Lab scale isolation of compounds by Flash Chromatography · Transfer to preparative normal phase...

23
xx/xx/xxxx © Merck Editor: Presentation name here 1 Lab scale isolation of compounds by Flash Chromatography - Rapid and reliable transfer from TLC to Flash Chromatography Dr. Michael Schulte Merck Chimie S.A.S. 25/11/2005 Page 2 Lab scale isolation of compounds by Flash Chromatography Properties of Silica Gel Using Thin Layer Chromatography (TLC) for chromatographic method development Transfer from TLC to Flash Chromatography Applications

Transcript of Lab scale isolation of compounds by Flash Chromatography · Transfer to preparative normal phase...

Page 1: Lab scale isolation of compounds by Flash Chromatography · Transfer to preparative normal phase silica, according to segment Merck Chimie S.A.S. 25/11/2005 Page 24 TLC-Approach 2

xx/xx/xxxx

© Merck Editor: Presentation name here 1

Lab scale isolation of compounds by Flash Chromatography- Rapid and reliable transfer from TLC to Flash Chromatography

Dr. Michael Schulte

Merck Chimie S.A.S. 25/11/2005 Page 2

Lab scale isolation of compounds by Flash Chromatography

• Properties of Silica Gel

• Using Thin Layer Chromatography (TLC) for chromatographic method development

• Transfer from TLC to Flash Chromatography

• Applications

Page 2: Lab scale isolation of compounds by Flash Chromatography · Transfer to preparative normal phase silica, according to segment Merck Chimie S.A.S. 25/11/2005 Page 24 TLC-Approach 2

xx/xx/xxxx

© Merck Editor: Presentation name here 2

Merck Chimie S.A.S. 25/11/2005 Page 3

Na2SiO3

(water glass)+ H2SO4

Na2SiO3

(water glass)+ H2SO4

Hydrosol(oligosilicic acid, orthosilicic acid)

Hydrosol(oligosilicic acid, orthosilicic acid)

HydrogelHydrogel

Xerogel(raw silica powder,

particle size 0.5 - 6 mm)

Xerogel(raw silica powder,

particle size 0.5 - 6 mm) Ground silica gel(dp 5 - 500 µm)

Ground silica gel(dp 5 - 500 µm)

Classified silica gelsClassified silica gels

control oftemperature and pH

control oftemperature and pH

temperature controltemperature control

drying temperature controldrying temperature control

washing pH-control, ion content

washing pH-control, ion content

Silica Production Process

Merck Chimie S.A.S. 25/11/2005 Page 4

Production Plant

... the biggest chromatographic silica gel plant in the world,

... the biggest chromatographic silica gel plant in the world,

Page 3: Lab scale isolation of compounds by Flash Chromatography · Transfer to preparative normal phase silica, according to segment Merck Chimie S.A.S. 25/11/2005 Page 24 TLC-Approach 2

xx/xx/xxxx

© Merck Editor: Presentation name here 3

Merck Chimie S.A.S. 25/11/2005 Page 5

... Large scale production,btach size: several tons

... Large scale production,btach size: several tons

Three reactors for silica gelproduction,

Three reactors for silica gelproduction,

Production Plant

Merck Chimie S.A.S. 25/11/2005 Page 6

LiChrosorb Si60LiChrosorb Si60 5, 10µmLiChroprep Si 60LiChroprep Si 60 15-25 µm

25-40 µm15-40µm

Silica Gel 60Silica Gel 60 40-63µm [9385]below 63µm

+ Silica Gel for TLC+ Silica Gel for TLC 63-100µm63-200µm [7734]200-500µm

Standardized Silica Gels

All from one Production Process����CONSTANT SELECTIVITY

Page 4: Lab scale isolation of compounds by Flash Chromatography · Transfer to preparative normal phase silica, according to segment Merck Chimie S.A.S. 25/11/2005 Page 24 TLC-Approach 2

xx/xx/xxxx

© Merck Editor: Presentation name here 4

Merck Chimie S.A.S. 25/11/2005 Page 7

Factors influencing Selectivity and Usability

Form irregular / spherical ����Efficiency, Pressure Drop

Surface Modification ���� Selectivity

Area / Pore Size ���� Loadability

Purity ���� Selectivity, Resolution

pH ���� Selectivity

Water Content ���� Selectivity

Stability mechanical ���� Life Time

chemical (pH) ����CIP - Conditions

Merck Chimie S.A.S. 25/11/2005 Page 8

4)

