  Contents  

Abstract  Summary .......................................................................................................................................2  Introduction...................................................................................................................................................2  Theory..............................................................................................................................................................2  Calculations....................................................................................................................................................4  Method .............................................................................................................................................................4  Results..............................................................................................................................................................5  AC  Induction  Motor .................................................................................................................................................5  DC  Motor .....................................................................................................................................................................6  

Diagrams  and  Equipment..........................................................................................................................7  AC  Power ....................................................................................................................................................................7  DC  Power ....................................................................................................................................................................8  

Observations  of  the  Starting  Characteristics  of  the  Motors...........................................................8  Discussion.......................................................................................................................................................9  Conclusions ................................................................................................................................................. 10  Bibliography ............................................................................................................................................... 10  Appendices  and  References................................................................................................................... 11  

 

Abstract  Summary  This  study  investigates  how  induction  and  DC  motors  vary,  their  efficiency  and  their  operation.    Results  show  DC  motors  are  more  efficient  at  a  higher  output  power  than  induction  motors.  The  motor  speed  has  more  of  an  effect  on  the  torque  in  an  induction  motor  than  a  DC  motor,  DC  motors  show  an  inverse  linear  relationship,    with  motor  speed  and  torque  where  as  an  Induction  motor  exhibits  less  of  these  qualities.    Both  motors  use  the  same  current  to  start  the  motor  then  return  back  to  their  starting  current.    

Introduction  The  purpose  of  the  laboratory  is  to  measure  the  efficiency  of  both  the  alternating  current  and  direct  current  motors.  From  this  we  can  then  compare  the  efficiency  of  the  motor  with  the  output  power.  The  laboratory  was  also  to  gain  an  understanding  of  measuring  electrical  and  mechanical  quantities  and  operating  AC  and  DC  motors.  

 

Theory  Any  conductor  that  carries  a  current  has  a  magnetic  field  around  it.  The  direction  of  this  field  can  be  described  as  the  right  hand  grip  rule  this  also  applies  for  coils  such  as  transformers.  

    F  =  B  ⋅  I  ⋅  L    Fig  1   (Magnetics  Effects  of  a  Current  Carrying  Conductor  -­‐  Straight  Wire  ,  2010)            

Energy  Analyser  -­‐  Electrical  input  power,  Voltage,  Current,  Power  factor    

Induction  Motor  -­‐  380V,  50Hz,  1A,  Star  connected  

Dynamometer  -­‐  Torque,  Mechanical  output  power,  Mechanical  speed  

Ammeter  &  Voltmeter  (Voltage  x  Current  =  Electrical  Input  Power)      

DC  Motor  

Dynamometer  -­‐  Torque,  Mechanical  output  power,  Mechanical  Speed  

Where  F  is  the  force  exerted,  B  is  the  magnetic  flux  density  (T),  I  is  the  current  and  L  is  the  length  of  the  wire.  As  the  magnetic  field  and  length  of  wire  stays  constant  the  current  exerted  from  the  energy  analyser  directly  affects  the  force  and  therefore  the  output  torque.  

Electromagnetic  induction  is  introduced  when  a  magnet  is  moved  through  a  coil,  this  induces  an  EMF  causing  a  current  to  flow  through  the  conductor  within  the  magnetic  field,  and  this  in  turn  generates  a  magnetic  flux  that  opposes  the  change  of  the  original  flux.  This  process  mimics  that  of  a  transformer.  (Mias, Electromagnetism and Machienes)  

A  motor  converts  electrical  energy  to  mechanical  energy  and  generators  convert  mechanical  energy  to  electrical  energy.  Both  machines  are  similar  comprising  of  2  electromagnets.  An  electromagnet  is  formed  of  a  coil  with  a  current  carrying  conductor  that  produces  magnetic  field  and  magnetic  flux.    

Induction  Motors    

 (Wikipedia)Fig  2  (above)  shows  how  a  three  phase  stator  creates  a  magnetic  field  that  rotates  in  time  with  the  AC  oscillations.  The  stator  is  a  stationary  electromagnet  that  produces  a  magnetic  field  produces  a  constant  magnitude  at  synchronous  speed  but  the  rotation  causes  the  position  of  the  of  the  output  power  to  be  120°apart  that  can  be  seen  by  the  graph  in  the  lower  half  of  the  image.(Storey)  Armature  windings  are  spaces  120°  apart  on  the  stator.  The  speed  is  directly  related  to  the  EMF  frequency  in  the  stator  coils  and  the  number  of  poles  on  the  stator.  

