Introduction to Spectroscopy 2004. 4 Yongsik Lee.

3
Introduction to Introduction to Spectroscopy Spectroscopy 2004. 4 2004. 4 Yongsik Lee Yongsik Lee

Transcript of Introduction to Spectroscopy 2004. 4 Yongsik Lee.

Page 1: Introduction to Spectroscopy 2004. 4 Yongsik Lee.

Introduction to Introduction to SpectroscopySpectroscopy

2004. 42004. 4

Yongsik LeeYongsik Lee

Page 2: Introduction to Spectroscopy 2004. 4 Yongsik Lee.

SpectroscopySpectroscopy

► IntroductionIntroduction►Components of spectrometerComponents of spectrometer►Atomic spectroscopyAtomic spectroscopy►AA (Atomic Absorption) and AF (Atomic AA (Atomic Absorption) and AF (Atomic

Fluorescence)Fluorescence)►AES (Atomic Emission Spectroscopy)AES (Atomic Emission Spectroscopy)►Atomic Mass SpectroscopyAtomic Mass Spectroscopy►Atomic X-ray SpectroscopyAtomic X-ray Spectroscopy

Page 3: Introduction to Spectroscopy 2004. 4 Yongsik Lee.

6A electromagnetic radiation6A electromagnetic radiation► Electromagnetic radiation (wave) description:

Electric Field Strength Time t or Distance x Amplitude A Velocity v Wavelength l Period p time for 1 l to pass fixed point Frequency n # of l passing per s n = 1

► Wavenumber n # of l per cm n = 1► Velocity v Distance point on wave travels per► second► In a vacuum:► v = n ×l► vvacuum = c► = 2.99782x108 m / s► A set of waves with identical (a) freqency (b) phase are called► coherent .► CEM 333 page 2.1► Frequency is always fixed but velocity can vary!► Waves slow down in medium (gas, liquid, solid) so v<c► v = n ×l► Implies l decreases in medium► Refractive index h = c► v► ³ 1.00► Equation for Wave► E = Asin(wt + f) where w = 2pn► electric field frequency► amplitude phase► angular frequency time► Wave description explains certain EM radiation phenomena:► transmission► reflection and refraction► diffraction► interference► scattering► polarization► CEM 333 page 2.2► Particle Description of Light:► Based on quantum mechanics► Energy of EM photon: E = hu = hc► l► Planck's Constant=6.626x10-34 J·s► Postulates of QM:► 1. Atoms, ions and molecules exist in discrete energy states► only► E0 = ground state► E1, E2 , E3 ... = excited states► Excitation can be electronic, vibrational or rotational► Energy levels for atoms, ions or molecules different.► Measuring energy levels gives means of identification -► spectroscopy► 2. When an atom, ion or molecule changes energy state, it► absorbs or emits energy equal to the energy difference► DE = E1 - E0► 3. The wavelength or frequency of radiation absorbed or► emitted during a transition proportional to DE► DE = h ×n = h ×c► l► CEM 333 page 2.3► Emission Spectra► Plot of emission intensity vs. n or l called emission spectrum► Atom:► E 0► E 1► E 2► DE=202.8 kJ/mol► n=5.08x10 Hz► l=590 nm► 14► DE=362.5 kJ/mol► n=9.08x10 Hz► l=330 nm► 14 Energy► Atomic► Excitation► Atomic► Emission► Lifetime~1-100 ns► line emission spectra► Inner shell (core) electrons (1s¬2p) - x-rays photons► Outer shell (valence) electrons (3d¬4p) - UV/vis photons► Molecule:► E 0► E 1► E 2► Energy► Molecular► Excitation► Molecular► Emission► V0► V1► V2► V3► R0► R10► Band 1 Band 2► Lifetime► 1-100 fs► vibrational and rotational transitions - band emission spectra► CEM 333 page 2.4