´1

´()

1(

N

k

kRS ⋅

+⋅−=

αα

Resolution - the key parameter forpreparative chromatography

maximize throughsorbent screening

minimize - keepcycle time

shortmaximize - high

efficiency sorbent

Separation Optimization

Page 5: Lab scale isolation of compounds by Flash Chromatography · Transfer to preparative normal phase silica, according to segment Merck Chimie S.A.S. 25/11/2005 Page 24 TLC-Approach 2

xx/xx/xxxx

© Merck Editor: Presentation name here 5

Merck Chimie S.A.S. 25/11/2005 Page 9

Gas phase

Liquid phaseStationary phase

Sample

Method Development –using Thin Layer Chromatography

•You have to consider three phases in TLC :

Merck Chimie S.A.S. 25/11/2005 Page 10

• Several parameters have to be considered when developing a TLC method :

– Activity of the stationary phase

– Conditioning / preparation

• methanol / isopropanol (plate developing or dipping)

• drying (30 min @ 120 °C)

– Support (plastic, aluminium, glas)

– Binder

– Fluorescent indicator

– Manufacturer / lot reproducibility

– Manufacturer / comparability with Flash / column chromatography

Method Development –using Thin Layer Chromatography

Page 6: Lab scale isolation of compounds by Flash Chromatography · Transfer to preparative normal phase silica, according to segment Merck Chimie S.A.S. 25/11/2005 Page 24 TLC-Approach 2

xx/xx/xxxx

© Merck Editor: Presentation name here 6

Merck Chimie S.A.S. 25/11/2005 Page 11

• The mobile phase should :

– Dissolve the sample

– Desorb the sample from the stationary phase

– Transport the sample over an acceptable distance

• The mobile phase should in general be :

– Simple (maximum 4, better 2 components)

– Non-toxic

– of chromatographic quality

– Not cause any secondary reactions

– Not demixing

– Of favourable low viscosity

Method Development –using Thin Layer Chromatography

Merck Chimie S.A.S. 25/11/2005 Page 12

• Solvents classification: Snyder triangle

proton acceptorproton donor

dipole interactionxn

xd xe

0.2

0.3

0.5

0.60.2 0.4 0.60.3 0.7

0.2

0.3

0.4

0.6

Method Development –using Thin Layer Chromatography

Page 7: Lab scale isolation of compounds by Flash Chromatography · Transfer to preparative normal phase silica, according to segment Merck Chimie S.A.S. 25/11/2005 Page 24 TLC-Approach 2

xx/xx/xxxx

© Merck Editor: Presentation name here 7

Merck Chimie S.A.S. 25/11/2005 Page 13

11

´ −=f

DC Rk

TLC/HPLC - Conversion

of

oSf d

dR =

ATTENTION : the migration distance is measured from

the sample spot

Merck Chimie S.A.S. 25/11/2005 Page 14

TLC - equipment

• CAMAG – vario chamber �parallel us of 6 different solvents or solvent mixtures

Page 8: Lab scale isolation of compounds by Flash Chromatography · Transfer to preparative normal phase silica, according to segment Merck Chimie S.A.S. 25/11/2005 Page 24 TLC-Approach 2

xx/xx/xxxx

© Merck Editor: Presentation name here 8

Merck Chimie S.A.S. 25/11/2005 Page 15

Thin Layer Chromatography (TLC)as pilot technique

• Adjust polarity to lower retention values on TLC plates

• Try to maintain the same relative activity on the plate and on the column

• Do not use volatile mobile phasecomponents

Some general rules:

Literature:

TLC as a pilot technique for transferring retention data to HPLCW.Jost, H.-E.Hauck, F.Eisenbeiss, Kontakte 1984 (3), p.45-52