 

DC  motors    

DC  motor  requires  direct  current  to  a  rotating  electromagnet  (a  rotor),  there  is  no  rotating  magnetic  field    like  the  induction  motor  as  the  current  is  single  phase.    

 Fig  3             Fig  4  

Fig    demonstrates  that  the  armature  and  field  windings  use  two  separate  supplies,  meaning  it  is  a  separately  excited  DC  motor.  We  only  measure  the  armature  voltage,  current  and  power  as  the  field  windings  are  constant.  at  220V  and  0.33Amps,  producing  a  power  at  73W.  The  armature  and  field  windings  power  values  must  be  added  together  to  give  the  total  electrical  input  power  this  will  affect  the  efficiency.  This  is  demonstrated  in  the  calculations  section.    

The  internal  generated  EMF  in  the  DC  machine  is  Eb  =  V  –  I  Ra    where  V  is  the  supply  voltage  and  Ra  is  the  armature  resistance.      Mechanical  power  developed,    Pm  =  Power  input  to  armature  –  power  loss  in  armature    =  VI  –  I2  Ra    =  I  (  V  –  IRa)    =  Eb  I  

Calculations  The  efficiency  can  be  calculated  from  the  following  equations.  Graphs  for  induction  and  DC  motors  can  be  plotted  Efficiency  against  mechanical  output  power  

Electrical  power  input  =Armature  Power  +  Field  Power    

Electrical  Power  input  =  Value  recorded  +  (220  x  0.33)  =  Value  recorded    +  73    

Efficiency  =  Mechanical  Power  Output/  Electrical  Power  Input  x  100%  

 

Power  equation:      P=VI  

The  power  equation  can  be  used  to  calculate  the  armature  input  power  for  the  DC  machine.    The  voltage  is  set  at  270V  and  the  current  is  measured  using  an  ammeter.      Equipment  used  to  vary  the  torque  only  displayed  up  to  2  significant  figures.  All  digital  readers  display  to  two  or  three  decimal  places,  there  may  be  a  possible  calibration  error,  but  the  main  source  of  error  was  that  recording  measurements  wasn't  instantaneous,  so  as  they  fluctuate  and  they  were  recorded  it  creates  some  error.  

Method  Starting  with  the  induction  motor  the  three  phase  control  is  switched  on  (switches  B  and  D),  the  dynamometer  is  set  to  manual  and  knob  F  (variable  output  control)  increased  until  the  voltage  shown  on  the  energy  analyser  reaches  380V.  To  start  the  motor  knob  F  was  increased  on  the  dynamometer  to  increase  the  torque  to  0.2Nm.  The  input  variables  of  the  electric  current  (voltage,  current,  power  and  power  factor)  and  the  output  variables  of  the  motor  (power,  motor  speed,  torque)  were  recorded.  This  experiment  was  continued  with  the  torque  increasing  by  0.2Nm  until  the  output  power  reaches  300W.  Above  this  recordings  were  carried  

out  quickly  in  steps  of  0.4Nm,  this  was  continued  until  the  motor  overloaded.  Switches  B,  C  and  D  were  turned  off  after  5  minutes  to  allow  the  motor  to  cool.  

For  the  DC  motor  only  switch  B,  C  and  D  were  switched  on  and  knob  F  set  to  zero.  Knob  F  was  slowly  increased  to  30V    where  the  voltage,  motor  speed  and  current  were  measured.  Thiese  recordings  were  continued  up  in  steps  of  30V  up  to  the  rated  voltage  of  270V.    

The  ‘manu’  knob  on  the  dynamometer  was  turned  to  increase  the  torque  to  0.1Nm.  The  input  current  was  measured  using  an  ammeter  and  the  armature  voltage  was  set  at  270V  and  field  set  at  240V.  From  this  we  could  calculate  the  electrical  input  power  from  the  power  formula;  P=IV.    The  output  torque,  output  power  and  motor  speed  were  also  recorded.  These  recorded  were  repeated  at  intervals  of  0.1Nm  until  the  motor  reaches  its  output  power  of  180W.  The  test  was  increased  quickly  in  intervals  0f  0.2Nm  until  the  motor  reached  2A.      

