L i near discriminant analysis (LDA)

15
Linear discriminant analysis (LDA) Katarina Berta [email protected] [email protected]

description

L i near discriminant analysis (LDA). Katarina Berta [email protected] [email protected]. Introduction. Fisher ’s Linear Discriminant  Analysis Paper from 1936. ( link ) Statistical technique for classification LDA = two classes MDA = multiple classes - PowerPoint PPT Presentation

Transcript of L i near discriminant analysis (LDA)

Page 1: L i near discriminant analysis (LDA)

Linear discriminant analysis(LDA)

Katarina Berta

[email protected]

[email protected]

Page 2: L i near discriminant analysis (LDA)

Introduction

Fisher’s Linear Discriminant Analysis

Paper from 1936. (link)

Statistical technique for classification

LDA = two classes

MDA = multiple classes

Used in statistics, pattern recognition, machine learning

2/15

Page 3: L i near discriminant analysis (LDA)

Purpose

Discriminant Analysis classifies objects in two or more groups according to linear combination of features

Feature selection Which set of features can best determine

group membership of the object? dimension reduction

ClassificationWhat is the classification rule or model to best

separate those groups?3/15

Page 4: L i near discriminant analysis (LDA)

Method (1)

2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.80

1

2

3

4

5

6

7

8

9

Passed

Not passed

Good separationBad separation

4/15

Page 5: L i near discriminant analysis (LDA)

Method (2)

Maximize the between-class scatterDifference of mean values (m1-m2)

Minimize the within-class scatterCovariance

Min Min

Max 5/15

Page 6: L i near discriminant analysis (LDA)

Formula

 Σy = 0 = Σy = 1 = Σ equal covarinaces

Bayes' theorem

Idea:x – object

i, j – classes, groups

Derivation:probability density functions

-normaly distributet-

QDA - quadratic discriminant analysisMean value Covarinace

FLD

6/24

Page 7: L i near discriminant analysis (LDA)

Example

Curvature Diameter Quality Control Result

2,95 6,63 Passed

2,53 7,79 Passed

3,57 5,65 Passed

3,16 5,47 Passed

2,58 4,46 Not Passed

2,16 6,22 Not Passed

3,27 3,52 Not Passed

Factory for high quality chip rings Training set

7/15

Page 8: L i near discriminant analysis (LDA)

Normalization of data

X1 X2

2,888 5,676

X1 X2 class

2,95 6,63 1

2,53 7,79 1

3,57 5,65 1

3,16 5,47 1

2,58 4,46 0

2,16 6,22 0

3,27 3,52 0

X1o X2o class

0,060 0,951 1

-0,357 2,109 1

0,679 -0,025 1

0,269 -0,209 1

-0,305 -1,218 0

-0,732 0,547 0

0,386 -2,155 0

Training data Mean corrected data

Avrage

8/15

Page 9: L i near discriminant analysis (LDA)

Covarinace

0,166 -0,192

-0,192 1,349

0,259 -0,286

-0,286 2,142

Covarinace for class i

Covarinace class 1 – C1 Covarinace class 2 – C2

One entry of covarinace matrix - C

0,206 -0,233

-0,233 1,689covarinace matrix - C

0,259 -0,286

-0,286 2,142Inverse covarinace matrix C - S

9/15

Page 10: L i near discriminant analysis (LDA)

Mean valuesN P(i) m(X1) m(X2)

Class 1 4 0,571 3,05 6,38 m1Class 2 3 0,429 2,67 4,73 m2Sum 7 5,72 11,12 m1+m2

0,38

1,65

m1-m2

3,487916

1,456612

W= S*(m1-m2)

W0= ln[P(1)\P(2)]-1\2*(m1+m2) = -17,7856

N – number of objects

P(i) – prior probability

m1 – mean value matrix of class 1 (m(x1), m(x2))

m2 – mean value matrix of class 2 (m(x1), m(x2))

0,259 -0,286

-0,286 2,142

S- inverse covariance

* =

10/15

Page 11: L i near discriminant analysis (LDA)

ResaultX1 X2 score class

2,95 6,63 2,149 1

2,53 7,79 2,380 1

3,57 5,65 2,887 1

3,16 5,47 1,189 1

2,58 4,46 -2,285 0

2,16 6,22 -1,203 0

3,27 3,52 -1,240 0

score= X*W + W0 X1 X22,95 6,632,53 7,793,57 5,653,16 5,472,58 4,462,16 6,223,27 3,52

3,487916

1,456612* =W0 +

score

2,1492,3802,8871,189

-2,285-1,203-1,240

1

2

3

4

-3.000 -2.000 -1.000 0.000 1.000 2.000 3.000 4.000

Not Passed

Passed

11/15

Page 12: L i near discriminant analysis (LDA)

Prediction

New chip: curvature = 2.81, diameter = 5.46

Predicition: will not pass

Prediction correct!

score= X*W + W0 W= S*(m1-m2)

score= -0,036

If (score>0) then class1 else class2

score= -0,036 => class21

2

3

4

-3.000 -2.000 -1.000 0.000 1.000 2.000 3.000 4.000

Not Passed

Passed

12/15

Page 13: L i near discriminant analysis (LDA)

Pros & Cons

Cons

Old algorithm

Newer algorithms - much better predicition

Pros

Simple

Fast and portable

Still beats some algorithms (logistic regression) when its assumptions are met

Good to use when begining a project13/15

Page 14: L i near discriminant analysis (LDA)

Conclusion

FisherFace one of the best algorithms for face recognition

Often used for dimension reduction

Basis for newer algorithms

Good for beginig of data mining projects

Thoug old, still worth trying

14/15

Page 15: L i near discriminant analysis (LDA)

Thank you for your attention!

Questions?

15