Merck Chimie S.A.S. 25/11/2005 Page 16

Literature: E.Stahl, Chemiker-Ztg. 82 (1958) 323

Develop chromatogram withmobile phases of different

elution strength

Place a spot ofthe sample on a

TLC-plate

ε0

(elutionstrength)

far too low too low perfect too high

TLC/HPLC - Conversion

Page 9: Lab scale isolation of compounds by Flash Chromatography · Transfer to preparative normal phase silica, according to segment Merck Chimie S.A.S. 25/11/2005 Page 24 TLC-Approach 2

xx/xx/xxxx

© Merck Editor: Presentation name here 9

Merck Chimie S.A.S. 25/11/2005 Page 17

n-Heptane

Cyclohexane

MTBE

Dichloromethane

MTBE

DioxaneTHFEtat

IPAEtOHMeOHACN

0.38

0.560.570.58

0.820.880.95

0.01

0.04

0.38

0.42

εεεε0

εεεε0

Apolar CompoundApolar Compound Polar CompoundPolar Compound

TLC/HPLC - Conversion

Merck Chimie S.A.S. 25/11/2005 Page 18

TLC-Approach 1 (Solvent Screening model J.Dingenen, Janssen Pharmaceutica)

1) Two series of neat solvents covering a broad polarity and selectivity range

Run 1

Run 2

Run 3

MTBE Toluene CH2Cl2 CH3CN EtAc THF

MeOH EtOH IPA Acetic acid 2-propanone 2-butanone

2) Solvent series based on dichloromethane – methanol mixtures

N-Hexane 50%CH2Cl2 50 % MeOH 2% MeOH 5% MeOH 10% MeOH 20% MeOH 50%

Lane 1 2 3 4 5 6

Page 10: Lab scale isolation of compounds by Flash Chromatography · Transfer to preparative normal phase silica, according to segment Merck Chimie S.A.S. 25/11/2005 Page 24 TLC-Approach 2

xx/xx/xxxx

© Merck Editor: Presentation name here 10

Merck Chimie S.A.S. 25/11/2005 Page 19

TLC-Approach 1 (Solvent Screening model J.Dingenen, Janssen Pharmaceutica)

2) Solvent series based on dichloromethane – methanol mixtures

Merck Chimie S.A.S. 25/11/2005 Page 20

TLC-Approach 1 (Solvent Screening model J.Dingenen, Janssen Pharmaceutica)

Good selectivity for one of the tested neat solventsor for one of the dichloromethane – methanol mixtures

2) Good selectivity for one of the tested neat solvents but Rf values to high

Addition of an apolar solvent to adjust the Rf values between 0.10 and 0.35 (corresponding to a k` value between 1.85 and 9)

3) Unsatisfactory resutls

On the basis of the observed spot shapes in the experiments with neat solvents the most suitable solvent combinations (binary – ternary) are chosen and further inverstigated

Start experiments on the preparative chromatography column

1)

Page 11: Lab scale isolation of compounds by Flash Chromatography · Transfer to preparative normal phase silica, according to segment Merck Chimie S.A.S. 25/11/2005 Page 24 TLC-Approach 2

xx/xx/xxxx

© Merck Editor: Presentation name here 11

Merck Chimie S.A.S. 25/11/2005 Page 21

TLC-Approach 1 (Solvent Screening model J.Dingenen, Janssen Pharmaceutica)

Binary solvent mixtures: THF/acetone or Ethanol/Acetone

Merck Chimie S.A.S. 25/11/2005 Page 22

TLC-Approach 1 (Solvent Screening model J.Dingenen, Janssen Pharmaceutica)

Ternary solvent mixtures

Page 12: Lab scale isolation of compounds by Flash Chromatography · Transfer to preparative normal phase silica, according to segment Merck Chimie S.A.S. 25/11/2005 Page 24 TLC-Approach 2

xx/xx/xxxx

© Merck Editor: Presentation name here 12

Merck Chimie S.A.S. 25/11/2005 Page 23

Segment 1 (Rf=0.05-0.25)

TLC-Approach 2 (EtAc/Heptane-Gradient, Solvias)