Results  

AC  Induction  Motor  

Input Output

Voltage (V)

Current (A)

Electrical Input Power

(W) Power Factor

Output Torque (Nm)

Output Power (W)

Mechanical Motor Speed

(RPM) Efficiency

(%) 383 0.6 80 0.2 0 1.5 1480 0.19 381 0.605 100 0.2 0.2 20.6 1478 20.6 380 0.615 139 0.34 0.4 54.5 1473 39.2 380 0.642 181 0.43 0.6 89.6 1467 49.5 380 0.668 217 0.48 0.8 119.4 1460 55 380 0.698 249 0.54 1 145.2 1454 58.3 380 0.731 283 0.59 1.2 170 1449 60.1 380 0.772 326 0.64 1.4 199.7 1442 61.3 380 0.82 327 0.69 1.6 235.7 1431 72.1 380 0.888 422 0.72 1.8 266.7 1424 63.2 380 0.946 466 0.75 2 295.1 1414 63.3 380 0.99 500 0.77 2.2 316.1 1407 63.2 380 1.15 610 0.81 2.6 370.2 1382 60.7 379 1.33 727 0.83 3 420.6 1352 57.9 379 1.56 870 0.85 3.4 461.5 1310 53 379 1.87 1008 0.86 3.8 476.4 1223 47.3

 

 

 

 

 

 

 

DC  Motor  Input Output

Voltage (V)

Current (A)

Input Electrical Power (W)

Output Torque (Nm)

Output Power (W)

Mechanical Speed (RPM)

Efficiency (%)

270 0.3 154 0.1 24.3 1729 15.8 270 0.3 154 0.2 25.5 1725 16.6 270 0.41 183.7 0.3 53 1703 28.9 270 0.49 205.3 0.4 74.9 1687 36.5 270 0.54 218.8 0.5 86.8 1677 39.8 270 0.61 237.7 0.6 103 1665 43.3 270 0.66 251.2 0.7 116 1654 46.2 270 0.76 278.2 0.8 141.4 1639 50.8 270 0.8 289 0.9 147.1 1633 50.9 270 0.85 302.5 1 161.8 1623 49.1 270 0.95 329.5 1.1 181.8 1606 55.2 270 1.1 370 1.2 212 1583 57.3 270 1.26 413.2 1.3 245 1562 59.3 270 1.4 451 1.5 268 1543 59.4 270 1.53 486.1 1.7 291 1524 59.9 270 1.71 534.7 1.9 319 1496 59.7 270 1.80 543.5 2.1 319 1492 58.7 270 1.94 596.8 2.3 353 1467 59.1 270 2.14 650.8 2.5 377.3 1438 58.0

 

Input Voltage (V)

Input Current

(A)

Input Power (W)

Output Torque

(Nm) Output

Power (W)

Mechanical Speed (RPM)

30 0.14 77.2 0 1.9 200 60 0.16 82.6 0 1.9 373 90 0.17 88.3 0 2.2 578

120 0.17 93.4 0 2.4 771 10 0.18 101.8 0 2.8 957

180 0.19 107.2 0 3 1154 210 0.19 112.9 0 3 1364 240 0.19 118.6 0 3.2 1544 270 0.2 127 0 3.2 1752

 

 Graph  1               Graph  2  

 

Graph  3             Graph  4  

Diagrams  and  Equipment  

AC  Power  

     Fig  5  Electric  motor       Fig  6   Oscilloscope  with  two  channels               CH1-­‐  Voltage  which  is  proportional  to  motor  speed             CH2  –  Current    

0  

0.2  

0.4  

0.6  

0.8  

0   200   400   600  

Ef^iciency  %  

Output  Power  (W)  

AC  Ef^iciency  Vs  Power  Output    

0  0.5  1  

1.5  2  

2.5  3  

3.5  4  

1200   1300   1400   1500   1600   1700  

Output  Torque  (Nm)  

Motor  Speed  (iRPM)  

AC  Torque  Vs  Motor  Speed    

0  

0.1  

0.2  

0.3  

0.4  

0.5  

0.6  

0   100   200   300   400  

Ef^iciency  (%)  

Output  Power  (W)  

DC  Ef^iciency  Vs  Power  Output    

0  0.5  1  

1.5  2  

2.5  3  

3.5  4  

1420   1470   1520   1570   1620   1670   1720  

Output  Torque  (Nm)  

Motor  Speed  (RPM)  

DC  Torque  Vs  Motor  Speed    

     Fig  7  Dynamometer  measuring     Fig  8  Three  phase  analyser  measuring    output  power,  motor  speed     input  voltage,  input  current,    input  and  the  torque  of  the  motor.       power  and  phase  angle.                 (Note  three  wires  because  of  AC  current)  

DC  Power    Same  as  above  but  the  current  is  only  single  phase  so  only  one  wire  connected  into  the  three  phase  analyser.  