Segment 2(Rf=0.25-0.60

Segment 3(Rf=0.60-0.90)

TLC-Screening with Ethyl acetate / n-hexane (1:4)

Transfer to preparativenormal phase silica, according to segment

Merck Chimie S.A.S. 25/11/2005 Page 24

TLC-Approach 2 (EtAc/Heptane-Gradient, Solvias)

Literature:

Automated normal-phase preparative HPLC as a substitue for flash chromatography in the synthetic research laboratoryP.Renold, E.Madero, Th.Maetzke, J.Chromatogr. 2001 (908), 143-148

Transfer to LiChrospher Si 60, 12 µm packed into Selfpacker columns 125 mm length and 25 or 50 mm I.D.

Exponential gradient: Ke

KeEtAcc

a

Tta

+−

−⋅−=⋅

1

)1()1()(

)/(

T=length of gradient(min), K=c(EtAc) at t=0, a=exponential gradient parameter, t=runtime

Rf 0.05-0.25 0.25-0.60 0.60-0.90a 7 6 8K 0.15 0.09 0.05T 8 6 6

Page 13: Lab scale isolation of compounds by Flash Chromatography · Transfer to preparative normal phase silica, according to segment Merck Chimie S.A.S. 25/11/2005 Page 24 TLC-Approach 2

xx/xx/xxxx

© Merck Editor: Presentation name here 13

Merck Chimie S.A.S. 25/11/2005 Page 25

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

ea / hex = 1:4

0.70 Bibenzyl

0.60 Ethylbenzoate

0.54 Dibutylphtalate0.50 Acetophenone

0.43 Diéthylphtalate

0.33 Diméthylphtalate

0.22 Benzylalcool

0.05 Acetanilide

0.00

0.20

0.40

0.60

0.80

1.00

0.1

0.7

1.3

1.9

2.5

3.1

3.7

4.3

4.9

5.5

6.1

6.7

7.3

7.9

8.5

9.1

9.7

10.3

10.9

11.5

12.1

12.7

%B

(C)

G-2G-3

t

G-1

Ref1

TLC-Approach 2 (EtAc/Heptane-Gradient, Solvias)

Merck Chimie S.A.S. 25/11/2005 Page 26

85 % n-Heptan15 % Ethylacetat

80 % n-Heptan20 % Ethylacetat

75 % n-Heptan25 % Ethylacetat

100 % n-Heptan 95 % n-Heptan5 % Ethylacetat

90 % n-Heptan10 % Ethylacetat

Example for TLC method development (Diastereomers + impurities)

Page 14: Lab scale isolation of compounds by Flash Chromatography · Transfer to preparative normal phase silica, according to segment Merck Chimie S.A.S. 25/11/2005 Page 24 TLC-Approach 2

xx/xx/xxxx

© Merck Editor: Presentation name here 14

Merck Chimie S.A.S. 25/11/2005 Page 27

85 % n-Heptan15 % Ethylacetat

80 % n-Heptan20 % Ethylacetat

75 % n-Heptan25 % Ethylacetat

100 % n-Heptan 95 % n-Heptan5 % Ethylacetat

90 % n-Heptan10 % Ethylacetat

Example for TLC method development (Diastereomers + impurities)

Merck Chimie S.A.S. 25/11/2005 Page 28

90 % n-Heptan / 10 % Ethylacetat

1,55

1,681,892,62

3,08

5,04

7,85

024681012141618

Retention Time (min)

50

100

150

200

250

300

Intensity (mV)

Example for TLC method development (Diastereomers + impurities)

TLC chromatogram

HPLC chromatogram

High Retention Low

Page 15: Lab scale isolation of compounds by Flash Chromatography · Transfer to preparative normal phase silica, according to segment Merck Chimie S.A.S. 25/11/2005 Page 24 TLC-Approach 2

xx/xx/xxxx

© Merck Editor: Presentation name here 15

Merck Chimie S.A.S. 25/11/2005 Page 29

Used stationary phases:

TLC HPLC

HPTLC KG 60 LiChrospher Si 60

HPTLC RP-8 LiChrospher 100 RP-8, LiChrospher 60 RP select B

HPTLC RP-18 LiChrospher 100 RP-18

HPTLC CN LiChrospher 100 CN

HPTLC NH2 LiChrospher 100 NH2

HPTLC Diol LiChrospher 100 Diol

Comparison of TLC and HPLC

Merck Chimie S.A.S. 25/11/2005 Page 30

Example 1: TriazinesTLC: HPTLC-Fertigplatte RP-8 F254sHPLCe: LiChroCART® LiChrospher ® 100 RP-8 bzw.

LiChroCART ® LiChrospher ® 60 RP select BMobile phase: Acetonitril/Water 60/40

Pesticide hRf K’ P K’S(RP-8P K’S(select B)Terbutryn 19,3 4,18 15,70 3,20Prometryn 21,4 3,67 14,18 2,90Terbuthylazin 27,1 2,69 2,10 1,91Propazin 30,0 2,33 1,89 1,71Sebuthylazin 30,0 2,33 1,85 1,68Atrazin 35,7 1,80 1,46 1,31Metribuzin 45,7 1,19 1,06 0,94Simazin 45,7 1,19 1,10 1,01Cyanazin 47,1 1,12 0,95 0,85Hexazinon 52,1 0,92 0,81 0,79Desethylatrazin 55,0 0,82 0,66 0,62Metamitron 60,7 0,65 0,61 0,54Desisopropylatrazin 61,4 0,63 0,52 0,49

Comparison of TLC and HPLC

Page 16: Lab scale isolation of compounds by Flash Chromatography · Transfer to preparative normal phase silica, according to segment Merck Chimie S.A.S. 25/11/2005 Page 24 TLC-Approach 2

xx/xx/xxxx

© Merck Editor: Presentation name here 16

Merck Chimie S.A.S. 25/11/2005 Page 31

Example 1: Triazines

a1) RP-8 (without Terbutryn and Prometryn): r = 0,996; K’S = 0,11 + 0,75 K’P

Comparison of TLC and HPLC

Merck Chimie S.A.S. 25/11/2005 Page 32

a2) RP-select B: r = 0.996; K‘S = 0,03 + 0,75 K‘P

Example 1: Triazines

Comparison of TLC and HPLC

Page 17: Lab scale isolation of compounds by Flash Chromatography · Transfer to preparative normal phase silica, according to segment Merck Chimie S.A.S. 25/11/2005 Page 24 TLC-Approach 2

xx/xx/xxxx

© Merck Editor: Presentation name here 17

Merck Chimie S.A.S. 25/11/2005 Page 33

HPTLC-Chromatogramm HPLC-Chromatogramm(λ = 200 nm) (λ = 200 nm)

Transfer of a real sample (salad)

Comparison of TLC and HPLC

Merck Chimie S.A.S. 25/11/2005 Page 34

0,97

0,975

0,98

0,985

0,99

0,995

1

Silica CN Amino Diol RP-8 RP-18

All samples, except

Phenoxy-carbonic acids

Real sample (Salad, spiked)

Correlation coefficient between TLC and HPLC

Comparison of TLC and HPLC

Page 18: Lab scale isolation of compounds by Flash Chromatography · Transfer to preparative normal phase silica, according to segment Merck Chimie S.A.S. 25/11/2005 Page 24 TLC-Approach 2

xx/xx/xxxx

© Merck Editor: Presentation name here 18

Merck Chimie S.A.S. 25/11/2005 Page 35

Transfer to FlashChromatography

•• We now have a complete range of Flash Cartridges :We now have a complete range of Flash Cartridges :

2,5g10g15g 25g

30g

70g90g200g300g

150g200g300g400g600g

800g

Registered Trademarksof Götec-Labortechnik

Merck Chimie S.A.S. 25/11/2005 Page 36

• In ideal conditions, transposition from TLC to Flash Chromatography should give such results

Transposition, example 1

Page 19: Lab scale isolation of compounds by Flash Chromatography · Transfer to preparative normal phase silica, according to segment Merck Chimie S.A.S. 25/11/2005 Page 24 TLC-Approach 2

xx/xx/xxxx

© Merck Editor: Presentation name here 19

Merck Chimie S.A.S. 25/11/2005 Page 37

How to increase performance…

• .. by using smaller particles, but:

Smaller granulometry ���� Higher pressure !!!