         Fig  9  Input  voltage  set  at  270V  and     Fig  10  Output  voltage  measured  on  built  current  measured  using  ammeter.   in  DC  voltmeter.  Grey  probe  used  for  taking  readings    on  the  oscilloscope    

Observations  of  the  Starting  Characteristics  of  the  Motors    When  a  stationary  motor  is  switched  on  it  take  a  large  current  from  the  supply.  As  the  motor  begins  to  accelerate  the  current  declines,  the  motor  then  reaches  a  steady  state  speed  determined  by  the  load  connected  to  it.    

     

Current  Probe   Voltage  Probe    

Voltage  and  current  probes  can  be  used  to  determine  the  peak  current  and  the  time  to  increase  to  full  speed.    In  the  graphs  below  channel  1  shows  the  output  voltage  and  channel  2  shows  the  output  current.  

 

Graph  5  –  AC,  CH1  showing  voltage,  CH2  showing  current  

 

Graph  6  –  DC  with  CH1  showing  voltage    and  CH2  showing  current  

Discussion  As  seen  by  graphs  2  and  4  torque  has  an  inverse  relationship  with  motor  speed.  A  model  is  shown  below  (graph  7)  for  DC  machines  below  this  indicates  the  stall  torque  (τs)  where  torque  is  at  a  maximum  but  the  shaft  is  not  rotating  and  ωn  where  there  is  no  load  speed  so  the  maximum  motor  speed  but  with  no  torque.    

τmotor  =  τs  -­‐  ωτs/ωn      

ωmotor  =  (τs  -­‐  τ)ωn/τs  

    Graph  7  (Page)  

Following  from  point  4  (Mias,  ES2B1:  Electric  Motors,  2014)  the  oscilloscope  print  above  shows  the  AC  current  spike  to  2  Amps  when  turned  on  and  then  continue  alternating  back  down  to  an  average.  There  is  a  brief  delay  for  the  voltage  to  increase  up  to  a  constant.  As  the  voltage  is  proportional  to  the  motor  speed  

CH1  can  also  represent  the  output  revolutions  per  minute.  It  can  also  be  noted  the  frequency  

at  50Hz  so  this  is  also  correct.    

 

 

 

DC  current  also  spikes  but  as  it  is  only  single  phase  there  is  no  oscillations  to  be  seen  for  the  current.  The  current  peak  is  needed  to  start  the  motor  rotation  and  is  the  same  at  2  Amps  .  The  current  returns  to  zero  at  the  

same  time  the  voltage  reaches  its  maximum,  here  the  voltage  increases  more  slowly  than  

AC.  

 

Induction  Motors  have  a  very  low  cost  due  to  their  simple  design.  Their  speed  can  be  varied  by  the  number  of  fixed  winding  sets  and  also  by  the  frequency  of  the  AC  line  voltage.  They  also  have  a  high  power  factor  so  more  real  power  to  be  used.    Induction  motors  are  much  more  reliable  than  DC  motors  as  there  are  no  brushes  to  replace.  However  induction  motors  do  struggle  at  low  speeds  due  to  their  thermal  considerations  

The  DC  motor  provides  excellent  speed  control  as  the  power  supply  directly  controls  the  field  of  the  motor,  which  allows  for  precise  voltage  control  that  is  necessary  with  speed  and  torque  control  applications  e.g.  shunt  motor.  DC  motors  also  have  an  easy  to  understand  design  with  only  a  single  phase  due  to  the  direct  current.  However  they  require  high  maintenance  to  maintain  the  brushes  and  the  mechanical  interface  used  for  the  current  to  reach  the  rotating  field.  Dust  also  decreases  its  performance  so  is  unsuitable  in  a  dust  environment.  (Ali,  2013)  

Conclusions  AC  current  has  a  much  rounder  curve  indicating  that  it  has  a  greater  range  of  efficiency  it  can  work  at  with  different  powers.  These  range  from  between  120  –  400W  where  it  can  work  at  60%  efficiency.  The  DC  motor  efficiency  increases  with  output  speed  up  to  a  maximum  of  60%  efficiency.    This  could  be  an  exponential  relationship  but  more  recordings  would  have  to  be  carried  out.  Both  motors  experience  their  peaks  at  similar  mechanical  output  power,  with  the  DC  peak  efficiency  at  290W  and  induction  peak  efficiency  at  236W.  From  looking  at  the  graph  you  can  see  the  peak  for  induction  motors  could  be  an  anomaly  reading,  the  graph  is  a  smooth  curve  apart  from  this  peak  that  would  more  likely  be  around  63%  efficiency.  