Ex : Back pressure in Cyclohexane 90 / 10 DioxaneBed height = 100 mm Flowrate = nominal

Si60 63-200 µm � 0,4 barSi60 40-63 µm � 1,2 barSi60 15-40 µm � 4,3 bar

� Need for pressure stable flash cartridges

Merck Chimie S.A.S. 25/11/2005 Page 38

Particle size comparisons

0

50000

100000

150000

200000

250000

300000

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Test silice Si60 40-63 µmTest silice Si60 63-200 µmTest silice Si60 15-40 µm

Page 20: Lab scale isolation of compounds by Flash Chromatography · Transfer to preparative normal phase silica, according to segment Merck Chimie S.A.S. 25/11/2005 Page 24 TLC-Approach 2

xx/xx/xxxx

© Merck Editor: Presentation name here 20

Merck Chimie S.A.S. 25/11/2005 Page 39

Efficiency depending on particle size

• Comparison between 15-40, 25-40 spherical and 40-63 µm

Biotage 40-63 µm

Pharmprep CC 25-40 µm

Merck Chimie S.A.S. 25/11/2005 Page 40

LiChroprep 15-25 µm

Biotage 40-63 µm

• Comparison between 15-40, 25-40 spherical and 40-63 µm

Efficiency depending on particle size

Page 21: Lab scale isolation of compounds by Flash Chromatography · Transfer to preparative normal phase silica, according to segment Merck Chimie S.A.S. 25/11/2005 Page 24 TLC-Approach 2

xx/xx/xxxx

© Merck Editor: Presentation name here 21

Merck Chimie S.A.S. 25/11/2005 Page 41

Difficult separations –cis/trans-Phytol

Biotage 40-63 µm Supervarioprep 15-40 µm

HPLC-Chromatogram

Merck Chimie S.A.S. 25/11/2005 Page 42

Biotage 40-63 µm Supervarioprep 15-40 µm

Difficult separations –Citrus-Oil

HPLC-Chromatogram

Page 22: Lab scale isolation of compounds by Flash Chromatography · Transfer to preparative normal phase silica, according to segment Merck Chimie S.A.S. 25/11/2005 Page 24 TLC-Approach 2

xx/xx/xxxx

© Merck Editor: Presentation name here 22

Merck Chimie S.A.S. 25/11/2005 Page 43

Dry loading

• Dry loading : Another advantage of pre-packed cartridges

– In TLC, the sample is always deposited as a "Dry loading".

– In Flash, it depends of the solubility of the sample in the eluent.

But… the sample does not always behave identically if injected in solution, or as a Dry loading.

Merck Chimie S.A.S. 25/11/2005 Page 44

Dry loading

• In order to obtain good transposition to Flash on basis of TLC results(especially in Anti-Langmuir because of low solubility in solvent) :

���� Check loading in TLC.���� Use Dry loading.

Our cartridges have special empty volume for this Dry loading :

Page 23: Lab scale isolation of compounds by Flash Chromatography · Transfer to preparative normal phase silica, according to segment Merck Chimie S.A.S. 25/11/2005 Page 24 TLC-Approach 2

xx/xx/xxxx

© Merck Editor: Presentation name here 23

Merck Chimie S.A.S. 25/11/2005 Page 45

Conclusion

• New Flash cartridges packed with Si60 15-40 µm offer :

– Easy transposition TLC / Flash.

– Very good purification efficiency.

– Quicker purifications than Glass columns.

– Smaller fractions to evaporate.

– Secure working area (no glass breakage risk).

– Easy Dry loading directly on-column.

Merck Chimie S.A.S. 25/11/2005 Page 46

Contact

• We remain at your service for any question regarding Flash Chromatography :

– Products presentation

– Tests on your products

– Purification strategy

– Trainings

– Etc…

Thomas PONCET Process Separations Merck Chimie SAS

[email protected]