Both  torque  vs  peed  graphs  (graph  2  and  4)  are  inversely  proportional  with  the  induction  motor  being  the  least  proportional  having  a  speed  curve.  The  torque  of  the  induction  motor  increases  from  zero  to  4Nm,  this  has  a  greater  range  than  the  DC  motor  only  to  2.5Nm.  The  induction  motor  has  a  steeper  curve,  as  the  motor  speed  is  slower.  At  0Nm  the  highest  motor  speed  is  1500  revolutions  per  minute  whereas  the  DC  motor  highest  speed  is  1730  rotations  per  minute.  

So  as  both  motors  have  similar  efficiencies  the  induction  motor  is  likely  to  be  a  better  machine  as  it  performs  at  60%  efficiency  between  a  larger  range  of  power,  120-­‐400W.  

Bibliography  Ali,  Z.  A.  (2013,  12  20).  Dv  and  AC  Motor  Model.  Uet  Peshawar.  Magnetics  Effects  of  a  Current  Carrying  Conductor  -­  Straight  Wire  .  (2010).  Retrieved  12  02,  2014,  from  Physics  503:  http://physics503.one-­‐school.net/2008/06/magnetics-­‐effects-­‐of-­‐current-­‐carrying.html  Mias,  D.  C.  (n.d.).  Electromagnetism  and  Machienes.  Retrieved  11  02,  2014,  from  School  of  Engineering,  Warwick:  http://www2.warwick.ac.uk/fac/sci/eng/eso/modules/year2/es2b1/resources/es2b1_lecture_8_dc_machines.pdf  Mias,  D.  C.  (2014).  ES2B1:  Electric  Motors.  University  of  Warwick,  School  of  Engineering  .  Page,  M.  (n.d.).  DC  Motor  Characteristics  .  Simple  AC  induction  Motor  .  (n.d.).  Retrieved  12  02,  2014,  from  Hyperphysics  :  http://hyperphysics.phy-­‐astr.gsu.edu/hbase/magnetic/indmot.html#c3  

Storey,  N.  Electronics:  A  systems  approach  (Vol.  5).  Pearson  Prentice  Hall.  Wikipedia.  (n.d.).  Principles  of  Operation  in  Induction  Motors  .    

Appendices  and  References    Graph  1  –  Excel  graph  of  AC  efficiency  VS  power  Output  Graph  2  –  Excel  graph  of  AC  Torque  VS  Motor  Speed    Graph  3  -­‐  Excel  graph  of  DC  efficiency  VS  power  Output  Graph  4  –  Excel  graph  of  SC  Torque  VS  Motor  Speed  Graph  5  –  Oscilloscope  print  of  AC,  CH1  showing  voltage,  and  CH2  showing  current  Graph  6  –  Oscilloscope  print  of  DC,  CH1  showing  voltage  and  CH2  showing  current    Graph  7  -­‐  Inverse  linear  relationship  between  Motor  speed  and  Torque(Page)  Fig  1  -­‐  (Magnetics  Effects  of  a  Current  Carrying  Conductor  -­‐  Straight  Wire  ,  2010)  Fig  2  –  (Wikipedia)  Fig  3  and  4  –  Briefing  sheet  images  demonstrating  field  and  armature  parts-­‐  Fig  5  –  AC  Electric  Motor    Fig  6  -­‐  Oscilloscope  with  two  channels  (CH1-­‐  Voltage,  CH2  –  Current)    Fig  7  –  Dynamometer  measuring  output  power,  mechanical  speed,  torque  Fig  8  –  Three  Phase  analyser  measuring  Input  current,  power,  voltage,  power  factor  Fig  9  –  Ammeter  and  Probe  for  taking  readings  on  the  oscilloscope    Fig  10  –  DC  Voltmeter